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Abstract

Retrieval-augmented generation (RAG) has emerged as a powerful frame-
work for enhancing large language models (LLMs) with external knowl-
edge, particularly in scientific domains that demand specialized and dy-
namic information. Despite its promise, the application of RAG in the
chemistry domain remains underexplored, primarily due to the lack of high-
quality, domain-specific corpora and well-curated evaluation benchmarks.
In this work, we introduce CHEMRAG-BENCH, a comprehensive bench-
mark designed to systematically assess the effectiveness of RAG across a
diverse set of chemistry-related tasks. The curated chemistry corpus inte-
grates heterogeneous knowledge sources, including scientific literature, the
PubChem database, PubMed abstracts, textbooks, and Wikipedia entries.
In addition, we present CHEMRAG-TOOLKIT, a modular and extensible
RAG toolkit that supports five retrieval algorithms and eight LLMs. Us-
ing CHEMRAG-TOOLKIT, we demonstrate that RAG yields a substantial
performance gain—achieving an average relative improvement of 17.4%
over direct inference methods. We further conduct in-depth analyses on
retriever architectures, corpus selection, and the number of retrieved pas-
sages, culminating in practical recommendations to guide future research
and deployment of RAG systems in the chemistry domain. The code and
data is available at https://chemrag.github.io.

1 Introduction

Retrieval-augmented generation (RAG) (Gao et al., 2023) has emerged as a powerful
paradigm for enhancing large language models (LLMs) with external knowledge sources.
By incorporating retrieval into the generation process, RAG can effectively mitigate hal-
lucinations (Zhang et al., 2023b) and inject up-to-date domain-specific information into
LLMs (Siriwardhana et al., 2023). These capabilities are particularly valuable in scientific
domains, where factual accuracy and timely knowledge are critical. A typical scientific
RAG system consists of two components: (1) a retriever that selects relevant documents or
facts from a scientific knowledge base, and (2) a generator, often an LLM, that integrates
the retrieved content to produce informed and coherent responses. Such frameworks have
shown promising applications in domains like biomedicine (Xiong et al., 2024).

In chemistry, LLMs have shown remarkable potential across various tasks, including molec-
ular captioning (Li et al., 2024), chemical reasoning (Tang et al., 2025), and reaction predic-
tion (Shi et al., 2023). However, chemistry is a highly specialized and dynamic discipline,
characterized by complex terminologies, domain-specific conventions, and rapidly-evolving
knowledge. As a result, LLMs trained on general corpora often fail to generate grounded
and accurate responses, instead producing hallucinated or outdated content (Zhang et al.,
2023a; Wang et al., 2024b). RAG presents a natural solution to these limitations, allowing
models to retrieve and incorporate trusted chemical knowledge during inference.
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Figure 1: Overview of the CHEMRAG toolkit. Retrievers are first constructed from CHEM-
RAG corpora. For each question in the CHEMRAG-BENCH benchmark, we retrieve related
documents as additional contexts for LLMs to predict the final answer.

Despite the growing interest in applying RAG to the chemistry domain, there remains a lack
of standardized benchmarks and curated domain-specific resources to support rigorous
evaluation and design of RAG systems. To address this gap, we introduce CHEMRAG-
BENCH, a novel evaluation benchmark comprising 1,932 expert-curated question-answer
pairs covering diverse chemistry tasks. These include description-guided molecular de-
sign, retrosynthesis, chemical calculations, molecule captioning, name conversion, and
reaction prediction. This benchmark provides a foundation for systematically evaluating
the effectiveness of RAG systems in chemistry and guiding future research in this direction.

To facilitate comprehensive and reproducible evaluation on CHEMRAG-BENCH, we intro-
duce CHEMRAG-TOOLKIT, a user-friendly and extensible toolkit that supports 6 chemistry-
related corpora, 5 retrieval methods, and 8 LLMs, encompassing both general-purpose
and domain-specific LLMs. Based on the proposed CHEMRAG-BENCH benchmark, we
conduct a systematic evaluation of various CHEMRAG solutions and analyze the impact of
individual components on overall performance from multiple perspectives. Across a range
of LLMs, we observe an average relative performance improvement of 17.4% when using
CHEMRAG compared to direct inference without retrieval.

Along the retrieval corpus dimension, we find that different chemistry tasks exhibit distinct
preferences for specific corpora. For instance, molecule design and reaction prediction tasks benefit
more from literature-derived corpora, while nomenclature and conversion tasks favor structured
chemical databases. These observations suggest that task-aware corpus selection is crucial for
maximizing RAG performance. Moreover, we show that combining all available corpora
often yields the most robust results, serving as a comprehensive retrieval base. In terms
of the retriever component, Contriever (Izacard et al., 2021) demonstrates consistently
strong performance across tasks. We further find that performance can be enhanced by
leveraging ensemble retrieval strategies that combine the strengths of multiple retrievers.
Beyond standard evaluation metrics, we uncover a log-linear scaling trend between the
number of retrieved passages and downstream model performance, indicating that retrieval
depth plays a key role in generation quality. Additionally, we investigate the proportion of
external knowledge utilized per task and provide in-depth analysis on retriever selection
for chemistry discovery scenarios. Finally, we distill a set of practical recommendations
from our findings, offering actionable insights for deploying and advancing RAG systems
in the chemistry domain. In summary, our key contributions are fourfold:
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• We introduce CHEMRAG-BENCH, a comprehensive benchmark comprising 1,932 expert-
curated question-answer pairs across six chemistry-related knowledge sources, enabling
systematic evaluation of RAG methods in the chemistry domain.

• We curate CHEMRAG-CORPUS, a large-scale and comprehensive corpora construction.
• We develop CHEMRAG-TOOLKIT, an easy-to-use and extensible framework that inte-

grates five retrieval algorithms and eight large language models, and demonstrate an
average relative improvement of 17.4% when applying CHEMRAG over direct inference.

• We conduct comprehensive empirical analyses to examine the impact of retrieval corpus
selection, retriever architecture, the number of retrieved documents, etc. Based on our
findings, we provide practical guidelines to inform future research and the real-world
deployment of chemistry-focused RAG systems.

2 Related Work

2.1 Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) enhances large language models by incorporating
external knowledge sources (Lewis et al., 2020). It has been shown to reduce hallucinations
(Ayala & Bechard, 2024) and provide access to up-to-date information (Fan et al., 2024).
Recent work has sought to improve RAG performance through various enhancements,
including more effective retrieval mechanisms (Glass et al., 2022), iterative retrieval-and-
reasoning pipelines (Trivedi et al., 2022; Jin et al., 2025), and the integration of long-context
language models to better handle extended inputs (Jin et al., 2024). While substantial
progress has been made in general-domain RAG benchmarks (Asai et al., 2023; Yu et al., 2024;
Kwiatkowski et al., 2019; Yang et al., 2018), relatively little attention has been given to the
scientific domain. Although recent efforts, such as Xiong et al. (2024), begin to explore this
direction in the medicine domain, the application of RAG to the chemistry domain remains
underdeveloped. Notably, TextReact (Qian et al., 2023) applies text retrieval to tasks like
reaction condition recommendation and one-step retrosynthesis. ChemLit-QA (Wellawatte
et al., 2024) introduces a dataset for chemistry-oriented RAG, but its questions are generated
from isolated paper excerpts and may lack real-world utility. Importantly, there remains a
gap in the availability of high-quality, domain-specific corpora and comprehensive RAG
benchmarks tailored to chemistry.

2.2 Large Language Models for Chemistry

The rapid advancement of large language models (LLMs) has opened up new opportuni-
ties across various scientific domains (Ouyang et al., 2023), spurring the development of
numerous benchmarks (Lu et al., 2022; Wang et al., 2023; Zhang et al., 2024). Among these
domains, chemistry stands out as a particularly challenging yet promising area for LLM
applications Fang et al. (2023). Recent efforts, such as ChemCrow (Bran et al., 2023), have
demonstrated the potential of integrating LLMs with specialized tools to address a wide
range of downstream tasks. In addition, LLMs have been employed to improve performance
on specific chemistry tasks, including reaction prediction (Zhong et al., 2023; 2024), drug
discovery (Edwards et al., 2023), and SMILES recognition (Edwards et al., 2021). Despite
growing interest, existing benchmarks often fall short in capturing the unique demands of
the chemistry domain, which is inherently knowledge-intensive. In contrast to general NLP
tasks that frequently involve surface-level reasoning, chemistry requires precise retrieval
and synthesis of complex, domain-specific knowledge. These characteristics make it a
compelling testbed for RAG, where the incorporation of external knowledge sources can
substantially enhance LLM reasoning and decision-making.

3 The CHEMRAG-BENCH Benchmark

3.1 Evaluation Settings

The primary goal of this work is to assess RAG systems in a setting that closely mirrors
real-world information needs in the chemistry domain while remaining feasible and scalable
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Dataset Type Task Size Avg. Length

MMLU-Chem Multi-Choice Chemistry Understanding 303 31

SciBench-Chem Calculation College-level Examination 229 94

ChemBench4K Multi-Choice

Caption2Mol 100

72

Mol2Caption 100
Name Conversion 100
Product Prediction 100

RetroSynthesis 100
Solvent Prediction 100

Temperature Prediction 100
Yield Prediction 100

Mol-Instructions Open-Ended

Desc.-guided Molecule Design 100

54

Forward Reaction Prediction 100
Molecular Desc. Generation 100

Property Prediction 100
Reagent Prediction 100

RetroSynthesis 100

Table 1: Statistics of CHEMRAG-BENCH, including question type, task type, data size, and
the average length of each question.

in practice. To this end, the proposed CHEMRAG-BENCH benchmark is designed around
four core evaluation scenarios:

• Zero-Shot Learning: In real application, demonstrations are hard to find when conducting
novel chemistry discovery. Therefore, we do not use any demonstration when evaluating
the RAG systems.

• Open-ended Evaluation: Most chemistry tasks are open-ended and do not have answer
options, including description-guided molecule design, retrosynthesis, and reagent pre-
diction. To better align with chemists’ needs, the RAG system should be evaluated in an
open-ended setting. In this setting, no answer options will be provided.

• Multi-Choice Evaluation: Multiple choice questions are common in LLM-related system
evaluation. We adopt a multiple-choice setting to be consistent with previous work,
and to make the evaluation more comprehensive. Many open-ended questions can be
converted to multiple-choice questions by adding incorrect options.

• Question-Only Retrieval: To mimic real-world usage, for multiple-choice questions, only
the question is used as the query for RAG.

3.2 Question Datasets

Our CHEMRAG-BENCH contains four datasets that cover a wide range of chemistry tasks,
including three multi-choice benchmarks, MMLU-Chem (Hendrycks et al., 2021), SciBench
(Wang et al., 2024c), and ChemBench4K (Zhang et al., 2024), and one open-ended benchmark,
Mol-Instructions (Fang et al., 2024). MMLU-Chem consists of college chemistry questions
collected online. SciBench collects questions from chemistry textbooks. ChemBench4K
contains multiple chemical analysis and prediction tasks, but in a multiple-choice fashion.
Mol-Instructions is a collection of molecule design, retrosynthesis, and prediction tasks. The
statistics of the datasets are shown in Table 1.

Metric For multi-choice questions, we use accuracy as the metric. For open-ended ques-
tions, the generated molecule is evaluated by exact match (EM), validity, MACCS FTS, RDK
FTS, Morgan FTS, and BLEU. To evaluate the generated text, we use BLEU and ROUGE.
For numerical results, we use accuracy with a 5% relative error tolerance. Please refer to
Appendix A for more details on molecule evaluation metrics.
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4 The CHEMRAG-TOOLKIT

CHEMRAG-TOOLKIT analyzes how RAG systems perform on CHEMRAG-BENCH. The
CHEMRAG-TOOLKIT contains three major components: Corpora, Retrievers, and LLMs.

Corpora By working with researchers in chemistry, we construct a large and comprehen-
sive collection of corpora covering a wide range of chemistry information from six sources:
1PubChem for molecule information (English name, SMILES, IUPAC name, weight, mocular
formula, and synonyms), 2PubMed for biochemistry abstracts, 3USPTO for chemical patents
information, 4Semantic Scholar for chemistry full-text papers, and 5OpenStax for chemistry
textbooks. Data processing is described in Appendix C, and the statistics of the corpora are
shown in Table 2.

Corpus # Snippets Avg. Length Domain

PubChem 14.6M 72 Chemistry
PubMed 23.9M 305 Biochemistry
USPTO 143K 140 Chemistry

Semantic Scholar 32.7M 403 Chemistry
OpenStax 5521 273 Chemistry
Wikipedia 29.9M 163 General

Table 2: Statistics of corpora in CHEMRAG-TOOLKIT.

Retrievers In CHEMRAG-
TOOLKIT, we select four
representative retrievers for the
retrieval process in RAG: BM25
(Robertson & Zaragoza, 2009),
Contriever (Izacard et al., 2022),
SPECTER (Cohan et al., 2020),
and e5 (Wang et al., 2024a).
In addition, we implement
Reciprocal Rank Fusion (RRF,
Cormack et al. (2009)) to combine the results from different retrievers.

LLMs We choose a few representative LLMs to be used in CHEMRAG-TOOLKIT: Llama-
3.1-8B-Instruct, Llama-3.1-70B-Instruct, and Mistral-7B-Instruct-v0.2 for general open-source
models, ChemLLM for chemistry open-source model, GPT-3.5-turbo and GPT-4o for closed-
source models, Deepseek-R1-Llama-8B and o1 for reasoning models.

5 Experiment Result

5.1 Comparison of Backbone LLMs

To systematically study how LLMs perform on chemistry tasks and how the proposed
CHEMRAG-TOOLKIT affects models, we benchmark various LLMs on CHEMRAG-BENCH
with the same ChemRAG-Corpora. The top 5 documents retrieved by the RRF retriever are
prepended to each question. The results are in Table 3, Appendix E, and Appendix F. More
implementation details could be found in Appendix B.

As shown in Table 3, different models behave differently when CHEMRAG-TOOLKIT is
in use. On average, most models benefit from using CHEMRAG-TOOLKIT, Llama-3.1-
8B-Instruct gains 25.86%, Llama-3.1-70B-Instruct gains 24.5%, Mistral-7B-Instruct gains
36.9%, GPT-3.5-turbo gains 28.43%, GPT-4o gains 20.92%, and o1 gains 16.38%. The largest
improvement often comes from the one in Mol-Instructions and ChemBench4K. Among the
backbone LLMs, o1 achieves the highest performance in both baseline and RAG settings.

Although most models benefit from CHEMRAG-TOOLKIT, the performance of ChemLLM
decreases slightly (−12.6%) and Deepseek-R1-Llama barely improves. They still gain some
performance on certain question datasets. Both ChemLLM and DeepSeek-R1-Llama benefit
from RAG on MMLU-Chem (+14.91% and +3.59%). DeepSeek-R1-Llama also performs
slightly better on SciBench and Mol-Instructions with the proposed toolkit (+0.78 and
+4.07). In our experiments, we notice that DeepSeek-R1-Llama-8B does not follow our
instructions and generates its answers in various forms, which poses difficulty in parsing its
answers and may lead to poor performance in calculation.

We observe that larger models have consistent gains in chemistry-specific benchmarks
(SciBench-Chem, ChemBench4K, and Mol-Instructions). This suggests that larger models
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LLM Method MMLU SciBench ChemBench4K Mol-Instruct. Avg.

Llama3.1 Baseline 42.90 3.30 27.25 23.99 24.36
(8b) Ours 52.15 3.56 25.88 41.05 30.66

Llama3.1 Baseline 62.38 5.99 24.25 28.33 30.24
(70b) Ours 61.05 13.63 26.25 49.67 37.65

Mistral Baseline 45.21 2.09 12.63 4.66 16.15
(7b) Ours 42.57 0 11.13 34.73 22.11

ChemLLM Baseline 37.62 8.72 23.5 17.74 21.90
(7b) Ours 43.23 2.03 16.75 14.56 19.14

Deepseek-r1 Baseline 55.44 3.09 35.38 3.75 24.42
-llama(8b) Ours 57.43 3.87 29.13 7.82 24.56

GPT3.5 Baseline 49.17 9.66 30.5 29.00 29.58
Ours 52.81 8.80 44.5 45.83 37.99

GPT-4o Baseline 74.59 4.97 59.5 28.79 41.96
Ours 73.92 8.59 67.25 53.18 50.74

o1 Baseline 85.81 40.82 41.63 31.55 49.95
Ours 85.48 43.61 58.38 45.04 58.13

Table 3: Benchmark results of different LLMs on CHEMRAG-BENCH.

have a better understanding of the retrieved documents. In MMLU-Chem, most large
models (Llama-3.1-70b, GPT-4o, and o1) do not benefit from our toolkit. This may be
because MMLU is a common benchmark when evaluating LLMs, and these models are
trained on related knowledge. The toolkit may not be able to bring new knowledge to larger
models. In SciBench-Chem, many models suffer from using the toolkit, this reflects that
these models may not understand the retrieved documents well, since advanced models
(Llama-3.1-70b, GPT-4o, and o1) all benefit from the toolkit, and o1 even reaches the highest
performance when using the toolkit. In ChemBench4K, similar patterns occur: smaller
models have worse results, but larger models gain from the toolkit.

Since Mol-Instructions contains multiple sub-tasks, and each sub-tasks require multiple
metrics, we select description-guided molecule design as a representative to analyze in
detail how models perform after using our toolkit. The comparison is shown in Figure 2,
with more details in the appendix. From Figure 2, we observe that with our toolkit, all
models improve in all aspects, except ChemLLM.

5.2 Comparison of Retrievers and Corpora

To understand the effect of each component in CHEMRAG-TOOLKIT, we benchmark differ-
ent retrievers with different corpora on CHEMRAG-BENCH. The experiments are conducted
with GPT-3.5-turbo since it is one of the models that benefit most from our toolkit, and it is
also efficient and inexpensive for inference. The results are in Table 4.

Comparison between Corpora From Table 4, we observe that the performance of a RAG
system is correlated to the selected corpus. The model performs the best with OpenStax on
MMLU-Chem and SciBench-Chem, but OpenStax barely has benefit for Mol-Instructions.
USPTO helps the model to achieve its best on ChemBench4K and Mol-Instructions, but it
provides little benefit on MMLU-Chem and SciBench-Chem. When using the combined
CHEMRAG Corpus, the model achieves the best on MMLU-Chem and ChemBench4K,
surpassing leveraging only one corpus, which demonstrates the significance of combining
multiple corpora. The CHEMRAG Corpus also helps the model to perform better on Mol-
Instructions, only not as good as USPTO. Our corpus is also beneficial for SciBench when
using Contriever as the retriever.

Comparison between Retrievers The Retriever plays another critical role as it decides how
the documents rank. From our experiments shown in Table 4, all retrievers have their best
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Figure 2: Performance comparison on description-guided molecule design w.r.t evaluation
metrics for molecule generation. Ours outperforms the baseline in almost all the scenarios.

(a) MMLU-Chem (b) SciBench

(c) ChemBench4K (d) Mol-Instructions

49.2

9.7

30.5
29.0

Figure 3: Performance comparison on different numbers of retrieved documents. The red
dotted line represents the baseline. The experiments are conducted on GPT-3.5-turbo.

performance on a specific corpus and task. BM25 shows a very strong performance when
using USPTO on Mol-Instructions, and using PubChem on SciBench-Chem. Contriever
outperforms other retrievers when incorporating CHEMRAG Corpus on MMLU-Chem, it
also works well with PubChem and the CHEMRAG Corpus. SPECTER and e5 have mixed
performances but still can excel in certain corpora. The RRF retriever, combining the results
of the four retrievers, usually improves the performance, even though it might not be the
best, and sometimes results in the best performance. For instance, RRF helps the model
achieve the best on MMLU-Chem and ChemBench4K.

6 Discussion and Analyses

6.1 Performance Scaling

The number of retrieved documents k is an important factor in RAG systems. When k is too
small, RAG systems may lack critical information; on the other hand, when k is too large,
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Corpus Retriever MMLU SciBench
Chem-

Bench4K
Mol-

Instructions Avg.

None None 49.17 9.66 30.5 29.00 29.58

PubChem

BM25 47.19 12.98 36.00 27.73 30.98
Contriever 48.18 10.02 39.50 29.72 31.86
SPECTER 49.83 9.98 36.75 26.80 30.84

e5 46.86 8.61 40.50 30.65 31.66
RRF 48.84 9.08 37.38 29.58 31.22

PubMed

BM25 46.86 12.02 38.63 28.14 31.41
Contriever 49.17 10.37 37.13 27.51 31.05
SPECTER 47.19 9.08 36.63 27.69 30.15

e5 46.53 10.36 39.63 25.07 30.40
RRF 48.18 8.98 37.13 25.70 30.00

USPTO

BM25 49.50 11.55 44.00 56.17 40.31
Contriever 49.50 10.92 42.25 37.40 35.02
SPECTER 47.85 9.44 37.00 31.71 29.00

e5 47.52 11.05 38.13 37.55 33.56
RRF 49.17 10.70 43.38 56.68 39.98

Semantic
Scholar

BM25 45.54 7.18 37.25 29.72 29.92
Contriever 47.85 12.65 38.88 31.73 32.78
SPECTER 49.17 10.45 37.00 26.44 30.77

e5 45.21 10.78 38.75 31.52 31.57
RRF 44.55 8.91 39.13 31.76 31.09

OpenStax

BM25 50.17 10.04 37.88 28.34 31.61
Contriever 49.50 12.66 36.38 27.95 31.62
SPECTER 50.50 11.88 37.13 28.20 31.93

e5 49.83 11.57 38.5 29.96 32.47
RRF 52.48 11.55 37.25 29.35 32.66

Wiki

BM25 49.17 8.06 38.75 27.67 30.91
Contriever 48.84 10.33 37.25 29.14 31.39
SPECTER 47.52 9.21 39.25 27.22 30.8

e5 50.83 8.93 37.13 29.54 31.61
RRF 50.17 10.70 38.00 27.66 31.63

Chem
-RAG

Corpus

BM25 49.83 6.51 38.13 34.99 32.37
Contriever 53.46 12.58 42.63 42.08 37.69
SPECTER 48.18 8.57 41.63 32.35 32.69

e5 47.19 7.56 37.13 42.24 33.53
RRF 52.81 8.80 44.5 45.83 37.99

Table 4: Experiment results of various retrievers and corpora on CHEMRAG-BENCH. Com-
pared with the baseline (first row), the intensity of the shade represents the magnitude of
the decreases and increases .

RAG systems may suffer from too much irrelevant information. To better understand how
this factor affects RAG systems, we conduct experiments on k = 1, 5, 10, 15. The results are
shown in Figure 3. The phenomenon where performance first increases and then decreases
as k increases is clearly observed in MMLU-Chem and ChemBench4K. In SciBench-Chem,
the performance first decreases but then increases. This suggests that a better retriever is
needed or a reranker should be used. In our opinion, a better retriever should be developed
since current retrievers only consider semantic similarity, however, semantic similarity may
not be sufficient in reasoning tasks like SciBench. Overall, k = 5 is a good choice since it
provides sufficient information in most cases.

6.2 Proportion in the CHEMRAG Corpus

We investigate the proportion of different sources used across various tasks. Figure 4 shows
the proportions of six sources in CHEMRAG-Corpus, and the actual proportions in the top
50 retrieved chunks in CHEMRAG-BENCH. A task-specific pattern of proportion is observed.
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OpenStax has a larger proportion in SciBench and a relatively large proportion in MMLU-
Chem. This is natural since the questions in SciBench and MMLU are derived from academic
settings. PubChem has the largest proportion in both ChemBench4K and Mol-Instructions,
which can be explained by the fact that these two tasks focus on molecule-related questions.

6.3 Retrievers in Chemistry

In our observation from Table 4 and Figure 3, we believe that a better retriever is
needed for retrieving documents for chemistry downstream tasks. In Table 4, the
model always performs better with USPTO and OpenStax corpora, but it performs
worse on the combined corpus, which suggests the retriever ranks the helpful snip-
pets to a lower place. This is also validated by the sudden rise in Figure 3 (b).

Overall

ChemBench4K

MMLU-Chem

Mol-Instruct.

SciBench

0 0.2 0.4 0.6 0.8 1

PubChem PubMed Textbook USPTO

Wikipedia Semantic Scholar

Figure 4: The overall corpus composition of CHEM-
RAG corpora and the actually retrieved proportion in
different tasks.

In addition, chemistry retrieval
faces a “multi-modality“ issue.
One chemical compound may
have multiple representations, in-
cluding SMILES strings, IUPAC
names, and English names, and
each of them has variants.

Finally, current retrievers only con-
sider keyword matching and se-
mantic similarities, but chemistry
tasks require more. More discus-
sion and analysis are in Appendix
D.

6.4 Practical Recommendations

Based on our experiments, we provide some practical recommendations:

• Corpus Selection The proposed CHEMRAG-Corpus is a good start and is likely to
outperform using only one corpus source. This is confirmed in Table 4, MMLU-Chem and
ChemBench4K in particular. When working on molecule-related tasks, one may want to
try USPTO since it reaches high performance in both ChemBench4K and Mol-Instructions.
As for questions in school, OpenStax (textbook) may be preferred, but the performance is
still lower than using CHEMRAG-Corpus in MMLU-Chem, illustrated in Table 4.

• Retriever Selection Contriever is the most stable retriever in the four individual retrievers,
but its performance still fluctuates across tasks and corpora. The proposed RRF retriever
is recommended since it usually performs close to the best individual retriever and
sometimes outperforms them.

• LLM Selection o1 is the best model for all the tasks. Considering the cost and inference
speed, GPT-3.5-turbo and GPT-4o are good options. For open-source models, Llama-3.1-
8B-Instruct is preferred since it achieves the second among the five open-source models
and performs similar to the best model, Llama-3.1-70B-Instruct. Llama-3.1-70B only
performs 24% better, but with 775% more parameters and much higher computation cost.

7 Conclusion

We propose CHEMRAG-BENCH and CHEMRAG-TOOLKIT to systematically evaluate RAG
systems in chemistry. Based on our extensive experiments, we provide some novel findings,
practical recommendations, and future directions for the community to better leverage RAG
systems in chemistry in real world.
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Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
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A Evaluation Metrics for Molecules

To assess the quality of generated molecules, we first employ general text-based generation
metrics such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), which compare
generated outputs against reference answers.

For molecular generation, we begin by verifying the validity of generated molecules using
RDKit (Landrum et al., 2013) and then compute their exact match with reference solutions.
However, a single textual description can correspond to multiple molecular structures,
making exact matching a limited evaluation criterion. Moreover, expecting an LLM—even
one fine-tuned with LoRA on specific instructions—to consistently generate outputs that
perfectly match reference molecules is often unrealistic.

To address these challenges and provide a more comprehensive evaluation, we incorporate
molecular similarity metrics, including similarity scores based on RDKit, MACCS, and
Morgan fingerprints (Tanimoto, 1958; Schneider et al., 2015; Durant et al., 2002), alongside
Levenshtein (Li & Liu, 2007) and BLEU scores.

For tasks that need to compare numbers, following previous work (Wang et al., 2024c), we
compare the generated output with the ground truth, allowing a 5% relative error. This
makes sure that the score is within 0 and 1, making it more suitable for combining with
other scores. These results can be found in Appendix F.

B Implementation Details

Since DeepSeek-R1-Llama and o1 are reasoning models, following their guidelines, we set
0.6 and 1 as their temperatures respectively. The temperatures for other models are set to
0 for reproducibility. For each experiment, we run three rounds and report the mean for
DeepSeek-R1-Llama and o1 models. We run one round for other models. The number of
max generation tokens is set to 10,000 for DeepSeek-R1-Llama and o1 since their reasoning
requires more tokens, and the numbers for other models are set to 512.

C Corpus Data Processing

PubChem For each chemical compound in PubChem, we collect its names, properties,
and description and transform them into JSON format.

Semantic Scholar We collect 1,849,956 full-text chemistry papers from Semantic Scholar,
then chunk them into chunks of 512 tokens with a 50-token overlap.

USPTO USPTO contains a large amount of information about reactions: reactants,
reagents, products, and yields. We transform these attributes into JSON format.

OpenStax We parse the PDF textbooks to texts with Mathpix1, and then split the parsed
textbook into chunks of 512 tokens with a 50-token overlap.

PubMed and Wikipedia The data is from Xiong et al. (2024).

D Retrieval Error Case Study

We present two representative errors in chemistry retrieval observed in our experiments.

D.1 Prioritize too much on molecule matching

For instance, the query “Which ingredients are commonly selected for creating Cc1oc(-
c2ccccc2)nc1COc1ccc2cc(CC3SC(=O)NC3=O)cnc2c1?” is asking about reagents information

1https://mathpix.com/
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Model Size Method MMLU SciBench ChemBench4K Mol-Instruct. Avg.

Baseline 42.90 3.30 27.25 23.99 24.36
8B CoT 61.38 1.92 32.75 6.67 25.68

Ours 52.15 3.56 25.88 41.05 30.66

Baseline 62.38 5.99 24.25 28.33 30.24
70B CoT 67.66 4.36 32.13 25.97 32.53

Ours 61.05 13.63 26.25 49.67 37.65

Table 5: Comparison with Chain-of-Thought (CoT) on Llama-3.1.

for generating the mentioned compound as a product. When there is no such information,
retrievers usually give high scores to irrelevant documents that contain the same SMILES.
This may introduce noise to the retrieved documents and mislead LLMs. A better retrieval
system may identify this situation, then search for the synonyms, and search for similar
compounds if synonyms still fail.

D.2 Often fail when the document only mention one name

A molecule may have many names, including SMILES, IUPAC, and English names. This
makes retrieving the right document more difficult as the question may only contain English
names, but there may only be SMILES in the relevant documents. For example,

Query: What is the molecular weight of aspirin?

Document1: The molecular weight of CH3COOC6H4COOH is 180.16 g/mol.

Document2: Aspirin can cause developmental toxicity.

In this example, CH3COOC6H4COOH is the formula of aspirin, but current retrievers don’t
give Document1 high scores because it doesn’t know CH3COOC6H4COOH is aspirin. By
training with synonyms, the texts with CH3COOC6H4COOH and aspirin will be closer
in the embedding space. Alternatively, when using an LLM to generate queries, the LLM
may first find the formula of aspirin, and then use the formula to search for the molecular
weight.

E More Experiment Results

E.1 Chain-of-Thought Comparison

We deploy Chain-of-Thought (CoT) on Llama3.1-8B and Llama3.1-70B, the results are in
Table 5. CoT does better than baseline and solely using RAG in multiple-choice settings
(MMLU and ChemBench4K), but performs worse than baseline and solely using RAG in
open QA (SciBench and Mol-Instructions).

F Detailed Experiment Results

F.1 SciBench-Chemistry

Table 6 shows the performances of different models on SciBench-Chemistry tasks.

F.2 ChemBench4K

Table 7 and Table 8 demonstrate the performances of different models on ChemBench4K
tasks.

F.3 Mol-Instructions

Table 9, Table 10, Table 11, and Table 12 demonstrate some results in Mol-Instructions.
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LLM Method SciBench Avg.

atkins chemmec matter quan

Llama3.1 Baseline 0 10.26 0 2.94 3.30
(8b) Ours 3.74 2.56 2.04 5.88 3.56

Llama3.1 Baseline 2.56 5.99 0 17.65 5.99
(70b) Ours 6.54 15.38 6.12 26.47 13.63

Mistral Baseline 3.74 2.56 2.04 0 2.09
(7b) Ours 0 0 0 0 0

ChemLLM Baseline 11.21 12.82 2.04 8.82 8.72
(7b) Ours 0.93 5.13 2.04 0 2.03

Deepseek-r1 Baseline 4.67 7.69 0 0 3.09
-llama(8b) Ours 2.80 7.69 2.04 2.94 3.87

GPT3.5 Baseline 5.61 23.08 4.08 5.88 9.66
Ours 5.61 20.51 6.12 2.94 8.80

GPT-4o Baseline 3.74 10.26 0 5.88 4.97
Ours 10.28 10.26 2.04 11.76 8.59

o1 Baseline 38.32 46.15 34.69 44.12 40.82
Ours 44.86 48.72 36.73 44.12 43.61

Table 6: Detailed benchmark results of different LLMs on SciBench-Chemistry. The accuracy
is computed by comparing the generated answer with the ground truth, allowing a 5%
relative error.

LLM Method ChemBench4K

Caption2Mol Mol2Caption Name Product
Conversion Prediction

Llama3.1 Baseline 0 88 57 13
(8b) Ours 7 70 59 15

Llama3.1 Baseline 3 86 68 0
(70b) Ours 5 87 64 11

Mistral Baseline 3 26 40 15
(7b) Ours 7 19 33 11

ChemLLM Baseline 24 46 48 2
(7b) Ours 21 33 38 0

Deepseek-r1 Baseline 15 81 70 19
-llama(8b) Ours 18 68 65 12

GPT3.5 Baseline 20 89 48 17
Ours 36 87 60 39

GPT-4o Baseline 41 98 79 93
Ours 61 98 81 83

o1 Baseline 6 99 76 26
Ours 27 96 80 59

Table 7: Detailed benchmark results of different LLMs on ChemBench4K, Part 1.

G Prompt

The prompts used in our experiments can be found in Table 13, 14, 15, 16, 17, 18, 19, 20.
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LLM Method ChemBench4K

Retrosynthesis Solvent Temp. Yield
Prediction Prediction Prediction

Llama3.1 Baseline 0 21 17 22
(8b) Ours 6 20 15 15

Llama3.1 Baseline 0 24 9 4
(70b) Ours 2 22 1 18

Mistral Baseline 0 2 9 6
(7b) Ours 2 8 0 9

ChemLLM Baseline 1 25 21 21
(7b) Ours 0 28 4 10

Deepseek-r1 Baseline 14 36 31 17
-llama(8b) Ours 3 33 17 17

GPT3.5 Baseline 4 23 18 25
Ours 26 41 28 39

GPT-4o Baseline 54 35 33 43
Ours 76 49 43 47

o1 Baseline 5 42 48 31
Ours 50 50 63 42

Table 8: Detailed benchmark results of different LLMs on ChemBench4K, Part 2.

LLM Method Description-Guided Molecule Deisgn

EM↑ Validity↑ MACCS RDK Morgan BLEU↑FTS↑ FTS↑ FTS↑
Llama3.1 Baseline 0 73 35.71 25.01 13.37 6.02

(8b) Ours 9 89 60.78 48.85 40.64 10.92

Llama3.1 Baseline 1 95 32.61 21.67 16.72 18.34
(70b) Ours 11 99 60.35 49.65 40.89 31.56

Mistral Baseline 0 21 32.74 20.66 10.34 3.61
(7b) Ours 5 31 68.14 53.26 47.52 10.35

ChemLLM Baseline 0 47 26.40 10.70 9.41 5.41
(7b) Ours 2 58 10.48 6.59 5.10 0

Deepseek-r1 Baseline 0 0 0 0 0 3.70
-llama(8b) Ours 0 0 0 0 0 26.25

GPT3.5 Baseline 0 85 45.53 26.48 18.08 9.41
Ours 12 95 92.28 49.35 40.45 30.56

GPT-4o Baseline 1 93 47.33 28.88 20.32 11.88
Ours 14 96 60.84 49.47 42.45 27.92

o1 Baseline 1 89 40.12 25.72 17.55 -
Ours 12 97 57.59 46.01 39.78 -

Table 9: Detailed benchmark results of different LLMs on Mol-Instructions – Description-
guided molecule design.
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LLM Method Forward Reaction Prediction

EM↑ Validity↑ MACCS RDK Morgan BLEU↑FTS↑ FTS↑ FTS↑
Llama3.1 Baseline 0 38 59 60.24 43.19 6.63

(8b) Ours 17 92 63.29 53.61 45.46 29.50

Llama3.1 Baseline 0 68 63.74 60.68 44.94 17.47
(70b) Ours 22 91 72.70 62.74 57.14 43.89

Mistral Baseline 0 0 0 0 0 2
(7b) Ours 3 29 76.68 77.54 63.33 11.31

ChemLLM Baseline 0 29 45.88 34.61 28.15 3.18
(7b) Ours 0 57 22.55 17.55 12.68 0

Deepseek-r1 Baseline 0 33 1.56 0.39 0.65 12.98
-llama(8b) Ours 0 59 0 0 0 1.77

GPT3.5 Baseline 0 57 58.37 52.03 40.63 23.43
Ours 16 96 72.11 67.80 56.21 39.43

GPT-4o Baseline 2 96 66.35 62.6 50.84 50.7
Ours 26 89 78.31 73.88 68.3 61.44

o1 Baseline 13 87 81.95 78.95 72.06 -
Ours 30 90 87.35 82.89 78.92 -

Table 10: Detailed benchmark results of different LLMs on Mol-Instruction – Forward
Reaction Prediction.

LLM Method Molecule Description Generation

BLEU Rouge-L

Llama3.1 Baseline 0 8.98
(8b) Ours 8.24 32.79

Llama3.1 Baseline 0.83 15.25
(70b) Ours 4.30 27.6

Mistral Baseline 0.63 18.64
(7b) Ours 4.48 32.09

ChemLLM Baseline 5.33 34.04
(7b) Ours 0 0

Deepseek-r1 Baseline 0 0
-llama(8b) Ours 0 0

GPT3.5 Baseline 3.18 20.58
Ours 3.75 21.51

GPT-4o Baseline 1.23 18.25
Ours 2.98 30.06

o1 Baseline 0 0
Ours 1.02 14.44

Table 11: Detailed benchmark results of different LLMs on Mol-Instructions – Moleclue
Description Generation.
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LLM Method Property Prediction

Accuracy

Llama3.1 Baseline 0.14
(8b) Ours 0

Llama3.1 Baseline 0
(70b) Ours 0

Mistral Baseline 0
(7b) Ours 0

ChemLLM Baseline 60
(7b) Ours 15

Deepseek-r1 Baseline 1
-llama(8b) Ours 1

GPT3.5 Baseline 18
Ours 1

GPT-4o Baseline 2
Ours 0

o1 Baseline 0
Ours 0

Table 12: Detailed benchmark results of different LLMs on Mol-Instructions – Property
Prediction. The accuracy is computed by comparing the generated answer with the ground
truth, allowing a 5% relative error.

Table 13: Baseline prompt template for general open-ended questions.

Open-ended Baseline Prompt

Answer the question directly.
Only give me the answer and do not output any other words.
Question: { Instruction }
Answer:

Table 14: Multi-choice baseline prompt template for general open-ended questions.

Multi-choice Baseline Prompt

Answer the question directly.
Only give me the answer and do not output any other words.
Question: { Instruction }
Choices: { Choices }
Make prediction from the given choices.
Answer:

Table 15: Numerical baseline prompt template for general open-ended questions.

Numerical Baseline Prompt

Answer the question directly.
Conclude the answer by stating “The answer is therefore [ANSWER]“
Only give me the answer and do not output any other words.
Question: { Instruction }
Answer:
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Table 16: Generation baseline prompt template for general open-ended questions.

Generation Baseline Prompt

Answer the question directly.
Your answer should be surrounded by [ANSWER] and [/ANSWER]. When
generating a molecule, please generate a valid SMILES string.
Only give me the answer and do not output any other words.
Question: { Instruction }
Answer:

Table 17: RAG prompt template for general open-ended questions.

Open-ended RAG Prompt

Answer the question based on the given document.
Only give me the answer and do not output any other words.
The following are given documents.
{ reference }
Question: { Instruction }
Answer:

Table 18: RAG Prompt template for multiple-choice questions.

Multi-choice RAG Prompt

Answer the question based on the given document.
Only give me the answer and do not output any other words.
The following are given documents.
{ reference }
Question: { Instruction }
Choices: { Choices }
Make prediction from the given choices.
Answer:

Table 19: Prompt template for numerical questions.

Numerical RAG Prompt

Answer the question based on the given document.
Conclude the answer by stating “The answer is therefore [ANSWER]“
Only give me the answer and do not output any other words.
The following are given documents.
{ reference }
Question: { Instruction }
Answer:
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Table 20: Prompt template for generation questions.
Generation RAG Prompt

Answer the question based on the given document.
Your answer should be surrounded by [ANSWER] and [/ANSWER]. When
generating a molecule, please generate a valid SMILES string.
The following are given documents.
{ reference }
Only give me the answer and do not output any other words.
Question: { Instruction }
Answer:
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