

000 SURVHTE-BENCH: A BENCHMARK FOR 001 HETEROGENEOUS TREATMENT EFFECT ESTIMATION 002 IN SURVIVAL ANALYSIS 003

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 Estimating heterogeneous treatment effects (HTEs) from right-censored survival
013 data is critical in high-stakes applications such as precision medicine and individual-
014 ized policy-making. Yet, the survival analysis setting poses unique challenges
015 for HTE estimation due to censoring, unobserved counterfactuals, and complex
016 identification assumptions. Despite recent advances, from causal survival forests
017 to survival meta-learners and outcome imputation approaches, evaluation prac-
018 tices remain fragmented and inconsistent. We introduce SURVHTE-BENCH, the
019 first comprehensive benchmark for HTE estimation with censored outcomes. The
020 benchmark spans (i) a modular suite of synthetic datasets with known ground
021 truth, systematically varying causal assumptions and survival dynamics, (ii) semi-
022 synthetic datasets that pair real-world covariates with simulated treatments and
023 outcomes, and (iii) real-world datasets from a twin study (with known ground
024 truth) and from an HIV clinical trial. Across synthetic, semi-synthetic, and real-
025 world settings, we provide the first rigorous comparison of survival HTE methods
026 under diverse conditions and realistic assumption violations. SURVHTE-BENCH
027 establishes a foundation for fair, reproducible, and extensible evaluation of causal
028 survival methods. The data and code of our benchmark are anonymously available
029 at: <https://anonymous.4open.science/r/SurvHTE-Benchmark-206B>.
030

1 INTRODUCTION

031 In many causal inference applications where we aim to quantify how well a treatment works, estimating
032 *heterogeneous treatment effects* (HTEs) could be more useful than only estimating population-
033 level *average treatment effects* (ATEs), building on the intuition that the same treatment can vary
034 in effectiveness when given to different individuals. In survival analysis with right-censored out-
035 comes (common in clinical trials and electronic health records), estimating HTEs can be especially
036 challenging. In addition to the standard difficulties of causal inference (unobserved counterfactuals,
037 confounding), the analyst must account for censoring, where the event of interest is only observed
038 for a subset of subjects. These features complicate identification and estimation, yet they are central
039 in high-stakes applications such as precision medicine and individualized policy-making (Zhu &
040 Gallego, 2020; Chapfuwa et al., 2021; Curth et al., 2021a).
041

042 Recent years have seen a growing set of causal survival methods (Chapfuwa et al., 2021; Curth
043 et al., 2021a; Cui et al., 2023; Bo et al., 2024; Noroozizadeh et al., 2025; Xu et al., 2024; Meir
044 et al., 2025). Despite methodological advancement, no standardized benchmark exists, limiting re-
045 producibility and fair comparisons. Most studies rely on bespoke simulations or limited real datasets
046 with unknown ground truth, with differing levels of censoring, survival distributions, and causal as-
047 sumptions. As a result, comparisons are not standardized, robustness of different proposed methods
048 is unclear, and progress is difficult to measure.
049

050 While there is a growing benchmarking literature for treatment-effect heterogeneity in fully ob-
051 served outcomes (e.g., Crabbé et al. (2022); Shimoni et al. (2018); Kapkiç et al. (2024)) and recent
052 benchmarks for survival ATE estimation (e.g., Voinot et al. (2025)), to our knowledge, there is not
053 yet any benchmark for survival HTE estimation under right-censoring. This missing piece motivates
054 our focus on heterogeneous effects in censored time-to-event data.
055

056 We introduce SURVHTE-BENCH, the first comprehensive benchmark for HTE estimation in right-
057 censored survival data. Our contributions are as follows:
058

- **Method unification:** We categorize existing survival HTE methods (and natural extensions of existing such methods that technically have not previously been published) into three broad families: outcome imputation methods, direct-survival models, and survival meta-learners. We provide a modular implementation of 53 methods among these three families. This is the first systematic framework unifying survival HTE methods that facilitates reproducibility and extensibility.
- **Synthetic benchmark design:** We present a curated suite of 40 synthetic datasets spanning eight causal configurations (with different combinations of randomization, unobserved confounding, overlap violation, informative censoring) crossed with five survival scenarios (with different survival and censoring distributions), yielding controlled settings with known ground-truth HTEs under realistic assumption violations.
- **Semi-synthetic and real data:** We also include 6 semi-synthetic datasets from existing literature (real covariates with simulated treatments and outcomes) that aim to be more realistic compared to purely synthetic datasets while still having ground truth on HTEs. We further include 2 widely studied real datasets: the Twins dataset that has known ground truth (Almond et al., 2005) (i.e., per twin, one has the treatment and the other does not, so that we observe both counterfactual outcomes), and the HIV clinical trial dataset without known ground truth (Hammer et al., 1996).
- **Comprehensive evaluation:** We compare representative estimators across all settings. Our results show that no single method dominates: performance depends on causal assumptions, censoring, and survival dynamics. Notably, S-learners among survival meta-learners demonstrate robustness under severe violations and high censoring.

While prior work has explored subsets of these design choices (e.g., Cui et al. (2023); Meir et al. (2025)), SURVHTE-BENCH is the first to systematically evaluate survival HTE methods under assumption violations, diverse survival models, and across synthetic, semi-synthetic, and real data. We focus on binary treatments and static covariates with right-censored outcomes, as even this basic setting lacks a standardized benchmark. More complex extensions (time-varying treatments, longitudinal covariates, and instrumental variables) are beyond our present scope.

2 BACKGROUND AND RELATED WORK

We briefly review the problem setup, identification assumptions, existing evaluation practices, and the three families of survival HTE estimators.

Problem setup. For each unit (data point) i , we observe covariates $X_i \in \mathcal{X}$, a binary treatment $W_i \in \{0, 1\}$, and an **observed**, possibly censored event time $\tilde{T}_i = \min(T_i, C_i)$ with event indicator $\delta_i = \mathbb{1}\{T_i \leq C_i\}$, where δ_i is 1 if the event of interest happened (in which case \tilde{T}_i is the event time) or 0 if the outcome is censored (in which case \tilde{T}_i is the censoring time). Using the standard potential outcomes framework, $T_i(w)$ denotes the potential event time under treatment $w \in \{0, 1\}$ with $T_i = T_i(W_i)$. We assume that the tuple $(X_i, W_i, T_i(0), T_i(1), C_i)$ is i.i.d. across different i .

We aim to estimate the *conditional average treatment effect* (CATE) with respect to a transformation of the event time $y(\cdot)$:

$$\tau(x) := \mathbb{E}[y(T_i(1)) - y(T_i(0)) | X_i = x], \quad (1)$$

where $y(\cdot)$ encodes the survival estimand of interest, and the expectation is taken over the randomness of the two potential outcomes. For example, if we want the survival estimand to be the restricted mean survival time (RMST) up to a user-specified time horizon $h > 0$, then we would set $y(t) := \min\{t, h\}$. Other choices for estimands are also possible (e.g., median survival time, survival probability at a fixed time). In this paper, we focus on RMST, which is interpretable, robust under censoring, and widely adopted (Shen et al., 2018; Curth et al., 2021a; Cui et al., 2023), while noting that our benchmark design allows extensions to other estimands, and we include results for survival probabilities in Appendix G.3.

Identification assumptions. Identification of $\tau(x)$ relies on the following assumptions (Cui et al., 2023) (and in our benchmark, we vary whether these get violated):

- (A1) *Consistency*: $T_i = T_i(W_i)$ almost surely.
- (A2) *Ignorability*: $\{T_i(0), T_i(1)\} \perp W_i | X_i$.
- (A3) *Positivity*: $\eta_e \leq \mathbb{P}(W_i = 1 | X_i = x) \leq 1 - \eta_e$ for some $\eta_e > 0$.
- (A4) *Ignorable censoring*: $T_i \perp\!\!\!\perp C_i | X_i, W_i$.
- (A5) *Censoring positivity*: For horizon h , $\mathbb{P}(C_i < h | X_i, W_i) \leq 1 - \eta_C$ for some $0 < \eta_C \leq 1$.

Violations are common: unmeasured prognostic factors break ignorability, treatment guidelines break positivity, and drop-out linked to prognosis induces informative censoring. A central goal of SURVHTE-BENCH is to measure how estimators behave under such violations.

Existing evaluation practice. Because only one potential outcome is observed per unit, validation typically relies on author-specific simulations. Prior studies vary assumptions in narrow ways: e.g., censoring up to 30% (Bo et al., 2024) or heavy censoring but assuming ignorability (Meir et al., 2025). Consequently, results are not comparable across papers, and estimator robustness under simultaneous assumption violations remains unclear. To date, no public benchmark exists with known individual-level ground truth with varying levels of assumption violations and survival distributions.

Overview of existing survival HTE estimators. We group existing methods into three families:

- *Outcome imputation methods* (Xu et al., 2024; Meir et al., 2025): Replace censored times with imputed survival times (e.g., IPCW-based reweighting introduced in Qi et al. (2023)). Then apply standard CATE estimators such as causal forests (Athey et al., 2019), double ML (Chernozhukov et al., 2018), or meta-learners including S(ingle)-, T(wo)-, X(cross)-, D(oubly)R(obust)-learners (Athey & Imbens, 2015; Künzel et al., 2019; Kennedy, 2023).¹
- *Direct-survival CATE models*: Extend causal inference directly to time-to-event outcomes, e.g., targeted learning (Van der Laan & Rose, 2011), tree-based estimators (Zhang et al., 2017), SurvITE (Curth et al., 2021a), Bayesian approaches (Henderson et al., 2020), or causal survival forests (Cui et al., 2023).
- *Survival meta-learners* (Xu et al., 2023; Bo et al., 2024; Noroozizadeh et al., 2025): Adapt S(ingle)-, T(wo)-, or matching-learners to survival outcomes by using survival models such as random survival forests or deep survival models.

While these approaches appear in disparate papers, we are the first to categorize them into these three families, and we implement 53 methods within these families in a unified, modular framework.

While our benchmark focuses on static treatments under selection on observables, related work addresses HTEs in alternative settings. This includes instrumental variable approaches for survival (Tchetgen et al., 2015), dynamic treatment regimes (Rudolph et al., 2022; Bates et al., 2022; Rudolph et al., 2023; Cho et al., 2023), and Bayesian machine learning approaches (Chen et al., 2024). Additionally, Targeted Maximum Likelihood Estimation-based methods (Stitelman & van der Laan, 2010; Stitelman et al., 2011) offer robust estimation for survival parameters, though primarily for average or subgroup effects rather than continuous CATE functions.

3 SURVHTE-BENCH

SURVHTE-BENCH probes how survival CATE estimators behave when assumptions (A1)–(A5) hold and when they are either mildly or severely violated. As real data with ground-truth CATEs are scarce, the bulk of our benchmark relies on synthetic datasets. We also include semi-synthetic data (real covariates with simulated treatments and outcomes) and two real-world datasets. As already stated in Section 2, in this paper we focus on the case where the target estimand is RMST up to a user-specified time horizon h (other estimands are possible, such as survival probability at predefined times, see Appendix G.3.2).

Synthetic data. We construct a modular suite of 40 synthetic datasets that systematically vary across two orthogonal axes: (1) causal configuration: treatment mechanism, positivity, confounding, censoring mechanism; (2) survival scenario: event-time distribution and censoring rate. Crossing 8 causal configurations with 5 survival scenarios yields $8 \times 5 = 40$ synthetic datasets,

Table 1: Causal configurations of synthetic datasets. RCT = randomized controlled trial; OBS = observational study; 50(5) = 50%(5%) treatment rate; CPS = correct specified propensity score (ignorability satisfied); UConf = unobserved confounding (ignorability violated); NoPos = lack of positivity; InfC = informative censoring (ignorable censoring violated). ✓ = held, ✗ = not held.

Causal Configs.	RCT	Ignorability	Positivity	Ignorable Censoring
RCT-50	✓	✓	✓	✓
RCT-5	✓	✓	✓	✓
OBS-CPS	✗	✓	✓	✓
OBS-UConf	✗	✗	✓	✓
OBS-NoPos	✗	✓	✗	✓
OBS-CPS-InfC	✗	✓	✓	✗
OBS-UConf-InfC	✗	✗	✓	✗
OBS-NoPos-InfC	✗	✓	✗	✗

¹Standard CATE estimators do not handle censoring. By imputing censored times with survival times as a preprocessing step, we make it appear as if there is no censoring, so standard CATE estimators can be applied.

162 each with binary, time-fixed treatment, five independently sampled covariates each distributed as
 163 Uniform(0, 1), and up to 50,000 units. For each unit i , we generate both $T_i(0)$ and $T_i(1)$, ensuring
 164 that ground-truth CATEs are always known.

165 The **8 causal configurations** (Table 1) include randomized controlled trials (RCT-50, RCT-5) and ob-
 166 servational studies with correctly specified propensity scores (i.e., these are known during training)
 167 with all confounders observed in estimation (OBS-CPS), unobserved confounding (OBS-UConf), or
 168 lack of positivity (OBS-NoPos). Each observational setting has variants with suffix “-InfC”, where
 169 ignorable censoring is replaced by informative censoring, where censoring times depend stochas-
 170 tically on event times. These violations reflect common real-world challenges: unmeasured risk
 171 factors in treatment decisions (violating ignorability), treatment imbalance in observational studies
 172 (violating positivity), and dropout mechanisms correlated with health outcomes (violating ignorable
 173 censoring). We do not model interference (consistency violations) or censoring-positivity violations,
 174 which require specialized designs beyond our scope. Additional variations, such as informative cen-
 175 sorning with the censoring time driven by unobserved factors, are included in the Appendix I to
 176 illustrate the extensibility of our modular setup.

177 The **5 survival scenarios** (Table 2) include Cox
 178 proportional hazards (low censoring), acceler-
 179 ated failure time (AFT) models (low and high
 180 censoring), and Poisson hazards (medium and
 181 high censoring). These distributions cover pro-
 182 portional hazards (Cox) and non-proportional
 183 hazards (AFT², Poisson), with censoring levels
 184 ranging from under 30% to over 70%. This va-
 185 riety reflects practical challenges like high cen-
 186 soring common in EHR cohorts, accelerated pro-
 187 cesses in oncology, and discrete hazard approxi-
 188 mations in epidemiology. Within each survival scenario, coefficients are tuned so that event times are
 189 comparable across different causal configurations. Full generation formulas and summary statistics
 (e.g., censoring rate, treatment rate, ATE) for each dataset are in Appendix A.

190 **Evaluation metrics.** Per dataset, averaged over 10 random splits, we report:

- 191 • CATE root mean square error (RMSE): $\sqrt{\frac{1}{n} \sum_{i=1}^n (\hat{\tau}(X_i) - \tau(X_i))^2}$.
- 192 • ATE bias: $\frac{1}{n} \sum_{i=1}^n \hat{\tau}(X_i) - \Delta$, where Δ is the true ATE from the population and can be approxi-
 193 mated using the average CATE from a very large sample (i.e., from 50,000 simulated samples).
- 194 • Auxiliary imputation accuracy: mean absolute error (MAE) between imputed and true event times.
- 195 • Auxiliary regression/survival fit: MAE for regression-based learners, AUC for propensity score
 196 models, and the time-dependent C-index (Antolini et al., 2005) for survival models.

197 **Survival CATE methods implemented.** We evaluate the three broad families of survival CATE
 198 methods (53 variants total; see Appendix C for the full list, Appendix D for methodological details):

- 199 • *Outcome imputation methods*: meta learners (S-, T-, X-, DR-Learners) paired with base regression
 200 learners (lasso, random forest, XGBoost), plus double ML and causal forest, each combined with
 201 the three imputations (Pseudo-obs, Margin, and IPCW-T (Qi et al., 2023), see Appendix B for
 202 details). In total, we implement 42 variants.
- 203 • *Direct-survival CATE models*: We include the canonical causal survival forest and [SurvITE](#).
- 204 • *Survival meta-learners*: S-, T-, and matching-learners paired with survival learners (Random Sur-
 205 vival Forest (Ishwaran et al., 2008), DeepSurv (Katzman et al., 2018), and DeepHit (Lee et al.,
 206 2018)), for a total of $3 \times 3 = 9$ variants.

207 Note that some implemented methods are straightforward extensions of existing ideas despite pre-
 208 viously not being published. For example, (Qi et al., 2023) suggested ways of replacing censoring
 209 times with imputed survival times for the purposes of model evaluation, but their imputation strate-
 210 gies naturally can be coupled with standard CATE learners to obtain survival CATE estimators.
 211 Similarly, pairing meta-learners with different base learners (e.g., lasso regression, XGBoost, or
 212 DeepSurv) yields natural yet previously unpublished variants.

213
 214
 215 ²The AFT noise distribution we use (that is additive in log survival time) is Gaussian so that the resulting
 model does *not* satisfy the proportional hazards assumption (which would require the noise to be Gumbel).

Semi-synthetic data. We include 6 semi-synthetic datasets from prior work, pairing real covariates (ACTG HIV trial, MIMIC-IV ICU records) with simulated treatments and outcomes, covering moderate to extreme censoring regimes. These datasets preserve realistic feature distributions while retaining ground-truth CATEs. Details are in Section 4.2.

Real data. Finally, we incorporate two real datasets, one with ground truth (for which we can use the same evaluation metrics as with synthetic data) and one without ground truth but with a low censoring rate (for which we compare how models perform on the original dataset vs on the dataset with artificially introduced censoring). These provide opportunities to evaluate how methods behave under real covariate and outcome structures. Details are in Section 4.3.

4 BENCHMARKING RESULTS

We now present benchmark results across synthetic, semi-synthetic, and real data, spanning controlled violations of causal assumptions to realistic covariate structures.

4.1 SYNTHETIC EXPERIMENT RESULTS AND ANALYSES

We begin with synthetic datasets, where we evaluate 53 estimator variants across the 40 synthetic datasets (Section 3), systematically spanning varying causal configurations and survival scenarios. This controlled setting enables us to probe estimator robustness under systematic violations of identification assumptions. Our analyses aim to address four questions: **(Q1)** Which estimators perform best overall in terms of CATE RMSE and ATE bias? **(Q2)** How do violations of causal assumptions (ignorability, positivity, ignorable censoring) affect performance? **(Q3)** How does the censoring rate influence estimation quality? **(Q4)** How do component choices (imputation algorithms and base learners) affect final CATE accuracy?

Evaluation protocol. Per synthetic dataset, we conduct experiments with a random selection of 5,000, 2,500, and 2,500 points for training, validation, and testing samples, repeated over 10 random splits. The validation set is used for selecting the best variant within each method family, while test sets are reserved strictly for evaluation. Additional convergence analyses with varying training set sizes are in Appendix F.7. Across all experiments, the horizon parameter h is set to the maximum observed time in each dataset, which is a common practice that allows for consistent estimation of the restricted mean survival time over the entire observed period. Further experimental details, including hyperparameters, are in Appendix E.

We present results using the following visualizations:

- Borda count rankings.** To provide a clear summary across the diverse experimental settings, we adopt the Borda count method, which ranks methods by CATE RMSE in each dataset (lower is better) and then averages the ranks across datasets. This approach yields a single, interpretable score that reflects overall relative performance while accounting for variability across scenarios. Similar strategies have been used in other benchmarking studies (e.g., Han et al. 2022) to enable transparent comparisons across heterogeneous tasks. We report rankings at two levels: (i) individual estimator variants (53 total; Figure 1, top), and (ii) aggregated method families, where the best variant per family is selected on validation data (11 total; Figure 1, bottom). The latter mimics a practical deployment setting where practitioners would tune and select the strongest model within a family. More granular rankings stratified by survival scenario (Figure 6) and by causal configuration (Figure 7) are provided in Appendix F.3.

Figure 1: (top) Borda count rankings of the top 10 estimator variants (out of 53 total), based on CATE RMSE across 40 datasets and averaged over 10 repeats (lower is better). (bottom) Family-level rankings, where for each dataset the best method variant within each method family is chosen using validation performance and then ranked on the held-out test set. **Black bands** connect methods without statistically significant differences (Wilcoxon signed-rank test, FDR-corrected at $\alpha = 0.05$). Shaded regions indicate the standard error of the rank across datasets.

Figure 2: CATE RMSE in Scenario C across 10 experimental repeats (added SurvITE results).

- **CATE RMSE.** We report absolute CATE RMSE across 10 repeats, grouped by survival scenario, with one panel per set of eight causal configurations. In the main paper, we show Scenario C as an illustrative example (Figure 2); results for the other scenarios are deferred to Appendix F.4.
- **ATE bias.** We report ATE bias results, computed analogously to CATE RMSE, in Appendix F.5. While the focus of this benchmark is on CATE estimation, these serve as a complementary check.
- **Win-rate analyses.** Complementing the Borda rankings, we also report win-rates that quantify how often each method family attains Top-1, Top-3, and Top-5 performance according to CATE RMSE and ATE bias across all synthetic experiments in Appendix F. Overall win-rates aggregated over all survival scenarios and causal configurations are summarized in Table 15, while scenario-specific and configuration-specific win-rates are reported in Tables 16, 17, and 18. These summaries highlight not only which methods perform well on average, but also which ones most consistently appear among the top performers under varying censoring regimes and patterns of causal-assumption violations.

Additionally, in Appendix F.6, we report a series of auxiliary evaluations of key components, including imputation error (Appendix F.6.1) for imputation-based methods and regression model accuracy (Appendix F.6.2) or survival model performance (Appendix F.6.3) for meta-learners. These results establish how component-level performance relates to downstream CATE estimation.

Key findings. Overall, performance is strongly context-dependent. For example, in low-censoring randomized settings, outcome imputation methods such as X-Learner and Double-ML excel. As censoring intensifies or when assumptions are violated, survival meta-learners and Causal Survival Forests gain a clear advantage. Within method families, the choice of imputation algorithm or survival base model critically determines outcomes. We summarize detailed findings below.

Overall performance (Q1). Figure 1 (top) presents the Borda count rankings of the top-10 performing methods out of the 53 total configurations evaluated (full ranking in Appendix F.1). The highest-performing estimators are survival meta-learners built on DeepSurv, with Matching-Survival (5.60 out of 53) and S-Learner-Survival (5.78) leading, followed by Double-ML with Margin imputation (6.75). Among outcome imputation approaches, Margin appears most frequently in the top performers, though Pseudo-obs and IPCW-T are also represented.

At the method family level (Figure 2 for Scenario C and Figure 1 (bottom) across all causal configurations and survival scenarios), we see how each approach performs when optimally configured. At

324 this level, S-Learner-Survival (3.58 out of 11) and Matching-Survival (3.58) maintain their advan-
 325 tage, followed by Double-ML (4.00) and Causal Survival Forest (4.95).

327 **Violations of causal assumptions (Q2).** Performance shifts substantially depending on assump-
 328 tion violations (Figure 7). In randomized balanced trials (RCT-50), outcome imputation methods
 329 dominate (X-Learner, 3.20; Double-ML, 3.40), but with imbalanced treatment (RCT-5), Double-ML
 330 remains strong (2.20) while T-Learner-Survival, which relies on fitting base models on the treated
 331 units, drops to last place (8.60) due to sparse treated units.

332 Under ignorability violation (OBS-UConf, Figure 7,d), Double-ML is the only competitive impu-
 333 tation method, whereas survival meta-learners and Causal Survival Forest retain relatively stable
 334 performance. Examining ATE bias (Figures 13-17,d), we see that across all scenarios, survival
 335 meta-learners and Causal Survival Forest methods maintain relatively consistent bias levels despite
 336 ignorability violations, whereas survival meta-learners often exhibit a slightly increased bias.

337 Under positivity violation (OBS-NoPos, Figure 7,e), we see the more sophisticated outcome im-
 338 putation approaches like X-Learner and Double-ML maintain strong performance and outperform
 339 survival meta-learners. However, when positivity violations occur alongside other violations (Fig-
 340 ure 7,h), survival meta-learners regain their advantage, demonstrating their robustness to multiple
 341 simultaneous violations. Causal Survival Forest sees a large drop in its ranking, suggesting its lim-
 342 ited robustness to regions of covariate space with deterministic treatment assignment.

343 Under informative censoring (InfC, Figure 2,f-h), survival meta-learners and causal survival forest
 344 continue to outperform outcome imputation approaches. However, all methods show degraded per-
 345 formance compared to their ignorable censoring counterparts with higher CATE RMSE variability.

346 **Impact of censoring rate (Q3).** For the impact of censoring rate and survival time distribution (Fig-
 347 ure 6), in low-censoring Scenario A, Double-ML and X-Learner lead the rankings, but as censoring
 348 increases through Scenarios B to E, survival meta-learners and causal survival forest progressively
 349 move to the top. By Scenario D (high censoring), S-Learner-Survival (1.62) and Matching-Survival
 350 (2.38) dramatically outperform all other approaches. This pattern suggests that direct survival mod-
 351 eling provides increasing advantages as censoring rates rise, likely due to better handling of the
 352 uncertainty in heavily censored data compared to outcome imputation approaches.

353 Separately, in Appendix F.5, we show ATE bias across different datasets. We observe apparent di-
 354 vergence of the estimated ATE from the true ATE in Scenarios D and E (Figure 16, 17), where the
 355 censoring rate is very high. Especially when the true underlying event time follows an AFT distri-
 356 bution (Scenario D), almost all estimators failed under all different causal configurations, suggesting
 357 the challenging task of treatment effect estimation under a high censoring rate.

358 **Component effects on CATE estimation (Q4).** Auxiliary evaluations in Appendix F.6 demonstrate
 359 that both imputation accuracy and base learner performance influence downstream CATE estima-
 360 tion. Among outcome imputation methods, Margin consistently achieves the lowest imputation
 361 error and degrades the least under heavy censoring (Appendix F.6.1), which translates into Margin-
 362 based variants appearing more frequently among the top-ranked estimators (Figure 1). For survival
 363 meta-learners, higher concordance indices of DeepSurv across survival scenarios (Appendix F.6.3)
 364 explain why DeepSurv-based configurations dominate overall rankings.

365 4.2 SEMI-SYNTHETIC DATA RESULTS

366 To bridge the gap between controlled synthetic experiments and real-world complexity, we evaluate
 367 methods on semi-synthetic datasets that pair real covariate distributions with simulated treatments
 368 and outcomes. This approach addresses a critical limitation of purely synthetic data—the potential
 369 lack of representativeness in covariate structures—while maintaining ground-truth CATEs for rig-
 370 orous evaluation. These datasets preserve real-world covariate correlations, mixed data types, and
 371 high dimensionality while enabling controlled evaluation against known treatment effects.

372 **Dataset construction.** We construct 10 semi-synthetic datasets with real covariates from two
 373 sources:

- 374 • **ACTG semi-synthetic:** Based on 23 covariates from the ACTG HIV clinical trial (Hammer et al.,
 375 1996), with treatment and event times simulated following Chapfuwa et al. (2021). This dataset
 376 captures moderate censoring (51%) with realistic treatment imbalance.

378 • **MIMIC semi-synthetic:** Derived from 36 covariates in the MIMIC-IV ICU database (Johnson
 379 et al., 2023), with treatment and outcomes generated following Meir et al. (2025). We create five
 380 variants with censoring rates from 53% to 88%, simulating the range from moderate to extreme
 381 censoring common in longitudinal EHR studies. **We also include four additional variants (MIMIC-
 382 vi–ix)** that use the same covariates but introduce covariate-dependent treatment assignment and
 383 non-linear event-time and censoring mechanisms; these variants maintain similar treatment preva-
 384 lence (51–54%) as the first first five with balanced censoring (53%). Full generative details for
 385 both of these constructions are provided in Appendix G.1.2 and Appendix G.1.3 respectively.

386 Table 3 presents CATE RMSE results across our semi-synthetic datasets, revealing how realistic
 387 covariate structures modulate the core performance patterns observed in synthetic experiments. **The**
 388 **results for the remaining semi-synthetic datasets, MIMIC-vi–ix, can be found in Appendix G.3.1.**

390 Table 3: CATE RMSE on semi-synthetic datasets across 10 experimental repeats. Best two methods
 391 per dataset are **bolded**. **(added SurvITE results)**

Method Family (censoring rate)	ACTG (51%)	MIMIC-i (88%)	MIMIC-ii (82%)	MIMIC-iii (74%)	MIMIC-iv (66%)	MIMIC-v (53%)
<i>Outcome Imputation Methods</i>						
T-Learner	11.257 ± 0.239	7.964 ± 0.046	7.912 ± 0.046	7.915 ± 0.043	7.912 ± 0.043	7.908 ± 0.043
S-Learner	11.300 ± 0.221	7.977 ± 0.044	7.968 ± 0.047	7.956 ± 0.050	7.959 ± 0.046	7.958 ± 0.048
X-Learner	11.072 ± 0.196	7.964 ± 0.046	7.912 ± 0.046	7.915 ± 0.043	7.912 ± 0.043	7.908 ± 0.043
DR-Learner	11.334 ± 0.225	7.964 ± 0.046	7.912 ± 0.047	7.911 ± 0.043	7.911 ± 0.043	7.909 ± 0.043
Double-ML	10.651 ± 0.239	7.954 ± 0.047	7.936 ± 0.045	7.919 ± 0.044	7.917 ± 0.046	7.891 ± 0.050
Causal Forest	11.154 ± 0.175	7.967 ± 0.045	7.949 ± 0.044	7.934 ± 0.043	7.931 ± 0.047	7.909 ± 0.044
<i>Direct-Survival Methods</i>						
Causal Survival Forest	11.674 ± 0.169	7.963 ± 0.057	7.942 ± 0.039	7.929 ± 0.037	7.911 ± 0.051	7.893 ± 0.042
SurvITE	15.785 ± 0.894	8.075 ± 0.116	8.070 ± 0.130	8.005 ± 0.081	8.014 ± 0.114	7.969 ± 0.112
<i>Survival Meta-Learners</i>						
T-Learner Survival	11.428 ± 0.160	8.007 ± 0.075	7.980 ± 0.233	7.911 ± 0.054	7.902 ± 0.042	7.902 ± 0.046
S-Learner Survival	11.713 ± 0.237	7.921 ± 0.044	7.912 ± 0.052	7.900 ± 0.045	7.901 ± 0.046	7.897 ± 0.042
Matching Survival	12.523 ± 0.289	7.949 ± 0.043	7.935 ± 0.053	7.920 ± 0.047	7.921 ± 0.046	7.912 ± 0.042

407 **Validation and extension of synthetic findings.** The semi-synthetic results confirm our synthetic
 408 benchmark’s core insights while revealing additional structure-dependent nuances. Double-ML’s
 409 dominance on ACTG data (10.65 RMSE) validates our synthetic benchmark finding that sophis-
 410 ticated causal methods excel in moderate-dimensional settings with controlled confounding. Sim-
 411 ilarly, S-Learner Survival’s consistent top-tier performance across MIMIC variants (appearing as
 412 best or second-best on four of five datasets) also agrees with our synthetic benchmark finding that
 413 survival meta-learners provide robust performance under challenging censoring conditions.

414 **Enhanced understanding of censoring sensitivity.** The MIMIC censoring rate range (53% to 88%)
 415 provides granular validation of synthetic censoring effects while revealing method-specific stability
 416 patterns not observable in synthetic experiments. S-Learner Survival maintains stability across this
 417 range (RMSE range: 7.897–7.921), while T-Learner Survival exhibits instability at extreme censor-
 418 ing (±0.233 standard deviation at 82% censoring). This extends synthetic findings by showing that
 419 censoring tolerance varies not just between method families but within them, providing more precise
 420 guidance for high-censoring scenarios.

421 **Convergence effects in realistic high-dimensional settings.** The MIMIC results reveal a novel
 422 finding absent from synthetic experiments: performance convergence in high-dimensional, realistic
 423 covariate spaces. All methods cluster within a narrow RMSE range (7.89–8.01), contrasting with
 424 ACTG’s broader spread (10.65–12.52). This convergence suggests that while synthetic experiments
 425 correctly identify relative method strengths, realistic covariate correlations and mixed data types
 426 may compress performance differences, making method selection dependent on secondary factors
 427 like stability, interpretability, and computational efficiency.

428 **Implications for method selection.** The results of our synthetic benchmarks provided foundational
 429 insights that can generalize to realistic settings, while our semi-synthetic evaluation reveals addi-
 430 tional practical considerations. For method selection: (1) In moderate-dimensional settings with
 431 balanced censoring, sophisticated causal methods such as Double-ML offer clear advantages. (2)
 In high-dimensional, heavily censored settings typical of EHR studies, survival meta-learners pro-

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
vide the best combination of performance and stability. (3) The choice of method should explicitly consider dataset dimensionality and covariate complexity, not just censoring rates and sample sizes.

In Appendix G.2, we provide a more detailed analysis of the semi-synthetic results.

4.3 BENCHMARKING ON REAL DATA

We also evaluate the three families of survival CATE estimators on two real-world datasets, one with known ground truth and one without.

Twin data. The Twins dataset (Almond et al., 2005; Curth et al., 2021a) includes twin births from 1989-1991, with birth weight being heavier in the twin as treated and time to mortality as outcome. With known outcomes for both twins, this dataset provides ground truth for CATE evaluation. After replicating the same random treatment assignment strategy and the censoring time assignment following Curth et al. (2021a), the treatment rate and censoring rate for the dataset are 68.1% and 84.8% respectively across 11,400 twin pairs. Since most of the mortality events occur within 30 days, we use $h = 30$ days during estimation. Figure 3 shows S- and DR-Learners (with imputation) and S-Learner-Survival exhibit lower CATE RMSE (7.2 days). T-Learner-Survival and Causal Forest with imputation exhibit the worse performance, consistent with their overall worse ranking from the benchmarking on our synthetic datasets (Figure 1). Surprisingly, Double ML with imputation exhibits the worst performance on the twin data, which is different from the overall ranking, suggesting potential unique patterns in this dataset. In Appendix H, we also show the result with $h = 180$ days; the conclusions are similar.

HIV clinical trial. The ACTG 175 dataset (Hammer et al., 1996) compared four antiretroviral treatments in 2,139 HIV-infected patients. Following Meir et al. (2025), we convert time to months with $h=30$ months (13.7% baseline censoring) and introduce artificial censoring to test robustness (increasing to $>90\%$ censoring). More details on data and processing can be found in Appendix H. Figure 4 compares CATE estimates between baseline and high-censoring conditions for the ZDV vs. ZDV+ddI comparison (results for other treatment comparisons are in Appendix H). Each point represents an individual patient, with the 45-degree dashed line indicating perfect consistency between conditions. We observe distinct behavioral patterns: Causal Survival Forest (green) produces estimates that cluster tightly around their original values; outcome imputation methods (blue) show higher variation in baseline estimates but concentrated predictions under high censoring; survival meta-learners (red) display substantial deviations from the 45-degree line, indicating sensitivity to censoring conditions. As ground truth is unknown, we cannot determine which approach is more accurate, but these patterns reveal fundamental differences in how estimators respond to increased censoring. For example, survival meta learner (the red scatter plots), especially the T- and matching-learners, exhibit instability under increased censoring settings (large variance in y-axis values).

5 DISCUSSION

SURVHTE-BENCH provides the first comprehensive and extensible platform for systematically benchmarking heterogeneous treatment effect estimators under right-censored survival settings. By spanning synthetic, semi-synthetic, and real datasets, the benchmark enables both controlled stress-testing of estimators under systematic assumption violations and validation in realistic clinical-like settings. Our empirical evaluations reveal strengths and weaknesses across estimator families.

While we have attempted to make our benchmark reasonably comprehensive, various limitations remain. First, the synthetic datasets include numerous scenarios representing common real-world violations, however, they do not encompass all possible complexities, [for example, RCT setting with informative censoring or](#) varying degrees of severity in assumption violations. The binary nature of our violations (either present or absent) may not capture the nuanced continuum of partial violations. [We recognize that in real-world applications, assumption violations often exist on a continuum of severity.](#) Future extensions of our benchmark, could incorporate graded sensitivity

Figure 3: CATE RMSE for twin birth data with $h = 30$. Box plots show the distribution of error across 10 experimental runs (added SurvITE results).

Figure 4: CATE estimation comparison between baseline and high-censoring conditions under ZDV vs. ZDV+ddI treatments. Each point represents an individual patient, with the dashed diagonal line indicating perfect consistency between baseline CATE estimation and that with the additional censoring injected.

analyses, such as varying the magnitude of unmeasured confounding (e.g., via Rosenbaum’s Γ) or the degree of overlap violation. This would allow for a more granular “dose-response” analysis to pinpoint the exact thresholds at which specific estimators break down. Second, extending the evaluation to include additional estimands such as survival probabilities at fixed horizons would further enrich the benchmark’s scope. Our focus on restricted mean survival time represents just one of several clinically relevant estimands for treatment effect estimation. Additionally, we limit our analysis to static, binary treatments with fixed baseline covariates, excluding scenarios involving time-varying treatments, instrumental variables, and dynamic covariate structures.

Future work could expand SURVHTE-BENCH in several directions. Incorporating a wider variety of direct causal estimation methods, such as g-computation approaches specifically designed for survival outcomes, would provide an even more comprehensive evaluation landscape, especially because Causal Survival Forest proved to be competitive but showed vulnerability to certain assumption violations like positivity. Exploring more complex data-generating mechanisms that better mimic the heterogeneity and longitudinal nature of real-world clinical data represents another promising direction. Finally, extending the benchmark to support multi-valued or continuous treatments would address important practical scenarios encountered in precision medicine and policy optimization.

540
541 ETHICS STATEMENT

542 SURVHTE-BENCH has significant positive potential for improving personalized medicine and clinical
 543 decision-making by enabling systematic evaluation of survival analysis methods under realistic
 544 assumption violations. By providing standardized benchmarks and practical guidance on when different
 545 estimators excel or fail, our work could accelerate the development of more reliable causal
 546 inference methods for high-stakes healthcare applications, ultimately supporting better patient outcomes
 547 through more informed treatment selection.

548 At the same time, our benchmark carries potential risks if misapplied. Practitioners may misinterpret
 549 benchmark results or place undue confidence in algorithmic decision-making, which could reduce
 550 necessary human oversight in clinical contexts. Moreover, although our study is methodological
 551 and does not involve human subjects directly, differences in estimator performance across demo-
 552 graphic groups could exacerbate existing healthcare disparities if ignored. We therefore stress that
 553 our benchmark should not be used as a substitute for rigorous domain-specific validation, fairness
 554 assessment, or clinical trial evidence.

555 All datasets used in this work are either publicly available synthetic or semi-synthetic datasets, or
 556 real-world datasets with proper access provisions (e.g., credentialed approval for MIMIC-IV). No
 557 personally identifiable information was used, and all data handling complies with the terms of use of
 558 the original sources. We encourage future applications of SURVHTE-BENCH to incorporate fairness
 559 audits, domain-specific validation, and appropriate safeguards to ensure responsible deployment.

560
561 REPRODUCIBILITY STATEMENT

562 We provide complete resources to reproduce our results across synthetic, semi-synthetic, and real-
 563 data settings. (1) *Synthetic data*: The benchmark design and evaluation protocol are described in
 564 the main text (Sections 3 and 4.1), including the 8 causal configurations and 5 survival scenarios
 565 (40 datasets total). Extended generation formulas and per-dataset summaries are in Appendix A;
 566 imputation procedures in Appendix B; the full list of implemented estimators in Appendix C; causal
 567 method overviews in Appendix D; training details and hyperparameter grids in Appendix E; and
 568 additional synthetic results/analyses in Appendix F. (2) *Semi-synthetic data*: Setup, statistics, and
 569 full results appear in Appendix G with summary discussion in Section 4.2. (3) *Real data*: Processing
 570 details and additional analyses are provided in Appendix H; see also Section 4.3. We further study
 additional censoring mechanisms in Appendix I.

571 **Code and instructions.** The full codebase used for all experiments is available at the anonymized
 572 repository: <https://anonymous.4open.science/r/SurvHTE-Benchmark-206B>, with scripts and
 573 READMEs to reproduce all figures and tables from raw inputs.

574 **Datasets.** In the same anonymized repository, we include: (i) the complete synthetic suite (40
 575 datasets from the 8×5 design); (ii) the semi-synthetic datasets, comprising the *ACTG (semi-*
 576 *synthetic)* dataset; and (iii) real-data materials for *Twins* and *ACTG 175*. For the semi-synthetic
 577 MIMIC resources, because MIMIC-IV requires credentialed access, we provide code to generate
 578 these datasets rather than redistributing raw MIMIC data. The MIMIC-IV dataset itself is hosted on
 579 PhysioNet at <https://physionet.org/content/mimiciv/3.1/> and is publicly available to researchers upon
 580 credentialed approval. All other datasets listed above are included in the supplementary package in
 581 preprocessed or generated form, together with scripts to reproduce all splits and metrics.

582 In addition to enabling replication of our reported results, we intend SURVHTE-BENCH to serve as
 583 community infrastructure for the evaluation of survival HTE methods. The benchmark is designed
 584 to be modular and extensible, allowing researchers to incorporate new estimators or datasets while
 585 preserving comparability. This ensures not only reproducibility of our experiments but also a lasting
 586 resource for the community, providing a standardized basis for measuring progress in survival causal
 587 inference, a resource that has been missing until now, as well as in related areas of machine learning.

588
589 REFERENCES

590 Douglas Almond, Kenneth Y. Chay, and David S. Lee. The costs of low birth weight. *The Quarterly
 591 Journal of Economics*, 120(3):1031–1083, 2005.
 592
 593 Laura Antolini, Patrizia Boracchi, and Elia Biganzoli. A time-dependent discrimination index for
 survival data. *Statistics in medicine*, 24(24):3927–3944, 2005.

594 Susan Athey and Guido W Imbens. Machine learning methods for estimating heterogeneous causal
 595 effects. *stat*, 1050(5):1–26, 2015.

596

597 Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. *The Annals of Statistics*,
 598 47(2):1148 – 1178, 2019.

599 Stephen Bates, Edward Kennedy, Robert Tibshirani, Valerie Ventura, and Larry Wasserman. Non-
 600 linear regression with residuals: Causal estimation with time-varying treatments and covariates.
 601 *arXiv preprint arXiv:2201.13451*, 2022.

602

603 Na Bo, Yue Wei, Lang Zeng, Chaeryon Kang, and Ying Ding. A Meta-Learner Framework to
 604 Estimate Individualized Treatment Effects for Survival Outcomes. *Journal of Data Science*, 22
 605 (4):505–523, 2024.

606 Paidamoyo Chapfuwa, Serge Assaad, Shuxi Zeng, Michael J. Pencina, Lawrence Carin, and Ricardo
 607 Henao. Enabling counterfactual survival analysis with balanced representations. In *Conference
 608 on Health, Inference, and Learning*, pp. 133–145, 2021.

609

610 Xinyuan Chen, Michael O Harhay, Guangyu Tong, and Fan Li. A bayesian machine learning ap-
 611 proach for estimating heterogeneous survivor causal effects: applications to a critical care trial.
 612 *The Annals of Applied Statistics*, 18(1):350, 2024.

613 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
 614 Newey, and James Robins. Double/debiased machine learning for treatment and structural pa-
 615 rameters. *The Econometrics Journal*, 21(1):C1–C68, 2018.

616 Hunyong Cho, Shannon T Holloway, David J Couper, and Michael R Kosorok. Multi-stage optimal
 617 dynamic treatment regimes for survival outcomes with dependent censoring. *Biometrika*, 110(2):
 618 395–410, 2023.

619

620 Jonathan Crabbé, Alicia Curth, Ioana Bica, and Mihaela van der Schaar. Benchmarking heteroge-
 621 neous treatment effect models through the lens of interpretability. In *Advances in Neural Infor-
 622 mation Processing Systems*, volume 35, pp. 12295–12309. Curran Associates, Inc., 2022.

623

624 Yifan Cui, Michael R Kosorok, Erik Sverdrup, Stefan Wager, and Ruoqing Zhu. Estimating het-
 625 erogeneous treatment effects with right-censored data via causal survival forests. *Journal of the
 626 Royal Statistical Society Series B: Statistical Methodology*, 85(2):179–211, 2023.

627

628 Alicia Curth and Mihaela Van der Schaar. On inductive biases for heterogeneous treatment effect
 629 estimation. *Advances in Neural Information Processing Systems*, 34:15883–15894, 2021.

630

631 Alicia Curth, Changhee Lee, and Mihaela van der Schaar. SurvITE: learning heterogeneous treat-
 632 ment effects from time-to-event data. In *Advances in Neural Information Processing Systems*,
 633 2021a.

634

635 Alicia Curth, David Svensson, Jim Weatherall, and Mihaela Van Der Schaar. Really doing great at
 636 estimating cate? a critical look at ml benchmarking practices in treatment effect estimation. In
 637 *Thirty-fifth conference on Neural Information Processing Systems datasets and benchmarks track
 (round 2)*, 2021b.

638

639 Xin Du, Lei Sun, Wouter Duivesteijn, Alexander Nikolaev, and Mykola Pechenizkiy. Adversarial
 640 balancing-based representation learning for causal effect inference with observational data. *Data
 Mining and Knowledge Discovery*, 35(4):1713–1738, 2021.

641

642 Scott M. Hammer, David A. Katzenstein, Michael D. Hughes, Holly Gundacker, Robert T. Schoo-
 643 ley, Richard H. Haubrich, W. Keith Henry, Michael M. Lederman, John P. Phair, Manette Niu,
 644 Martin S. Hirsch, and Thomas C. Merigan. A trial comparing nucleoside monotherapy with
 645 combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic
 646 millimeter. *New England Journal of Medicine*, 335(15):1081–1090, 1996.

647

648 Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
 649 detection benchmark. *Advances in Neural Information Processing Systems*, 35:32142–32159,
 650 2022.

648 Nicholas C Henderson, Thomas A Louis, Gary L Rosner, and Ravi Varadhan. Individualized treat-
 649 ment effects with censored data via fully nonparametric bayesian accelerated failure time models.
 650 *Biostatistics*, 21(1):50–68, 2020.

651 Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random sur-
 652 vival forests. *The Annals of Applied Statistics*, 2(3):841 – 860, 2008.

653 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 654 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
 655 electronic health record dataset. *Scientific data*, 10(1):1, 2023.

656 Ahmet Kapkiç, Pratanu Mandal, Shu Wan, Paras Sheth, Abhinav Gorantla, Yoonhyuk Choi, Huan
 657 Liu, and K. Selçuk Candan. Introducing causalbench: A flexible benchmark framework for causal
 658 analysis and machine learning. In *Proceedings of the 33rd ACM International Conference on*
 659 *Information and Knowledge Management*, CIKM ’24, pp. 5220–5224, New York, NY, USA,
 660 2024. Association for Computing Machinery. ISBN 9798400704369.

661 Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval
 662 Kluger. DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional
 663 Hazards Deep Neural Network. *BMC Medical Research Methodology*, 18:1–12, 2018.

664 Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 665 *Electronic Journal of Statistics*, 17(2):3008–3049, 2023.

666 Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating het-
 667 erogeneous treatment effects using machine learning. *Proceedings of the National Academy of*
 668 *Sciences*, 116(10):4156–4165, 2019.

669 Changhee Lee, William Zame, Jinsung Yoon, and Mihaela van der Schaar. DeepHit: A Deep Learn-
 670 ing Approach to Survival Analysis With Competing Risks. *Proceedings of the AAAI Conference*
 671 *on Artificial Intelligence*, 32(1), Apr. 2018.

672 Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.
 673 Causal effect inference with deep latent-variable models. *Advances in Neural Information Pro-
 674 cessing Systems*, 30, 2017.

675 Tomer Meir, Uri Shalit, and Malka Gorfine. Heterogeneous Treatment Effect in Time-to-
 676 Event Outcomes: Harnessing Censored Data with Recursively Imputed Trees. *arXiv preprint*
 677 *arXiv:2502.01575*, 2025.

678 Shahriar Noroozizadeh, Pim Welle, Jeremy C Weiss, and George H Chen. The impact of medication
 679 non-adherence on adverse outcomes: Evidence from schizophrenia patients via survival analysis.
 680 In *Conference on Health, Inference, and Learning*, pp. 573–609. PMLR, 2025.

681 Shi-ang Qi, Neeraj Kumar, Mahtab Farrokh, Weijie Sun, Li-Hao Kuan, Rajesh Ranganath, Ricardo
 682 Henao, and Russell Greiner. An effective meaningful way to evaluate survival models. In *Inter-
 683 national Conference on Machine Learning*, 2023.

684 Jacqueline E Rudolph, David Benkeser, Edward H Kennedy, Enrique F Schisterman, and Ashley I
 685 Naimi. Estimation of the average causal effect in longitudinal data with time-varying exposures:
 686 the challenge of nonpositivity and the impact of model flexibility. *American journal of epidemi-
 687 ology*, 191(11):1962–1969, 2022.

688 Jacqueline E Rudolph, Kwangho Kim, Edward H Kennedy, and Ashley I Naimi. Estimation of the
 689 time-varying incremental effect of low-dose aspirin on incidence of pregnancy. *Epidemiology*, 34
 690 (1):38–44, 2023.

691 Jincheng Shen, Lu Wang, Stephanie Daignault, Daniel E Spratt, Todd M Morgan, and Jeremy MG
 692 Taylor. Estimating the optimal personalized treatment strategy based on selected variables to pro-
 693 long survival via random survival forest with weighted bootstrap. *Journal of biopharmaceutical*
 694 *statistics*, 28(2):362–381, 2018.

695 Yishai Shmoni, Chen Yanover, Ehud Karavani, and Yaara Goldschmidt. Benchmarking framework
 696 for performance-evaluation of causal inference analysis. *ArXiv*, abs/1802.05046, 2018.

702 Ori M Stitelman and Mark J van der Laan. Collaborative targeted maximum likelihood for time to
703 event data. *The International Journal of Biostatistics*, 6(1), 2010.
704

705 Ori M Stitelman, C William Wester, Victor De Gruttola, and Mark J van der Laan. Targeted max-
706 imum likelihood estimation of effect modification parameters in survival analysis. *The Interna-
707 tional Journal of Biostatistics*, 7(1), 2011.

708 Eric J Tchetgen Tchetgen, Stefan Walter, Stijn Vansteelandt, Torben Martinussen, and Maria Gly-
709 mour. Instrumental variable estimation in a survival context. *Epidemiology*, 26(3):402–410, 2015.
710

711 Mark J Van der Laan and Sherri Rose. *Targeted Learning: Causal Inference for Observational and*
712 *Experimental Data*. Springer, 2011.

713 Charlotte Voinot, Clément Berenfeld, Imke Mayer, Bernard Sébastien, and Julie Josse. Causal
714 survival analysis, Estimation of the Average Treatment Effect (ATE): Practical Recommendations.
715 *arXiv preprint arXiv:2501.05836*, 2025.

716 Shenbo Xu, Raluca Cobzaru, Stan N Finkelstein, Roy E Welsch, Kenney Ng, and Zach Shah. Estimating
717 heterogeneous treatment effects on survival outcomes using counterfactual censoring
718 unbiased transformations. *arXiv preprint arXiv:2401.11263*, 2024.

720 Yizhe Xu, Nikolaos Ignatiadis, Erik Sverdrup, Scott Fleming, Stefan Wager, and Nigam Shah. Treatment
721 heterogeneity with survival outcomes. In *Handbook of Matching and Weighting Adjustments*
722 for Causal Inference

723 Weijia Zhang, Thuc Duy Le, Lin Liu, Zhi-Hua Zhou, and Jiuyong Li. Mining heterogeneous causal
724 effects for personalized cancer treatment. *Bioinformatics*, 33(15):2372–2378, 2017.

726 Jie Zhu and Blanca Gallego. Targeted estimation of heterogeneous treatment effect in observational
727 survival analysis. *Journal of Biomedical Informatics*, 107, 2020.

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **APPENDIX**

757 In this appendix, we provide detailed descriptions of data generation processes, methodological ex-
 758 planations, experimental setups, and results supplementing the main text. We begin by describing the
 759 mathematical formulations used to create our synthetic datasets, followed by detailed explanations
 760 of imputation methods and causal inference techniques. We then provide comprehensive informa-
 761 tion about model training procedures and hyperparameter settings for reproducibility. The appendix
 762 concludes with additional experimental results on synthetic, semi-synthetic, and real-world datasets.
 763

764 We would like to declare **the use of Large Language Models (LLMs)** in this work. LLMs were
 765 used as general-purpose assistive tools. Specifically, they supported parts of the writing process
 766 (editing, formatting, and polishing text) without contributing to the core methodology, scientific
 767 rigor, or originality of the research. In addition, LLMs were used to assist with improving visualiza-
 768 tion code for figures, documenting the code, and minor refactoring. No part of the conceptualization,
 769 design, or execution of the research relied on LLMs.

770 **Appendix A: Additional Details of the Synthetic Datasets.** This section provides the mathe-
 771 matical formulations for generating covariates, treatment assignments, event times, and censoring
 772 times across different scenarios. It describes how the synthetic datasets systematically vary across
 773 causal configurations and survival scenarios, including details on covariate generation, treatment
 774 assignment mechanisms, event time generation, censoring time generation, and observed data con-
 775 struction. **This section also includes Kaplan–Meier curves for the synthetic event-time and censoring**
 776 **distributions, illustrating scenario-level variation used throughout the benchmark.**

777 **Appendix B: Imputation Methods Details.** This section explains three surrogate imputation strate-
 778 gies for estimating true event time in right-censored survival data: Margin Imputation, IPCW-T
 779 Imputation, and Pseudo-Observation Imputation. It provides mathematical formulations for each
 780 method and discusses their respective advantages and limitations.

781 **Appendix C: List of CATE Estimators in SURVHTE Benchmark.** This section details the 53
 782 different conditional average treatment effect (CATE) estimator variants evaluated in the benchmark,
 783 including outcome imputation methods, direct-survival CATE models, and survival meta-learners,
 784 with a breakdown of how these variants are constructed.

785 **Appendix D: Detailed Overview of Causal Inference Methods.** This section provides comprehen-
 786 sive explanations of various causal inference methods, including meta-learners (T-learner, S-learner,
 787 X-learner, DR-learner), Double ML, Causal Forest, Causal Survival Forest, **SurvITE**, and Survival
 788 Meta-Learners, discussing their implementation in survival contexts.

789 **Appendix E: Model Training Details and Hyperparameters.** This section covers the hyperpa-
 790 rameter grids, model selection procedures, and computational costs associated with each method
 791 class evaluated in the benchmark, providing details on the experimental setup for reproducibility.

792 **Appendix F: Additional Experimental Results for Synthetic Dataset.** This section presents com-
 793 prehensive experimental results on synthetic datasets, including full rankings of models, **win-rate**
 794 **summaries (Top-1 / Top-3 / Top-5) across methods**, performance across different survival scenar-
 795 os and causal configurations, detailed CATE RMSE and ATE bias plots, evaluation of auxiliary
 796 components, and convergence behavior under varying training set sizes.

797 **Appendix G: Semi-Synthetic Datasets.** This section includes data setup and detailed analysis
 798 of semi-synthetic datasets derived from ACTG 175 and MIMIC-IV, including covariate statistics,
 799 censoring rate range, and comprehensive performance results across methods. **It additionally re-**
 800 **ports results for the 4 new MIMIC semi-synthetic datasets, presents results for the added survival-**
 801 **probability-based CATE estimand across multiple horizons, and includes sensitivity analyses of the**
 802 **RMST-based CATE where the evaluation horizon is varied.**

803 **Appendix H: Real-World Datasets.** This section provides detailed descriptions of data prepro-
 804 cessing and additional experimental results for the Twins dataset and the ACTG 175 HIV clinical
 805 trial dataset, including CATE RMSE results with different time horizons and comparisons of CATE
 806 estimates between baseline and high-censoring conditions.

807 **Appendix I: Informative Censoring via Unobserved Confounding.** An additional dataset vio-
 808 lating the ignorable censoring assumption via latent confounders. This illustrates extensibility of
 809 SURVHTE-BENCH to incorporate alternative censoring mechanisms beyond the 8×5 design.

810 A ADDITIONAL DETAILS OF THE SYNTHETIC DATASETS 811

812 Our synthetic datasets systematically vary across two orthogonal dimensions: causal configurations
813 (treatment assignment mechanisms and assumption violations) and survival scenarios (event-time
814 distributions and censoring mechanisms). This section provides the mathematical formulations for
815 generating covariates, treatment assignments, event times, and censoring times across all scenarios.
816 For event time and censoring time distribution, we adapt the generation process from Meir et al.
817 (2025) and make some adjustments, with, for example, different censoring mechanisms under in-
818 formative censoring settings; for treatment assignment in observational study settings, we adapt the
819 propensity score from Cui et al. (2023). For simplicity, we omit the unit index i in this section.

820 A.1 COVARIATE GENERATION 821

822 Following Cui et al. (2023); Meir et al. (2025), for all scenarios, we generate five baseline covariates
823 independently from uniform distributions:

$$824 \quad X_m \sim \text{Uniform}(0, 1), \quad m = 1, 2, 3, 4, 5$$

825 Additionally, we generate two latent confounders $U_1, U_2 \sim \text{Uniform}(0, 1)$ that are used when testing
826 violations of the ignorability assumption.

827 A.2 TREATMENT ASSIGNMENT MECHANISMS 828

829 The treatment assignment mechanism W varies according to the causal configuration:

830 **Randomized Controlled Trials (RCT-50, RCT-5):** Treatment is assigned randomly with probability
831 p :

$$832 \quad W \sim \text{Bernoulli}(p)$$

833 where $p = 0.5$ for RCT-50 and $p = 0.05$ for RCT-5.

834 **Observational Studies (OBS-):** Treatment assignment depends on covariates through a propensity
835 score mechanism:

$$836 \quad e(X) = \frac{1 + \text{Beta}(X_1; 2, 4)}{4} \quad (\text{OBS-CPS})$$

$$837 \quad e(X, U) = \frac{1 + \text{Beta}(0.3X_1 + 0.7U_1; 2, 4)}{4} \quad (\text{OBS-UConf})$$

$$838 \quad e(X) = \begin{cases} 1 & \text{if } X_1 > 0.8 \\ 0 & \text{if } X_1 < 0.2 \\ 0.5 & \text{otherwise} \end{cases} \quad (\text{OBS-NoPos})$$

839 where $\text{Beta}(x; a, b)$ denotes the Beta probability density function with parameters a and b evaluated
840 at x . For all observational configurations, $W \sim \text{Bernoulli}(e(\cdot))$.

841 A.3 EVENT TIME GENERATION 842

843 Event times $T(w)$ under treatment $w \in \{0, 1\}$ are generated according to five different survival
844 scenarios:

845 **Scenario A (Cox Model):** Event times follow a Cox proportional hazards model with Weibull base-
846 line hazard:

$$847 \quad \lambda_T(t|W, X) = h_0(t) \cdot \exp(\beta^T Z)$$

$$848 \quad = 0.5t^{-0.5} \cdot \exp[X_1 + (-0.5 + X_2) \cdot W + \epsilon]$$

849 where $h_0(t) = 0.5t^{-0.5}$ is the Weibull baseline hazard with shape parameter $k = 0.5$ and scale
850 parameter $\lambda_0 = 1.0$, and $\epsilon = 0.5(U_1 - X_2)$ if unobserved confounding is present, and $\epsilon = 0$ otherwise.
851 Event times are generated via inverse transform sampling from the corresponding survival function.

852 **Scenario B (AFT Model):** Event times follow an Accelerated Failure Time (AFT) model:

$$853 \quad \log T(w) = -1.85 - 0.8 \cdot \mathbb{1}(X_1 < 0.5) + 0.7\sqrt{X_2} + 0.2X_3$$

$$854 \quad + [0.7 - 0.4 \cdot \mathbb{1}(X_1 < 0.5) - 0.4\sqrt{X_2}] \cdot W + \epsilon + \eta$$

864 where $\eta \sim \mathcal{N}(0, 1)$ and ϵ is defined as in Scenario A.
 865

866 **Scenario C (Poisson Model):** Event times follow a Poisson distribution:
 867

$$\begin{aligned} 868 \quad \lambda(w) &= X_2^2 + X_3 + 6 + 2(\sqrt{X_1} - 0.3) \cdot W + \epsilon \\ 869 \quad T(w) &\sim \text{Poisson}(\lambda(w)) \end{aligned}$$

870 **Scenario D (AFT Model):** Event times follow an AFT model with parameters adjusted for higher
 871 censoring:
 872

$$\begin{aligned} 873 \quad \log T(w) &= 0.3 - 0.5 \cdot \mathbb{1}(X_1 < 0.5) + 0.5\sqrt{X_2} + 0.2X_3 \\ 874 \quad &+ [1 - 0.8 \cdot \mathbb{1}(X_1 < 0.5) - 0.8\sqrt{X_2}] \cdot W + \epsilon + \eta \\ 875 \end{aligned}$$

876 **Scenario E (Poisson Model):** Event times follow a Poisson distribution with adjusted parameters:
 877

$$\begin{aligned} 878 \quad \lambda(w) &= X_2^2 + X_3 + 7 + 2(\sqrt{X_1} - 0.3) \cdot W + \epsilon \\ 879 \quad T(w) &\sim \text{Poisson}(\lambda(w)) \end{aligned}$$

880 A.4 CENSORING TIME GENERATION

882 Censoring times C are generated differently across scenarios and depend on whether informative
 883 censoring is present:
 884

885 **Ignorable Censoring (Non-InfC Scenarios):**
 886

887 Scenario A: $C \sim \text{Uniform}(0, 3)$
 888

889 Scenario B: $\lambda_C(t|W, X) = h_{0C}(t) \cdot \exp(\gamma^T Z)$
 890 $= 2.0t^{1.0} \cdot \exp[\mu]$
 891 where $\mu = -1.75 - 0.5\sqrt{X_2} + 0.2X_3 + [1.15 + 0.5 \cdot \mathbb{1}(X_1 < 0.5) - 0.3\sqrt{X_2}] \cdot W$
 892

893 Scenario C: $C = \begin{cases} \infty & \text{with probability 0.6} \\ 1 + \mathbb{1}(X_4 < 0.5) & \text{with probability 0.4} \end{cases}$
 894

895 Scenario D: $\lambda_C(t|W, X) = h_{0C}(t) \cdot \exp(\gamma^T Z)$
 896 $= 2.0t^{1.0} \cdot \exp[\nu]$
 897 where $\nu = -0.9 + 2\sqrt{X_2} + 2X_3 + [1.15 + 0.5 \cdot \mathbb{1}(X_1 < 0.5) - 0.3\sqrt{X_2}] \cdot W$
 898

899 Scenario E: $C \sim \text{Poisson}(3 + \log(1 + \exp(2X_2 + X_3)))$

900 For scenarios B and D, $h_{0C}(t) = 2.0t^{1.0}$ is the Weibull baseline hazard for censoring with shape
 901 parameter $k = 2.0$ and scale parameter $\lambda_0 = 1.0$. Censoring times are generated via inverse
 902 transform sampling from the corresponding survival function.

903 **Informative Censoring (-InfC Scenarios):** When testing violations of ignorable censoring as-
 904 sumptions, we replace the above mechanisms with:
 905

$$C_i \sim \text{Exponential}(\text{rate} = \lambda_0 + \alpha \cdot T_i) \quad (2)$$

906 where $\lambda_0 = 1.0$ and $\alpha = 0.1$ are baseline parameters that create dependence between censoring and
 907 event times.
 908

909 While in the main benchmark we induce informative censoring by making censoring times depen-
 910 dent on event times, this is not the only way to violate the ignorable censoring assumption. To
 911 demonstrate the extensibility of our modular design and for completeness, we additionally include
 912 in Appendix I a setting where informative censoring arises through unobserved confounding.
 913

914 A.5 OBSERVED DATA CONSTRUCTION

915 The observed survival data consists of:
 916

$$\begin{aligned} 917 \quad \tilde{T} &= \min(T, C) \quad (\text{observed time}) \\ \quad \delta &= \mathbb{1}(T \leq C) \quad (\text{event indicator}) \end{aligned}$$

918 where $T = T(W)$ represents the factual event time under the observed treatment assignment.
 919

920 The combination of these five survival scenarios with eight causal configurations yields our
 921 comprehensive benchmark of 40 synthetic datasets, each designed to test estimator performance under
 922 specific combinations of survival dynamics and causal assumption violations.

923
924 Table 4: Summary of event time and censoring time generation across survival scenarios

925 Scenario	926 Event Time Distribution	927 Censoring Mechanism	928 Censoring Rate
A	Cox (Weibull baseline, $k = 0.5$)	Uniform(0, 3)	Low (< 30%)
B	AFT (Log-normal)	Cox (Weibull baseline, $k = 2.0$)	Low (< 30%)
C	Poisson	Piecewise uniform	Medium (30-70%)
D	AFT (Log-normal)	Cox (Weibull baseline, $k = 2.0$)	High (> 70%)
E	Poisson	Poisson	High (> 70%)

931
932 Table 5: Censoring rate of synthetic datasets (50,000 samples). Notice that the censoring rates are
 933 different from Table 2 under informative censoring due to changes in the censoring distribution.
 934

935 Causal Configurations	936 Survival Scenarios				
	937 A	938 B	939 C	940 D	941 E
RCT-50	0.203	0.073	0.392	0.913	0.794
RCT-5	0.200	0.036	0.390	0.881	0.770
OBS-CPS	0.201	0.066	0.393	0.914	0.789
OBS-UConf	0.201	0.073	0.392	0.918	0.795
OBS-NoPos	0.203	0.082	0.393	0.912	0.803
OBS-CPS-InfC	0.116	0.052	0.885	0.366	0.926
OBS-UConf-InfC	0.116	0.054	0.888	0.381	0.929
OBS-NoPos-InfC	0.116	0.058	0.891	0.403	0.932

942
943 Table 6: Treatment rate of synthetic datasets (50,000 samples).
 944

945 Causal Configurations	946 Survival Scenarios				
	947 A	948 B	949 C	950 D	951 E
RCT-50	0.502	0.502	0.502	0.502	0.502
RCT-5	0.049	0.049	0.049	0.049	0.049
OBS-CPS	0.503	0.503	0.503	0.503	0.503
OBS-UConf	0.539	0.539	0.539	0.539	0.539
OBS-NoPos	0.500	0.500	0.500	0.500	0.500
OBS-CPS-InfC	0.503	0.503	0.503	0.503	0.503
OBS-UConf-InfC	0.539	0.539	0.539	0.539	0.539
OBS-NoPos-InfC	0.500	0.500	0.500	0.500	0.500

952
953 Table 7: Average treatment effect (ATE) of synthetic datasets (50,000 samples).
 954

955 Causal Configurations	956 Survival Scenarios				
	957 A	958 B	959 C	960 D	961 E
RCT-50	0.163	0.125	0.750	0.724	0.754
RCT-5	0.163	0.125	0.750	0.724	0.754
OBS-CPS	0.163	0.125	0.750	0.724	0.754
OBS-UConf	0.004	0.132	0.740	0.831	0.740
OBS-NoPos	0.163	0.125	0.750	0.724	0.754
OBS-CPS-InfC	0.163	0.125	0.750	0.724	0.754
OBS-UConf-InfC	0.004	0.132	0.740	0.831	0.740
OBS-NoPos-InfC	0.163	0.125	0.750	0.724	0.754

Figure 5: (Synthetic datasets) Kaplan-Meier curves for event and censoring distributions.

Remark on parameter calibration. The constants used in our synthetic generators are inherited from and aligned with prior causal-survival simulation setups (Cui et al., 2023; Meir et al., 2025), and are set to span distinct, interpretable regimes that the benchmark aims to cover. In particular, we

1026 calibrate (i) *censoring severity* by shifting the relative scales of event-time and censoring-time pro-
1027 cesses (e.g., the AFT intercept change between Scenarios B and D increases typical event times and,
1028 together with the corresponding censoring model, yields higher censoring in D); (ii) *treatment preva-*
1029 *lence* and *confounding strength* by adjusting propensity-score weights so that most configurations
1030 remain near balanced treatment except where imbalance is intentional (e.g., RCT-5), while allow-
1031 ing controlled dependence on observed or latent drivers; and (iii) *effect magnitude/heterogeneity*
1032 through the coefficients on W and W -covariate interactions, which we keep in a moderate range
1033 for comparability across scenarios. These choices are not unique, and alternative parameterizations
1034 could yield valid benchmarks; our goal is to provide a principled and reproducible instantiation that
1035 cleanly separates survival dynamics from causal-assumption stress and produces a broad range of
1036 survival CATE evaluation settings.

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **B IMPUTATION METHODS DETAILS**
 1081

1082 We follow Qi et al. (2023) to implement three surrogate imputation strategies for estimating the
 1083 true event time T in right-censored survival data. Let $Y = \min(T, C)$ be the observed time, with
 1084 censoring indicator $\delta = \mathbb{1}\{T \leq C\}$. Let $S_{\text{KM}(\mathcal{D})}(t)$ denote the Kaplan-Meier estimate of the
 1085 survival function using the dataset \mathcal{D} , and N the number of subjects. The three methods below are
 1086 used to impute a surrogate outcome \tilde{T}_i for censored subject i observed at time t_i .
 1087

1088 **1. Margin Imputation:** This method assigns a “best guess” value to each censored subject using
 1089 the nonparametric Kaplan–Meier estimator. This surrogate value, called the *margin time*, can be
 1090 interpreted as the conditional expectation of the event time given that the event occurs after the
 1091 censoring time. For a subject censored at time t_i , the margin-imputed event time is computed as:
 1092

$$\tilde{T}_i^{\text{margin}} = \mathbb{E}[T_i \mid T_i > t_i] = t_i + \frac{\int_{t_i}^{\infty} S_{\text{KM}(\mathcal{D})}(t) dt}{S_{\text{KM}(\mathcal{D})}(t_i)} \quad (3)$$

1093 where $S_{\text{KM}(\mathcal{D})}(t)$ is the Kaplan–Meier survival estimate derived from the training dataset.
 1094

1095 The reliability of this imputation depends on the censoring time. For example, if a subject is censored
 1096 very early (e.g., at time 0), the margin time is highly uncertain due to the lack of observed data
 1097 beyond that point. In contrast, if a subject is censored near the maximum observed follow-up, the
 1098 margin time is more likely to be close to the true event time.
 1099

1100 **2. IPCW-T Imputation:** This method imputes a surrogate event time for censored subjects based
 1101 on the observed outcomes of subsequent uncensored individuals. Specifically, for a subject censored
 1102 at time t_i , the imputed value is calculated as the average event time of all uncensored subjects with
 1103 observed times after t_i :
 1104

$$\tilde{T}_i^{\text{IPCW}} = \frac{\sum_{j=1}^N \mathbb{1}\{t_i < t_j\} \cdot \mathbb{1}\{\delta_j = 1\} \cdot t_j}{\sum_{j=1}^N \mathbb{1}\{t_i < t_j\} \cdot \mathbb{1}\{\delta_j = 1\}} \quad (4)$$

1105 This imputes the event time for subject i by averaging the observed event times of those uncen-
 1106 sored subjects who experienced the event after t_i . The method is motivated by the idea that these
 1107 subsequent subjects provide empirical evidence about the possible timing of the unobserved event.
 1108

1109 However, a limitation of this approach is that it fails to provide an imputation when there are no
 1110 uncensored subjects observed after t_i . In such cases, the denominator of the expression becomes
 1111 zero, and the method is unable to approximate the event time. In Qi et al. (2023), subjects for whom
 1112 this occurs are excluded from evaluation, whereas in our setup we used the original observed time
 1113 as the imputed time.
 1114

1115 **3. Pseudo-Observation Imputation:** This method imputes the event time using pseudo-
 1116 observations, which estimate the contribution of each subject to an overall unbiased estimator of
 1117 the event time distribution. Let $\hat{\theta}$ be an estimator of the mean event time based on right-censored
 1118 data, and let $\hat{\theta}^{-i}$ denote the same estimator computed with the i -th subject removed from the dataset.
 1119 Then, the pseudo-observation for subject i is defined as:
 1120

$$\tilde{T}_i^{\text{pseudo}} = e_{\text{Pseudo-Obs}}(t_i, \mathcal{D}) = N \cdot \hat{\theta} - (N - 1) \cdot \hat{\theta}^{-i} \quad (5)$$

1121 This quantity can be interpreted as the individual contribution of subject i to the overall estimate $\hat{\theta}$.
 1122 In practice, both $\hat{\theta}$ and $\hat{\theta}^{-i}$ can be computed using the mean of the Kaplan–Meier survival curve:
 1123

$$\hat{\theta} = \mathbb{E}_t[S_{\text{KM}(\mathcal{D})}(t)], \quad \hat{\theta}^{-i} = \mathbb{E}_t[S_{\text{KM}(\mathcal{D} \setminus \{i\})}(t)]$$

1124 Once the pseudo-observations $\tilde{T}_i^{\text{pseudo}}$ are computed for all censored subjects, they are substituted in
 1125 place of the true event times for evaluation or modeling.
 1126

1127 Although pseudo-observations are not exact conditional expectations, they can approximate $\mathbb{E}[T_i \mid$
 1128 $X_i]$ under certain assumptions. In particular, when censoring is independent of covariates and the
 1129

1134 sample size is large, pseudo-observations behave asymptotically like i.i.d. draws from the true
 1135 conditional expectation:

$$1136 \quad \mathbb{E}[\hat{T}_i^{\text{pseudo}} \mid X_i] \approx \mathbb{E}[T_i \mid X_i]$$

1137 This makes the pseudo-observation method a principled, nonparametric approach for imputing cen-
 1138 sored survival times, particularly when estimating global quantities like the mean event time.
 1139

1140 These imputation strategies enable us to transform the survival outcome into a fully observed target
 1141 variable, allowing the application of standard regression-based methods in causal effect estimation.
 1142 To ensure meaningful estimates, it is important that each imputed event time for a censored subject
 1143 is guaranteed to be greater than or equal to the censoring time—reflecting the fact that the true event
 1144 must occur after the last time it was observed. In our implementation, we manually enforce this
 1145 constraint by setting the imputed value to the observed censoring time whenever the imputation
 1146 procedure yields a value less than t_i .
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 C LIST OF CATE ESTIMATORS IN SURVHTE BENCHMARK

1190 As mentioned in Section 3, in our benchmark, we evaluate three families of survival CATE methods,
 1191 totaling 53 variants. We list the number of variants for each type of CATE estimator in Table 8.

1192 For the outcome imputation methods, we first apply one of three imputation strategies (Pseudo-
 1193 observation, Margin, or IPCW-T) (Qi et al., 2023) to handle the censored data, transforming the
 1194 survival problem into a standard regression task. After imputation, we use these imputed outcomes
 1195 with four different meta-learner frameworks (S-, T-, X-, and DR-Learners), each implemented with
 1196 three different base regression models (Lasso Regression, Random Forest, and XGBoost), resulting
 1197 in $3 \times 4 \times 3 = 36$ different variants. Additionally, we pair each imputation method with two special-
 1198 ized causal inference methods: Causal Forest (Athey et al., 2019) and Double ML (Chernozhukov
 1199 et al., 2018), which adds $3 \times 1 + 3 \times 1 = 6$ more variants, for a total of 42 outcome imputation
 1200 method variants.

1201 For direct-survival CATE models, we include the Causal Survival Forest (CSF) (Cui et al., 2023) as
 1202 a standalone method, which is specifically designed to handle right-censored data without requiring
 1203 separate imputation steps. Additionally, we include SurvITE (Curth et al., 2021a) which estimates
 1204 individual treatment effects directly from right-censored survival data by learning balanced repre-
 1205 sentations and optimizing a survival-specific loss.

1206 For survival meta-learners, we implement three types of meta-learning frameworks that have been
 1207 extended to handle censored data directly: S-learner, T-learner, and matching-learner (Noroozizadeh
 1208 et al., 2025). Each of these frameworks is combined with three different base survival models (Rand-
 1209 om Survival Forest (Ishwaran et al., 2008), DeepSurv (Katzman et al., 2018), and DeepHit (Lee
 1210 et al., 2018)) that estimate the underlying survival functions, resulting in $3 \times 3 = 9$ survival meta-
 1211 learner variants.

1212 In total, our benchmark evaluates $42 + 2 + 9 = 53$ different method configurations across the 40
 1213 synthetic datasets and the two real-world datasets described in Section 3.

1214
 1215 Table 8: Breakdown of benchmarked survival-CATE estimator variants used in our experiments.
 1216 Each row corresponds to a specific combination of method class, imputation strategy (if applicable),
 1217 base learner(s), and CATE learner(s). Cells with numbers in parentheses indicate how many variants
 1218 are contributed by the method(s) listed in that cell. The final column reports the total number of
 1219 method variants constructed using that combination.

1220 Method Class	1221 Imputation (No. options)	1222 Base Learner (No. options)	1223 CATE Learner (No. options)	1224 No. Variants
1225 Outcome Imputation Method	Pseudo-obs, Margin, IPCW-T	Lasso Regression, Random Forest, XGBoost (3)	Meta-Learners (S-, T-, X-, DR-) (4)	36
		—	Causal Forest (1)	3
		—	Double ML (1)	3
1230 Direct-Survival CATE Models	—	—	Causal Survival Forest (1)	
			SurvITE (1)	2
1233 Survival Meta-Learners	—	Random Survival Forest, DeepSurv, DeepHit (3)	Survival Meta-Learners (S-, T-, Matching-) (3)	9
Total				53

1242 D DETAILED OVERVIEW OF CAUSAL INFERENCE METHODS

1244 This section provides a comprehensive explanation of the causal inference methods evaluated in our
 1245 benchmark. We begin with outcome imputation methods that transform censored survival data into
 1246 standard regression problems, followed by direct-survival CATE models specifically designed for
 1247 right-censored data, and finally survival meta-learners that adapt standard meta-learner frameworks
 1248 to handle censoring. For each method, we present the theoretical foundation, algorithmic procedure,
 1249 and specific implementation considerations in the survival analysis context. Our exposition focuses
 1250 on highlighting the unique characteristics that make each approach suitable for different survival
 1251 and causal inference scenarios, with particular attention to how these methods handle the challenges
 1252 posed by censoring and treatment effect heterogeneity.

1253 D.1 OUTCOME IMPUTATION METHOD

1255 Meta-learners represent a flexible framework for estimating conditional average treatment effects
 1256 (CATEs) by decomposing the causal inference problem into standard supervised learning tasks.
 1257 The key advantage of meta-learners is that they allow practitioners to leverage any out-of-the-box
 1258 machine learning algorithm as a “base learner” while maintaining principled approaches to causal
 1259 effect estimation. This modularity makes meta-learners particularly attractive in practice, as they can
 1260 incorporate state-of-the-art ML methods (e.g., random forests, gradient boosting, neural networks)
 1261 without requiring specialized causal inference implementations. For detailed explanations on meta-
 1262 learners, one can refer to Künzel et al. (2019); Kennedy (2023). We provide a simplified overview
 1263 below and largely refer to the documentation of the `econml` package.

1264 **T-learner (Künzel et al., 2019).** The T-Learner (Two-Learner) adopts the most straightforward
 1265 approach by fitting separate outcome models for treated and control groups. Given binary treatment
 1266 $W \in \{0, 1\}$, features X , and outcome Y , the T-Learner:

1. Splits the data by treatment assignment: (X^0, Y^0) for controls and (X^1, Y^1) for treated units
2. Trains separate outcome models (i.e. predicting the outcome Y using features X):

$$1267 \text{For control units: } \hat{\mu}_0 = M_0(Y^0 \sim X^0)$$

$$1270 \text{For treated units: } \hat{\mu}_1 = M_1(Y^1 \sim X^1)$$

3. Estimates CATE as:

$$1273 \hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

1275 where M_0 and M_1 can be any regression algorithm. The T-Learner is conceptually simple but can
 1276 suffer from high variance when treatment groups have different sizes or when the outcome models
 1277 extrapolate poorly to regions with limited overlap.

1278 **S-learner (Künzel et al., 2019).** The S-Learner (Single-Learner) takes a unified modeling approach
 1279 by including treatment assignment as an additional feature. The procedure involves:

1. Training a single model using all available data:

$$1282 \hat{\mu} = M(Y \sim (X, W))$$

2. Estimating CATE as:

$$1284 \hat{\tau}(x) = \hat{\mu}(x, 1) - \hat{\mu}(x, 0)$$

1286 This approach leverages all available data for training and can be more sample-efficient than the
 1287 T-Learner. However, it relies heavily on the base learner’s ability to capture treatment-feature inter-
 1288 actions, and may perform poorly when these interactions are complex or when the treatment effect
 1289 is small relative to the baseline outcome.

1290 **X-learner (Künzel et al., 2019).** The X-Learner represents a more sophisticated approach that
 1291 combines ideas from both T-Learner and inverse propensity weighting. The algorithm proceeds in
 1292 multiple stages:

1. Fit initial outcome models:

$$1294 \hat{\mu}_0 = M_1(Y^0 \sim X^0)$$

$$1295 \hat{\mu}_1 = M_2(Y^1 \sim X^1)$$

1296 2. Compute imputed treatment effects:

1297

$$\text{For treated units: } \hat{D}^1 = Y^1 - \hat{\mu}_0(X^1)$$

1298

$$\text{For control units: } \hat{D}^0 = \hat{\mu}_1(X^0) - Y^0$$

1299

1300 3. Model treatment effects:

1301

$$\hat{\tau}_0 = M_3(\hat{D}^0 \sim X^0)$$

1302

$$\hat{\tau}_1 = M_4(\hat{D}^1 \sim X^1)$$

1303

1304 4. Combine estimates using propensity scores:

1305

$$\hat{\tau}(x) = g(x)\hat{\tau}_0(x) + (1 - g(x))\hat{\tau}_1(x)$$

1306

1307 where $g(x)$ is the estimation for propensity score $P(W = 1|X = x)$ and is typically fitted using
 1308 logistic regression. The X-Learner is particularly effective when treatment groups have different
 1309 sizes or when treatment effects are heterogeneous, as it explicitly models treatment effect variation
 1310 and uses propensity weighting for optimal combination.

1311 **DR-learner (Kennedy, 2023).** The DR-Learner (Doubly Robust Learner) extends the doubly robust
 1312 framework to meta-learning by combining outcome modeling with propensity score estimation. The
 1313 approach constructs doubly robust scores that remain consistent if either the outcome model or
 1314 propensity model is correctly specified. It includes the following steps:

1315 1. Fit outcome modeling for each treatment

1316

$$\hat{\mu}_0 = M_1(Y^0 \sim X^0)$$

1317

$$\hat{\mu}_1 = M_2(Y^1 \sim X^1)$$

1318

1319 2. Construct propensity score modeling

1320

$$\hat{g} = M_g(W \sim X)$$

1321

1322 3. Construct doubly robust outcomes:

1323

$$\hat{Y}_0^{DR} = \hat{\mu}_0(X) + \frac{(Y - \hat{\mu}_0(X))}{\hat{g}(X)} \cdot \mathbb{1}\{W = 0\}$$

1324

$$\hat{Y}_1^{DR} = \hat{\mu}_1(X) + \frac{(Y - \hat{\mu}_1(X))}{\hat{g}(X)} \cdot \mathbb{1}\{W = 1\}$$

1325

1326 4. Final CATE estimation: $\hat{\tau}(x) = \hat{Y}_1^{DR} - \hat{Y}_0^{DR}$

1327

1328 The DR-Learner provides theoretical robustness guarantees and often performs well in practice,
 1329 particularly when either outcome or treatment assignment can be accurately modeled.

1330 **Double ML (Chernozhukov et al., 2018).** Double Machine Learning (Double ML or DML) repre-
 1331 presents a principled framework for estimating heterogeneous treatment effects when confounders
 1332 are high-dimensional or when their relationships with treatment and outcome cannot be adequately
 1333 captured by parametric models. The key insight of DML is to decompose the causal inference prob-
 1334 lem into two predictive tasks that can be solved using arbitrary machine learning algorithms while
 1335 maintaining favorable statistical properties. Specifically, DML assumes the following structural re-
 1336 lationships:

1337

- $Y = \theta(X) \cdot W + g(X, Z) + \epsilon$ with $\mathbb{E}[\epsilon|X, Z] = 0$

1338

- $W = f(X, Z) + \eta$ with $\mathbb{E}[\eta|X, Z] = 0$

1339
- $\mathbb{E}[\eta \cdot \epsilon|X, Z] = 0$

1340

1341 where Y is the outcome, W is the treatment, X are the features of interest for heterogeneity, Z are
 1342 confounding variables, and $\theta(X)$ is the conditional average treatment effect we aim to estimate. The
 1343 method proceeds by first estimating two nuisance functions:

1344

- Outcome regression: $q(X, Z) = \mathbb{E}[Y|X, Z]$

1345

- Treatment regression: $f(X, Z) = \mathbb{E}[W|X, Z]$

1346

1350 These nuisance functions can be estimated using any machine learning algorithm capable of regression (for continuous treatments) or classification (for binary treatments). Popular choices include
 1351 random forests, gradient boosting, neural networks, or regularized linear models. After obtaining
 1352 estimates \hat{q} and \hat{f} , DML constructs residualized outcomes and treatments:
 1353

$$\tilde{Y} = Y - \hat{q}(X, Z)$$

$$\tilde{W} = W - \hat{f}(X, Z)$$

1354 The final step estimates $\theta(X)$ by regressing \tilde{Y} on \tilde{W} and X
 1355

$$\hat{\theta} = \arg \min_{\theta} \mathbb{E}_n[(\tilde{Y} - \theta(X) \cdot \tilde{W})^2]$$

1361 **Causal Forest (Athey et al., 2019).** Causal Forest extends the random forest methodology to di-
 1362 rectly estimate heterogeneous treatment effects in a non-parametric, data-adaptive manner. Unlike
 1363 meta-learners that rely on global models, Causal Forest estimates treatment effects locally by learn-
 1364 ing similarity metrics in the feature space and weighting observations accordingly. Causal Forest
 1365 builds upon the same structural assumptions as DML but estimates $\theta(x)$ locally for each target point
 1366 x . The method constructs a forest where each tree is grown using a **causal splitting criterion** that
 1367 maximizes treatment effect heterogeneity rather than prediction accuracy. For a target point x , the
 1368 treatment effect is estimated by solving:

$$\hat{\theta}(x) = \arg \min_{\theta} \sum_{i=1}^n K_x(X_i) \cdot (\tilde{Y}_i - \theta \cdot \tilde{W}_i)^2$$

1369 where $K_x(X_i)$ represents the similarity between points x and X_i as determined by how frequently
 1370 they fall in the same leaf across the forest, and \tilde{Y}, \tilde{W} are residuals from nuisance function estimates.
 1371

1372 **Implementation in Survival Context** In our benchmark, meta-learners, double ML, and causal
 1373 forest are applied to survival outcomes through outcome imputation methods. We first apply impu-
 1374 tation techniques (Pseudo-obs, Margin, or IPCW-T, see Appendix B for details) to convert censored
 1375 survival times into continuous outcomes, then apply the meta-learners described above with various
 1376 base regression algorithms (Lasso Regression, Random Forest, XGBoost). This two-stage approach
 1377 allows leveraging the rich ecosystem of causal inference methods developed for continuous out-
 1378 comes while handling the complexities of censored data.
 1379

1381 D.2 DIRECT-SURVIVAL CATE MODELS

1382 **Causal Survival Forest (CSF) (Cui et al., 2023)** extends the causal forest methodology directly
 1383 to right-censored survival data by incorporating doubly robust estimating equations from survival
 1384 analysis. Unlike meta-learners that require outcome imputation, CSF handles censored observations
 1385 natively while maintaining the adaptive partitioning advantages of tree-based methods. CSF builds
 1386 upon the causal forest framework of Athey et al. (2019) but adapts the splitting criterion and estima-
 1387 tion procedure for survival outcomes. For a detailed explanation of the method, please refer to the
 1388 original paper by Cui et al. (2023). We provide an overview of the estimation procedures as follows:
 1389

1. **Nuisance estimation:** Using cross-fitting, estimate nuisance components including:

- 1391 • Propensity scores: $\hat{e}(x) = P(W = 1|X = x)$
- 1392 • Outcome regression: $\hat{m}(x) = E[y(T)|X = x]$
- 1393 • Censoring survival function: $\hat{S}_w^C(s|x) = P(C \geq s|W = w, X = x)$
- 1394 • Conditional expectations: $\hat{Q}_w(s|x) = E[y(T)|X = x, W = w, T \wedge h > s]$

1395 where $y(T)$ is a transformation applied on the event time T , the same as defined in Eq.1.

2. **Forest construction:** Build a forest where each tree uses a causal splitting criterion that max-
 1396 imizes treatment effect heterogeneity. The splitting rule targets variation in the doubly robust
 1397 scores rather than prediction accuracy.
3. **Local estimation:** For a target point x , compute forest weights $\alpha(x)$ indicating similarity based
 1398 on leaf co-occurrence across trees, then estimate the CATE by solving:

$$\sum \alpha(x) \psi_{\hat{\tau}(x)}(X, y(U), U \wedge h, W, \Delta^h; \hat{e}, \hat{m}, \hat{S}_w^C, \hat{Q}_w) = 0$$

1399 where ψ is the doubly robust score function that adjusts for both treatment assignment and
 1400 censoring.
 1401

1404
 1405 **SurvITE (Curth et al., 2021a)** adapts the representation learning paradigm for counterfactual
 1406 inference to time-to-event data. Unlike methods that rely on local similarity in the covariate
 1407 space, SurvITE addresses selection bias by learning a shared latent representation where the treated
 1408 and control distributions are balanced, while simultaneously modeling the censorship mechanism.
 1409 SurvITE builds upon the theoretical bounds of counterfactual regression but incorporates survival-
 1410 specific loss functions to handle right-censored outcomes without requiring imputation. A brief
 1411 outline of the method follows:

1412 1. **Representation learning:** Map covariates X to a latent representation $\Phi(X)$ via a deep neural
 1413 network, subject to a discrepancy penalty. The objective is to minimize an Integral Probability
 1414 Metric (IPM) (e.g., Wasserstein distance or MMD) between the treated and control populations
 1415 in the latent space:

$$1416 \text{IPM}(P_\Phi(X|W=1), P_\Phi(X|W=0)) < \epsilon$$

1417 2. **Factual loss minimization:** Simultaneously train treatment-specific hypothesis heads (h_1 and
 1418 h_0) on top of $\Phi(X)$ using a survival loss function $\mathcal{L}_{\text{surv}}$ (discrete-time log-likelihood) that
 1419 accounts for censoring:

$$1420 \min_{\Phi, h_0, h_1} \sum_{i=1}^N w_i \mathcal{L}_{\text{surv}}(h_{W_i}(\Phi(x_i)), T_i, \Delta_i) + \alpha \cdot \text{IPM}$$

1421 3. **Effect estimation:** For a target point x , the CATE is estimated by passing x through the learned
 1422 representation and computing the difference between the outputs of the treatment and control
 1423 heads:

$$1424 \hat{\tau}(x) = E[y(T)|\Phi(x), W=1] - E[y(T)|\Phi(x), W=0]$$

1425 where the expectation is derived from the predicted survival curves or time-to-event distribu-
 1426 tions output by h_1 and h_0 .

1427 D.3 SURVIVAL META-LEARNERS

1428 **T-Learner-Survival (Bo et al., 2024; Noroozizadeh et al., 2025).** The T-Learner can be adapted
 1429 to right-censored survival data by fitting separate survival models for each treatment group. Let
 1430 $W \in \{0, 1\}$ denote the treatment indicator, X be the covariate vector, and T the observed survival
 1431 time with censoring indicator δ , and h the maximum follow-up time.

1432 1. **Split data by treatment:** Partition the dataset into (X^0, T^0, δ^0) for $W = 0$ and (X^1, T^1, δ^1)
 1433 for $W = 1$.
 1434 2. **Train separate survival models:** Fit a survival model (e.g., Random Survival Forest, Deep-
 1435 Surv, DeepHit) to each group:

$$1436 \hat{S}_0(u|x) = \text{Survival model fitted on } (X^0, T^0, \delta^0)$$

$$1437 \hat{S}_1(u|x) = \text{Survival model fitted on } (X^1, T^1, \delta^1)$$

1438 3. **Estimate Restricted Mean Survival Time (RMST):** Compute RMST for each treatment as:

$$1439 \hat{\mu}_0(x) = \int_0^h \hat{S}_0(u|x) du, \quad \hat{\mu}_1(x) = \int_0^h \hat{S}_1(u|x) du$$

1440 4. **Estimate CATE:** For any x , estimate treatment effect:

$$1441 \hat{\tau}_{\text{T-learner}}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

1442 **S-Learner-Survival (Bo et al., 2024; Noroozizadeh et al., 2025).** The S-Learner adapts by training
 1443 a single survival model over all data with treatment as a covariate.

1444 1. **Fit survival model:** Train a survival model over the full dataset using (X, W) as inputs:

$$1445 \hat{S}(u|x, w) = \text{Survival model fitted on } ((X, W), T, \delta)$$

1458
 1459 2. **Estimate Restricted Mean Survival Time (RMST):** Compute RMST under both treatment
 1460 conditions:

1461 $\hat{\mu}(x, 0) = \int_0^h \hat{S}(u|x, 0)du, \quad \hat{\mu}(x, 1) = \int_0^h \hat{S}(u|x, 1)du$
 1462

1463 3. **Estimate CATE:**

1464 $\hat{\tau}_{\text{S-learner}}(x) = \hat{\mu}(x, 1) - \hat{\mu}(x, 0)$
 1465

1466 **Matching-Survival (Noroozizadeh et al., 2025).** The Matching-Learner estimates the CATE by
 1467 imputing the counterfactual Restricted Mean Survival Time (RMST) using matched data points from
 1468 the opposite treatment group.

1470 1. **Estimate factual RMST:** Fit a survival model on the full dataset and compute:

1472 $\hat{\mu}_{W_i}(X_i) = \int_0^h \hat{S}(u|X_i, W_i)du$
 1473

1474 2. **Find matches:** For each individual i , identify K nearest neighbors $J_K(i)$ from the opposite
 1475 treatment group ($1 - W_i$).

1477 3. **Estimate counterfactual RMST:** Average factual RMSTs of matched neighbors:

1478 $\hat{\mu}_{1-W_i}(X_i) = \frac{1}{K} \sum_{j \in J_K(i)} \hat{\mu}_{W_j}(X_j)$
 1479

1481 4. **Estimate CATE:** Compute CATE for each unit:

1483 $\hat{\tau}_{\text{matching}}(X_i) = (\hat{\mu}_{W_i}(X_i) - \hat{\mu}_{1-W_i}(X_i)) \cdot (2W_i - 1)$
 1484

1485 This approach makes minimal modeling assumptions beyond nearest-neighbor similarity and is par-
 1486 ticularly helpful in settings with low overlap or where global models may be misspecified.

1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512 **E MODEL TRAINING DETAILS AND HYPERPARAMETERS ON**
 1513 **BENCHMARKING WITH SYNTHETIC DATA**

1515 To rigorously evaluate and compare the performance of causal inference models under controlled
 1516 conditions, we conducted extensive benchmarking on synthetic datasets. Each synthetic dataset
 1517 consisted of 50,000 samples generated under known data-generating processes explained in Ap-
 1518 pendix A. For each experimental repeat, we selected a subset of 5,000 samples for training, 2,500
 1519 for validation, and 2,500 for testing, using 10 distinct random seeds (experimental repeats) to en-
 1520 sure robustness. Hyperparameters for each model were tuned on the validation set to minimize the
 1521 Conditional Average Treatment Effect Root Mean Squared Error (CATE-RMSE). Throughout this
 1522 paper, final results are always reported on the held-out test set using the best-performing configura-
 1523 tion. Appendix F.7 provides complementary experiments that analyze the convergence behavior of
 1524 each method under varying training set sizes.

1525 This appendix details the hyperparameter grids used for model selection, the specific survival and
 1526 outcome models applied within each causal inference framework, and the average computational
 1527 cost associated with each method class.

1529 **E.1 HYPERPARAMETERS FOR OUTCOME IMPUTATION METHODS**

1531 For methods based on outcome imputation, we employed standard regressors to estimate the con-
 1532 ditional mean of the survival outcome given covariates and treatment assignment. We considered
 1533 Lasso regression, Random Forest, and XGBoost as base models. Each was optimized using cross-
 1534 validated grid search on the training set. The corresponding hyperparameter grids are listed in
 1535 Table 9.

1536 Table 9: Hyperparameter Grids for Outcome Imputation Regressors

1539 Regressor	1540 Hyperparameter Grid
1541 Lasso	1542 Alpha: {0.001, 0.01, 0.1, 1, 10}
1543 Random Forest	1544 Number of trees: {50, 100} 1545 Maximum depth: {3, 5, None}
1546 XGBoost	1547 Number of trees: {50, 100} 1548 Learning rate: {0.01, 0.1} 1549 Maximum depth: {3, 5}

1548 **E.2 HYPERPARAMETERS FOR DIRECT SURVIVAL CATE MODELS**

1550 For direct modeling of survival outcomes, we employed the Causal Survival Forest (CSF), which
 1551 adapts the Causal Forest framework to handle right-censored data. We used the default hyperparam-
 1552 eters from the original implementation. These are summarized in Table 10.

1553 Table 10: Default Hyperparameters for Causal Survival Forest

1555 Parameter	1556 Default Value
1557 Number of trees grown	2000
1558 Fraction of data per tree	0.5
1559 Variables tried per split	$\min(\lceil \sqrt{p} + 20 \rceil, p)$
1560 Minimum samples in a leaf	5
1561 Maximum imbalance of splits	0.05
1562 Penalty for imbalance at split	0
1563 Account for treatment and censoring in split stability	TRUE
1564 Trees per subsample for confidence intervals	2

1565 For SurvITE (Curth et al., 2021a), we implemented a PyTorch version based on the original architec-
 1566 ture and repository and used the default training hyperparameters from the original paper, adapted

1566 for our datasets. The main configuration is summarized in Table 11. Unless otherwise noted, we use
 1567 the same settings for all datasets; for `mimic_syn` we increase the hidden layer widths to 64 units to
 1568 accommodate the higher-dimensional feature space.
 1569

1570
1571 Table 11: Default Hyperparameters for SurvITE
1572

Parameter	Value
Latent representation dimension z_dim	32
Shared hidden layer width h_dim1	32 (64 for <code>mimic_syn</code>)
Head hidden layer width h_dim2	32 (64 for <code>mimic_syn</code>)
Number of shared layers <code>num_layers1</code>	3
Number of head layers <code>num_layers2</code>	2
Activation function	ReLU
Dropout rate	0.3
IPM type	Wasserstein
IPM regularization weight β	10^{-3}
Smoothing parameter γ	0
Learning rate	10^{-3}
Batch size	256
Maximum epochs	1500
Early stopping patience	20

1586
1587
1588
1589 E.3 HYPERPARAMETERS FOR SURVIVAL META-LEARNERS
1590

1591 For survival meta-learners—specifically T-Learner-Survival, S-Learner-Survival, and Matching-
 1592 Learner-Survival—we used three different base survival models: Random Survival Forest (RSF),
 1593 DeepSurv, and DeepHit. Each of these models was tuned using a predefined hyperparameter grid,
 1594 listed in Table 12.
 1595

1596
1597 Table 12: Set of Hyperparameters for Survival Analysis Models
1598

Model	Hyperparameter	Values
RSF	Number of estimators	{100, 250, 500}
	Minimum samples per split	{5, 10, 20}
	Minimum samples per leaf	{2, 5, 10}
DeepHit	Number of nodes per layer	{32, 64, 128, 256}
	Batch normalization	{True, False}
	Dropout rate	{0.0, 0.1, 0.2, 0.3}
	Learning rate	{0.001, 0.01, 0.05}
	Batch size	{128, 256, 512}
	Epochs	{200, 512, 1000}
	Alpha	{0.1, 0.2, 0.3, 0.5}
DeepSurv	Sigma	{0.05, 0.1, 0.2, 0.3}
	Number of nodes per layer	{32, 64, 128, 256}
	Batch normalization	{True, False}
	Dropout rate	{0.0, 0.1, 0.2, 0.3}
	Learning rate	{0.001, 0.01, 0.05}
	Batch size	{128, 256, 512}
	Epochs	{200, 512, 1000}

1616 Hyperparameters were selected through empirical tuning informed by prior literature. For neural
 1617 network-based models (DeepSurv, DeepHit), we used early stopping to mitigate overfitting. All
 1618 experiments were made reproducible by setting random seeds. The best-performing hyperparameter
 1619 configuration was selected using CATE-RMSE on the validation set, and all final results were
 obtained on the test set using these optimal configurations.

1620
1621

E.4 COMPUTATION TIME OF CAUSAL METHODS

1622
1623
1624
1625
1626
1627
1628

We also measured the computational cost of each CATE estimation method in terms of average runtime per dataset and experimental repeat. Each runtime was recorded using Python’s `time.time()` and averaged across 40 synthetic datasets and 10 random seeds. Table 13 presents the mean runtime (in seconds) and standard deviation (excluding the time required for imputation). As expected, neural network-based survival models incur substantially higher computational costs than classical or tree-based methods. All experiments were conducted on a machine equipped with an AMD Ryzen 9 5900X CPU, 128GB RAM, and an NVIDIA GeForce RTX 4090 GPU (CUDA version 12.2).

1629
1630
1631

Table 13: Average computation time per dataset per experimental repeat for each causal method. Runtime is reported in seconds with standard deviation across runs.

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Method Class	Method	Runtime (s)
Outcome Imputation Method: Meta-learners	T-learner	2.14 ± 1.38
	S-learner	1.84 ± 1.22
	X-learner	2.92 ± 2.42
	DR-learner	3.34 ± 1.88
Outcome Imputation Method: Forest / ML-based learners	Double ML	5.27 ± 0.40
	Causal Forest	5.75 ± 0.40
Direct-Survival CATE Models	Causal Survival Forest	0.78 ± 0.06
	SurvITE	43.26 ± 6.62
Survival Meta-Learners	T-learner Survival	31.31 ± 16.88
	S-learner Survival	22.99 ± 14.23
	Matching-Survival	49.40 ± 23.25

1674 F ADDITIONAL EXPERIMENTAL RESULTS FOR SYNTHETIC DATASET
1675

1676 This section provides comprehensive experimental results on our synthetic datasets, expanding on
1677 the key findings presented in the main text. We begin in Appendix F.1 with a full Borda rank-
1678 ing of all 53 model combinations, summarizing global performance across every causal config-
1679 uration and survival scenario. In Appendix F.2, we explore how performance varies across different
1680 survival scenarios—illustrating the impact of censoring patterns and time-to-event distributions on
1681 method rankings. Appendix F.3 then delves into how violations of causal assumptions (treatment
1682 randomization, ignorability, positivity, and censoring mechanisms) reshape the ranking of models
1683 for effectiveness of each causal method.

1684 Subsequent sections (F.4 and F.5) present detailed performance metrics—CATE RMSE and ATE
1685 bias, respectively—across all 8 causal configurations and 5 survival scenarios, with box plots cap-
1686 turing variability over 10 experiment repetitions. We also evaluate auxiliary components in F.6,
1687 including imputation methods and base learners (regression, survival, and propensity models), and
1688 in Appendix F.7 we examine convergence behavior under varying training set sizes. Together, these
1689 detailed results support the robustness, sensitivity, and practical trade-offs of each model family in
1690 a wide spectrum of data-generating and causal settings.

1691 In addition to average-rank summaries, in Appendix F.1– F.3, we also report a set of win-rate anal-
1692 yses that track how often each method family attains Top-1, Top-3, and Top-5 performance on
1693 both CATE RMSE and ATE Bias. Overall win-rates across all survival scenarios and causal con-
1694 figurations are summarized in Table 15, while Tables 16, 17, and 18 provide scenario-specific and
1695 causal-configuration-specific win-rates. These complementary views highlight not only which meth-
1696 ods achieve strong average performance, but also which ones most consistently appear among the
1697 top performers across varying censoring regimes, survival experimental conditions, and patterns of
1698 causal assumption violations.

1699 F.1 FULL RANKING OF MODELS
1700

1701 To compare the overall performance of the methods across all synthetic datasets, we computed a
1702 Borda ranking based on the average rank of each method’s test set CATE RMSE (Table 14). The
1703 ranking procedure aggregates method performance across all combinations of causal configura-
1704 tions and survival scenarios. For each method, we first computed its RMSE on the test subset of the
1705 CATE predictions for each (causal configuration, survival scenario) pair. We then ranked all 53
1706 methods (described in Appendix C) within each pair and calculated the average rank across these
1707 conditions. This average rank represents the method’s Borda score and serves as a unified summary
1708 of its performance robustness in our synthetic data experiments.

1709 In addition to the Borda rankings, we also summarize how often each method family achieves lead-
1710 ing performance across all experimental settings by reporting the percentage of times a method
1711 appears in the Top-1, Top-3, and Top-5 for both CATE RMSE and ATE Bias. This provides a com-
1712 plementary view that focuses on frequency of strong performance rather than average rank, and
1713 helps separate methods that occasionally perform well from those that do so consistently across our
1714 full set of survival scenarios and causal configurations.

1715 Overall, the patterns in Table 15 show that Causal Survival Forest is the most stable and competitive
1716 method family, with the highest Top-1 win rate on both CATE RMSE and ATE Bias and a dominant
1717 presence in the Top-3 and Top-5 categories. Double-ML also performs strongly on CATE RMSE,
1718 especially in the Top-3 and Top-5 ranges. SurvITE, S-Learner-Survival, and Matching-Survival ap-
1719 pear regularly among the higher-performing methods, although less frequently than Causal Survival
1720 Forest. In contrast, the classical meta-learners without survival adjustments (T-, S-, X-, and DR-
1721 Learners) rarely reach Top-1 positions, highlighting the benefit of models that directly account for
1722 time-to-event structure when estimating treatment effects.

1723
1724
1725
1726
1727

1728

1729

1730

Table 14: Borda Ranking of All Methods

1731

1732

Rank	Method	Score	Rank	Method	Score
1	(Matching-Survival, DeepSurv)	5.60	28	(Causal Forest, Pseudo-Obs)	24.45
2	(S-Learner-Survival, DeepSurv)	5.78	29	(S-Learner, IPCW-T, RandomForest)	25.40
3	(Double-ML, Margin)	6.75	30	(T-Learner, Margin, RandomForest)	26.43
4	(Double-ML, IPCW-T)	11.98	31	(SurvITE)	27.80
5	(Causal Forest, Margin)	12.20	32	(S-Learner, Margin, Lasso)	28.95
6	(Causal Survival Forest)	12.68	33	(S-Learner, IPCW-T, Lasso)	28.95
7	(S-Learner-Survival, RSF)	13.85	34	(S-Learner, Pseudo-Obs, Lasso)	29.20
8	(Double-ML, Pseudo-Obs)	14.83	35	(T-Learner-Survival, DeepHit)	29.95
9	(X-Learner, Margin, RandomForest)	16.45	36	(T-Learner-Survival, RSF)	30.48
10	(Causal Forest, IPCW-T)	16.88	37	(T-Learner, IPCW-T, RandomForest)	30.63
11	(S-Learner, Margin, XGB)	18.33	38	(S-Learner, Pseudo-Obs, RandomForest)	32.28
12	(Matching-Survival, DeepHit)	18.38	39	(S-Learner, Pseudo-Obs, XGB)	32.98
13	(DR-Learner, Margin, Lasso)	19.05	40	(X-Learner, Margin, XGB)	34.50
14	(T-Learner-Survival, DeepSurv)	19.10	41	(X-Learner, Pseudo-Obs, RandomForest)	34.90
15	(S-Learner-Survival, DeepHit)	19.73	42	(X-Learner, IPCW-T, XGB)	36.25
16	(T-Learner, Margin, Lasso)	20.55	43	(DR-Learner, Margin, RandomForest)	36.83
17	(X-Learner, Margin, Lasso)	20.60	44	(DR-Learner, IPCW-T, RandomForest)	38.03
18	(Matching-Survival, RSF)	20.98	45	(T-Learner, Margin, XGB)	41.18
19	(DR-Learner, Pseudo-Obs, Lasso)	21.10	46	(T-Learner, IPCW-T, XGB)	42.13
20	(S-Learner, IPCW-T, XGB)	21.75	47	(T-Learner, Pseudo-Obs, RandomForest)	43.45
21	(X-Learner, IPCW-T, RandomForest)	21.85	48	(DR-Learner, Margin, XGB)	46.38
22	(S-Learner, Margin, RandomForest)	22.30	49	(DR-Learner, IPCW-T, XGB)	46.75
23	(DR-Learner, IPCW-T, Lasso)	22.88	50	(X-Learner, Pseudo-Obs, XGB)	47.73
24	(X-Learner, Pseudo-Obs, Lasso)	22.90	51	(DR-Learner, Pseudo-Obs, RandomForest)	48.80
25	(T-Learner, Pseudo-Obs, Lasso)	23.00	52	(T-Learner, Pseudo-Obs, XGB)	50.50
26	(X-Learner, IPCW-T, Lasso)	24.10	53	(DR-Learner, Pseudo-Obs, XGB)	52.70
27	(T-Learner, IPCW-T, Lasso)	24.10			

1755

1756

1757

1758

1759

1760

1761

1762

Table 15: Win-Rate of Method Families Across All Experimental Configurations. Values denote the percentage of times a method appears in the Top-1, Top-3, and Top-5 according to CATE RMSE and ATE Bias.

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Method Family	CATE RMSE			ATE Bias		
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5
<i>Outcome Imputation Methods</i>						
T-Learner	0	0	0	0	17.5	25.0
S-Learner	0	2.5	12.5	5.0	7.5	27.5
X-Learner	0	0	0	2.5	7.5	17.5
DR-Learner	0	0	0	0	10.0	37.5
Double-ML	27.5	62.5	85.0	2.5	15.0	37.5
Causal Forest	2.5	40.0	52.5	2.5	27.5	40.0
<i>Direct-Survival Methods</i>						
Causal Survival Forest	35.0	67.5	82.5	52.5	75.0	82.5
SurvITE	25.0	37.5	45.0	15.0	37.5	55.0
<i>Survival Meta-Learners</i>						
T-Learner-Survival	0	10.0	40.0	12.5	30.0	40.0
S-Learner-Survival	10.0	45.0	97.5	5.0	30.0	65.0
Matching-Survival	0	35.0	85.0	2.5	42.5	72.5

1782 F.2 RANKING OF CAUSAL METHODS FOR DIFFERENT SURVIVAL SCENARIOS 1783

1784 In Figure 6, we present the Borda ranking of all causal model families across five different survival
1785 scenarios (A–E). For each scenario, the average rank of each method is computed over 8 distinct
1786 causal configurations, allowing us to assess robustness across varying underlying data-generating
1787 processes. The horizontal layout of each plot ranks methods from best (left, top to bottom) to worst
1788 (right, bottom to top), with rank values annotated next to each method for clarity.

1789 These plots illustrate how model performance shifts as censoring rates and survival distributions
1790 vary. In Scenario A, which involves minimal censoring, outcome regression-based methods such as
1791 Double-ML and X-Learner dominate the rankings. However, as we move toward Scenarios D and
1792 E—both characterized by higher censoring—direct survival modeling approaches such as S-Learner-
1793 Survival, Matching-Survival, and Causal Survival Forest consistently rise to the top. This pattern
1794 suggests that survival-specific modeling is better suited to handle the uncertainty introduced by
1795 heavy censoring, outperforming outcome imputation strategies in such settings.

1816 Figure 6: Average Ranking of Each Model for each Survival Scenario. Shaded regions indicate the
1817 standard error of the rank across datasets.

1818 In addition to the global rankings in Figure 6, we report scenario-specific win-rates in Table 16. For
1819 each survival scenario (A–E), we compute how often each method family appears in the Top-1, Top-
1820 3, and Top-5 positions for CATE RMSE and ATE Bias across the eight causal configurations. This
1821 allows us to examine how the relative advantages of outcome imputation, direct-survival, and
1822 survival meta-learner approaches change as we vary both the survival time model (Cox, AFT, Poisson)
1823 and the censoring rate (low, medium, high; Table 2).

1824 Under low censoring (Scenarios A and B), outcome regression methods remain competitive, but
1825 their strengths are scenario-dependent. In Scenario A (Cox, low censoring), Double-ML dominates
1826 CATE RMSE with a 100% Top-1/Top-3/Top-5 win-rate, while Causal Forest is almost always in
1827 the Top-3 and Top-5. ATE Bias is more dispersed: SurvITE, DR-Learner, and several meta-learners
1828 share Top-1 and Top-3 positions, and Causal Survival Forest is frequently among the top methods.
1829 In Scenario B (AFT, low censoring), Causal Survival Forest becomes the main winner, achieving
1830 the highest CATE RMSE win-rates (62.5% Top-1 and 100% Top-3/Top-5) and strong ATE Bias
1831 performance, with Double-ML and Causal Forest also appearing often in the Top-3 and Top-5.

1833 As censoring increases, survival-specific modeling becomes more important. In Scenario C (Pois-
1834 son, medium censoring), Causal Survival Forest clearly leads in both CATE RMSE and ATE Bias,
1835 with Double-ML and SurvITE providing additional support in the Top-3 and Top-5. Under high
censoring (Scenarios D and E), the advantage of survival-focused methods is even more pronounced.

1836 Table 16: **Win-Rate of Method Families by Survival Scenario.** Values denote the percentage of times
 1837 a method appears in the Top-1, Top-3, and Top-5 according to CATE RMSE and ATE Bias across
 1838 the eight causal configurations for each scenario.

Scenario A: Cox, low censoring										Scenario B: AFT, low censoring																																																										
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias				CATE RMSE																																																					
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5																																																				
<i>Outcome Imputation Methods</i>																																																																				
T-Learner	0	0	0	0	37.5	37.5	T-Learner	0	0	0	0	25.0	25.0	S-Learner	0	0	0	0	0																																																	
S-Learner	0	12.5	37.5	25.0	37.5	62.5	S-Learner	0	0	0	0	0	0	X-Learner	0	0	0	12.5	12.5																																																	
X-Learner	0	0	0	0	25.0	25.0	X-Learner	0	0	0	0	0	0	DR-Learner	0	0	0	50.0	87.5																																																	
DR-Learner	0	0	0	0	0	50.0	DR-Learner	0	0	0	0	50.0	87.5	Double-ML	25.0	100.0	100.0	12.5	37.5																																																	
Double-ML	100.0	100.0	100.0	0	37.5	50.0	Double-ML	25.0	100.0	100.0	12.5	37.5	100.0	Causal Forest	12.5	75.0	75.0	12.5	87.5																																																	
Causal Forest	0	100.0	100.0	0	37.5	75.0	Causal Forest	12.5	75.0	75.0	12.5	87.5	87.5	<i>Direct-Survival Methods</i>																																																						
Causal Survival Forest	0	25.0	25.0	25.0	37.5	37.5	Causal Survival Forest	62.5	100.0	100.0	62.5	75.0	75.0	SurvITE	0	0	25.0	0	0	12.5	<i>Survival Meta-Learners</i>																																															
SurvITE	0	0	0	37.5	50.0	50.0	SurvITE	0	0	25.0	0	0	12.5	T-Learner-Survival	0	0	12.5	0	12.5	25.0	T-Learner-Survival	0	0	12.5	0	12.5	25.0	S-Learner-Survival	0	12.5	100.0	0	0	25.0	Matching-Survival	0	12.5	87.5	0	0	37.5	<i>Survival Meta-Learners</i>																										
<i>Scenario C: Poisson, medium censoring</i>																				<i>Scenario D: AFT, high censoring</i>																																																
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias				CATE RMSE																																																					
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5																																																				
<i>Outcome Imputation Methods</i>																																																																				
T-Learner	0	0	0	0	12.5	50.0	T-Learner	0	0	0	0	12.5	12.5	S-Learner	0	0	12.5	0	0	75.0																																																
S-Learner	0	0	0	0	0	0	S-Learner	0	0	0	0	0	0	X-Learner	0	0	0	0	0	12.5																																																
X-Learner	0	0	0	0	0	12.5	X-Learner	0	0	0	0	0	0	DR-Learner	0	0	0	0	0	0																																																
DR-Learner	0	0	0	0	0	37.5	DR-Learner	0	0	0	0	0	0	Double-ML	0	0	25.0	0	0	0																																																
Double-ML	12.5	75.0	100.0	0	0	12.5	Double-ML	0	0	25.0	0	0	0	Causal Forest	0	12.5	12.5	0	0	12.5																																																
Causal Forest	0	12.5	75.0	0	12.5	12.5	Causal Forest	0	12.5	12.5	0	0	0	<i>Direct-Survival Methods</i>																																																						
Causal Survival Forest	50.0	87.5	100.0	62.5	87.5	100.0	Causal Survival Forest	12.5	37.5	87.5	62.5	100.0	100.0	SurvITE	62.5	87.5	87.5	0	12.5	75.0	T-Learner-Survival	0	12.5	87.5	12.5	12.5	25.0																																									
SurvITE	25.0	50.0	50.0	12.5	62.5	75.0	SurvITE	62.5	87.5	87.5	0	12.5	75.0	S-Learner-Survival	25.0	87.5	87.5	12.5	87.5	87.5	Matching-Survival	0	62.5	100.0	12.5	75.0	100.0	<i>Survival Meta-Learners</i>																																								
<i>Scenario E: Poisson, high censoring</i>																				<i>Scenario F: Cox, high censoring</i>																																																
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias				CATE RMSE																																																					
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5																																																				
<i>Outcome Imputation Methods</i>																																																																				
T-Learner	0	0	0	0	0	0	T-Learner	0	0	0	0	0	0	S-Learner	0	0	12.5	0	0	0																																																
S-Learner	0	0	0	0	12.5	0	S-Learner	0	0	12.5	0	0	0	X-Learner	0	0	0	0	0	12.5																																																
X-Learner	0	0	0	0	0	0	X-Learner	0	0	0	0	0	0	DR-Learner	0	0	0	0	0	0																																																
DR-Learner	0	0	0	0	0	0	DR-Learner	0	0	0	0	0	0	Double-ML	0	0	25.0	0	0	0																																																
Double-ML	0	37.5	100.0	0	0	0	Double-ML	0	0	25.0	0	0	0	Causal Forest	0	0	0	0	0	12.5																																																
Causal Forest	0	0	0	0	0	0	Causal Forest	0	0	0	0	0	0	<i>Direct-Survival Methods</i>																																																						
Causal Survival Forest	50.0	87.5	100.0	50.0	75.0	100.0	Causal Survival Forest	50.0	75.0	100.0	50.0	75.0	100.0	SurvITE	37.5	50.0	62.5	25.0	62.5	62.5	T-Learner-Survival	0	12.5	25.0	25.0	75.0	87.5	T-Learner-Survival	0	12.5	25.0	25.0	75.0	87.5	S-Learner-Survival	12.5	62.5	100.0	0	25.0	87.5	Matching-Survival	0	50.0	100.0	0	62.5	100.0	<i>Survival Meta-Learners</i>																			
SurvITE	37.5	50.0	62.5	25.0	62.5	62.5	SurvITE	37.5	50.0	62.5	25.0	62.5	62.5	T-Learner-Survival	0	12.5	25.0	25.0	75.0	87.5	T-Learner-Survival	0	12.5	25.0	25.0	75.0	87.5	S-Learner-Survival	12.5	62.5	100.0	0	25.0	87.5	Matching-Survival	0	50.0	100.0	0	62.5	100.0	<i>Survival Meta-Learners</i>																										

In Scenario D (AFT, high censoring), SurvITE and the survival meta-learners (S-Learner-Survival, Matching-Survival, and T-Learner-Survival) capture most Top-1 and Top-3 spots in CATE RMSE, while Causal Survival Forest and the same survival meta-learners dominate ATE Bias. In Scenario E (Poisson, high censoring), Causal Survival Forest and the survival meta-learners again account for nearly all Top-1 and Top-3 positions for both metrics, with Double-ML mainly contributing through Top-5 appearances. Across these settings, classical meta-learners without survival structure rarely win, reinforcing that explicit survival modeling is crucial once censoring becomes moderate or high.

1890
1891

F.3 RANKING OF CAUSAL METHODS FOR DIFFERENT CAUSAL CONFIGURATIONS

1892
1893
1894
1895
1896

In Figure 7, we present the Borda ranking of causal model families across eight distinct causal configurations, each representing different combinations of assumptions related to treatment assignment (RCT vs. observational), ignorability, positivity, and censoring mechanisms. Within each configuration, the average rank of each method is computed over all survival scenarios, allowing us to isolate how assumption violations affect model performance independently of survival data characteristics.

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

Notably, outcome imputation approaches such as X-Learner and Double-ML perform best in randomized settings with unbalanced treatment (e.g., RCT-5%, panel b), but their performance deteriorates as we move to settings with unmeasured confounding, or more visibly with informative-censoring. In contrast, survival-specific methods such as S-Learner-Survival, Matching-Survival, and Causal Survival Forest consistently rise in the rankings under these challenging conditions—particularly when multiple violations occur simultaneously (e.g., panel g and h). This trend suggests that survival meta-learners and direct modeling of the survival process offer increased robustness to violations of standard causal assumptions, especially in the presence of unmeasured confounding and informative censoring. Another finding here is that Causal Survival Forest maintains strong performance across many configurations, consistently ranking in the top half—particularly in settings involving unmeasured confounding or informative censoring. However, when the positivity assumption is violated (e.g., Figure 7e and h), its performance declines, suggesting limitations in modeling highly sparse regions of the covariate space with deterministic treatment assignment.

1910

1930
1931
1932
1933
1934
1935

Figure 7: Average ranking of each model for each causal configuration. Shaded regions indicate the standard error of the rank across datasets.

1936
1937
1938
1939
1940
1941
1942
1943

In addition to the configuration-agnostic rankings in Figure 7, we report win-rates by causal configuration in Tables 17 and 18. For each configuration, we compute how often each method family appears in the Top-1, Top-3, and Top-5 positions for CATE RMSE and ATE Bias, aggregating over the five survival scenarios. This lets us separate the effect of causal assumptions (randomization, ignorability, positivity, and censoring) from the influence of the survival time model. The randomized settings (RCT-50, RCT-5) serve as our classical baselines, while the observational settings introduce

1944 Table 17: Win-Rate of Method Families by Causal Configuration (Randomized Settings). Values
1945 denote the percentage of times a method appears in the Top-1, Top-3, and Top-5 according to CATE
1946 RMSE and ATE Bias across the five survival scenarios for each configuration.

RCT-50: 50% treatment rate											RCT-5: 5% treatment rate										
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias										
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5								
<i>Outcome Imputation Methods</i>																					
T-Learner	0	0	0	0	20.0	40.0	T-Learner	0	0	0	0	40.0	60.0								
S-Learner	0	0	0	0	0	20.0	S-Learner	0	20.0	40.0	20.0	20.0	40.0								
X-Learner	0	0	0	20.0	20.0	20.0	X-Learner	0	0	0	0	0	20.0								
DR-Learner	0	0	0	0	0	40.0	DR-Learner	0	0	0	0	0	20.0								
Double-ML	40.0	80.0	80.0	0	0	40.0	Double-ML	20.0	60.0	80.0	20.0	40.0	80.0								
Causal Forest	0	40.0	60.0	0	20.0	20.0	Causal Forest	0	40.0	60.0	0	40.0	80.0								
<i>Direct-Survival Methods</i>																					
Causal Survival Forest	0	60.0	80.0	60.0	60.0	60.0	Causal Survival Forest	60.0	80.0	80.0	60.0	60.0	60.0								
SurvITE	60.0	60.0	60.0	0	40.0	60.0	SurvITE	20.0	40.0	60.0	0	40.0	60.0								
<i>Survival Meta-Learners</i>																					
T-Learner-Survival	0	20.0	60.0	0	60.0	60.0	T-Learner-Survival	0	0	20.0	0	0	0								
S-Learner-Survival	0	20.0	100.0	20.0	40.0	60.0	S-Learner-Survival	0	40.0	100.0	0	20.0	40.0								
Matching-Survival	0	20.0	60.0	0	40.0	80.0	Matching-Survival	0	20.0	60.0	0	40.0	40.0								

1961 unmeasured confounding, positivity violations, and informative censoring in a controlled way (Ta-
1962 ble 1).

1964 In the randomized configurations, outcome regression tends to perform well on CATE RMSE but
1965 is not uniformly dominant. Under RCT-50, Double-ML achieves the highest CATE RMSE win-
1966 rates (40.0 Top-1 and 80.0 Top-3/Top-5), with Causal Survival Forest and SurvITE also frequently
1967 appearing among the top methods. When treatment becomes sparse in RCT-5, Causal Survival
1968 Forest and Double-ML share the lead on CATE RMSE (Causal Survival Forest reaches 60.0 Top-1
1969 and 80.0 Top-3/Top-5; Double-ML attains 20.0 Top-1 and 80.0 Top-5), while survival meta-learners
1970 such as S-Learner-Survival and Matching-Survival repeatedly enter the Top-3 and Top-5. Across
1971 both randomized settings, survival-specific approaches are already competitive on ATE Bias, with
1972 Causal Survival Forest, SurvITE, and several survival meta-learners appearing regularly among the
1973 top positions.

1974 The observational configurations highlight how violations of standard causal assumptions shift the
1975 balance further toward survival-focused methods. In OBS-CPS (no unmeasured confounding, no
1976 positivity or informative censoring), Double-ML and SurvITE are strong for CATE RMSE, but
1977 Causal Survival Forest and the survival meta-learners (especially S-Learner-Survival and Matching-
1978 Survival) capture most of the Top-1 and Top-3 spots for ATE Bias. Once unmeasured confounding is
1979 introduced (OBS-UConf), Causal Survival Forest, SurvITE, and the survival meta-learners dominate
1980 both metrics: Causal Survival Forest and Double-ML still perform well on CATE RMSE, but ATE
1981 Bias win-rates are almost entirely driven by Causal Survival Forest, SurvITE, S-Learner-Survival,
1982 and Matching-Survival. When positivity is violated (OBS-NoPos), Double-ML and SurvITE retain
1983 high CATE RMSE win-rates, whereas Causal Survival Forest and SurvITE achieve strong ATE Bias
1984 performance, and survival meta-learners again appear often in the Top-3 and Top-5.

1985 Informative censoring amplifies these trends. In OBS-CPS-InfC, Causal Survival Forest, S-Learner-
1986 Survival, and Matching-Survival account for most of the Top-1 and Top-3 appearances for both
1987 CATE RMSE and ATE Bias, while Double-ML is mostly confined to Top-5 ranks. Under
1988 OBS-UConf-InfC, Causal Survival Forest becomes overwhelmingly dominant, reaching 80.0 Top-1
1989 and 100.0 Top-3/Top-5 for CATE RMSE and similarly high win-rates for ATE Bias, with survival
1990 meta-learners providing additional support. Finally, in OBS-NoPos-InfC, Double-ML and Causal
1991 Survival Forest still perform well on CATE RMSE, but ATE Bias is largely controlled by Causal
1992 Survival Forest and the survival meta-learners, particularly T-Learner-Survival, S-Learner-Survival,
1993 and Matching-Survival. Overall, these patterns reinforce that direct survival modeling and survival
1994 meta-learning offer robustness as assumptions are progressively violated, especially when unmea-
1995 sured confounding and informative censoring are present.

1996
1997

1998
1999
2000
2001
2002
2003

Table 18: Win-Rate of Method Families by Causal Configuration (Observational Settings). Values denote the percentage of times a method appears in the Top-1, Top-3, and Top-5 according to CATE RMSE and ATE Bias across the five survival scenarios for each configuration.

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

OBS-CPS: no violations, CPS										OBS-UConf: unmeasured confounding										
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias				CATE RMSE					
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5				
<i>Outcome Imputation Methods</i>																				
T-Learner	0	0	0	0	20.0	20.0	T-Learner	0	0	0	0	0	0	0	0	0	0	0	0	
S-Learner	0	0	0	0	0	20.0	S-Learner	0	0	0	0	20.0	40.0	0	0	0	0	0	0	
X-Learner	0	0	0	0	20.0	20.0	X-Learner	0	0	0	0	0	0	0	0	0	0	0	0	
DR-Learner	0	0	0	0	0	40.0	DR-Learner	0	0	0	0	0	20.0	20.0	0	0	0	0	0	
Double-ML	20.0	80.0	80.0	0	20.0	20.0	Double-ML	40.0	60.0	80.0	0	20.0	20.0	0	0	0	0	0	0	
Causal Forest	20.0	40.0	60.0	20.0	20.0	20.0	Causal Forest	0	60.0	60.0	0	20.0	40.0	0	0	0	0	0	0	
<i>Direct-Survival Methods</i>																				
Causal Survival Forest	0	60.0	80.0	60.0	80.0	80.0	Causal Survival Forest	40.0	60.0	80.0	40.0	80.0	80.0	0	0	0	0	0	0	
SurvITE	40.0	60.0	60.0	20.0	60.0	80.0	SurvITE	20.0	40.0	40.0	60.0	80.0	80.0	0	0	0	0	0	0	
<i>Survival Meta-Learners</i>																				
T-Learner-Survival	0	0	40.0	0	20.0	40.0	T-Learner-Survival	0	20.0	40.0	0	0	0	20.0	0	0	0	0	0	
S-Learner-Survival	20.0	20.0	100.0	0	20.0	60.0	S-Learner-Survival	0	40.0	100.0	0	40.0	100.0	0	0	0	0	0	0	
Matching-Survival	0	40.0	80.0	0	40.0	100.0	Matching-Survival	0	20.0	100.0	0	40.0	100.0	0	0	0	0	0	0	
OBS-NoPos: positivity violation										OBS-CPS-InfC: CPS with with InfC										
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias				CATE RMSE					
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5				
<i>Outcome Imputation Methods</i>																				
T-Learner	0	0	0	0	20.0	20.0	T-Learner	0	0	0	0	20.0	20.0	0	0	0	0	0	0	
S-Learner	0	0	20.0	0	0	40.0	S-Learner	0	0	0	0	0	20.0	20.0	0	0	0	0	0	
X-Learner	0	0	0	0	0	20.0	X-Learner	0	0	0	0	0	20.0	40.0	0	0	0	0	0	
DR-Learner	0	0	0	0	20.0	40.0	DR-Learner	0	0	0	0	0	20.0	40.0	0	0	0	0	0	
Double-ML	40.0	80.0	80.0	0	20.0	40.0	Double-ML	20.0	40.0	100.0	0	0	20.0	40.0	0	0	0	0	0	
Causal Forest	0	20.0	40.0	0	40.0	40.0	Causal Forest	0	60.0	80.0	0	20.0	40.0	0	0	0	0	0	0	
<i>Direct-Survival Methods</i>																				
Causal Survival Forest	20.0	60.0	80.0	60.0	100.0	100.0	Causal Survival Forest	40.0	60.0	80.0	40.0	60.0	80.0	0	0	0	0	0	0	
SurvITE	40.0	60.0	80.0	20.0	40.0	80.0	SurvITE	0	0	0	20.0	20.0	40.0	0	0	0	0	0	0	
<i>Survival Meta-Learners</i>																				
T-Learner-Survival	0	0	20.0	0	20.0	20.0	T-Learner-Survival	0	20.0	40.0	20.0	40.0	40.0	0	0	0	0	0	0	
S-Learner-Survival	0	60.0	100.0	0	20.0	60.0	S-Learner-Survival	40.0	60.0	100.0	20.0	40.0	80.0	0	0	0	0	0	0	
Matching-Survival	0	20.0	80.0	20.0	20.0	40.0	Matching-Survival	0	60.0	100.0	0	60.0	80.0	0	0	0	0	0	0	
OBS-UConf-InfC: unmeasured Conf + InfC										OBS-NoPos-InfC: NoPos + InfC										
Method Family	CATE RMSE			ATE Bias			Method Family	CATE RMSE			ATE Bias				CATE RMSE					
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5		Top-1	Top-3	Top-5	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5				
<i>Outcome Imputation Methods</i>																				
T-Learner	0	0	0	0	0	0	T-Learner	0	0	0	0	20.0	40.0	0	0	20.0	40.0	0	0	
S-Learner	0	0	20.0	20.0	20.0	20.0	S-Learner	0	0	20.0	0	0	20.0	0	0	0	0	0	0	
X-Learner	0	0	0	0	0	0	X-Learner	0	0	0	0	0	0	0	0	0	0	0	0	
DR-Learner	0	0	0	0	20.0	40.0	DR-Learner	0	0	0	0	0	20.0	40.0	0	0	20.0	40.0	0	
Double-ML	20.0	40.0	80.0	0	0	20.0	Double-ML	20.0	60.0	100.0	0	0	20.0	60.0	0	0	20.0	60.0	0	
Causal Forest	0	40.0	40.0	0	20.0	40.0	Causal Forest	0	20.0	20.0	0	40.0	40.0	0	0	40.0	40.0	0	0	
<i>Direct-Survival Methods</i>																				
Causal Survival Forest	80.0	100.0	100.0	60.0	100.0	100.0	Causal Survival Forest	40.0	60.0	80.0	40.0	60.0	100.0	0	0	60.0	60.0	100.0	0	
SurvITE	0	20.0	20.0	0	20.0	40.0	SurvITE	20.0	20.0	40.0	0	0	0	0	0	0	0	0	0	0
<i>Survival Meta-Learners</i>																				
T-Learner-Survival	0	0	40.0	20.0	40.0	80.0	T-Learner-Survival	0	20.0	60.0	60.0	60.0	60.0	0	0	60.0	60.0	60.0	0	
S-Learner-Survival	0	60.0	100.0	0	20.0	60.0	S-Learner-Survival	20.0	60.0	80.0	0	40.0	60.0	0	0	40.0	60.0	60.0	0	
Matching-Survival	0	40.0	100.0	0	60.0	60.0	Matching-Survival	0	60.0	100.0	0	40.0	60.0	0	0	40.0	60.0	80.0	0	

2052
2053

F.4 FIGURE RESULTS - CATE RMSE

2054
2055
2056
2057
2058

This section presents the complete CATE RMSE results for each family of causal inference methods across various survival analysis scenarios. For each scenario, we display performance under 8 distinct causal configurations, each varying in terms of treatment assignment (RCT vs. observational), ignorability, positivity, and censoring assumptions. These results highlight the robustness and sensitivity of different methods under varying degrees of assumption violations.

2059
2060
2061
2062
2063

For each survival scenario and causal configuration, we selected the best hyperparameter setting and base model configuration for each causal method family based on validation set performance. The RMSE values shown in the figures reflect the performance of these selected models on the test set. The box plots are from the 10 independent experimental repeats to account for random seed variability.

2064
2065
20662067
2068
2069
2070
2071

(a) RCT: ✓(50%), Ignorability: ✓, Positivity: ✓, Ign-Censoring: ✓

2072
2073
2074
2075
2076

(b) RCT: ✓(5%), Ignorability: ✓, Positivity: ✓, Ign-Censoring: ✓

2077
2078
2079

(c) RCT: ✗, Ignorability: ✓, Positivity: ✓, Ignorable Censoring: ✓

2080
2081
2082
2083

(d) RCT: ✗, Ignorability: ✗, Positivity: ✓, Ignorable Censoring: ✓

2084
2085
2086
2087

(e) RCT: ✗, Ignorability: ✓, Positivity: ✗, Ignorable Censoring: ✓

2088
2089
2090
2091

(f) RCT: ✗, Ignorability: ✓, Positivity: ✓, Ignorable Censoring: ✗

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Figure 8: CATE RMSE across different experiments in Scenario A.

Figure 9: CATE RMSE across different experiments in Scenario B.

Figure 10: CATE RMSE across different experiments in Scenario C.

Figure 11: CATE RMSE across different experiments in Scenario D.

Figure 12: CATE RMSE across different experiments in Scenario E.

2214 F.5 FIGURE RESULTS - ATE BIAS
2215

2216 This section presents the ATE bias results for each family of causal inference methods across various
2217 survival scenarios. As with the CATE RMSE results in Appendix F.4, we display performance
2218 under 8 distinct causal configurations per scenario, each varying in treatment assignment (RCT vs.
2219 observational), ignorability, positivity, and censoring assumptions.

2220 For each survival scenario and causal configuration, the model shown corresponds to the best hyper-
2221 parameter setting and base model configuration selected based on CATE RMSE performance on the
2222 validation set – ATE bias was not used for model selection for consistent results with other sections.
2223 The reported ATE bias values are computed on the test set and defined as the difference between the
2224 *predicted ATE* from the test population and the *true ATE* in the full population.

2225 Each box plot represents results from 10 independent experimental repeats to account for random
2226 seed variability. For meta-learners and double machine learning models, which by design can
2227 provide 95% confidence intervals for ATE estimates, we also include these intervals in the plots –
2228 adjusted accordingly to center around the ATE bias. These confidence intervals are obtained via 100
2229 bootstrap samples and are notably wider than the variability observed across the 10 experimental
2230 repeats. The zero bias line is shown as a dashed reference line.

2254 Figure 13: ATE Bias across different experiments in Scenario A.
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Figure 14: ATE Bias across different experiments in Scenario B.

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

Figure 16: ATE Bias across different experiments in Scenario D.

Figure 17: ATE Bias across different experiments in Scenario E.

2376
2377

F.6 EVALUATION ON AUXILIARY IMPUTATION AND BASE LEARNERS

2378
2379

In this section, we report the performance of auxiliary imputation and base regression or survival learners on the test sets.

2380

2381

F.6.1 IMPUTATION EVALUATION

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

F.6.2 BASE REGRESSION LEARNER EVALUATION

2392

2393

2394

2395

2396

2397

2398

2399

See Table 20, 21, 22, 23 for MAE of prediction by the base regression learners for S-, T-, X-, DR-learners. The MAE is calculated by comparing a base learner’s predicted event times and imputed event times by the imputation method (the latter is used as the “ground truth” for the base regression learners). Since there are three imputation methods used, we first take the average of MAE across three different imputation methods within each random split, then report the mean and standard deviation of the average MAE across 10 experimental repeats with different random splits.

See Table 24 for the AUC on the evaluation of the predicted propensity score of DR-learners.

2400

2401

F.6.3 BASE SURVIVAL LEARNER EVALUATION

2402

2403

2404

See Table 25, 26, 27 for time-dependent concordance index on different base survival learners by the base survival learners for S-, T-, matching-learners. We report the mean and standard deviation across 10 experimental repeats with different random splits.

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439

Table 19: Evaluation on imputation methods across different survival scenarios and causal configurations. MAE between the imputed and true event times on testing set is reported as mean \pm std. over 10 experimental repeats. “Total Win” row counts the number of survival configurations \times random split combinations ($8 \times 10 = 80$) in which each method achieved the lowest MAE, and is calculated within each scenario. The same rule applies to all the tables below in Appendix F.6.

Survival Scenario	Causal Configuration	Imputation Method		
		Pseudo-obs	Margin	IPCW-T
A	RCT-50	0.437\pm0.021	0.446 \pm 0.025	0.470 \pm 0.027
	RCT-5	0.378\pm0.027	0.387 \pm 0.029	0.405 \pm 0.032
	OBS-CPS	0.448\pm0.014	0.459 \pm 0.014	0.481 \pm 0.015
	OBS-UConf	0.423\pm0.026	0.520 \pm 0.028	0.455 \pm 0.03
	OBS-NoPos	0.411\pm0.023	0.420 \pm 0.023	0.442 \pm 0.025
	OBS-CPS-InfC	0.390 \pm 0.020	0.374\pm0.014	0.388 \pm 0.014
	OBS-UConf-InfC	0.369 \pm 0.029	0.482 \pm 0.027	0.362\pm0.028
	OBS-NoPos-InfC	0.347 \pm 0.023	0.336\pm0.024	0.349 \pm 0.026
	Total Win	51	21	8
B	RCT-50	0.061 \pm 0.005	0.05 \pm 0.003	0.048\pm0.004
	RCT-5	0.027 \pm 0.003	0.022 \pm 0.002	0.021\pm0.003
	OBS-CPS	0.052 \pm 0.005	0.042 \pm 0.004	0.040\pm0.003
	OBS-UConf	0.058 \pm 0.004	0.152 \pm 0.007	0.046\pm0.004
	OBS-NoPos	0.068 \pm 0.008	0.057 \pm 0.005	0.056\pm0.005
	OBS-CPS-InfC	0.039 \pm 0.005	0.037 \pm 0.005	0.036\pm0.005
	OBS-UConf-InfC	0.040 \pm 0.004	0.140 \pm 0.005	0.038\pm0.004
	OBS-NoPos-InfC	0.048 \pm 0.007	0.046 \pm 0.008	0.045\pm0.008
	Total Win	0	3	77
C	RCT-50	0.837\pm0.008	0.838 \pm 0.008	0.841 \pm 0.007
	RCT-5	0.803 \pm 0.013	0.804 \pm 0.013	0.793\pm0.009
	OBS-CPS	0.829 \pm 0.014	0.830 \pm 0.014	0.828\pm0.014
	OBS-UConf	0.835\pm0.026	2.701 \pm 0.033	0.837 \pm 0.027
	OBS-NoPos	0.845\pm0.014	0.845\pm0.015	0.855 \pm 0.012
	OBS-CPS-InfC	2.786 \pm 0.079	2.090\pm0.046	2.858 \pm 0.055
	OBS-UConf-InfC	2.753\pm0.074	2.443 \pm 0.023	2.852 \pm 0.058
	OBS-NoPos-InfC	2.904 \pm 0.061	2.197\pm0.045	3.006 \pm 0.034
	Total Win	23	35	22
D	RCT-50	3.303 \pm 0.333	2.241\pm0.065	2.624 \pm 0.054
	RCT-5	2.897 \pm 0.257	1.845\pm0.059	2.192 \pm 0.059
	OBS-CPS	3.191 \pm 0.449	2.109\pm0.062	2.421 \pm 0.068
	OBS-UConf	3.463 \pm 0.706	2.361\pm0.198	2.610 \pm 0.073
	OBS-NoPos	3.536 \pm 0.435	2.404\pm0.074	2.853 \pm 0.072
	OBS-CPS-InfC	1.395 \pm 0.067	1.289\pm0.064	1.366 \pm 0.068
	OBS-UConf-InfC	1.524 \pm 0.069	1.737 \pm 0.054	1.511\pm0.063
	OBS-NoPos-InfC	1.689 \pm 0.074	1.595\pm0.069	1.698 \pm 0.073
	Total Win	3	68	9
E	RCT-50	2.672 \pm 0.348	1.595\pm0.019	2.033 \pm 0.022
	RCT-5	2.238 \pm 0.218	1.468\pm0.023	1.823 \pm 0.023
	OBS-CPS	2.446 \pm 0.262	1.577\pm0.022	1.992 \pm 0.032
	OBS-UConf	2.531 \pm 0.191	2.651 \pm 0.054	2.051\pm0.031
	OBS-NoPos	2.669 \pm 0.288	1.639\pm0.021	2.102 \pm 0.035
	OBS-CPS-InfC	3.324 \pm 0.136	2.483\pm0.05	3.491 \pm 0.054
	OBS-UConf-InfC	3.346 \pm 0.147	2.686\pm0.071	3.526 \pm 0.036
	OBS-NoPos-InfC	3.373 \pm 0.101	2.541\pm0.038	3.648 \pm 0.072
	Total Win	0	70	10

2480
 2481
 2482
 2483

2484
2485
2486
2487
2488
2489
2490

2491
2492

Table 20: S-Learner MAE

Survival Scenario	Causal Configuration	Base Regression Model		
		Lasso Reg.	Random Forest	XGBoost
A	RCT-50	0.661±0.012	0.655±0.014	0.671±0.013
	RCT-5	0.645±0.011	0.649±0.012	0.667±0.014
	OBS-CPS	0.653±0.011	0.646±0.010	0.662±0.012
	OBS-UConf	0.604±0.009	0.608±0.009	0.620±0.007
	OBS-NoPos	0.657±0.010	0.654±0.011	0.671±0.013
	OBS-CPS-InfC	0.727±0.018	0.730±0.021	0.752±0.023
	OBS-UConf-InfC	0.675±0.019	0.693±0.023	0.713±0.023
	OBS-NoPos-InfC	0.724±0.014	0.732±0.018	0.755±0.02
Total Win		44	36	0
B	RCT-50	0.33±0.008	0.315±0.011	0.334±0.015
	RCT-5	0.278±0.006	0.277±0.006	0.292±0.008
	OBS-CPS	0.315±0.011	0.307±0.012	0.324±0.019
	OBS-UConf	0.354±0.007	0.341±0.008	0.359±0.011
	OBS-NoPos	0.345±0.009	0.323±0.011	0.341±0.011
	OBS-CPS-InfC	0.301±0.007	0.294±0.006	0.309±0.008
	OBS-UConf-InfC	0.34±0.004	0.328±0.005	0.347±0.006
	OBS-NoPos-InfC	0.337±0.005	0.319±0.006	0.337±0.007
Total Win		3	77	0
C	RCT-50	1.430±0.022	1.593±0.025	1.738±0.024
	RCT-5	1.403±0.019	1.532±0.018	1.687±0.027
	OBS-CPS	1.409±0.021	1.555±0.025	1.706±0.028
	OBS-UConf	1.419±0.023	1.563±0.026	1.721±0.020
	OBS-NoPos	1.453±0.019	1.612±0.024	1.755±0.022
	OBS-CPS-InfC	0.931±0.027	1.011±0.03	1.148±0.045
	OBS-UConf-InfC	0.895±0.033	0.966±0.04	1.096±0.059
	OBS-NoPos-InfC	0.916±0.057	1.003±0.067	1.123±0.086
Total Win		80	0	0
D	RCT-50	0.941±0.18	1.002±0.202	1.082±0.206
	RCT-5	1.016±0.121	1.095±0.123	1.210±0.248
	OBS-CPS	1.031±0.258	1.082±0.264	1.188±0.345
	OBS-UConf	0.985±0.34	1.015±0.300	1.073±0.383
	OBS-NoPos	0.967±0.238	1.03±0.249	1.107±0.295
	OBS-CPS-InfC	1.146±0.030	1.148±0.034	1.209±0.044
	OBS-UConf-InfC	1.179±0.024	1.172±0.031	1.234±0.032
	OBS-NoPos-InfC	1.169±0.026	1.169±0.026	1.230±0.028
Total Win		48	29	3
E	RCT-50	1.75±0.186	1.906±0.207	2.124±0.247
	RCT-5	1.604±0.125	1.731±0.133	1.901±0.17
	OBS-CPS	1.651±0.161	1.799±0.201	1.990±0.243
	OBS-UConf	1.630±0.127	1.779±0.159	1.974±0.212
	OBS-NoPos	1.698±0.139	1.856±0.162	2.059±0.202
	OBS-CPS-InfC	0.917±0.089	1.012±0.113	1.140±0.141
	OBS-UConf-InfC	0.968±0.130	1.074±0.164	1.222±0.237
	OBS-NoPos-InfC	0.928±0.060	1.012±0.063	1.130±0.071
Total Win		80	0	0

2531
2532
2533
2534
2535
2536
2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

Table 21: T-Learner MAE

Survival Scenario Configuration	Base Regression Model (Treated)			Base Regression Model (Control)			
	Lasso Reg.	Random Forest	XGBoost	Lasso Reg.	Random Forest	XGBoost	
A	RCT-50	0.669±0.012	0.652±0.013	0.680±0.015	0.652±0.019	0.657±0.019	0.685±0.019
	RCT-5	0.656±0.044	0.641±0.049	0.677±0.050	0.644±0.011	0.650±0.012	0.668±0.014
	OBS-CPS	0.711±0.012	0.697±0.012	0.727±0.012	0.588±0.014	0.595±0.014	0.621±0.018
	OBS-UConf	0.640±0.009	0.641±0.007	0.668±0.005	0.558±0.012	0.566±0.013	0.593±0.015
	OBS-NoPos	0.568±0.014	0.561±0.013	0.587±0.016	0.733±0.015	0.747±0.016	0.776±0.016
	OBS-CPS-InfC	0.799±0.020	0.797±0.022	0.838±0.023	0.646±0.023	0.664±0.025	0.699±0.029
	OBS-UConf-InfC	0.723±0.023	0.740±0.031	0.778±0.030	0.614±0.019	0.633±0.023	0.668±0.025
	OBS-NoPos-InfC	0.608±0.018	0.609±0.016	0.642±0.020	0.824±0.021	0.855±0.021	0.895±0.029
	Total Win	28	52	0	77	3	0
B	RCT-50	0.375±0.012	0.350±0.014	0.374±0.016	0.279±0.007	0.281±0.008	0.303±0.006
	RCT-5	0.393±0.051	0.383±0.047	0.404±0.043	0.271±0.005	0.273±0.005	0.287±0.006
	OBS-CPS	0.326±0.014	0.302±0.014	0.322±0.016	0.305±0.011	0.313±0.012	0.338±0.015
	OBS-UConf	0.375±0.008	0.348±0.009	0.371±0.011	0.327±0.008	0.334±0.007	0.363±0.012
	OBS-NoPos	0.425±0.014	0.411±0.015	0.442±0.017	0.231±0.007	0.235±0.007	0.253±0.008
	OBS-CPS-InfC	0.311±0.007	0.292±0.006	0.311±0.008	0.291±0.009	0.297±0.010	0.322±0.011
	OBS-UConf-InfC	0.365±0.004	0.344±0.007	0.370±0.009	0.310±0.007	0.313±0.007	0.337±0.008
	OBS-NoPos-InfC	0.415±0.009	0.406±0.009	0.438±0.011	0.228±0.005	0.233±0.006	0.249±0.006
	Total Win	4	76	0	68	12	0
C	RCT-50	1.534±0.037	1.653±0.041	1.839±0.046	1.387±0.029	1.542±0.020	1.747±0.027
	RCT-5	1.643±0.091	1.751±0.085	1.935±0.074	1.393±0.020	1.527±0.02	1.688±0.021
	OBS-CPS	1.484±0.026	1.599±0.031	1.797±0.036	1.379±0.030	1.529±0.029	1.726±0.033
	OBS-UConf	1.493±0.037	1.617±0.034	1.809±0.028	1.363±0.019	1.528±0.021	1.740±0.027
	OBS-NoPos	1.568±0.040	1.665±0.038	1.860±0.037	1.420±0.037	1.565±0.027	1.763±0.035
	OBS-CPS-InfC	0.909±0.047	1.002±0.052	1.144±0.050	0.953±0.042	1.040±0.048	1.198±0.060
	OBS-UConf-InfC	0.876±0.039	0.951±0.052	1.088±0.070	0.916±0.044	1.004±0.056	1.166±0.079
	OBS-NoPos-InfC	0.902±0.057	1.009±0.074	1.149±0.088	0.928±0.076	1.016±0.087	1.152±0.088
	Total Win	79	1	0	80	0	0
D	RCT-50	0.302±0.083	0.316±0.093	0.339±0.11	1.546±0.304	1.691±0.484	1.767±0.429
	RCT-5	0.284±0.044	0.296±0.049	0.312±0.052	1.051±0.127	1.118±0.129	1.285±0.304
	OBS-CPS	0.347±0.084	0.366±0.087	0.384±0.094	1.651±0.416	1.758±0.443	1.924±0.594
	OBS-UConf	0.328±0.134	0.343±0.130	0.362±0.138	1.691±0.564	1.797±0.529	1.809±0.705
	OBS-NoPos	0.334±0.105	0.342±0.117	0.366±0.129	1.571±0.382	1.659±0.392	1.939±0.612
	OBS-CPS-InfC	1.138±0.029	1.097±0.027	1.171±0.028	1.147±0.041	1.201±0.051	1.300±0.056
	OBS-UConf-InfC	1.206±0.029	1.156±0.043	1.240±0.044	1.146±0.023	1.197±0.028	1.298±0.029
	OBS-NoPos-InfC	1.216±0.030	1.198±0.035	1.297±0.046	1.100±0.030	1.143±0.037	1.222±0.035
	Total Win	45	35	0	66	10	4
E	RCT-50	1.784±0.230	1.955±0.255	2.22±0.310	1.720±0.154	1.899±0.184	2.108±0.198
	RCT-5	1.607±0.244	1.859±0.436	1.969±0.335	1.605±0.121	1.733±0.131	1.894±0.147
	OBS-CPS	1.670±0.194	1.852±0.261	2.092±0.312	1.637±0.141	1.785±0.158	1.993±0.200
	OBS-UConf	1.650±0.145	1.809±0.167	2.053±0.239	1.616±0.130	1.763±0.144	1.982±0.201
	OBS-NoPos	1.740±0.161	1.907±0.200	2.198±0.338	1.663±0.140	1.804±0.148	2.027±0.167
	OBS-CPS-InfC	0.911±0.111	1.007±0.123	1.146±0.140	0.925±0.074	1.015±0.096	1.158±0.104
	OBS-UConf-InfC	0.953±0.107	1.049±0.118	1.221±0.146	0.987±0.159	1.103±0.222	1.271±0.228
	OBS-NoPos-InfC	0.949±0.085	1.043±0.095	1.221±0.112	0.908±0.046	1.000±0.044	1.136±0.064
	Total Win	80	0	0	80	0	0

2586

2587

2588

2589

2590

2591

2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599

Table 22: X-Learner MAE

Survival Scenario	Causal Configuration	Base Regression Model (Treated)			Base Regression Model (Control)		
		Lasso Reg.	Random Forest	XGBoost	Lasso Reg.	Random Forest	XGBoost
A	RCT-50	0.620±0.011	0.622±0.013	0.631±0.013	0.624±0.019	0.624±0.019	0.631±0.018
	RCT-5	0.613±0.048	0.624±0.056	0.634±0.050	0.618±0.012	0.617±0.012	0.623±0.010
	OBS-CPS	0.664±0.011	0.667±0.010	0.675±0.012	0.561±0.013	0.562±0.014	0.568±0.013
	OBS-UConf	0.608±0.008	0.610±0.008	0.616±0.008	0.530±0.012	0.531±0.012	0.538±0.012
	OBS-NoPos	0.532±0.013	0.533±0.013	0.539±0.015	0.711±0.014	0.712±0.014	0.718±0.015
	OBS-CPS-InfC	0.747±0.018	0.751±0.018	0.763±0.019	0.616±0.021	0.616±0.022	0.623±0.022
	OBS-UConf-InfC	0.689±0.024	0.691±0.023	0.698±0.024	0.583±0.019	0.585±0.020	0.592±0.019
	OBS-NoPos-InfC	0.570±0.016	0.570±0.017	0.578±0.018	0.800±0.021	0.802±0.021	0.809±0.020
	Total Win	64	16	0	47	33	0
B	RCT-50	0.339±0.012	0.328±0.012	0.333±0.012	0.265±0.007	0.261±0.007	0.264±0.007
	RCT-5	0.365±0.045	0.364±0.051	0.368±0.046	0.256±0.005	0.253±0.004	0.255±0.004
	OBS-CPS	0.296±0.014	0.283±0.013	0.287±0.013	0.290±0.010	0.290±0.012	0.291±0.011
	OBS-UConf	0.339±0.009	0.327±0.008	0.331±0.008	0.312±0.008	0.309±0.006	0.311±0.008
	OBS-NoPos	0.396±0.013	0.387±0.014	0.393±0.013	0.221±0.006	0.217±0.007	0.219±0.007
	OBS-CPS-InfC	0.283±0.006	0.272±0.007	0.275±0.006	0.277±0.008	0.275±0.008	0.278±0.009
	OBS-UConf-InfC	0.332±0.005	0.321±0.006	0.326±0.006	0.295±0.008	0.291±0.007	0.293±0.007
	OBS-NoPos-InfC	0.388±0.008	0.379±0.008	0.386±0.008	0.219±0.005	0.215±0.005	0.216±0.005
	Total Win	3	73	4	5	70	5
C	RCT-50	1.542±0.041	1.547±0.032	1.533±0.033	1.417±0.025	1.422±0.023	1.403±0.026
	RCT-5	1.651±0.092	1.662±0.091	1.640±0.087	1.411±0.018	1.414±0.019	1.400±0.019
	OBS-CPS	1.492±0.031	1.492±0.031	1.481±0.026	1.409±0.032	1.413±0.030	1.394±0.031
	OBS-UConf	1.509±0.038	1.510±0.039	1.497±0.042	1.396±0.016	1.402±0.014	1.385±0.016
	OBS-NoPos	1.562±0.042	1.563±0.038	1.561±0.038	1.445±0.033	1.449±0.035	1.433±0.037
	OBS-CPS-InfC	0.909±0.047	0.915±0.048	0.909±0.046	0.952±0.043	0.959±0.041	0.954±0.043
	OBS-UConf-InfC	0.876±0.039	0.879±0.042	0.875±0.039	0.916±0.044	0.921±0.045	0.919±0.047
	OBS-NoPos-InfC	0.902±0.058	0.909±0.061	0.904±0.060	0.928±0.076	0.935±0.081	0.928±0.074
	Total Win	27	11	42	17	7	56
D	RCT-50	0.306±0.088	0.300±0.089	0.292±0.083	1.633±0.342	1.613±0.503	1.506±0.302
	RCT-5	0.283±0.046	0.280±0.042	0.277±0.047	1.124±0.125	1.055±0.128	1.033±0.150
	OBS-CPS	0.355±0.085	0.343±0.080	0.334±0.081	1.819±0.545	1.681±0.456	1.613±0.436
	OBS-UConf	0.336±0.137	0.324±0.126	0.322±0.123	1.772±0.571	1.737±0.498	1.613±0.557
	OBS-NoPos	0.336±0.110	0.322±0.106	0.319±0.104	1.688±0.418	1.607±0.383	1.540±0.388
	OBS-CPS-InfC	1.067±0.026	1.043±0.025	1.049±0.026	1.133±0.041	1.137±0.043	1.136±0.043
	OBS-UConf-InfC	1.116±0.032	1.098±0.033	1.103±0.027	1.135±0.021	1.138±0.021	1.136±0.021
	OBS-NoPos-InfC	1.160±0.029	1.137±0.029	1.140±0.029	1.085±0.032	1.088±0.032	1.087±0.031
	Total Win	4	36	40	17	21	42
E	RCT-50	1.771±0.226	1.798±0.237	1.772±0.230	1.734±0.154	1.748±0.156	1.721±0.150
	RCT-5	1.607±0.240	1.731±0.366	1.608±0.245	1.602±0.120	1.606±0.121	1.597±0.118
	OBS-CPS	1.668±0.199	1.722±0.244	1.668±0.197	1.638±0.138	1.652±0.139	1.633±0.141
	OBS-UConf	1.661±0.157	1.659±0.151	1.646±0.152	1.613±0.130	1.632±0.132	1.635±0.187
	OBS-NoPos	1.726±0.162	1.753±0.176	1.773±0.226	1.670±0.137	1.671±0.135	1.656±0.136
	OBS-CPS-InfC	0.911±0.111	0.919±0.108	0.913±0.107	0.925±0.074	0.930±0.081	0.924±0.075
	OBS-UConf-InfC	0.953±0.107	0.960±0.114	0.953±0.106	0.987±0.159	1.008±0.209	0.986±0.151
	OBS-NoPos-InfC	0.949±0.085	0.947±0.077	0.951±0.083	0.908±0.046	0.923±0.043	0.910±0.047
	Total Win	37	14	29	26	11	43

2640
 2641
 2642
 2643
 2644
 2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

Table 23: DR-Learner MAE

Survival Scenario	Causal Configuration	Base Regression Model		
		Lasso Reg.	Random Forest	XGBoost
A	RCT-50	0.661±0.012	0.658±0.013	0.685±0.013
	RCT-5	0.645±0.011	0.652±0.013	0.680±0.014
	OBS-CPS	0.653±0.011	0.649±0.012	0.676±0.012
	OBS-UConf	0.604±0.009	0.611±0.009	0.635±0.010
	OBS-NoPos	0.657±0.010	0.656±0.011	0.684±0.014
	OBS-CPS-InfC	0.727±0.018	0.735±0.023	0.770±0.025
	OBS-UConf-InfC	0.675±0.019	0.696±0.022	0.730±0.023
	OBS-NoPos-InfC	0.724±0.014	0.735±0.015	0.770±0.020
	Total Win	54	26	0
B	RCT-50	0.330±0.008	0.318±0.011	0.341±0.015
	RCT-5	0.278±0.006	0.278±0.006	0.300±0.007
	OBS-CPS	0.316±0.011	0.308±0.013	0.332±0.017
	OBS-UConf	0.354±0.007	0.344±0.008	0.370±0.010
	OBS-NoPos	0.345±0.009	0.326±0.011	0.349±0.012
	OBS-CPS-InfC	0.301±0.007	0.295±0.006	0.316±0.008
	OBS-UConf-InfC	0.340±0.004	0.331±0.004	0.355±0.006
	OBS-NoPos-InfC	0.337±0.005	0.321±0.005	0.345±0.007
	Total Win	6	74	0
C	RCT-50	1.430±0.022	1.591±0.021	1.791±0.024
	RCT-5	1.404±0.019	1.540±0.018	1.742±0.021
	OBS-CPS	1.410±0.021	1.564±0.026	1.763±0.021
	OBS-UConf	1.420±0.023	1.572±0.024	1.777±0.019
	OBS-NoPos	1.454±0.019	1.614±0.020	1.805±0.015
	OBS-CPS-InfC	0.931±0.027	1.021±0.030	1.173±0.038
	OBS-UConf-InfC	0.895±0.033	0.977±0.044	1.133±0.054
	OBS-NoPos-InfC	0.916±0.057	1.009±0.065	1.172±0.083
	Total Win	80	0	0
D	RCT-50	0.943±0.180	0.986±0.187	1.096±0.253
	RCT-5	1.020±0.120	1.095±0.118	1.177±0.176
	OBS-CPS	1.031±0.256	1.103±0.259	1.158±0.339
	OBS-UConf	0.986±0.340	1.024±0.345	1.119±0.357
	OBS-NoPos	0.969±0.238	1.038±0.292	1.124±0.243
	OBS-CPS-InfC	1.146±0.030	1.154±0.037	1.238±0.048
	OBS-UConf-InfC	1.179±0.024	1.176±0.031	1.262±0.034
	OBS-NoPos-InfC	1.169±0.026	1.173±0.026	1.260±0.028
	Total Win	65	15	0
E	RCT-50	1.753±0.185	1.917±0.206	2.161±0.243
	RCT-5	1.605±0.127	1.742±0.144	1.949±0.161
	OBS-CPS	1.652±0.163	1.811±0.199	2.033±0.241
	OBS-UConf	1.632±0.127	1.785±0.166	2.041±0.255
	OBS-NoPos	1.701±0.139	1.859±0.162	2.112±0.202
	OBS-CPS-InfC	0.917±0.089	1.016±0.104	1.164±0.114
	OBS-UConf-InfC	0.969±0.130	1.080±0.158	1.276±0.240
	OBS-NoPos-InfC	0.928±0.060	1.022±0.068	1.182±0.096
	Total Win	80	0	0

Table 24: DR-Learner propensity score AUC. Note that we use the `econml` package in Python, which by default uses logistic regression for predicting the treatment assignment. Thus, we report the AUC of the treatment prediction by the logistic regression.

Causal Configuration	Logistic Regression
RCT-50	0.501±0.005
RCT-5	0.497±0.011
OBS-CPS	0.661±0.007
OBS-UConf	0.548±0.007
OBS-NoPos	0.820±0.005
OBS-CPS-InfC	0.661±0.007
OBS-UConf-InfC	0.548±0.007
OBS-NoPos-InfC	0.820±0.005

Table 25: Survival S-Learner concordance index

Survival Scenario	Causal Configuration	Base Regression Model		
		RSF	DeepSurv	DeepHit
A	RCT-50	0.568±0.008	0.595±0.003	0.557±0.007
	RCT-5	0.551±0.008	0.580±0.004	0.558±0.006
	OBS-CPS	0.565±0.004	0.596±0.004	0.567±0.008
	OBS-UConf	0.556±0.005	0.587±0.006	0.558±0.010
	OBS-NoPos	0.565±0.009	0.594±0.004	0.553±0.006
	OBS-CPS-InfC	0.563±0.005	0.597±0.004	0.546±0.010
	OBS-UConf-InfC	0.557±0.006	0.585±0.006	0.538±0.008
	OBS-NoPos-InfC	0.562±0.006	0.591±0.003	0.539±0.008
Total Win		0	80	0
B	RCT-50	0.640±0.003	0.645±0.004	0.645±0.004
	RCT-5	0.616±0.003	0.622±0.005	0.621±0.004
	OBS-CPS	0.631±0.005	0.632±0.003	0.631±0.003
	OBS-UConf	0.632±0.005	0.634±0.005	0.634±0.004
	OBS-NoPos	0.650±0.003	0.656±0.002	0.656±0.002
	OBS-CPS-InfC	0.630±0.004	0.632±0.004	0.629±0.003
	OBS-UConf-InfC	0.630±0.004	0.633±0.005	0.631±0.005
	OBS-NoPos-InfC	0.649±0.003	0.655±0.003	0.654±0.003
Total Win		10	50	20
C	RCT-50	0.545±0.009	0.576±0.004	0.570±0.005
	RCT-5	0.522±0.007	0.554±0.007	0.540±0.014
	OBS-CPS	0.538±0.006	0.573±0.005	0.562±0.004
	OBS-UConf	0.536±0.007	0.566±0.007	0.561±0.008
	OBS-NoPos	0.550±0.007	0.583±0.005	0.575±0.007
	OBS-CPS-InfC	0.498±0.015	0.558±0.026	0.546±0.017
	OBS-UConf-InfC	0.502±0.023	0.560±0.029	0.541±0.020
	OBS-NoPos-InfC	0.511±0.029	0.586±0.019	0.561±0.023
Total Win		0	70	10
D	RCT-50	0.633±0.027	0.676±0.021	0.696±0.013
	RCT-5	0.569±0.019	0.626±0.017	0.628±0.011
	OBS-CPS	0.610±0.029	0.668±0.019	0.683±0.011
	OBS-UConf	0.634±0.027	0.702±0.015	0.696±0.018
	OBS-NoPos	0.615±0.032	0.678±0.016	0.683±0.015
	OBS-CPS-InfC	0.626±0.011	0.634±0.005	0.629±0.007
	OBS-UConf-InfC	0.639±0.005	0.646±0.005	0.643±0.007
	OBS-NoPos-InfC	0.635±0.006	0.644±0.006	0.640±0.005
Total Win		4	40	36
E	RCT-50	0.544±0.010	0.591±0.011	0.578±0.011
	RCT-5	0.513±0.009	0.554±0.015	0.547±0.012
	OBS-CPS	0.538±0.013	0.583±0.010	0.566±0.018
	OBS-UConf	0.533±0.016	0.574±0.018	0.567±0.017
	OBS-NoPos	0.544±0.015	0.599±0.010	0.589±0.012
	OBS-CPS-InfC	0.482±0.041	0.546±0.030	0.538±0.028
	OBS-UConf-InfC	0.445±0.029	0.542±0.045	0.534±0.017
	OBS-NoPos-InfC	0.474±0.017	0.565±0.035	0.563±0.022
Total Win		0	60	20

2754

2755

2756

2757

2758

2759

2760

Table 26: Survival T-Learner concordance index

Survival Scenario	Causal Configuration	Base Regression Model (Treated)			Base Regression Model (Control)		
		RSF	DeepSurv	DeepHit	RSF	DeepSurv	DeepHit
A	RCT-50	0.579±0.009	0.612±0.006	0.581±0.015	0.546±0.010	0.578±0.007	0.549±0.014
	RCT-5	0.567±0.031	0.604±0.018	0.592±0.025	0.549±0.007	0.581±0.005	0.557±0.012
	OBS-CPS	0.569±0.008	0.603±0.009	0.582±0.011	0.546±0.006	0.577±0.007	0.548±0.009
	OBS-UConf	0.546±0.008	0.579±0.010	0.553±0.012	0.557±0.009	0.585±0.007	0.554±0.009
	OBS-NoPos	0.567±0.009	0.598±0.008	0.564±0.016	0.534±0.006	0.564±0.009	0.544±0.005
	OBS-CPS-InfC	0.569±0.006	0.602±0.009	0.559±0.018	0.546±0.007	0.578±0.006	0.541±0.017
	OBS-UConf-InfC	0.546±0.009	0.578±0.008	0.540±0.012	0.555±0.012	0.584±0.006	0.538±0.019
	OBS-NoPos-InfC	0.564±0.009	0.598±0.006	0.545±0.013	0.531±0.009	0.564±0.007	0.537±0.010
Total Win		0	75	5	0	80	0
B	RCT-50	0.651±0.004	0.656±0.004	0.654±0.005	0.610±0.005	0.618±0.005	0.616±0.005
	RCT-5	0.628±0.017	0.627±0.027	0.609±0.022	0.610±0.007	0.619±0.004	0.620±0.004
	OBS-CPS	0.630±0.006	0.637±0.005	0.634±0.005	0.605±0.006	0.612±0.006	0.607±0.007
	OBS-UConf	0.644±0.008	0.648±0.006	0.646±0.006	0.598±0.005	0.605±0.007	0.602±0.008
	OBS-NoPos	0.628±0.005	0.636±0.004	0.631±0.005	0.593±0.008	0.601±0.004	0.600±0.007
	OBS-CPS-InfC	0.628±0.005	0.633±0.005	0.632±0.003	0.603±0.006	0.611±0.008	0.610±0.007
	OBS-UConf-InfC	0.642±0.004	0.645±0.005	0.646±0.005	0.598±0.009	0.605±0.004	0.603±0.007
	OBS-NoPos-InfC	0.624±0.007	0.634±0.005	0.628±0.005	0.592±0.006	0.602±0.004	0.600±0.007
Total Win		14	44	22	7	51	22
C	RCT-50	0.532±0.015	0.565±0.013	0.557±0.015	0.512±0.008	0.541±0.011	0.524±0.010
	RCT-5	0.536±0.031	0.541±0.050	0.544±0.027	0.518±0.014	0.547±0.010	0.541±0.007
	OBS-CPS	0.536±0.008	0.568±0.009	0.555±0.011	0.516±0.007	0.540±0.011	0.523±0.009
	OBS-UConf	0.537±0.010	0.568±0.012	0.557±0.007	0.509±0.010	0.533±0.012	0.521±0.012
	OBS-NoPos	0.524±0.016	0.555±0.012	0.543±0.014	0.521±0.012	0.547±0.011	0.535±0.008
	OBS-CPS-InfC	0.487±0.041	0.550±0.032	0.542±0.038	0.497±0.018	0.537±0.021	0.522±0.033
	OBS-UConf-InfC	0.491±0.044	0.552±0.031	0.550±0.032	0.484±0.021	0.513±0.035	0.519±0.018
	OBS-NoPos-InfC	0.470±0.045	0.549±0.037	0.544±0.032	0.489±0.029	0.538±0.023	0.513±0.033
Total Win		3	57	20	0	64	16
D	RCT-50	0.646±0.038	0.683±0.084	0.727±0.024	0.565±0.025	0.614±0.018	0.623±0.025
	RCT-5	0.447±0.174	0.412±0.158	0.672±0.135	0.573±0.019	0.626±0.016	0.625±0.015
	OBS-CPS	0.584±0.052	0.646±0.038	0.672±0.022	0.543±0.023	0.609±0.032	0.620±0.024
	OBS-UConf	0.655±0.038	0.731±0.028	0.745±0.012	0.536±0.034	0.588±0.036	0.597±0.029
	OBS-NoPos	0.668±0.051	0.658±0.085	0.773±0.024	0.547±0.027	0.593±0.019	0.586±0.021
	OBS-CPS-InfC	0.632±0.010	0.639±0.005	0.637±0.006	0.556±0.010	0.575±0.010	0.566±0.010
	OBS-UConf-InfC	0.673±0.005	0.675±0.007	0.676±0.007	0.549±0.011	0.569±0.007	0.556±0.008
	OBS-NoPos-InfC	0.664±0.009	0.671±0.007	0.668±0.007	0.549±0.007	0.563±0.006	0.553±0.009
Total Win		5	25	50	2	49	29
E	RCT-50	0.539±0.020	0.589±0.024	0.575±0.017	0.514±0.020	0.547±0.019	0.537±0.014
	RCT-5	0.481±0.065	0.518±0.047	0.516±0.065	0.518±0.011	0.554±0.010	0.544±0.013
	OBS-CPS	0.533±0.021	0.574±0.022	0.562±0.020	0.508±0.018	0.544±0.015	0.535±0.014
	OBS-UConf	0.534±0.023	0.587±0.024	0.552±0.014	0.510±0.014	0.520±0.023	0.531±0.022
	OBS-NoPos	0.520±0.024	0.539±0.032	0.547±0.024	0.516±0.020	0.546±0.016	0.534±0.015
	OBS-CPS-InfC	0.485±0.047	0.551±0.042	0.520±0.034	0.454±0.038	0.515±0.045	0.508±0.042
	OBS-UConf-InfC	0.437±0.064	0.525±0.048	0.541±0.065	0.455±0.025	0.495±0.037	0.499±0.041
	OBS-NoPos-InfC	0.464±0.046	0.520±0.038	0.505±0.040	0.453±0.043	0.514±0.027	0.537±0.023
Total Win		2	53	25	5	43	32

2803

2804

2805

2806

2807

2808
 2809
 2810
 2811
 2812
 2813

2814
 2815

Table 27: Survival Matching-Learner concordance index

2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861

Survival Scenario	Causal Configuration	Base Survival Model		
		RSF	DeepSurv	DeepHit
A	RCT-50	0.568±0.008	0.595±0.003	0.557±0.007
	RCT-5	0.551±0.008	0.580±0.004	0.558±0.006
	OBS-CPS	0.556±0.005	0.596±0.004	0.567±0.008
	OBS-UConf	0.556±0.005	0.587±0.006	0.558±0.010
	OBS-NoPos	0.565±0.009	0.594±0.004	0.553±0.006
	OBS-CPS-InfC	0.563±0.005	0.597±0.004	0.546±0.010
	OBS-UConf-InfC	0.557±0.006	0.585±0.006	0.538±0.008
	OBS-NoPos-InfC	0.562±0.006	0.591±0.003	0.539±0.008
Total Win		0	80	0
B	RCT-50	0.640±0.003	0.645±0.004	0.645±0.004
	RCT-5	0.616±0.003	0.622±0.005	0.621±0.004
	OBS-CPS	0.631±0.005	0.632±0.003	0.631±0.003
	OBS-UConf	0.632±0.005	0.634±0.005	0.634±0.004
	OBS-NoPos	0.650±0.003	0.656±0.002	0.656±0.002
	OBS-CPS-InfC	0.630±0.004	0.632±0.004	0.629±0.003
	OBS-UConf-InfC	0.630±0.004	0.633±0.005	0.631±0.005
	OBS-NoPos-InfC	0.649±0.003	0.655±0.003	0.654±0.003
Total Win		9	50	21
C	RCT-50	0.545±0.009	0.576±0.004	0.570±0.005
	RCT-5	0.522±0.007	0.554±0.007	0.540±0.014
	OBS-CPS	0.538±0.006	0.573±0.005	0.562±0.004
	OBS-UConf	0.536±0.007	0.566±0.007	0.561±0.008
	OBS-NoPos	0.550±0.007	0.583±0.005	0.575±0.007
	OBS-CPS-InfC	0.498±0.015	0.558±0.026	0.546±0.017
	OBS-UConf-InfC	0.502±0.023	0.560±0.029	0.541±0.020
	OBS-NoPos-InfC	0.511±0.029	0.586±0.019	0.561±0.023
Total Win		0	70	10
D	RCT-50	0.633±0.027	0.676±0.021	0.696±0.013
	RCT-5	0.569±0.019	0.626±0.017	0.628±0.011
	OBS-CPS	0.610±0.029	0.668±0.019	0.683±0.011
	OBS-UConf	0.634±0.027	0.702±0.015	0.696±0.018
	OBS-NoPos	0.615±0.032	0.678±0.016	0.683±0.015
	OBS-CPS-InfC	0.626±0.011	0.634±0.005	0.629±0.007
	OBS-UConf-InfC	0.639±0.005	0.646±0.005	0.643±0.007
	OBS-NoPos-InfC	0.635±0.006	0.644±0.006	0.640±0.005
Total Win		4	40	36
E	RCT-50	0.544±0.010	0.591±0.011	0.578±0.011
	RCT-5	0.513±0.009	0.554±0.015	0.547±0.012
	OBS-CPS	0.538±0.013	0.583±0.010	0.566±0.018
	OBS-UConf	0.533±0.016	0.574±0.018	0.567±0.017
	OBS-NoPos	0.544±0.015	0.599±0.010	0.589±0.012
	OBS-CPS-InfC	0.482±0.041	0.546±0.030	0.538±0.028
	OBS-UConf-InfC	0.445±0.029	0.542±0.045	0.534±0.017
	OBS-NoPos-InfC	0.474±0.017	0.565±0.035	0.563±0.022
Total Win		0	60	20

2862 F.7 CONVERGENCE RESULTS
2863

2864 Figure 18 presents the convergence behavior of different causal inference methods under eight
2865 configurations of assumptions, all within Scenario C that was the main focus in Section 4.1. The x-axis
2866 shows increasing training set sizes (ranging from 50 to 10,000), while the y-axis plots the root mean
2867 squared error (RMSE) of the estimated CATE on the test set. (Note that, all models are selected
2868 based on performance on the validation set).

2869 Across all configurations, we observe general convergence trends where CATE RMSE decreases as
2870 training size increases. Among the survival methods, the T-learner Survival consistently converges
2871 the slowest, especially under small training sizes. This may be due to the model requiring sufficient
2872 uncensored samples per treatment arm to function effectively. Double-ML also tends to require more
2873 data to stabilize, particularly in the presence of low treatment rate or lack of positivity. The Causal
2874 Survival Forest shows slower convergence under settings with non-ignorable censoring or positivity
2875 violations, reflecting its convergence sensitivity to these assumptions despite its nonparametric
2876 structure. Overall, while standard meta-learners and tree-based methods show relatively stable con-
2877 vergence behavior, survival-specific adaptations appear more data-hungry and assumption-sensitive
2878 for convergence. These trends highlight the importance of choosing appropriately robust methods
2879 with respect to the dataset size in practice, especially in real-world settings where assumptions like
positivity or ignorability may be compromised.

2914 Figure 18: Convergence properties: CATE RMSE in Scenario C as number of training data increases.
2915

2916 G SEMI-SYNTHETIC DATASETS: SETUP AND ADDITIONAL RESULTS

2918 G.1 SEMI-SYNTHETIC DATASETS SETUP

2920 To complement synthetic benchmarks and real-world case studies, we construct semi-synthetic
 2921 datasets that pair real covariates with simulated treatments and survival outcomes. This strategy pre-
 2922 serves realistic covariate distributions and correlations while enabling controlled evaluation against
 2923 known ground-truth CATEs. Below, we describe the ACTG- and MIMIC-based semi-synthetic
 2924 datasets and provide detailed summary statistics. Table 28 reports overall dataset sizes, covariate
 2925 counts, and censoring/treatment rates.

2926 Table 28: Semi-synthetic dataset overview.

	Data size	No. covariates	Censoring rate	Treatment Rate
2930 ACTG semi-synthetic	2,139	23	51.19%	56.15%
2931 MIMIC- <i>i</i> semi-synthetic	25,170	36	88.49%	49.92%
2932 MIMIC- <i>ii</i> semi-synthetic	25,170	36	81.65%	49.92%
2933 MIMIC- <i>iii</i> semi-synthetic	25,170	36	74.10%	49.92%
2934 MIMIC- <i>iv</i> semi-synthetic	25,170	36	66.34%	49.92%
2935 MIMIC- <i>v</i> semi-synthetic	25,170	36	53.35%	49.92%

2937 G.1.1 ACTG SEMI-SYNTHETIC DATASET

2939 The ACTG semi-synthetic dataset is derived from the ACTG 175 HIV clinical trial (Hammer et al.,
 2940 1996), which contains 23 baseline covariates. Following the construction procedure of Chapfuwa
 2941 et al. (2021), we simulate treatment assignments and event times. This dataset captures realistic
 2942 treatment imbalance and moderate censoring ($\sim 51\%$). It serves as a smaller-scale but clinically
 2943 grounded benchmark, preserving the covariate structures observed in trial participants.

2944 More concretely, following Chapfuwa et al. (2021), we simulate a covariate-dependent logistic treat-
 2945 ment assignment, and generate potential outcomes using a Gompertz–Cox survival model combined
 2946 and an AFT-based censoring mechanism. Below is our generative scheme:

$$\begin{aligned}
 X &= \text{ACTG covariates} \\
 P(A = 1|X = x) &= \frac{1}{b} \times (a + \sigma(\eta(\text{AGE} - \mu_{\text{AGE}} + \text{CD40} - \mu_{\text{CD40}}))) \\
 U &\sim \text{Uniform}(0, 1) \\
 T_A &= \frac{1}{\alpha_A} \log \left[1 - \frac{\alpha_A \log U}{\lambda_A \exp(x^T \beta_A)} \right] \\
 \log C &\sim \text{Normal}(\mu_c, \sigma_c^2) \\
 Y &= \min(T_A, C)
 \end{aligned}$$

2956 where $\{\beta_A, \alpha_A, \lambda_A, b, a, \eta, \mu_c, \sigma_c\}$ are hyper-parameters and $\{\mu_{\text{AGE}}, \mu_{\text{CD40}}\}$ are the means for age
 2957 and CD40 respectively.

2958 G.1.2 MIMIC SEMI-SYNTHETIC DATASETS

2960 The second family of datasets is derived from MIMIC-IV ICU records (Johnson et al., 2023). We
 2961 extract 36 covariates that span laboratory test abnormalities (e.g., creatinine, glucose, hemoglobin),
 2962 demographic features (e.g., age, sex, race, marital status), and admission descriptors (e.g., admission
 2963 type, recurrent admissions, night admission). Treatments (W) are simulated as Bernoulli(0.5), and
 2964 event times are generated following the formulation of Meir et al. (2025), where baseline hazards
 2965 depend on subsets of laboratory and demographic covariates. Five variants are created by altering the
 2966 censoring distribution, resulting in censoring rates ranging from 53% to 88%. This design mimics
 2967 the range of censoring observed in longitudinal EHR studies, from moderate censoring to highly
 2968 censored survival outcomes.

2969 Tables 29 and 30 provide detailed covariate statistics and demographic distributions for the MIMIC
 datasets and Figure 20 provides an overview of correlation among the MIMIC covariates.

2970 Table 29: Summary statistics of MIMIC semi-synthetic covariates. Reported values are mean \pm
 2971 standard deviation. Physiological covariates are coded as *indicators for abnormal values* where
 2972 mean reflects prevalence of abnormality.

2973

Covariate	Mean \pm Std	Covariate	Mean \pm Std
Sodium	0.12 \pm 0.32	Admission age	61.39 \pm 17.97
Potassium	0.08 \pm 0.28	Sex:Male	0.51 \pm 0.50
Chloride	0.19 \pm 0.39	Race:White	0.70 \pm 0.46
Bicarbonate	0.24 \pm 0.43	Race:Black	0.14 \pm 0.35
Anion gap	0.09 \pm 0.29	Race:Hispanic	0.05 \pm 0.22
Creatinine	0.28 \pm 0.45	Race:Other	0.07 \pm 0.25
Urea nitrogen	0.40 \pm 0.49	Insurance:Medicare	0.42 \pm 0.49
Glucose	0.65 \pm 0.48	Insurance:Other	0.52 \pm 0.50
Calcium total	0.29 \pm 0.45	Marital status:Married	0.45 \pm 0.50
Magnesium	0.09 \pm 0.28	Marital status:Single	0.33 \pm 0.47
Phosphate	0.28 \pm 0.45	Marital status:Widowed	0.14 \pm 0.34
Hemoglobin	0.73 \pm 0.44	Direct emergency:Yes	0.11 \pm 0.31
Hematocrit	0.69 \pm 0.46	Night admission:Yes	0.54 \pm 0.50
MCV	0.20 \pm 0.40	Previous admission this month: Yes	0.08 \pm 0.27
MCH	0.26 \pm 0.44	Admissions number:2	0.16 \pm 0.37
MCHC	0.31 \pm 0.46	Admissions number:3+	0.22 \pm 0.42
Platelet count	0.29 \pm 0.45		
RDW	0.29 \pm 0.45		
White blood cells	0.40 \pm 0.49		
Red blood cells	0.76 \pm 0.43		

2994

2995

2996 **Treatment assignment.** Treatment is assigned independently as a Bernoulli random variable with
 2997 probability 0.5:

$$W \sim \text{Bernoulli}(0.5).$$

2998

2999 This ensures balanced treatment groups while maintaining independence from baseline covariates.

3000

3001

3002 **Potential outcomes.** Let $X_{1:5}$ denote the first five binary covariates corresponding to abnormal
 3003 laboratory values (*Anion gap*, *Bicarbonate*, *Calcium total*, *Chloride*, *Creatinine*), and let X_{36} denote
 3004 the standardized *Admission age*. The sum of abnormal indicators is written as

$$S = \sum_{j=1}^5 X_j.$$

3005

3006

3007 Potential survival times under control ($T(0)$) and treatment ($T(1)$) are drawn from Poisson distributions
 3008 with means linearly dependent on S and X_{36} :

$$T(0) \sim \text{Poisson}(30 + 0.75S + 0.75X_{36}),$$

$$T(1) \sim \text{Poisson}(30 + 0.75S + 0.75X_{36} - 0.45).$$

3009

3010

3011 The individual treatment effect is defined as

$$\tau(x) = \mathbb{E}[T(1) - T(0) | X = x].$$

3012

3013 We record the true CATE for each unit as $T(1) - T(0)$.

3014

3015

3016 **Observed outcome.** The realized survival time depends on treatment assignment:

3017

3018

$$T = W \cdot T(1) + (1 - W) \cdot T(0).$$

3019

3020

3021 **Censoring.** Censoring times are drawn independently from a Poisson distribution with mean pa-
 3022 rameter λ_c :

$$C \sim \text{Poisson}(\lambda_c),$$

3023

3024 where $\lambda_c \in \{21, 23, 24.7, 26.5, 29\}$ controls the censoring severity across the five dataset variants
 3025 (MIMIC-[i–v]).

3024
3025**Final observed data.** For each individual, we define the observed time and event indicator as3026
3027
3028

$$Y = \min(T, C),$$

$$\delta = \mathbb{1}\{T \leq C\},$$

3029
3030where Y is the observed follow-up time and δ is the event indicator (1 if the event was observed, 0 if censored).3031
3032
3033

G.1.3 ADDITIONAL CONFOUNDED AND NON-LINEAR MIMIC VARIANTS (MIMIC-*vi* TO MIMIC-*ix*).

3034
3035
3036
3037
3038In addition to the five baseline variants described above (MIMIC-[*i*–*v*]), we construct four further semi-synthetic MIMIC datasets that introduce (i) *observed confounding* through covariate-dependent treatment assignment, and (ii) *non-linear and interaction effects* in both the event-time and censoring mechanisms. These datasets are denoted MIMIC-[*vi*–*ix*], and correspond to the following generative combinations:3039
3040
3041
3042
3043
3044
3045
3046
3047
3048

- **MIMIC-*vi*:** treatment assignment depends linearly on covariates, and both event times and censoring times depend linearly on covariates;
- **MIMIC-*vii*:** treatment assignment depends linearly on covariates, while event times and censoring times depend non-linearly on covariates with interactions;
- **MIMIC-*viii*:** treatment assignment depends non-linearly on covariates with interactions, while event times and censoring times depend linearly on covariates;
- **MIMIC-*ix*:** treatment assignment, event times, and censoring times all depend non-linearly on covariates with interactions.

3049
3050
3051
3052
3053All four variants reuse the same baseline covariates as MIMIC-[*i*–*v*], ensuring that differences in difficulty are driven solely by the assignment and outcome/censoring mechanisms rather than by changes in covariate support. Empirically, these variants yield treatment prevalences around 51%–54% and censoring rates around 53% (see summary below), matching the magnitude of imbalance and censoring commonly observed in ICU EHR studies.3054
3055
3056
3057
3058
3059**Notation shared by MIMIC-*vi*–*ix*.** Let X_{36} denote the standardized admission age (*Admission age*), and define the abnormal-lab burden $S = \sum_{j=1}^5 X_j$, where $X_{1:5}$ are the five abnormal laboratory indicators (*Anion gap*, *Bicarbonate*, *Calcium total*, *Chloride*, *Creatinine*). Thus, $S \in \{0, 1, \dots, 5\}$ counts the number of abnormal lab values at baseline, while A captures patient age on a standardized scale.3060
3061**Covariate-dependent treatment assignment.** We consider two propensity score families:3062
3063
3064

- **Linear treatment assignment without interactions.** Treatment probability follows a logistic model that is linear in X_{36} and S :

$$\eta(x) = \alpha_0 + \alpha_1 X_{36} + \alpha_2 S,$$

$$e(x) = \Pr(W = 1 \mid X = x) = \sigma(\eta(x)),$$

3065
3066
3067
3068
3069
3070where $\sigma(\cdot)$ is the sigmoid. Treatment is then drawn as $W \mid X \sim \text{Bernoulli}(e(X))$.

- **Non-linear treatment assignment with a quadratic term and an interaction.** Treatment probability follows a logistic model that includes X_{36}^2 and the interaction $X_{36}S$:

$$\eta(x) = \beta_0 + \beta_1 X_{36} + \beta_2 S + \beta_3 X_{36}^2 + \beta_4 X_{36}S$$

$$e(x) = \Pr(W = 1 \mid X = x) = \text{logit}^{-1}(\eta(x)).$$

3071
3072
3073Treatment is then drawn as $W \mid X \sim \text{Bernoulli}(e(X))$ 3074
3075
3076
3077We clip $e(x)$ into $[0.05, 0.95]$ to avoid deterministic treatment assignment and preserve overlap. Coefficients are chosen (by checking the realized $\mathbb{E}[W]$) so that treatment prevalence remains close to 0.5 while still inducing meaningful confounding via X_{36} and S .

3078
 3079 **Event-time and censoring mechanisms.** For the four new variants, potential outcomes and cen-
 3080 soring are defined through Poisson means with an identity link, clipped below at 1 to ensure positiv-
 3081 ity. Two families are used:

3082 • **Linear dependence on covariates.**

3083 $\mu_0(x) = \psi_{00} + \psi_{01}S + \psi_{02}X_{36} + \psi_{03}X_{36}^2 + \psi_{04}X_{36}S,$
 3084 $\mu_1(x) = \psi_{10} + \psi_{11}S + \psi_{12}X_{36} + \psi_{13}X_{36}^2 + \psi_{14}X_{36}S,$

3085 which define

3086 $T(0) \sim \text{Poisson}(\mu_0(X)),$
 3087 $T(1) \sim \text{Poisson}(\mu_1(X)).$

3088 The censoring mean is also linear in X_{36} and S

3089 $\lambda_c(x) = \omega_0 + \omega_1S + \omega_2X_{36} + \omega_3X_{36}^2 + \omega_4X_{36}S$
 3090 $C \sim \text{Poisson}(\lambda_c(X)).$

3091 • **Non-linear dependence with quadratic and interaction terms.** Both potential event-time
 3092 means include X_{36}^2 and the interaction $X_{36}S$:

3093 $\mu_0(x) = \psi_{00} + \psi_{01}S + \psi_{02}X_{36} + \psi_{03}X_{36}^2 + \psi_{04}X_{36}S,$
 3094 $\mu_1(x) = \psi_{10} + \psi_{11}S + \psi_{12}X_{36} + \psi_{13}X_{36}^2 + \psi_{14}X_{36}S,$

3095 which define

3096 $T(0) \sim \text{Poisson}(\mu_0(X)),$
 3097 $T(1) \sim \text{Poisson}(\mu_1(X)).$

3098 The censoring mean is defined analogously with the same non-linear structure:

3099 $\lambda_c(x) = \omega_0 + \omega_1S + \omega_2X_{36} + \omega_3X_{36}^2 + \omega_4X_{36}S$
 3100 $C \sim \text{Poisson}(\lambda_c(X)).$

3101 These mechanisms allow survival outcomes and censoring to vary non-linearly with baseline severity
 3102 (lab abnormalities) and age, thereby creating heterogeneous and more realistic treatment effects.

3103
 3104 **Observed outcomes and fixed-horizon survival probabilities.** As before, factual event times are
 3105 obtained by consistency,

3106 $T = W \cdot T(1) + (1 - W) \cdot T(0), \quad Y = \min(T, C), \quad \delta = \mathbb{1}\{T \leq C\}.$

3107 Because event times are Poisson-distributed, the conditional survival (event-free) probability for arm
 3108 $w \in \{0, 1\}$ at any discrete horizon t is

3109 $S_w(t | X) = \Pr(T(w) > t | X) = 1 - \sum_{k=0}^{\lfloor t \rfloor} \frac{e^{-\mu_w(X)} \mu_w(X)^k}{k!}.$

3110 In each dataset, we compute individual-level ground-truth survival probabilities at horizons corre-
 3111 sponding to the empirical 25th, 50th, and 75th percentiles of the realized event-time distribution.
 3112 These are stored as

3113 $\{p_{\text{surv}_{t25,w0}}, p_{\text{surv}_{t50,w0}}, p_{\text{surv}_{t75,w0}}\} \quad \text{and} \quad \{p_{\text{surv}_{t25,w1}}, p_{\text{surv}_{t50,w1}}, p_{\text{surv}_{t75,w1}}\},$

3114 and are used when evaluating survival-probability CATE estimands.

3115
 3116 **Empirical summary.** Across all MIMIC variants, the sample size is $N = 25,170$, and the covari-
 3117 ate distributions in Table 29 remain unchanged. The baseline datasets MIMIC- $i-v$ isolate increasing
 3118 censoring severity while keeping $W \perp X$; their censoring rates range from 53% to 88% with treat-
 3119 ment rate ≈ 0.50 . The new datasets MIMIC- $vi-ix$ additionally introduce observed confounding
 3120 and non-linearities; in our instantiation, they yield a treatment rate around 0.51-0.54, and a censor-
 3121 ing rate of around 0.53: Thus, MIMIC- $vi-ix$ complement MIMIC- $i-v$ by testing robustness to both
 3122 confounding and misspecified or non-linear hazard/censoring relationships.

3186 Table 30: Demographic and categorical distributions in MIMIC semi-synthetic datasets. Reported
 3187 values are proportions.

Demographics		Admission-related	
Variable	Proportion	Variable	Proportion
Sex			
Male	0.512	Yes	0.110
Female	0.488	No	0.890
Race			
White	0.699	Night admission	
Black	0.141	Yes	0.539
Other	0.066	No	0.461
Hispanic	0.053	Previous admission this month	
Asian	0.041	Yes	0.081
Insurance			
Other	0.522	No	0.919
Medicare	0.421	Admissions number	
Medicaid	0.057	1	0.615
Marital status			
Married	0.449	2	0.164
Single	0.334	3+	0.222
Widowed	0.136		
Divorced	0.081		

3233 Figure 20: Correlation heatmap of the 36 semi-synthetic MIMIC covariates. Variables include de-
 3234 mographic features, admission descriptors, insurance and marital status indicators, and laboratory
 3235 measurements. Most correlations are weak to moderate, with stronger dependencies visible among
 3236 related laboratory values (e.g., hematocrit, hemoglobin, and red blood cell count).

3240 G.2 DETAILED ANALYSIS OF SEMI-SYNTHETIC RESULTS
32413242 This section provides additional analysis of semi-synthetic results in Section 4.2 and Table 3, examining performance patterns, stability characteristics, and practical implications for method selection.
32433244 **Method-Specific Performance Analysis.** The ACTG dataset reveals clear performance hierarchies.
3245 Double-ML achieves the lowest RMSE (10.651 ± 0.239), representing a 3.9% improvement over the
3246 next-best method, X-Learner (11.072 ± 0.196). This advantage aligns with our synthetic findings
3247 where sophisticated causal machinery excels in moderate-dimensional settings. However, survival
3248 meta-learners struggle on ACTG, with S-Learner Survival (11.713 ± 0.237) and Matching Survival
3249 (12.523 ± 0.289) showing the worst performance.
32493250 The pattern reverses on MIMIC data. S-Learner Survival achieves the best performance on four of
3251 five MIMIC variants: MIMIC-*i* (7.921 ± 0.044), MIMIC-*iii* (7.900 ± 0.045), MIMIC-*iv* ($7.901 \pm$
3252 0.046), and MIMIC-*v* (7.897 ± 0.042). This consistency demonstrates robustness across varying
3253 censoring intensities in high-dimensional settings.
32533254 **Censoring Gradient Analysis.** The MIMIC censoring rate range (53% - 88%) enables analysis
3255 of degradation patterns. S-Learner Survival maintains consistent performance across this range,
3256 with RMSE ranging from 7.897 to 7.921—less than 0.3% variation despite 35 percentage points of
3257 censoring difference. In contrast, T-Learner Survival shows clear instability, particularly at MIMIC-
3258 *ii* (82% censoring), where standard deviation jumps to ± 0.233 , indicating unreliable estimates.
32583259 Double-ML exhibits an interesting non-monotonic pattern: performing well at extreme censoring
3260 (MIMIC-*i*: 7.954 ± 0.047) and low censoring (MIMIC-*v*: 7.891 ± 0.050) but showing degradation at
3261 intermediate levels. This suggests that Double-ML’s robustness may depend on specific censoring-
3262 covariate interactions rather than censoring rate alone.
32623263 **Variance and Stability Patterns.** Standard deviations reveal important stability trade-offs. On
3264 ACTG, imputation methods show relatively low variance (0.175-0.239 range) while survival meth-
3265 ods exhibit higher variability (0.160-0.289). This pattern suggests that survival-specific methods
3266 may be more sensitive to the particular covariate-outcome relationships present in clinical trial data.
32663267 However, this relationship inverts on MIMIC data. Survival meta-learners achieve consistently low
3268 variance (0.042-0.075 range), while imputation methods show slightly higher variability (0.043-
3269 0.050 range). The exception is T-Learner Survival’s instability at high censoring, which appears
3270 dataset-specific rather than method-inherent.
32703271 **Performance Convergence in High-Dimensional Settings.** The MIMIC results demonstrate per-
3272 formance convergence absent in synthetic experiments. Across all MIMIC variants, the RMSE range
3273 spans only 7.891 to 8.007—approximately 1.4% variation. This convergence contrasts sharply with
3274 ACTG’s 15% performance spread (10.651 to 12.523), suggesting that high-dimensional, realistic
3275 covariate structures may level the playing field between method families.
32753276 This convergence has practical implications: in EHR-like settings with many correlated covariates,
3277 method selection may prioritize stability and interpretability over raw performance, since perfor-
3278 mance differences become negligible.
32793280 **Cross-Dataset Generalization Challenges.** No single method achieves consistent top-tier perfor-
3281 mance across both datasets. Double-ML excels on ACTG but performs moderately on MIMIC.
3282 S-Learner Survival dominates MIMIC but struggles on ACTG. This inconsistency highlights a crit-
3283 ical limitation of synthetic-only evaluation: performance rankings established on one data structure
3284 may not transfer to others, even when both represent realistic medical scenarios.
32843285 **Practical Method Selection Guidelines.** Based on these findings, a suggested actionable recom-
3286 mendation can be formed as follows: (1) For clinical trial-like data with moderate dimension-
3287 ality and balanced censoring, prioritize Double-ML or X-Learner. (2) For EHR-like data with high
3288 dimensionality and variable censoring, S-Learner Survival provides the best combination of per-
3289 formance and stability. (3) Avoid T-Learner Survival in high-censoring scenarios due to variance
3290 instability. (4) When performance differences are small (<2%), prioritize methods with lower com-
3291 putational cost and better interpretability.
32913292 These semi-synthetic results demonstrate that while our synthetic benchmark captures important
3293 performance trends, real-world method selection requires considering dataset-specific characteris-
3294 tics that pure synthetic evaluation cannot fully capture.
3294

3294
3295

3296 G.3 ADDITIONAL EXPERIMENT RESULTS AND ESTIMANDS

3297
3298
3299
3300
3301
3302

To complement the CATE RMSE results of MIMIC- i – v semi-synthetic datasets reported in Table 3, we additionally provide CATE RMSE evaluations for the MIMIC- vi – ix datasets in Section G.3.1. These results extend the main-paper table to cover the full set of semi-synthetic MIMIC scenarios.

3303
3304
3305
3306
3307
3308
3309
3310
3311
3312

In our main paper, we focus on RMST (with a large horizon) as the main estimand. We also add horizon-specific survival-probability CATEs (e.g., at 25/50/75 percentiles of the event-time distribution) and RMST at median event time to directly analyze time-horizon sensitivity.

3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
422810
422811
422812
422813
422814
422815
422816
422817
422818
422819
422820
422821
422822
422823
422824
422825
422826
422827
422828
422829
422830
422831
422832
422833
422834
422835
422836
422837
422838
422839
422840
422841
422842
422843
422844
422845
422846
422847
422848
422849
422850
422851
422852
422853
422854
422855
422856
422857
422858
422859
422860
422861
422862
422863
422864
422865
422866
422867
422868
422869
422870
422871
422872
422873
422874
422875
422876
422877
422878
422879
422880
422881
422882
422883
422884
422885
422886
422887
422888
422889
422890
422891
422892
422893
422894
422895
422896
422897
422898
422899
422900
422901
422902
422903
422904
422905
422906
422907
422908
422909
422910
422911
422912
422913
422914
422915
422916
422917
422918
422919
422920
422921
422922
422923
422924
422925
422926
422927
422928
422929
422930
422931
422932
422933
422934
422935
422936
422937
422938
422939
422940
422941
422942
422943
422944
422945
422946
422947
422948
422949
422950
422951
422952
422953
422954
422955
422956
422957
422958
422959
422960
422961
422962
422963
422964
422965
422966
422967
422968
422969
422970
422971
422972
422973
422974
422975
422976
422977
422978
422979
422980
422981
422982
422983
422984
422985
422986
422987
422988
422989
422990
422991
422992
422993
422994
422995
422996
422997
422998
422999
4229910
4229911
4229912
4229913
4229914
4229915
4229916
4229917
4229918
4229919
4229920
4229921
4229922
4229923
4229924
4229925
4229926
4229927
4229928
4229929
4229930
4229931
4229932
4229933
4229934
4229935
4229936
4229937
4229938
4229939
4229940
4229941
4229942
4229943
4229944
4229945
4229946
4229947
4229948
4229949
4229950
4229951
4229952
4229953
4229954
4229955
4229956
4229957
4229958
4229959
4229960
4229961
4229962
4229963
4229964
4229965
4229966
4229967
4229968
4229969
4229970
4229971
4229972
4229973
4229974
4229975
4229976
4229977
4229978
4229979
4229980
4229981
4229982
4229983
4229984
4229985
4229986
4229987
4229988
4229989
4229990
4229991
4229992
4229993
4229994
4229995
4229996
4229997
4229998
4229999
42299100
42299101
42299102
42299103
42299104
42299105
42299106
42299107
42299108
42299109
42299110
42299111
42299112
42299113
42299114
42299115
42299116
42299117
42299118
42299119
42299120
42299121
42299122
42299123
42299124
42299125
42299126
42299127
42299128
42299129
42299130
42299131
42299132
42299133
42299134
42299135
42299136
42299137
42299138
42299139
42299140
42299141
42299142
42299143
42299144
42299145
42299146
42299147
42299148
42299149
42299150
42299151
42299152
42299153
42299154
42299155
42299156
42299157
42299158
42299159
42299160
42299161
42299162
42299163
42299164
42299165
42299166
42299167
42299168
42299169
42299170
42299171
42299172
42299173
42299174
42299175
42299176
42299177
42299178
42299179
42299180
42299181
42299182
42299183
42299184
42299185
42299186
42299187
42299188
42299189
42299190
42299191
42299192
42299193
42299194
42299195
42299196
42299197
42299198
42299199
42299200
42299201
42299202
42299203
42299204
42299205
42299206
42299207
42299208
42299209
42299210
42299211
42299212
42299213
42299214
42299215
42299216
42299217
42299218
42299219
42299220
42299221
42299222
42299223
42299224
42299225
42299226
42299227
42299228
42299229
42299230
42299231
42299232
42299233
42299234
42299235
42299236
42299237
42299238
42299239
42299240
42299241
42299242
42299243
42299244
42299245
42299246
42299247
42299248
42299249
42299250
42299251
42299252
42299253
42299254
42299255
42299256
42299257
42299258
42299259
42299260
42299261
42299262
42299263
42299264
42299265
42299266
42299267
42299268
42299269
42299270
42299271
42299272
42299273
42299274
42299275
42299276
42299277
42299278
42299279
42299280
42299281
42299282
42299283
42299284
42299285
42299286
42299287
42299288
42299289
42299290
42299291
42299292
42299293
42299294
42299295
42299296
42299297
42299298
42299299
42299300
42299301
42299302
42299303
42299304
42299305
42299306
42299307
42299308
42299309
42299310
42299311
42299312
42299313
42299314
42299315
42299316
42299317
42299318
42299319
42299320
42299321
42299322
42299323
42299324
42299325
42299326
42299327
42299328
42299329
42299330
42299331
42299332
42299333
42299334
42299335
42299336
42299337
42299338
42299339
42299340
42299341
42299342
42299343
42299344
42299

The RMSE results of CATE Based on survival probability for 25th, 50th, and 75th percentiles on the 4 new semi-synthetic datasets are reported in Tables 32, 33, and 34 respectively. Note that, unlike the RMST-based CATE, the survival probability-based CATE estimand can only be computed using direct-survival methods and survival meta-learners. It cannot be obtained from outcome-imputation methods, as those are designed for point estimates rather than modeling the full survival distribution. Across all three horizons, Causal Survival Forest remains the strongest overall performer, similar to what we observed in the RMST-based analysis. However, its advantage here is more nuanced: at earlier horizons (25th percentile), the gaps between methods are wider, while at later horizons the separation becomes smaller but the overall ordering stays the same. SurvITE consistently struggles relative to Causal Survival Forest under this estimand, showing noticeably higher RMSE across datasets and quantiles. Among the survival meta-learner approaches, the S-Learner Survival tends to be the most stable, whereas Matching Survival is generally the weakest performer, especially at later horizons where its error increases more noticeably. Overall, the method rankings appear stable across the 25th, 50th, and 75th percentile horizons, with no major reversals as h changes.

Table 32: CATE RMSE on semi-synthetic datasets across 10 experimental repeats, using **survival probability at 25th quantile event time** of each dataset as the estimand

Method Family	MIMIC- <i>vi</i>	MIMIC- <i>vii</i>	MIMIC- <i>viii</i>	MIMIC- <i>ix</i>
<i>Direct-Survival Methods</i>				
Causal Survival Forest	0.044 \pm 0.003	0.035 \pm 0.003	0.038 \pm 0.005	0.041 \pm 0.003
SurvITE	0.108 \pm 0.024	0.099 \pm 0.013	0.107 \pm 0.016	0.099 \pm 0.013
<i>Survival Meta-Learners</i>				
T-Learner Survival	0.085 \pm 0.008	0.068 \pm 0.016	0.085 \pm 0.008	0.069 \pm 0.010
S-Learner Survival	0.064 \pm 0.002	0.065 \pm 0.002	0.069 \pm 0.001	0.067 \pm 0.002
Matching Survival	0.076 \pm 0.005	0.079 \pm 0.006	0.083 \pm 0.004	0.091 \pm 0.005

Table 33: CATE RMSE on semi-synthetic datasets across 10 experimental repeats, using **survival probability at median event time** of each dataset as the estimand

Method Family	MIMIC- <i>vi</i>	MIMIC- <i>vii</i>	MIMIC- <i>viii</i>	MIMIC- <i>ix</i>
<i>Direct-Survival Methods</i>				
Causal Survival Forest	0.052 \pm 0.005	0.044 \pm 0.006	0.054 \pm 0.005	0.054 \pm 0.004
SurvITE	0.125 \pm 0.022	0.109 \pm 0.016	0.116 \pm 0.016	0.116 \pm 0.025
<i>Survival Meta-Learners</i>				
T-Learner Survival	0.104 \pm 0.010	0.098 \pm 0.039	0.106 \pm 0.009	0.091 \pm 0.014
S-Learner Survival	0.086 \pm 0.003	0.085 \pm 0.002	0.090 \pm 0.002	0.085 \pm 0.002
Matching Survival	0.096 \pm 0.007	0.101 \pm 0.008	0.105 \pm 0.007	0.115 \pm 0.007

Table 34: CATE RMSE on semi-synthetic datasets across 10 experimental repeats, using **survival probability at 75th quantile event time** of each dataset as the estimand

Method Family	MIMIC- <i>vi</i>	MIMIC- <i>vii</i>	MIMIC- <i>viii</i>	MIMIC- <i>ix</i>
<i>Direct-Survival Methods</i>				
Causal Survival Forest	0.053 \pm 0.004	0.05 \pm 0.002	0.047 \pm 0.004	0.056 \pm 0.005
SurvITE	0.094 \pm 0.017	0.084 \pm 0.013	0.099 \pm 0.024	0.096 \pm 0.014
<i>Survival Meta-Learners</i>				
T-Learner Survival	0.101 \pm 0.009	0.091 \pm 0.023	0.094 \pm 0.009	0.088 \pm 0.014
S-Learner Survival	0.074 \pm 0.004	0.078 \pm 0.004	0.073 \pm 0.002	0.082 \pm 0.004
Matching Survival	0.089 \pm 0.006	0.094 \pm 0.007	0.087 \pm 0.006	0.106 \pm 0.006

3402 **G.3.3 SENSITIVITY ANALYSIS OF VARYING HORIZON FOR CATE ESTIMATE BASED ON**
 3403 **RESTRICTED MEAN SURVIVAL TIME**

3405 In this sensitivity analysis, we evaluate how CATE estimation based on Restricted Mean Survival
 3406 Time (RMST) changes when varying the prediction horizon. The main results in the paper use the
 3407 RMST defined up to the maximum observed event time T_{\max} , but here we additionally consider a
 3408 shorter horizon based on the median event time T_{med} in each dataset. This allows us to assess whether
 3409 individual method families behave differently when estimating treatment effects over longer versus
 3410 shorter time spans. The trends indicate that the relative ordering of method families remains broadly
 3411 consistent across these two horizons. Rather than comparing absolute values across datasets, the
 3412 focus here is on understanding which methods are more robust to horizon length, an aspect that
 3413 appears stable across the configurations examined.

3414 Table 35: CATE RMSE on new semi-synthetic datasets across 10 experimental repeats, comparing
 3415 RMST estimands at different horizons $h = T_{\max}$ and $h = T_{\text{med}}$.

Method Family	MIMIC- <i>vi</i>		MIMIC- <i>vii</i>		MIMIC- <i>viii</i>		MIMIC- <i>ix</i>	
	$h = T_{\max}$	$h = T_{\text{med}}$	$h = T_{\max}$	$h = T_{\text{med}}$	$h = T_{\max}$	$h = T_{\text{med}}$	$h = T_{\max}$	$h = T_{\text{med}}$
<i>Direct-Survival Methods</i>								
Causal Survival Forest	7.123 ± 0.048	3.850 ± 0.032	7.281 ± 0.064	3.740 ± 0.025	7.149 ± 0.045	3.839 ± 0.031	7.227 ± 0.054	3.725 ± 0.032
SurvITE	7.243 ± 0.154	3.908 ± 0.067	7.378 ± 0.112	3.869 ± 0.177	7.268 ± 0.117	3.886 ± 0.057	7.347 ± 0.078	3.813 ± 0.055
<i>Survival Meta-Learners</i>								
T-Learner Survival	7.465 ± 0.364	4.314 ± 0.563	7.487 ± 0.179	3.967 ± 0.241	7.266 ± 0.053	3.904 ± 0.081	7.465 ± 0.254	4.093 ± 0.379
S-Learner Survival	7.183 ± 0.051	3.866 ± 0.036	7.345 ± 0.066	3.760 ± 0.024	7.198 ± 0.042	3.852 ± 0.030	7.283 ± 0.049	3.742 ± 0.032
Matching Survival	7.219 ± 0.060	5.192 ± 0.203	7.393 ± 0.074	5.358 ± 0.323	7.240 ± 0.043	5.207 ± 0.189	7.357 ± 0.046	5.420 ± 0.205

3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455

3456 H REAL-WORLD DATASETS: SETUP AND ADDITIONAL RESULTS

3458 We evaluate our benchmark on two real-world datasets: the Twins dataset (with known ground truth)
 3459 and the ACTG 175 HIV clinical trial dataset (without known ground truth). This section provides
 3460 detailed descriptions of data preprocessing and additional experimental results.

3462 H.1 TWINS DATASET

3464 The Twins dataset is derived from all births in the USA between 1989-1991 (Almond et al., 2005)
 3465 focusing on twin births. Following Curth et al. (2021a), we artificially create a binary treatment
 3466 where $W = 1$ ($W = 0$) denotes being born the heavier (lighter) twin. The outcome of interest is
 3467 the time-to-mortality (in days) of each twin in their first year, administratively censored at $t = 365$
 3468 days. Since we have records for both twins, we treat their time-to-event outcomes as two potential
 3469 outcomes $\tau(1)$ and $\tau(0)$ with respect to the treatment assignment of being born heavier. [While the Twins dataset is a widely used benchmark \(Louizos et al., 2017; Du et al., 2021; Curth et al., 2021a; Curth & Van der Schaar, 2021; Curth et al., 2021b\)](#), we note that treating twins as perfect
 3470 counterfactuals at the very best is an approximation. The “ground-truth” relies on the assumption
 3471 that the unobserved potential outcome of one twin is identical to the observed of their sibling, which
 3472 in reality may not fully capture genetic or environmental heterogeneity.

3474 We obtained 30 features (43 feature dimensions after one-hot encoding categorical features) for
 3475 each twin relating to the parents, pregnancy, and birth characteristics including marital status, race,
 3476 residence, number of previous births, pregnancy risk factors, quality of care during pregnancy, and
 3477 number of gestation weeks prior to birth. We select only twins weighing less than 2kg and without
 3478 missing features, resulting in more than 11,000 twin pairs.

3480 To create an observational time-to-event dataset with known ground truth, we follow the semi-
 3481 synthetic experimental design from Curth et al. (2021a). The treatment assignment is given by
 3482 $W|x \sim \text{Bernoulli}(\sigma(\beta_1^\top x + e))$ where $\beta_1 \sim \text{Uniform}(-0.1, 0.1)^{43 \times 1}$ and $e \sim \mathcal{N}(0, 1^2)$. The time-
 3483 to-censoring is given by $C \sim \text{Exp}(100 \cdot \sigma(\beta_2^\top x))$ where $\beta_2 \sim \mathcal{N}(0, 1^2)$. This results in a treatment
 3484 rate of 68.1% and censoring rate of 38.2%.

3485 We split the data 50/25/25 for training/validation/testing samples and repeat all the experiments 10
 3486 times with different random splits. CATE RMSE are reported on the testing sets. In Section 4.3, we
 3487 display the CATE RMSE with horizon $h = 30$ days. Here, we show CATE RMSE results for the
 3488 Twins dataset with horizon $h = 180$ days in Figure 21, and we can see it indicates similar results as
 3489 $h = 30$.

3498 Figure 21: CATE RMSE for twin birth data using different estimator families with $h = 180$. Box
 3499 plots show the distribution of error across 10 experimental runs [\(added SurvITE results\)](#).

3510 H.2 ACTG 175 HIV CLINICAL TRIAL DATASET
3511

3512 We use data from the AIDS Clinical Trials Group Protocol 175 (ACTG 175) (Hammer et al., 1996),
 3513 a double-blind, randomized controlled trial that compared four treatment regimens in adults infected
 3514 with HIV type I: monotherapy with zidovudine (ZDV), monotherapy with didanosine (ddI), com-
 3515 bination therapy with ZDV and ddI, or combination therapy with ZDV and zalcitabine (Zal). The
 3516 publicly available dataset³ includes 2,139 HIV-infected patients randomized into four groups with
 3517 assigned treatments: ZDV, ZDV+ddI, ZDV+Zal, and ddI. An event occurrence was defined as the
 3518 first of either a decline in CD4 cell count, an event indicating AIDS progression, or death.
 3519

3520 Following Meir et al. (2025), after fetching raw data from the UCI Machine Learning Repository,
 3521 we change the resolution from days to months and add synthetic censoring based on a Bernoulli
 3522 distribution with parameter $p = 0.6 + 0.25 \cdot Z30$, where $Z30$ is a feature that is available in the
 3523 data and indicates whether a patient started taking ZDV prior to the assigned treatment, and it is not
 3524 included in the covariates for CATE estimation. We conduct three pairwise comparisons with ZDV
 3525 as the baseline treatment ($W = 0$): ZDV vs. ZDV+ddI (HIV1), ZDV vs. ZDV+Zal (HIV2), and
 3526 ZDV vs. ddI (HIV3). The baseline censoring rate is less than 15% for different treatment groups.
 3527 After applying the censoring injection procedure from Meir et al. (2025), increasing censoring rates
 3528 to over 90%. For each treatment group, we establish baseline CATE estimates by running Causal
 3529 Survival Forest 10 times and averaging the estimated conditional average treatment effects. Since
 3530 there are many variants of outcome imputation and survival meta-learner families due to different
 3531 imputation and base learner options, for display purposes in the HIV dataset results, we use a model
 3532 selection criterion based on closeness (CATE RMSE) to estimation by Causal Survival Forest. We
 3533 have looked the results using other variants of same CATE estimator as well, and similar trends are
 3534 observed.
 3535

3536 In Section 4.3, we display the comparisons of CATE estimates between baseline and high-censoring
 3537 conditions for group HIV1. Here we display the same sets of results for HIV2 and HIV3 groups in
 3538 Figure 22, 23. Consistent patterns emerge across all three treatment comparisons: Causal Survival
 3539 Forest produces estimates that cluster tightly around their baseline CATE estimations on data be-
 3540 fore additional censoring injection; outcome imputation methods show higher variation in baseline
 3541 estimates but more concentrated predictions under high censoring, and survival meta-learners dis-
 3542 play substantial deviations from the 45-degree line, indicating sensitivity to censoring conditions.
 3543 The consistency of these patterns across different treatment pairs reinforces the robustness of our
 3544 findings regarding how different estimator families respond to increased censoring.
 3545

3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

³<https://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175>

3584
 3585 Figure 22: CATE Estimation comparison between baseline and high-censoring conditions under
 3586 ZDV vs. ZDV+Zal treatments (HIV2). Each point represents an individual patient in test sets, with
 3587 the dashed diagonal line indicating perfect consistency between baseline CATE estimation and that
 3588 with the additional censoring injected.

3603
 3604 Figure 23: CATE Estimation comparison between baseline and high-censoring conditions under
 3605 ZDV vs. ddI treatments (HIV3). Each point represents an individual patient in test sets, with the
 3606 dashed diagonal line indicating perfect consistency between baseline CATE estimation and that with
 3607 the additional censoring injected.

3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617

3618 I ADDITIONAL INFORMATIVE CENSORING VIA UNOBSERVED 3619 CONFOUNDING 3620

3621 In the main paper, we model informative censoring by making censoring times stochastically dependent
 3622 on event times, reflecting realistic scenarios where patients with shorter expected survival may
 3623 drop out earlier. Here we complement this setting with an alternative mechanism where the ignor-
 3624 able censoring assumption is violated due to unobserved confounding. This extension illustrates the
 3625 extensibility of our modular data generation framework.

3627 **Data generation process.** We follow the same covariate generation procedure as in our synthetic
 3628 datasets: observed covariates $X \sim \text{Uniform}(0, 1)$ ⁵ and an unobserved covariate $U \sim \text{Uniform}(0, 1)$.
 3629 Treatment assignment follows the OBS-UConf configuration, where U enters into both treatment
 3630 assignment and outcome generation but remains unobserved during estimation.

3631 We focus on survival Scenario C (Poisson hazards with medium censoring). Event times and cen-
 3632 soring times are generated as follows, where $w \in \{0, 1\}$ is the treatment indicator:

$$3634 \lambda(w) = X_2^2 + X_3 + 6 + 2 \left(\sqrt{0.3 \cdot X_1 + 0.7 \cdot U} - 0.3 \right) \cdot w + \epsilon, \quad (7)$$

$$3635 T(w) \sim \text{Poisson}(\lambda(w)), \quad (8)$$

$$3637 C = \begin{cases} \infty & \text{if } U \leq 0.6, \\ 1 + \mathbb{1}(X_4 < 0.5) & \text{otherwise,} \end{cases} \quad (9)$$

3640 where $\epsilon \sim \mathcal{N}(0, 0.1)$ adds stochastic variation. The censoring distribution thus depends directly
 3641 on the unobserved variable U , creating dependence between censoring and survival that cannot be
 3642 explained away by the observed X alone.

3644 **Summary statistics** Similar to the other synthetic datasets, we include up to 50,000 samples with
 3645 treatment assigned according to an observational study mechanism. The treatment rate is 53.9%, the
 3646 censoring rate is 39.7% (driven by U), and the population-level ATE is 0.7737 (computed from the
 3647 50,000 samples by averaging the CATEs). This setup mirrors real-world contexts such as clinical
 3648 trials with dropout patterns influenced by latent health status.

3649 **Experimental results** We evaluated representative estimators from all three method families. Fig-
 3650 ure 24 reports CATE RMSE (mean \pm standard error) across 10 random splits.

3656 Figure 24: CATE RMSE and ATE bias under informative censoring induced by unobserved con-
 3657 founding.

3660 The results indicate that causal survival forest and survival meta-learners with matching tend to
 3661 perform best under this setting, consistent with findings from the main synthetic datasets.

3663 **Extensibility to other settings.** Here we illustrate one case: OBS-UConf combined with Sce-
 3664 nario C. However, the same mechanism can be straightforwardly extended to other causal config-
 3665 urations (e.g., randomized trials with imbalance) and survival scenarios (e.g., AFT or Cox models).
 3666 We leave systematic exploration of these additional combinations for future work, but their ease
 3667 of inclusion highlights the flexibility of SURVHTE-BENCH to accommodate alternative censoring
 3668 mechanisms.

3669
 3670
 3671