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ABSTRACT

Estimating heterogeneous treatment effects (HTEs) from right-censored survival
data is critical in high-stakes applications such as precision medicine and individ-
ualized policy-making. Yet, the survival analysis setting poses unique challenges
for HTE estimation due to censoring, unobserved counterfactuals, and complex
identification assumptions. Despite recent advances, from causal survival forests
to survival meta-learners and outcome imputation approaches, evaluation prac-
tices remain fragmented and inconsistent. We introduce SURVHTE-BENCH, the
first comprehensive benchmark for HTE estimation with censored outcomes. The
benchmark spans (i) a modular suite of synthetic datasets with known ground
truth, systematically varying causal assumptions and survival dynamics, (ii) semi-
synthetic datasets that pair real-world covariates with simulated treatments and
outcomes, and (iii) real-world datasets from a twin study (with known ground
truth) and from an HIV clinical trial. Across synthetic, semi-synthetic, and real-
world settings, we provide the first rigorous comparison of survival HTE methods
under diverse conditions and realistic assumption violations. SURVHTE-BENCH
establishes a foundation for fair, reproducible, and extensible evaluation of causal
survival methods. The data and code of our benchmark are anonymously available
at: https://anonymous. 4open.science/r/SurvHTE-Benchmark-206B.

1 INTRODUCTION

In many causal inference applications where we aim to quantify how well a treatment works, estimat-
ing heterogeneous treatment effects (HTEs) could be more useful than only estimating population-
level average treatment effects (ATEs), building on the intuition that the same treatment can vary
in effectiveness when given to different individuals. In survival analysis with right-censored out-
comes (common in clinical trials and electronic health records), estimating HTEs can be especially
challenging. In addition to the standard difficulties of causal inference (unobserved counterfactuals,
confounding), the analyst must account for censoring, where the event of interest is only observed
for a subset of subjects. These features complicate identification and estimation, yet they are central
in high-stakes applications such as precision medicine and individualized policy-making (Zhu &
Gallego, |2020; |Chapfuwa et al.| 2021} |Curth et al.| 2021a).

Recent years have seen a growing set of causal survival methods (Chapfuwa et al) [2021} |Curth
et al., 2021a; [Cu1 et al., 2023 [Bo et al., |2024; [Noroozizadeh et al., 2025; Xu et al., |2024; Meir
et al., 2025). Despite methodological advancement, no standardized benchmark exists, limiting re-
producibility and fair comparisons. Most studies rely on bespoke simulations or limited real datasets
with unknown ground truth, with differing levels of censoring, survival distributions, and causal as-
sumptions. As a result, comparisons are not standardized, robustness of different proposed methods
is unclear, and progress is difficult to measure.

While there is a growing benchmarking literature for treatment-effect heterogeneity in fully ob-
served outcomes (e.g.,|Crabbé et al.| (2022); |Shimont et al.| (2018)); [Kapki¢ et al.| (2024)) and recent
benchmarks for survival ATE estimation (e.g., [Voinot et al.| (2025)), to our knowledge, there is not
yet any benchmark for survival HTE estimation under right-censoring. This missing piece motivates
our focus on heterogeneous effects in censored time-to-event data.

We introduce SURVHTE-BENCH, the first comprehensive benchmark for HTE estimation in right-
censored survival data. Our contributions are as follows:
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* Method unification: We categorize existing survival HTE methods (and natural extensions of ex-
isting such methods that technically have not previously been published) into three broad families:
outcome imputation methods, direct-survival models, and survival meta-learners. We provide a
modular implementation of 53 methods among these three families. This is the first systematic
framework unifying survival HTE methods that facilitates reproducibility and extensibility.

» Synthetic benchmark design: We present a curated suite of 40 synthetic datasets spanning eight
causal configurations (with different combinations of randomization, unobserved confounding,
overlap violation, informative censoring) crossed with five survival scenarios (with different sur-
vival and censoring distributions), yielding controlled settings with known ground-truth HTEs
under realistic assumption violations.

* Semi-synthetic and real data: We also include 6 semi-synthetic datasets from existing literature
(real covariates with simulated treatments and outcomes) that aim to be more realistic compared
to purely synthetic datasets while still having ground truth on HTEs. We further include 2 widely
studied real datasets: the Twins dataset that has known ground truth (Almond et al., [2005)) (i.e.,
per twin, one has the treatment and the other does not, so that we observe both counterfactual
outcomes), and the HIV clinical trial dataset without known ground truth (Hammer et al., {1996).

* Comprehensive evaluation: We compare representative estimators across all settings. Our results
show that no single method dominates: performance depends on causal assumptions, censoring,
and survival dynamics. Notably, S-learners among survival meta-learners demonstrate robustness
under severe violations and high censoring.

While prior work has explored subsets of these design choices (e.g., |Cui et al. (2023); [Meir et al.
(2025))), SURVHTE-BENCH is the first to systematically evaluate survival HTE methods under as-
sumption violations, diverse survival models, and across synthetic, semi-synthetic, and real data.
We focus on binary treatments and static covariates with right-censored outcomes, as even this ba-
sic setting lacks a standardized benchmark. More complex extensions (time-varying treatments,
longitudinal covariates, and instrumental variables) are beyond our present scope.

2 BACKGROUND AND RELATED WORK

We briefly review the problem setup, identification assumptions, existing evaluation practices, and
the three families of survival HTE estimators.

Problem setup. For each unit (data point) ¢, we observe co~Variates X,; € X, a binary treatment
W, € {0,1}, and an observed, possibly censored event time 7; = min(7;, C;) with event indicator
0; = 1{T; < C;}, where §; is 1 if the event of interest happened (in which case T; is the event

time) or 0 if the outcome is censored (in which case 7T; is the censoring time). Using the standard
potential outcomes framework, 7;(w) denotes the potential event time under treatment w € {0, 1}
with T; = T;(W;). We assume that the tuple (X, W;, T;(0), T;(1), C;) is i.i.d. across different .

We aim to estimate the conditional average treatment effect (CATE) with respect to a transformation
of the event time y(-):

7(z) = E[y(T:(1)) — y(T3(0)) | X; = z], (D

where y(-) encodes the survival estimand of interest, and the expectation is taken over the ran-
domness of the two potential outcomes. For example, if we want the survival estimand to be the
restricted mean survival time (RMST) up to a user-specified time horizon & > 0, then we would
set y(t) := min{¢, h}. Other choices for estimands are also possible (e.g., median survival time,
survival probability at a fixed time). In this paper, we focus on RMST, which is interpretable, robust
under censoring, and widely adopted (Shen et al., [2018; (Curth et al.l 2021a; |Cui et al., 2023)), while
noting that our benchmark design allows extensions to other estimands, and we include results for
survival probabilities in Appendix

Identification assumptions. Identification of 7(z) relies on the following assumptions (Cui et al.,
2023) (and in our benchmark, we vary whether these get violated):

* (A1) Consistency: T; = T;(W;) almost surely.

* (A2) Ignorability: {T;(0),T;(1)} L W; | X,.

* (A3) Positivity: n. < P(W; = 1|1X; = z) < 1 — 1, for some 7. > 0.

* (A4) Ignorable censoring: T; 1l C; | X;, W;.

* (A5) Censoring positivity: For horizon h, P(C; < h|X;, W;) <1 — n¢ for some 0 < o < 1.
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Violations are common: unmeasured prognostic factors break ignorability, treatment guidelines
break positivity, and drop-out linked to prognosis induces informative censoring. A central goal
of SURVHTE-BENCH is to measure how estimators behave under such violations.

Existing evaluation practice. Because only one potential outcome is observed per unit, validation
typically relies on author-specific simulations. Prior studies vary assumptions in narrow ways: e.g.,
censoring up to 30% (Bo et al., [2024) or heavy censoring but assuming ignorability (Meir et al.,
2025)). Consequently, results are not comparable across papers, and estimator robustness under si-
multaneous assumption violations remains unclear. To date, no public benchmark exists with known
individual-level ground truth with varying levels of assumption violations and survival distributions.

Overview of existing survival HTE estimators. We group existing methods into three families:

* Qutcome imputation methods (Xu et al., |2024; Meir et al., [2025): Replace censored times with
imputed survival times (e.g., IPCW-based reweighting introduced in |Qi et al. (2023)). Then
apply standard CATE estimators such as causal forests (Athey et al., [2019), double ML (Cher-
nozhukov et al., 2018)), or meta-learners including S(ingle)-, T(wo)-, X(cross)-, D(oubly)R(obust)-
learners (Athey & Imbens) 2015; Kiinzel et al.| 2019; Kennedy, 2023)

* Direct-survival CATE models: Extend causal inference directly to time-to-event outcomes, e.g.,
targeted learning (Van der Laan & Rosel 2011)), tree-based estimators (Zhang et al., 2017),
SurvITE (Curth et al., 2021a), Bayesian approaches (Henderson et al., 2020), or causal survival
forests (Cui et al.| [2023).

* Survival meta-learners (Xu et al. [2023 |[Bo et al., 2024} Noroozizadeh et al.l 2025): Adapt
S(ingle)-, T(wo)-, or matching-learners to survival outcomes by using survival models such as
random survival forests or deep survival models.

While these approaches appear in disparate papers, we are the first to categorize them into these three
families, and we implement 53 methods within these families in a unified, modular framework.

While our benchmark focuses on static treatments under selection on observables, related work
addresses HTEs in alternative settings. This includes instrumental variable approaches for survival
(Tchetgen et al L 2015)), dynamic treatment regimes (Rudolph et al.,|[2022; Bates et al.,|2022;Rudolph
et al., 2023 |Cho et al., |2023)), and Bayesian machine learning approaches (Chen et al.l 2024). Ad-
ditionally, Targeted Maximum Likelihood Estimation-based methods (Stitelman & van der Laan,
2010; [Stitelman et al., [2011)) offer robust estimation for survival parameters, though primarily for
average or subgroup effects rather than continuous CATE functions.

3 SURVHTE-BENCH

SURVHTE-BENCH probes how survival Table 1: Causal configurations of synthetic datasets.
CATE estimators behave when assumptions RCT = randomized controlled trial; OBS = observa-
(A1)—~(A5) hold and when they are either tional study; 50(5) = 50%(5%) treatment rate; CPS=
mildly or severely violated. As real data correct specified propensity score (ignorability satis-
with ground-truth CATEs are scarce, the fied); UConf = unobserved confounding (ignorabil-
bulk of our benchmark relies on synthetic ity violated); NoPos = lack of positivity; InfC = in-
datasets. We also include semi-synthetic formative censoring (ignorable censoring violated).
data (real covariates with simulated treat- /= held, X= not held.

ments and outcomes) and two real-world

. . Causal 4 .. Ignorabl
datasets. As already stated in Section Configs. RCT  Ignorability ~Positivity 0000
in this paper we fogus on the case where RCT-50 7 7 7 v
the target estimand is RMST up to a user- RCT-5 v v v v
specified time horizon £ (other estimands 0BS-CPS X v v v
are possible, such as survival probability at gpsucont ;‘ y ‘)’( j
redefined tim Appendix |G.3.2).

predefined times, see Appendix [G.3.2) 0BS-CPS-InfC X v v X

: 0BS-UConf-InfC X X 4 X
Synthetic data. We construct a modular OBS-NoPos-InfC X 7 X X

suite of 40 synthetic datasets that system-
atically vary across two orthogonal axes: (1) causal configuration: treatment mechanism, positivity,
confounding, censoring mechanism; (2) survival scenario: event-time distribution and censoring
rate. Crossing 8 causal configurations with 5 survival scenarios yields 8 x 5 = 40 synthetic datasets,

!'Standard CATE estimators do not handle censoring. By imputing censored times with survival times as a
preprocessing step, we make it appear as if there is no censoring, so standard CATE estimators can be applied.
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each with binary, time-fixed treatment, five independently sampled covariates each distributed as
Uniform(0, 1), and up to 50,000 units. For each unit ¢, we generate both T;(0) and T;(1), ensuring
that ground-truth CATEs are always known.

The 8 causal configurations (Table[I]) include randomized controlled trials (RCT-50, RCT-5) and ob-
servational studies with correctly specified propensity scores (i.e., these are known during training)
with all confounders observed in estimation (OBS-CPS), unobserved confounding (0BS-UConf), or
lack of positivity (OBS-NoPos). Each observational setting has variants with suffix “~InfC”, where
ignorable censoring is replaced by informative censoring, where censoring times depend stochas-
tically on event times. These violations reflect common real-world challenges: unmeasured risk
factors in treatment decisions (violating ignorability), treatment imbalance in observational studies
(violating positivity), and dropout mechanisms correlated with health outcomes (violating ignorable
censoring). We do not model interference (consistency violations) or censoring-positivity violations,
which require specialized designs beyond our scope. Additional variations, such as informative cen-
soring with the censoring time driven by unobserved factors, are included in the Appendix [I| to
illustrate the extensibility of our modular setup.

The 5 survival scenarios (Table [2) include Cox  yple 2: Survival scenarios of synthetic datasets.
proportional hazards (low censoring), acceler- « oo <30%. “Med” 30-70% “High” >70%
ated failure time (AFT) models (low and high cepsoring, AFT = accelerated failure time.

censoring), and Poisson hazards (medium and

high censoring). These distributions cover pro- Survival = Survival Time Censoring
portional hazards (Cox) and non-proportional Scenario  Distribution Rate
hazards (AF Poisson), with censoring levels A Cox Low
ranging from under 30% to over 70%. This va- B AFT Low
riety reflects practical challenges like high cen- g P?A‘;‘f;’“ Il\ﬁe‘}ll
soring common in EHR cohorts, accelerated pro- E Poisson High

cesses in oncology, and discrete hazard approxi-
mations in epidemiology. Within each survival scenario, coefficients are tuned so that event times are
comparable across different causal configurations. Full generation formulas and summary statistics
(e.g., censoring rate, treatment rate, ATE) for each dataset are in Appendix [A]

Evaluation metrics. Per dataset, averaged over 10 random splits, we report:
» CATE root mean square error (RMSE): \/% S (F(X) — T(Xh))2

 ATE bias: % S 7(X;) — A, where A is the true ATE from the population and can be approxi-
mated using the average CATE from a very large sample (i.e., from 50,000 simulated samples).

* Auxiliary imputation accuracy: mean absolute error (MAE) between imputed and true event times.

* Auxiliary regression/survival fit: MAE for regression-based learners, AUC for propensity score
models, and the time-dependent C-index (Antolini et al.| 2005)) for survival models.

Survival CATE methods implemented. We evaluate the three broad families of survival CATE
methods (53 variants total; see Appendix [C|for the full list, Appendix [D]for methodological details):

* Qutcome imputation methods: meta learners (S-, T-, X-, DR-Learners) paired with base regression
learners (lasso, random forest, XGBoost), plus double ML and causal forest, each combined with
the three imputations (Pseudo-obs, Margin, and IPCW-T (Qi et al 2023)), see Appendix [B| for
details). In total, we implement 42 variants.

e Direct-survival CATE models: We include the canonical causal survival forest and SurvITE.

* Survival meta-learners: S-, T-, and matching-learners paired with survival learners (Random Sur-
vival Forest (Ishwaran et al., [2008)), DeepSurv (Katzman et al., |2018)), and DeepHit (Lee et al.,
2018)), for a total of 3 x 3 = 9 variants.

Note that some implemented methods are straightforward extensions of existing ideas despite pre-

viously not being published. For example, (Qi et al., 2023) suggested ways of replacing censoring

times with imputed survival times for the purposes of model evaluation, but their imputation strate-
gies naturally can be coupled with standard CATE learners to obtain survival CATE estimators.

Similarly, pairing meta-learners with different base learners (e.g., lasso regression, XGBoost, or

DeepSurv) yields natural yet previously unpublished variants.

>The AFT noise distribution we use (that is additive in log survival time) is Gaussian so that the resulting
model does not satisfy the proportional hazards assumption (which would require the noise to be Gumbel).
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Semi-synthetic data. We include 6 semi-synthetic datasets from prior work, pairing real covari-
ates (ACTG HIV trial, MIMIC-IV ICU records) with simulated treatments and outcomes, covering
moderate to extreme censoring regimes. These datasets preserve realistic feature distributions while
retaining ground-truth CATEs. Details are in Section[4.2]

Real data. Finally, we incorporate two real datasets, one with ground truth (for which we can use
the same evaluation metrics as with synthetic data) and one without ground truth but with a low
censoring rate (for which we compare how models perform on the original dataset vs on the dataset
with artificially introduced censoring). These provide opportunities to evaluate how methods behave
under real covariate and outcome structures. Details are in Section 4.3

4 BENCHMARKING RESULTS

We now present benchmark results across synthetic, semi-synthetic, and real data, spanning con-
trolled violations of causal assumptions to realistic covariate structures.

4.1

We begin with synthetic datasets, where we evaluate 53 estimator variants across the 40 synthetic
datasets (Section [3), systematically spanning varying causal configurations and survival scenarios.
This controlled setting enables us to probe estimator robustness under systematic violations of iden-
tification assumptions. Our analyses aim to address four questions: (Q1) Which estimators perform
best overall in terms of CATE RMSE and ATE bias? (Q2) How do violations of causal assumptions
(ignorability, positivity, ignorable censoring) affect performance? (Q3) How does the censoring rate
influence estimation quality? (Q4) How do component choices (imputation algorithms and base
learners) affect final CATE accuracy?

SYNTHETIC EXPERIMENT RESULTS AND ANALYSES

Evaluation protocol. Per synthetic
dataset, we conduct experiments with
a random selection of 5,000, 2,500,
and 2,500 points for training, valida-
tion, and testing samples, repeated over
10 random splits. The validation set
is used for selecting the best variant
within each method family, while test
sets are reserved strictly for evaluation.
Additional convergence analyses with
varying training set sizes are in Ap-
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Figure 1: (top) Borda count rankings of the top 10 estima-

4.95
6.25
6.50

pendix [E7] Across all experiments, the
horizon parameter h is set to the max-
imum observed time in each dataset,
which is a common practice that al-
lows for consistent estimation of the re-
stricted mean survival time over the en-
tire observed period. Further experi-
mental details, including hyperparame-
ters, are in Appendix [E]

tor variants (out of 53 total), based on CATE RMSE across
40 datasets and averaged over 10 repeats (lower is better).
(bottom) Family-level rankings, where for each dataset the
best method variant within each method family is chosen
using validation performance and then ranked on the held-
out test set. Black bands connect methods without statis-
tically significant differences (Wilcoxon signed-rank test,
FDR-corrected at o = 0.05). Shaded regions indicate the
standard error of the rank across datasets.

We present results using the following visualizations:

* Borda count rankings. To provide a clear summary across the diverse experimental settings, we
adopt the Borda count method, which ranks methods by CATE RMSE in each dataset (lower is
better) and then averages the ranks across datasets. This approach yields a single, interpretable
score that reflects overall relative performance while accounting for variability across scenarios.
Similar strategies have been used in other benchmarking studies (e.g., Han et al.|[2022) to enable
transparent comparisons across heterogeneous tasks. We report rankings at two levels: (i) indi-
vidual estimator variants (53 total; Figure[T] top), and (ii) aggregated method families, where the
best variant per family is selected on validation data (11 total; Figure|l| bottom). The latter mim-
ics a practical deployment setting where practitioners would tune and select the strongest model
within a family. More granular rankings stratified by survival scenario (Figure [6) and by causal
configuration (Figure[7)) are provided in Appendix
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Figure 2: CATE RMSE in Scenario C across 10 experimental repeats (added SurvITE results).

* CATE RMSE. We report absolute CATE RMSE across 10 repeats, grouped by survival scenario,
with one panel per set of eight causal configurations. In the main paper, we show Scenario C as an
illustrative example (Figure [2); results for the other scenarios are deferred to Appendix [F:4]

* ATE bias. We report ATE bias results, computed analogously to CATE RMSE, in Appendix [F-3]
While the focus of this benchmark is on CATE estimation, these serve as a complementary check.

* Win-rate analyses. Complementing the Borda rankings, we also report win-rates that quantify
how often each method family attains Top-1, Top-3, and Top-5 performance according to CATE
RMSE and ATE bias across all synthetic experiments in Appendix [} Overall win-rates aggre-
gated over all survival scenarios and causal configurations are summarized in Table [T3] while
scenario-specific and configuration-specific win-rates are reported in Tables[T6] and|[I8] These
summaries highlight not only which methods perform well on average, but also which ones most
consistently appear among the top performers under varying censoring regimes and patterns of
causal-assumption violations.

Additionally, in Appendix[F.6] we report a series of auxiliary evaluations of key components, includ-
ing imputation error (Appendix [F.6.1)) for imputation-based methods and regression model accuracy
(Appendix or survival model performance (Appendix [F.6.3) for meta-learners. These results
establish how component-level performance relates to downstream CATE estimation.

Key findings. Overall, performance is strongly context-dependent. For example, in low-censoring
randomized settings, outcome imputation methods such as X-Learner and Double-ML excel. As
censoring intensifies or when assumptions are violated, survival meta-learners and Causal Survival
Forests gain a clear advantage. Within method families, the choice of imputation algorithm or
survival base model critically determines outcomes. We summarize detailed findings below.

Overall performance (Q1). Figure [l (top) presents the Borda count rankings of the top-10 per-
forming methods out of the 53 total configurations evaluated (full ranking in Appendix [FI). The
highest-performing estimators are survival meta-learners built on DeepSurv, with Matching-Survival
(5.60 out of 53) and S-Learner-Survival (5.78) leading, followed by Double-ML with Margin impu-
tation (6.75). Among outcome imputation approaches, Margin appears most frequently in the top
performers, though Pseudo-obs and IPCW-T are also represented.

At the method family level (Figure[2]for Scenario C and Figure [T](bottom) across all causal configu-
rations and survival scenarios), we see how each approach performs when optimally configured. At
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this level, S-Learner-Survival (3.58 out of 11) and Matching-Survival (3.58) maintain their advan-
tage, followed by Double-ML (4.00) and Causal Survival Forest (4.95).

Violations of causal assumptions (Q2). Performance shifts substantially depending on assump-
tion violations (Figure [7). In randomized balanced trials (RCT-50), outcome imputation methods
dominate (X-Learner, 3.20; Double-ML, 3.40), but with imbalanced treatment (RCT-5), Double-ML
remains strong (2.20) while T-Learner-Survival, which relies on fitting base models on the treated
units, drops to last place (8.60) due to sparse treated units.

Under ignorability violation (OBS-UConf, Figure [7]d), Double-ML is the only competitive impu-
tation method, whereas survival meta-learners and Causal Survival Forest retain relatively stable
performance. Examining ATE bias (Figures [I3{17]d), we see that across all scenarios, survival
meta-learners and Causal Survival Forest methods maintain relatively consistent bias levels despite
ignorability violations, whereas survival meta-learners often exhibit a slightly increased bias.

Under positivity violation (0BS-NoPos, Figure [7je), we see the more sophisticated outcome im-
putation approaches like X-Learner and Double-ML maintain strong performance and outperform
survival meta-learners. However, when positivity violations occur alongside other violations (Fig-
ure [7}h), survival meta-learners regain their advantage, demonstrating their robustness to multiple
simultaneous violations. Causal Survival Forest sees a large drop in its ranking, suggesting its lim-
ited robustness to regions of covariate space with deterministic treatment assignment.

Under informative censoring (InfC, Figure [2f-h), survival meta-learners and causal survival forest
continue to outperform outcome imputation approaches. However, all methods show degraded per-
formance compared to their ignorable censoring counterparts with higher CATE RMSE variability.

Impact of censoring rate (Q3). For the impact of censoring rate and survival time distribution (Fig-
ure @, in low-censoring Scenario A, Double-ML and X-Learner lead the rankings, but as censoring
increases through Scenarios B to E, survival meta-learners and causal survival forest progressively
move to the top. By Scenario D (high censoring), S-Learner-Survival (1.62) and Matching-Survival
(2.38) dramatically outperform all other approaches. This pattern suggests that direct survival mod-
eling provides increasing advantages as censoring rates rise, likely due to better handling of the
uncertainty in heavily censored data compared to outcome imputation approaches.

Separately, in Appendix we show ATE bias across different datasets. We observe apparent di-
vergence of the estimated ATE from the true ATE in Scenarios D and E (Figure 16} [I7), where the
censoring rate is very high. Especially when the true underlying event time follows an AFT distri-
bution (Scenario D), almost all estimators failed under all different causal configurations, suggesting
the challenging task of treatment effect estimation under a high censoring rate.

Component effects on CATE estimation (Q4). Auxiliary evaluations in Appendix [F.6|demonstrate
that both imputation accuracy and base learner performance influence downstream CATE estima-
tion. Among outcome imputation methods, Margin consistently achieves the lowest imputation
error and degrades the least under heavy censoring (Appendix [F6.1)), which translates into Margin-
based variants appearing more frequently among the top-ranked estimators (Figure [T)). For survival
meta-learners, higher concordance indices of DeepSurv across survival scenarios (Appendix
explain why DeepSurv-based configurations dominate overall rankings.

4.2 SEMI-SYNTHETIC DATA RESULTS

To bridge the gap between controlled synthetic experiments and real-world complexity, we evaluate
methods on semi-synthetic datasets that pair real covariate distributions with simulated treatments
and outcomes. This approach addresses a critical limitation of purely synthetic data—the potential
lack of representativeness in covariate structures—while maintaining ground-truth CATEs for rig-
orous evaluation. These datasets preserve real-world covariate correlations, mixed data types, and
high dimensionality while enabling controlled evaluation against known treatment effects.

Dataset construction. We construct 10 semi-synthetic datasets with real covariates from two
sources:

* ACTG semi-synthetic: Based on 23 covariates from the ACTG HIV clinical trial (Hammer et al.,
1996), with treatment and event times simulated following |(Chapfuwa et al.| (2021)). This dataset
captures moderate censoring (51%) with realistic treatment imbalance.
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 MIMIC semi-synthetic: Derived from 36 covariates in the MIMIC-IV ICU database (Johnson
et al., 2023)), with treatment and outcomes generated following Meir et al.| (2025). We create five
variants with censoring rates from 53% to 88%, simulating the range from moderate to extreme
censoring common in longitudinal EHR studies. We also include four additional variants (MIMIC-
vi—iz) that use the same covariates but introduce covariate-dependent treatment assignment and
non-linear event-time and censoring mechanisms; these variants maintain similar treatment preva-
lence (51-54%) as the first first five with balanced censoring (53%). Full generative details for
both of these constructions are provided in Appendix and Appendix [G.T.3|respectively.

Table [3] presents CATE RMSE results across our semi-synthetic datasets, revealing how realistic
covariate structures modulate the core performance patterns observed in synthetic experiments. The
results for the remaining semi-synthetic datasets, MIMIC-vi—ix, can be found in Appendix

Table 3: CATE RMSE on semi-synthetic datasets across 10 experimental repeats. Best two methods
per dataset are bolded. (added SurvITE results)

Method Family ACTG MIMIC-i  MIMIC-ii MIMIC-iiz MIMIC-iv ~ MIMIC-v
(censoring rate) (51%) (88%) (82%) (74%) (66%) (53%)
Outcome Imputation Methods

T-Learner 11.257 £0.239 7.964 +0.046 7.912 + 0.046 7.915 £ 0.043 7.912 + 0.043 7.908 + 0.043
S-Learner 11.300 £ 0.221 7.977 £ 0.044 7.968 + 0.047 7.956 + 0.050 7.959 £ 0.046 7.958 + 0.048
X-Learner 11.072 £ 0.196 7.964 + 0.046 7.912 £ 0.046 7.915 +0.043 7.912 +0.043 7.908 + 0.043
DR-Learner 11.334 £0.225 7.964 + 0.046 7.912 +£0.047 7.911 + 0.043 7.911 + 0.043 7.909 + 0.043
Double-ML 10.651 + 0.239 7.954 + 0.047 7.936 £ 0.045 7.919 £ 0.044 7.917 £ 0.046 7.891 + 0.050
Causal Forest 11.154 £ 0.175 7.967 £ 0.045 7.949 + 0.044 7.934 +£0.043 7.931 + 0.047 7.909 + 0.044

Direct-Survival Methods
Causal Survival Forest 11.674 £0.169 7.963 £ 0.057 7.942 +0.039 7.929 + 0.037 7.911 £ 0.051 7.893 + 0.042
SurvITE 15.785 £ 0.894 8.075 +0.116 8.070 £ 0.130 8.005 +0.081 8.014 +£0.114 7.969 +0.112

Survival Meta-Learners

T-Learner Survival 11.428 £0.160 8.007 £ 0.075 7.980 +0.233 7.911 + 0.054 7.902 + 0.042 7.902 + 0.046
S-Learner Survival 11.713 £0.237 7.921 £ 0.044 7.912 + 0.052 7.900 £ 0.045 7.901 + 0.046 7.897 + 0.042
Matching Survival 12.523 £ 0.289 7.949 + 0.043 7.935 £ 0.053 7.920 + 0.047 7.921 £ 0.046 7.912 £ 0.042

Validation and extension of synthetic findings. The semi-synthetic results confirm our synthetic
benchmark’s core insights while revealing additional structure-dependent nuances. Double-ML’s
dominance on ACTG data (10.65 RMSE) validates our synthetic benchmark finding that sophis-
ticated causal methods excel in moderate-dimensional settings with controlled confounding. Sim-
ilarly, S-Learner Survival’s consistent top-tier performance across MIMIC variants (appearing as
best or second-best on four of five datasets) also agrees with our synthetic benchmark finding that
survival meta-learners provide robust performance under challenging censoring conditions.

Enhanced understanding of censoring sensitivity. The MIMIC censoring rate range (53% to 88%)
provides granular validation of synthetic censoring effects while revealing method-specific stability
patterns not observable in synthetic experiments. S-Learner Survival maintains stability across this
range (RMSE range: 7.897-7.921), while T-Learner Survival exhibits instability at extreme censor-
ing (£0.233 standard deviation at 82% censoring). This extends synthetic findings by showing that
censoring tolerance varies not just between method families but within them, providing more precise
guidance for high-censoring scenarios.

Convergence effects in realistic high-dimensional settings. The MIMIC results reveal a novel
finding absent from synthetic experiments: performance convergence in high-dimensional, realistic
covariate spaces. All methods cluster within a narrow RMSE range (7.89-8.01), contrasting with
ACTG’s broader spread (10.65-12.52). This convergence suggests that while synthetic experiments
correctly identify relative method strengths, realistic covariate correlations and mixed data types
may compress performance differences, making method selection dependent on secondary factors
like stability, interpretability, and computational efficiency.

Implications for method selection. The results of our synthetic benchmarks provided foundational
insights that can generalize to realistic settings, while our semi-synthetic evaluation reveals addi-
tional practical considerations. For method selection: (1) In moderate-dimensional settings with
balanced censoring, sophisticated causal methods such as Double-ML offer clear advantages. (2)
In high-dimensional, heavily censored settings typical of EHR studies, survival meta-learners pro-
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vide the best combination of performance and stability. (3) The choice of method should explicitly
consider dataset dimensionality and covariate complexity, not just censoring rates and sample sizes.

In Appendix[G.2] we provide a more detailed analysis of the semi-synthetic results.

4.3 BENCHMARKING ON REAL DATA

We also evaluate the three families of survival CATE estimators on two real-world datasets, one with
known ground truth and one without.

Twin data. The Twins dataset (Almond: o
et all [2005; |Curth et al., 2021a) in- wvs T
cludes twin births from 1989-1991, with ~ &’° ? *

birth weight being heavier in the twin 37 % & I_%I % % * ; ;
as treated and time to mortality as out-  *
come. With known outcomes for both
twins, this dataset provides ground truth
for CATE evaluation. After replicating
the same random treatment assignment
strategy and the censoring time assign-
ment following |Curth et al.| (2021a), the treatment rate and censoring rate for the dataset are 68.1%
and 84.8% respectively across 11,400 twin pairs. Since most of the mortality events occur within
30 days, we use h = 30 days during estimation. Figure [3|shows S- and DR-Learners (with imputa-
tion) and S-Learner-Survival exhibit lower CATE RMSE (7.2 days). T-Learner-Survival and Causal
Forest with imputation exhibit the worse performance, consistent with their overall worse ranking
from the benchmarking on our synthetic datasets (Figure [I)). Surprisingly, Double ML with impu-
tation exhibits the worst performance on the twin data, which is different from the overall ranking,
suggesting potential unique patterns in this dataset. In Appendix [Hl we also show the result with
h = 180 days; the conclusions are similar.

8, *,
2 %, O, e, 22 S, Sun
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Figure 3: CATE RMSE for twin birth data with i =
30. Box plots show the distribution of error across 10
experimental runs (added SurvITE results).

HIV clinical trial. The ACTG 175 dataset (Hammer et al., [1996) compared four antiretroviral
treatments in 2,139 HIV-infected patients. Following Meir et al.| (2025)), we convert time to months
with h=30 months (13.7% baseline censoring) and introduce artificial censoring to test robustness
(increasing to >90% censoring). More details on data and processing can be found in Appendix
Figure [] compares CATE estimates between baseline and high-censoring conditions for the ZDV
vs. ZDV+ddI comparison (results for other treatment comparisons are in Appendix [H). Each point
represents an individual patient, with the 45-degree dashed line indicating perfect consistency be-
tween conditions. We observe distinct behavioral patterns: Causal Survival Forest (green) produces
estimates that cluster tightly around their original values; outcome imputation methods (blue) show
higher variation in baseline estimates but concentrated predictions under high censoring; survival
meta-learners (red) display substantial deviations from the 45-degree line, indicating sensitivity to
censoring conditions. As ground truth is unknown, we cannot determine which approach is more
accurate, but these patterns reveal fundamental differences in how estimators respond to increased
censoring. For example, survival meta learner (the red scatter plots), especially the T- and matching-
learners, exhibit instability under increased censoring settings (large variance in y-axis values).

5 DISCUSSION

SURVHTE-BENCH provides the first comprehensive and extensible platform for systematically
benchmarking heterogeneous treatment effect estimators under right-censored survival settings. By
spanning synthetic, semi-synthetic, and real datasets, the benchmark enables both controlled stress-
testing of estimators under systematic assumption violations and validation in realistic clinical-like
settings. Our empirical evaluations reveal strengths and weaknesses across estimator families.

While we have attempted to make our benchmark reasonably comprehensive, various limitations
remain. First, the synthetic datasets include numerous scenarios representing common real-world
violations, however, they do not encompass all possible complexities, for example, RCT setting
with informative censoring or varying degrees of severity in assumption violations. The binary
nature of our violations (either present or absent) may not capture the nuanced continuum of partial
violations. We recognize that in real-world applications, assumption violations often exist on a
continuum of severity. Future extensions of our benchmark, could incorporate graded sensitivity
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Figure 4: CATE estimation comparison between baseline and high-censoring conditions under ZDV
vs. ZDV+ddI treatments. Each point represents an individual patient, with the dashed diagonal
line indicating perfect consistency between baseline CATE estimation and that with the additional
censoring injected.

analyses, such as varying the magnitude of unmeasured confounding (e.g., via Rosenbaum’s I') or
the degree of overlap violation. This would allow for a more granular “dose-response” analysis
to pinpoint the exact thresholds at which specific estimators break down. Second, extending the
evaluation to include additional estimands such as survival probabilities at fixed horizons would
further enrich the benchmark’s scope. Our focus on restricted mean survival time represents just
one of several clinically relevant estimands for treatment effect estimation. Additionally, we limit
our analysis to static, binary treatments with fixed baseline covariates, excluding scenarios involving
time-varying treatments, instrumental variables, and dynamic covariate structures.

Future work could expand SURVHTE-BENCH in several directions. Incorporating a wider variety
of direct causal estimation methods, such as g-computation approaches specifically designed for
survival outcomes, would provide an even more comprehensive evaluation landscape, especially
because Causal Survival Forest proved to be competitive but showed vulnerability to certain as-
sumption violations like positivity. Exploring more complex data-generating mechanisms that bet-
ter mimic the heterogeneity and longitudinal nature of real-world clinical data represents another
promising direction. Finally, extending the benchmark to support multi-valued or continuous treat-
ments would address important practical scenarios encountered in precision medicine and policy
optimization.

10
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ETHICS STATEMENT

SURVHTE-BENCH has significant positive potential for improving personalized medicine and clin-
ical decision-making by enabling systematic evaluation of survival analysis methods under realistic
assumption violations. By providing standardized benchmarks and practical guidance on when dif-
ferent estimators excel or fail, our work could accelerate the development of more reliable causal
inference methods for high-stakes healthcare applications, ultimately supporting better patient out-
comes through more informed treatment selection.

At the same time, our benchmark carries potential risks if misapplied. Practitioners may misinterpret
benchmark results or place undue confidence in algorithmic decision-making, which could reduce
necessary human oversight in clinical contexts. Moreover, although our study is methodological
and does not involve human subjects directly, differences in estimator performance across demo-
graphic groups could exacerbate existing healthcare disparities if ignored. We therefore stress that
our benchmark should not be used as a substitute for rigorous domain-specific validation, fairness
assessment, or clinical trial evidence.

All datasets used in this work are either publicly available synthetic or semi-synthetic datasets, or
real-world datasets with proper access provisions (e.g., credentialed approval for MIMIC-IV). No
personally identifiable information was used, and all data handling complies with the terms of use of
the original sources. We encourage future applications of SURVHTE-BENCH to incorporate fairness
audits, domain-specific validation, and appropriate safeguards to ensure responsible deployment.

REPRODUCIBILITY STATEMENT

We provide complete resources to reproduce our results across synthetic, semi-synthetic, and real-
data settings. (1) Synthetic data: The benchmark design and evaluation protocol are described in
the main text (Sections [3] and [4.1), including the 8 causal configurations and 5 survival scenarios
(40 datasets total). Extended generation formulas and per-dataset summaries are in Appendix
imputation procedures in Appendix [B} the full list of implemented estimators in Appendix[C} causal
method overviews in Appendix [D} training details and hyperparameter grids in Appendix [E} and
additional synthetic results/analyses in Appendix [F} (2) Semi-synthetic data: Setup, statistics, and
full results appear in Appendix [G]with summary discussion in Sectionf4.2] (3) Real data: Processing
details and additional analyses are provided in Appendix [H} see also Section We further study
additional censoring mechanisms in Appendix

Code and instructions. The full codebase used for all experiments is available at the anonymized
repository: |https://anonymous.4open.science/r/SurvHTE-Benchmark-206B, with scripts and
READMEs to reproduce all figures and tables from raw inputs.

Datasets. In the same anonymized repository, we include: (i) the complete synthetic suite (40
datasets from the 8 x 5 design); (ii) the semi-synthetic datasets, comprising the ACTG (semi-
synthetic) dataset; and (iii) real-data materials for Tvins and ACTG 175. For the semi-synthetic
MIMIC resources, because MIMIC-IV requires credentialed access, we provide code to generate
these datasets rather than redistributing raw MIMIC data. The MIMIC-IV dataset itself is hosted on
PhysioNet at https://physionet.org/content/mimiciv/3.1/ and is publicly available to researchers upon
credentialed approval. All other datasets listed above are included in the supplementary package in
preprocessed or generated form, together with scripts to reproduce all splits and metrics.

In addition to enabling replication of our reported results, we intend SURVHTE-BENCH to serve as
community infrastructure for the evaluation of survival HTE methods. The benchmark is designed
to be modular and extensible, allowing researchers to incorporate new estimators or datasets while
preserving comparability. This ensures not only reproducibility of our experiments but also a lasting
resource for the community, providing a standardized basis for measuring progress in survival causal
inference, a resource that has been missing until now, as well as in related areas of machine learning.
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APPENDIX

In this appendix, we provide detailed descriptions of data generation processes, methodological ex-
planations, experimental setups, and results supplementing the main text. We begin by describing the
mathematical formulations used to create our synthetic datasets, followed by detailed explanations
of imputation methods and causal inference techniques. We then provide comprehensive informa-
tion about model training procedures and hyperparameter settings for reproducibility. The appendix
concludes with additional experimental results on synthetic, semi-synthetic, and real-world datasets.

We would like to declare the use of Large Language Models (LLMs) in this work. LLMs were
used as general-purpose assistive tools. Specifically, they supported parts of the writing process
(editing, formatting, and polishing text) without contributing to the core methodology, scientific
rigor, or originality of the research. In addition, LLMs were used to assist with improving visualiza-
tion code for figures, documenting the code, and minor refactoring. No part of the conceptualization,
design, or execution of the research relied on LLMs.

Appendix [A} Additional Details of the Synthetic Datasets. This section provides the mathe-
matical formulations for generating covariates, treatment assignments, event times, and censoring
times across different scenarios. It describes how the synthetic datasets systematically vary across
causal configurations and survival scenarios, including details on covariate generation, treatment
assignment mechanisms, event time generation, censoring time generation, and observed data con-
struction. This section also includes Kaplan—Meier curves for the synthetic event-time and censoring
distributions, illustrating scenario-level variation used throughout the benchmark.

Appendix[B} Imputation Methods Details. This section explains three surrogate imputation strate-
gies for estimating true event time in right-censored survival data: Margin Imputation, IPCW-T
Imputation, and Pseudo-Observation Imputation. It provides mathematical formulations for each
method and discusses their respective advantages and limitations.

Appendix [C; List of CATE Estimators in SURVHTE Benchmark. This section details the 53
different conditional average treatment effect (CATE) estimator variants evaluated in the benchmark,
including outcome imputation methods, direct-survival CATE models, and survival meta-learners,
with a breakdown of how these variants are constructed.

Appendix D Detailed Overview of Causal Inference Methods. This section provides comprehen-
sive explanations of various causal inference methods, including meta-learners (T-learner, S-learner,
X-learner, DR-learner), Double ML, Causal Forest, Causal Survival Forest, SurvITE, and Survival
Meta-Learners, discussing their implementation in survival contexts.

Appendix |[E: Model Training Details and Hyperparameters. This section covers the hyperpa-
rameter grids, model selection procedures, and computational costs associated with each method
class evaluated in the benchmark, providing details on the experimental setup for reproducibility.

Appendix [F: Additional Experimental Results for Synthetic Dataset. This section presents com-
prehensive experimental results on synthetic datasets, including full rankings of models, win-rate
summaries (Top-1 / Top-3 / Top-5) across methods, performance across different survival scenar-
ios and causal configurations, detailed CATE RMSE and ATE bias plots, evaluation of auxiliary
components, and convergence behavior under varying training set sizes.

Appendix [Gi Semi-Synthetic Datasets. This section includes data setup and detailed analysis
of semi-synthetic datasets derived from ACTG 175 and MIMIC-1IV, including covariate statistics,
censoring rate range, and comprehensive performance results across methods. It additionally re-
ports results for the 4 new MIMIC semi-synthetic datasets, presents results for the added survival-
probability—based CATE estimand across multiple horizons, and includes sensitivity analyses of the
RMST-based CATE where the evaluation horizon is varied.

Appendix [H; Real-World Datasets. This section provides detailed descriptions of data prepro-
cessing and additional experimental results for the Twins dataset and the ACTG 175 HIV clinical
trial dataset, including CATE RMSE results with different time horizons and comparisons of CATE
estimates between baseline and high-censoring conditions.

Appendix I Informative Censoring via Unobserved Confounding. An additional dataset vio-
lating the ignorable censoring assumption via latent confounders. This illustrates extensibility of
SURVHTE-BENCH to incorporate alternative censoring mechanisms beyond the 8 x 5 design.
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A ADDITIONAL DETAILS OF THE SYNTHETIC DATASETS

Our synthetic datasets systematically vary across two orthogonal dimensions: causal configurations
(treatment assignment mechanisms and assumption violations) and survival scenarios (event-time
distributions and censoring mechanisms). This section provides the mathematical formulations for
generating covariates, treatment assignments, event times, and censoring times across all scenarios.
For event time and censoring time distribution, we adapt the generation process from Meir et al.
(2025) and make some adjustments, with, for example, different censoring mechanisms under in-
formative censoring settings; for treatment assignment in observational study settings, we adapt the
propensity score from |Cui et al.|(2023)). For simplicity, we omit the unit index ¢ in this section.

A.1 COVARIATE GENERATION

Following Cui et al.|(2023); [Meir et al.|(2025), for all scenarios, we generate five baseline covariates
independently from uniform distributions:

X, ~ Uniform(0,1), m=1,2,3,4,5
Additionally, we generate two latent confounders Uy, Uy ~ Uniform(0, 1) that are used when testing
violations of the ignorability assumption.

A.2 TREATMENT ASSIGNMENT MECHANISMS

The treatment assignment mechanism W varies according to the causal configuration:

Randomized Controlled Trials (RCT-50, RCT-5): Treatment is assigned randomly with probability
D

W ~ Bernoulli(p)
where p = 0.5 for RCT-50 and p = 0.05 for RCT-5.

Observational Studies (0BS-): Treatment assignment depends on covariates through a propensity
score mechanism:
1+ Beta(X1;2,4)

e(X) y (OBS-CPS)
1+ Beta(0.3X, + 0.7U;:2,4
(X, U) = —- sta i+ 1:2,4) (0BS-UConf)
1 ifX; >08

e(X)=4¢0 if X1 <0.2 (OBS-NoPos)
0.5 otherwise

where Beta(x; a, b) denotes the Beta probability density function with parameters a and b evaluated
at z. For all observational configurations, W ~ Bernoulli(e(-)).

A.3 EVENT TIME GENERATION
Event times 7'(w) under treatment w € {0,1} are generated according to five different survival
scenarios:

Scenario A (Cox Model): Event times follow a Cox proportional hazards model with Weibull base-
line hazard:

Ar (W, X) = ho(t) - exp(8” 2)
=0.5t7%% - exp[X] + (0.5 + Xp) - W + ¢

where ho(t) = 0.5¢t=%-° is the Weibull baseline hazard with shape parameter k& = 0.5 and scale pa-
rameter Ao = 1.0, and € = 0.5(U; — X>) if unobserved confounding is present, and ¢ = 0 otherwise.
Event times are generated via inverse transform sampling from the corresponding survival function.

Scenario B (AFT Model): Event times follow an Accelerated Failure Time (AFT) model:
logT(w) =—-1.85—-0.8-1(X; < 0.5) + 0.7/ X2 + 0.2X35
+[0.7-04-1(X; <05) =04/ Xo] - W+e+n
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where 77 ~ N(0,1) and € is defined as in Scenario A.

Scenario C (Poisson Model): Event times follow a Poisson distribution:
Mw) = X2+ X3+ 6+2(v/X1 —0.3) - W+ ¢
T (w) ~ Poisson(A(w))

Scenario D (AFT Model): Event times follow an AFT model with parameters adjusted for higher
censoring:

log T(w) = 0.3 — 0.5 - 1(X; < 0.5) + 0.5v/X; + 0.2X3
+1-08-1(X; <0.5)—0.8Xs] - W+e+n

Scenario E (Poisson Model): Event times follow a Poisson distribution with adjusted parameters:

AMw) = X2+ X5+ 7+2(/X1 —0.3)- W +e
T (w) ~ Poisson(A(w))

A.4 CENSORING TIME GENERATION

Censoring times C' are generated differently across scenarios and depend on whether informative
censoring is present:
Ignorable Censoring (Non-InfC Scenarios):
Scenario A:  C' ~ Uniform(0, 3)
Scenario B:  A\¢(t|W, X) = hoc(t) - exp(y? Z)
= 2.0t"0 - exp[y]
where y1 = —1.75 — 0.5v/Xa + 0.2X3 + [1.15 + 0.5 - 1(X; < 0.5) — 0.3/ X,] - W

00 with probability 0.6
1+ 1(X4 <0.5) with probability 0.4

Scenario D:  Ac(t|W, X) = hoc(t) - exp(y? Z)
= 2.0t - exp[v]

where v = —0.9 + 2¢/X5 + 2X3 + [1.15 + 0.5 - 1(X;1 < 0.5) — 0.3v/Xo] - W
Scenario E:  C ~ Poisson(3 + log(1 + exp(2X2 + X3)))

ScenarioC: C = {

For scenarios B and D, hoc(t) = 2.0t'0 is the Weibull baseline hazard for censoring with shape
parameter £k = 2.0 and scale parameter Ay = 1.0. Censoring times are generated via inverse
transform sampling from the corresponding survival function.

Informative Censoring (-InfC Scenarios): When testing violations of ignorable censoring as-
sumptions, we replace the above mechanisms with:

C; ~ Exponential(rate = Ao + o - T5) 2)

where \g = 1.0 and o = 0.1 are baseline parameters that create dependence between censoring and
event times.

While in the main benchmark we induce informative censoring by making censoring times depen-
dent on event times, this is not the only way to violate the ignorable censoring assumption. To
demonstrate the extensibility of our modular design and for completeness, we additionally include
in Appendix [ a setting where informative censoring arises through unobserved confounding.

A.5 OBSERVED DATA CONSTRUCTION

The observed survival data consists of:
T = min(7,C) (observed time)
d=1(T < C) (eventindicator)
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where T = T'(W) represents the factual event time under the observed treatment assignment.

The combination of these five survival scenarios with eight causal configurations yields our com-
prehensive benchmark of 40 synthetic datasets, each designed to test estimator performance under
specific combinations of survival dynamics and causal assumption violations.

Table 4: Summary of event time and censoring time generation across survival scenarios

Scenario  Event Time Distribution Censoring Mechanism Censoring Rate
A Cox (Weibull baseline, k = 0.5) Uniform(0, 3) Low (< 30%)
B AFT (Log-normal) Cox (Weibull baseline, k = 2.0)  Low (< 30%)
C Poisson Piecewise uniform Medium (30-70%)
D AFT (Log-normal) Cox (Weibull baseline, k = 2.0)  High (> 70%)
E Poisson Poisson High (> 70%)

Table 5: Censoring rate of synthetic datasets (50,000 samples). Notice that the censoring rates are
different from Table [2under informative censoring due to changes in the censoring distribution.

Survival Scenarios

Causal Configurations A B C D E

RCT-50 0.203 0.073 0.392 0913 0.79%4
RCT-5 0.200 0.036 0.390 0.881 0.770
0BS-CPS 0.201 0.066 0.393 0914 0.789
0BS-UConf 0.201 0.073 0.392 0918 0.795
0BS-NoPos 0.203 0.082 0.393 0.912 0.803
OBS-CPS-InfC 0.116 0.052 0.885 0.366 0.926
0BS-UConf-InfC 0.116 0.054 0.888 0.381 0.929
OBS-NoPos-InfC 0.116 0.058 0.891 0.403 0.932

Table 6: Treatment rate of synthetic datasets (50,000 samples).

Survival Scenarios

Causal Configurations A B C D E

RCT-50 0.502 0.502 0.502 0.502 0.502
RCT-5 0.049 0.049 0.049 0.049 0.049
0BS-CPS 0.503 0.503 0.503 0.503 0.503
0BS-UConf 0.539 0.539 0.539 0.539 0.539
0BS-NoPos 0.500 0.500 0.500 0.500 0.500
0BS-CPS-InfC 0.503 0.503 0.503 0.503 0.503
0BS-UConf-InfC 0.539 0.539 0.539 0.539 0.539
0BS-NoPos-InfC 0.500 0.500 0.500 0.500 0.500

Table 7: Average treatment effect (ATE) of synthetic datasets (50,000 samples).

Survival Scenarios

Causal Configurations A B C D E

RCT-50 0.163 0.125 0.750 0.724 0.754
RCT-5 0.163 0.125 0.750 0.724 0.754
0BS-CPS 0.163 0.125 0.750 0.724 0.754
0BS-UConf 0.004 0.132 0.740 0.831 0.740
0BS-NoPos 0.163 0.125 0.750 0.724 0.754
0BS-CPS-InfC 0.163 0.125 0.750 0.724 0.754
0BS-UConf-InfC 0.004 0.132 0.740 0.831 0.740
0BS-NoPos-InfC 0.163 0.125 0.750 0.724 0.754
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Figure 5: (Synthetic datasets) Kaplan-Meier curves for event and censoring distributions.

Remark on parameter calibration. The constants used in our synthetic generators are inherited
from and aligned with prior causal-survival simulation setups (Cui et al 2023} [Meir et al [2023),
and are set to span distinct, interpretable regimes that the benchmark aims to cover. In particular, we
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calibrate (i) censoring severity by shifting the relative scales of event-time and censoring-time pro-
cesses (e.g., the AFT intercept change between Scenarios B and D increases typical event times and,
together with the corresponding censoring model, yields higher censoring in D); (ii) treatment preva-
lence and confounding strength by adjusting propensity-score weights so that most configurations
remain near balanced treatment except where imbalance is intentional (e.g., RCT-5), while allow-
ing controlled dependence on observed or latent drivers; and (iii) effect magnitude/heterogeneity
through the coefficients on W and W —covariate interactions, which we keep in a moderate range
for comparability across scenarios. These choices are not unique, and alternative parameterizations
could yield valid benchmarks; our goal is to provide a principled and reproducible instantiation that
cleanly separates survival dynamics from causal-assumption stress and produces a broad range of
survival CATE evaluation settings.
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B IMPUTATION METHODS DETAILS

We follow Q1 et al.| (2023) to implement three surrogate imputation strategies for estimating the
true event time 7' in right-censored survival data. Let Y = min(7, C') be the observed time, with
censoring indicator § = 1{T" < C}. Let Sgw(p)(t) denote the Kaplan-Meier estimate of the
survival function using the dataset D, and /N the number of subjects. The three methods below are
used to impute a surrogate outcome 7; for censored subject ¢ observed at time ;.

1. Margin Imputation: This method assigns a “best guess” value to each censored subject using
the nonparametric Kaplan—-Meier estimator. This surrogate value, called the margin time, can be
interpreted as the conditional expectation of the event time given that the event occurs after the
censoring time. For a subject censored at time ¢;, the margin-imputed event time is computed as:

I > S t)dt
T,imdrgln _ E[TZ | T,Z > tl} — fti KM(D)( ) (3)
Skm(p) (ti)

where Ski(p) (t) is the Kaplan-Meier survival estimate derived from the training dataset.

The reliability of this imputation depends on the censoring time. For example, if a subject is censored
very early (e.g., at time 0), the margin time is highly uncertain due to the lack of observed data
beyond that point. In contrast, if a subject is censored near the maximum observed follow-up, the
margin time is more likely to be close to the true event time.

2. IPCW-T Imputation: This method imputes a surrogate event time for censored subjects based
on the observed outcomes of subsequent uncensored individuals. Specifically, for a subject censored
at time ¢;, the imputed value is calculated as the average event time of all uncensored subjects with
observed times after ¢;:

N
TIPCW - Zj:l ]l{tl < tj} ’ ]1{67 = 1} ’ tj
( - N
>oj=1 Mt <tj}-1{5; =1}
This imputes the event time for subject ¢ by averaging the observed event times of those uncen-

sored subjects who experienced the event after ¢;. The method is motivated by the idea that these
subsequent subjects provide empirical evidence about the possible timing of the unobserved event.

4)

However, a limitation of this approach is that it fails to provide an imputation when there are no
uncensored subjects observed after ¢;. In such cases, the denominator of the expression becomes
zero, and the method is unable to approximate the event time. In|Qi et al.[(2023), subjects for whom
this occurs are excluded from evaluation, whereas in our setup we used the original observed time
as the imputed time.

3. Pseudo-Observation Imputation: This method imputes the event time using pseudo-
observations, which estimate the contribution of each subject to an overall unbiased estimator of

the event time distribution. Let 6 be an estimator of the mean event time based on right-censored

data, and let % denote the same estimator computed with the ¢-th subject removed from the dataset.
Then, the pseudo-observation for subject ¢ is defined as:

TP = epeengoons(ti, D) = N -6 — (N —1)- 471 (5)

This quantity can be interpreted as the individual contribution of subject ¢ to the overall estimate 0.
In practice, both § and #~* can be computed using the mean of the Kaplan-Meier survival curve:

0 =E, [Skm(p) ()], 6= = E; [Skm(p\ {i}) ()]

Once the pseudo-observations 77**** are computed for all censored subjects, they are substituted in
place of the true event times for evaluation or modeling.

Although pseudo-observations are not exact conditional expectations, they can approximate E[T; |
X;] under certain assumptions. In particular, when censoring is independent of covariates and the
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sample size is large, pseudo-observations behave asymptotically like i.i.d. draws from the true
conditional expectation:

E[TP* | X;] = E[T; | X;]

This makes the pseudo-observation method a principled, nonparametric approach for imputing cen-
sored survival times, particularly when estimating global quantities like the mean event time.

These imputation strategies enable us to transform the survival outcome into a fully observed target
variable, allowing the application of standard regression-based methods in causal effect estimation.
To ensure meaningful estimates, it is important that each imputed event time for a censored subject
is guaranteed to be greater than or equal to the censoring time-reflecting the fact that the true event
must occur after the last time it was observed. In our implementation, we manually enforce this
constraint by setting the imputed value to the observed censoring time whenever the imputation
procedure yields a value less than ¢;.
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C LisT OF CATE ESTIMATORS IN SURVHTE BENCHMARK

As mentioned in Section[3] in our benchmark, we evaluate three families of survival CATE methods,
totaling 53 variants. We list the number of variants for each type of CATE estimator in Table[§]

For the outcome imputation methods, we first apply one of three imputation strategies (Pseudo-
observation, Margin, or IPCW-T) (Qi et al., 2023) to handle the censored data, transforming the
survival problem into a standard regression task. After imputation, we use these imputed outcomes
with four different meta-learner frameworks (S-, T-, X-, and DR-Learners), each implemented with
three different base regression models (Lasso Regression, Random Forest, and XGBoost), resulting
in 3 X 4 x 3 = 36 different variants. Additionally, we pair each imputation method with two special-
ized causal inference methods: Causal Forest (Athey et al., 2019) and Double ML (Chernozhukov
et al., 2018), which adds 3 x 1 + 3 x 1 = 6 more variants, for a total of 42 outcome imputation
method variants.

For direct-survival CATE models, we include the Causal Survival Forest (CSF) (Cui et al., [2023)) as
a standalone method, which is specifically designed to handle right-censored data without requiring
separate imputation steps. Additionally, we include SurvITE (Curth et al.l [2021a) which estimates
individual treatment effects directly from right-censored survival data by learning balanced repre-
sentations and optimizing a survival-specific loss.

For survival meta-learners, we implement three types of meta-learning frameworks that have been
extended to handle censored data directly: S-learner, T-learner, and matching-learner (Noroozizadeh
et al.,[2025)). Each of these frameworks is combined with three different base survival models (Ran-
dom Survival Forest (Ishwaran et al.l |2008), DeepSurv (Katzman et al., 2018)), and DeepHit (Lee
et al., 2018)) that estimate the underlying survival functions, resulting in 3 x 3 = 9 survival meta-
learner variants.

In total, our benchmark evaluates 42 4+ 2 4+ 9 = 53 different method configurations across the 40
synthetic datasets and the two real-world datasets described in Section

Table 8: Breakdown of benchmarked survival-CATE estimator variants used in our experiments.
Each row corresponds to a specific combination of method class, imputation strategy (if applicable),
base learner(s), and CATE learner(s). Cells with numbers in parentheses indicate how many variants
are contributed by the method(s) listed in that cell. The final column reports the total number of
method variants constructed using that combination.

Imputation Base Learner CATE Learner .
Method Class (No. options) (No. options) (No. options) No. Variants
Lasso Regression, Meta-Learners
Outcome Pseudo-obs, Random Forest, XGBoost (S-, T-, X-, DR-) 36
Imputation Margin, 3) ®
Method IPCW-T Causal Forest 3
( 3 ) - ( 1 )
. Double ML 3
m
Causal Survival Forest
Direct-Survival m 2
CATE Models o o SurvITE
M
Survival Random Survival For_est, Survival Meta-Lgarners
Meta-Learners — DeepSurv, DeepHit (S-, T-, Matching-) 9
3) 3)
Total 53
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D DETAILED OVERVIEW OF CAUSAL INFERENCE METHODS

This section provides a comprehensive explanation of the causal inference methods evaluated in our
benchmark. We begin with outcome imputation methods that transform censored survival data into
standard regression problems, followed by direct-survival CATE models specifically designed for
right-censored data, and finally survival meta-learners that adapt standard meta-learner frameworks
to handle censoring. For each method, we present the theoretical foundation, algorithmic procedure,
and specific implementation considerations in the survival analysis context. Our exposition focuses
on highlighting the unique characteristics that make each approach suitable for different survival
and causal inference scenarios, with particular attention to how these methods handle the challenges
posed by censoring and treatment effect heterogeneity.

D.1 OUTCOME IMPUTATION METHOD

Meta-learners represent a flexible framework for estimating conditional average treatment effects
(CATEs) by decomposing the causal inference problem into standard supervised learning tasks.
The key advantage of meta-learners is that they allow practitioners to leverage any out-of-the-box
machine learning algorithm as a “base learner” while maintaining principled approaches to causal
effect estimation. This modularity makes meta-learners particularly attractive in practice, as they can
incorporate state-of-the-art ML methods (e.g., random forests, gradient boosting, neural networks)
without requiring specialized causal inference implementations. For detailed explanations on meta-
learners, one can refer to |Kiinzel et al.| (2019); Kennedy| (2023). We provide a simplified overview
below and largely refer to the documentation of the econml| package.

T-learner (Kiinzel et al., 2019). The T-Learner (Two-Learner) adopts the most straightforward
approach by fitting separate outcome models for treated and control groups. Given binary treatment
W € {0,1}, features X, and outcome Y, the T-Learner:

1. Splits the data by treatment assignment: (X°, Y ) for controls and (X!, Y'!) for treated units
2. Trains separate outcome models (i.e. predicting the outcome Y using features X):

For control units: fig = Mo(Y" ~ X©)
For treated units: fi; = M;(Y! ~ X1)
3. Estimates CATE as:
7(x) = i (2) — fio(z)
where My and M; can be any regression algorithm. The T-Learner is conceptually simple but can

suffer from high variance when treatment groups have different sizes or when the outcome models
extrapolate poorly to regions with limited overlap.

S-learner (Kiinzel et al., 2019). The S-Learner (Single-Learner) takes a unified modeling approach
by including treatment assignment as an additional feature. The procedure involves:

1. Training a single model using all available data:
fi=M(Y ~ (X, W)
2. Estimating CATE as:
7(z) = ji(x, 1) — ji(x,0)
This approach leverages all available data for training and can be more sample-efficient than the
T-Learner. However, it relies heavily on the base learner’s ability to capture treatment-feature inter-

actions, and may perform poorly when these interactions are complex or when the treatment effect
is small relative to the baseline outcome.

X-learner (Kiinzel et al.,2019). The X-Learner represents a more sophisticated approach that
combines ideas from both T-Learner and inverse propensity weighting. The algorithm proceeds in
multiple stages:

1. Fit initial outcome models:
fio = My(Y° ~ X°)
fn = My(Y' ~ X1
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2. Compute imputed treatment effects:
For treated units: D' = Y — jio(X?)
For control units: D° = /i, (X°) — Y°
3. Model treatment effects:
To = My(D° ~ X0)
71 = My(D' ~ X1
4. Combine estimates using propensity scores:

7(z) = g(2)70(x) + (1 — g(2))71(2)

where g(x) is the estimation for propensity score P(W = 1|X = z) and is typically fitted using
logistic regression. The X-Learner is particularly effective when treatment groups have different
sizes or when treatment effects are heterogeneous, as it explicitly models treatment effect variation
and uses propensity weighting for optimal combination.

DR-learner (Kennedy,2023). The DR-Learner (Doubly Robust Learner) extends the doubly robust
framework to meta-learning by combining outcome modeling with propensity score estimation. The
approach constructs doubly robust scores that remain consistent if either the outcome model or
propensity model is correctly specified. It includes the following steps:

1. Fit outcome modeling for each treatment
fio = My (Y? ~ X°)
fn = Mp(Y' ~ X7

2. Construct propensity score modeling

3. Construct doubly robust outcomes:

o e (V=X)L
DR _ Y —mX) e =

4. Final CATE estimation: 7(z) = Y;°® — Y,PR

The DR-Learner provides theoretical robustness guarantees and often performs well in practice,
particularly when either outcome or treatment assignment can be accurately modeled.

Double ML (Chernozhukov et al., 2018). Double Machine Learning (Double ML or DML) rep-
resents a principled framework for estimating heterogeneous treatment effects when confounders
are high-dimensional or when their relationships with treatment and outcome cannot be adequately
captured by parametric models. The key insight of DML is to decompose the causal inference prob-
lem into two predictive tasks that can be solved using arbitrary machine learning algorithms while
maintaining favorable statistical properties. Specifically, DML assumes the following structural re-
lationships:

Y =0(X) W+g(X,Z)+e with Ele|X,Z]=0

e W=f(X,2)+n with E[nX,Z]=0

* Eln-€X,Z]=0
where Y is the outcome, W is the treatment, X are the features of interest for heterogeneity, Z are
confounding variables, and 6(X) is the conditional average treatment effect we aim to estimate. The
method proceeds by first estimating two nuisance functions:

* Outcome regression: ¢(X, Z) = E[Y|X, Z]

* Treatment regression: f(X,Z) = E[W|X, Z]
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These nuisance functions can be estimated using any machine learning algorithm capable of regres-
sion (for continuous treatments) or classification (for binary treatments). Popular choices include
random forests, gradient boosting, neural networks, or regularized linear models. After obtaining

estimates ¢ and f , DML constructs residualized outcomes and treatments:
Y =Y -§(X,2)
W =W - f(X,Z)

The final step estimates 6( X ) by regressing Y on W and X
= arg mﬁin]En[(f/ —9(X)-W)?

Causal Forest (Athey et al., 2019). Causal Forest extends the random forest methodology to di-
rectly estimate heterogeneous treatment effects in a non-parametric, data-adaptive manner. Unlike
meta-learners that rely on global models, Causal Forest estimates treatment effects locally by learn-
ing similarity metrics in the feature space and weighting observations accordingly. Causal Forest
builds upon the same structural assumptions as DML but estimates 6(x) locally for each target point
x. The method constructs a forest where each tree is grown using a causal splitting criterion that
maximizes treatment effect heterogeneity rather than prediction accuracy. For a target point z, the
treatment effect is estimated by solving:
n
0(z) = argmin » K, (X;) - (Y — 0 - W;)?
(it

where K, (X;) represents the similarity between points « and X; as determined by how frequently
they fall in the same leaf across the forest, and Y, W are residuals from nuisance function estimates.

Implementation in Survival Context In our benchmark, meta-learners, double ML, and causal
forest are applied to survival outcomes through outcome imputation methods. We first apply impu-
tation techniques (Pseudo-obs, Margin, or IPCW-T, see Appendix [B]for details) to convert censored
survival times into continuous outcomes, then apply the meta-learners described above with various
base regression algorithms (Lasso Regression, Random Forest, XGBoost). This two-stage approach
allows leveraging the rich ecosystem of causal inference methods developed for continuous out-
comes while handling the complexities of censored data.

D.2 DIRECT-SURVIVAL CATE MODELS

Causal Survival Forest (CSF) (Cui et al., 2023) extends the causal forest methodology directly
to right-censored survival data by incorporating doubly robust estimating equations from survival
analysis. Unlike meta-learners that require outcome imputation, CSF handles censored observations
natively while maintaining the adaptive partitioning advantages of tree-based methods. CSF builds
upon the causal forest framework of |Athey et al.|(2019) but adapts the splitting criterion and estima-
tion procedure for survival outcomes. For a detailed explanation of the method, please refer to the
original paper by [Cui et al.|(2023)). We provide an overview of the estimation procedures as follows:

1. Nuisance estimation: Using cross-fitting, estimate nuisance components including:
* Propensity scores: é(z) = P(W =1|X = x)
* Outcome regression: m(z) = Efy(T)|X = «|
« Censoring survival function: 5 (s|z) = P(C' > s|W = w, X = z)
« Conditional expectations: Qy, (s|z) = E[y(T)|X = 2,W = w, T A h > 5|
where y(7T') is a transformation applied on the event time 7', the same as defined in Eq
2. Forest construction: Build a forest where each tree uses a causal splitting criterion that max-
imizes treatment effect heterogeneity. The splitting rule targets variation in the doubly robust
scores rather than prediction accuracy.
3. Local estimation: For a target point ;, compute forest weights «(x) indicating similarity based
on leaf co-occurrence across trees, then estimate the CATE by solving:

Z OK(JU)T/Jf(z)(X’ y(U)7 UN hv W7 Ah; é7m7 Sg7 Qw) =0

where 1 is the doubly robust score function that adjusts for both treatment assignment and
censoring.
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SurvITE (Curth et al., 2021a) adapts the representation learning paradigm for counterfactual
inference to time-to-event data. Unlike methods that rely on local similarity in the covariate
space, SurvITE addresses selection bias by learning a shared latent representation where the treated
and control distributions are balanced, while simultaneously modeling the censorship mechanism.
SurvITE builds upon the theoretical bounds of counterfactual regression but incorporates survival-
specific loss functions to handle right-censored outcomes without requiring imputation. A brief
outline of the method follows:

1. Representation learning: Map covariates X to a latent representation ®(X) via a deep neural
network, subject to a discrepancy penalty. The objective is to minimize an Integral Probability
Metric (IPM) (e.g., Wasserstein distance or MMD) between the treated and control populations
in the latent space:

IPM(Py(X|W = 1), Ps(X|W = 0)) < ¢

2. Factual loss minimization: Simultaneously train treatment-specific hypothesis heads (h; and
ho) on top of ®(X) using a survival loss function Ly, (discrete-time log-likelihood) that
accounts for censoring:

N

i : (®(:)), T, A IPM
o, DL (v, (B(z0). T ) +

3. Effect estimation: For a target point z, the CATE is estimated by passing « through the learned
representation and computing the difference between the outputs of the treatment and control
heads:

7(x) = Ely(T)[®(2), W = 1] = Ely(T)|®(z), W = 0]

where the expectation is derived from the predicted survival curves or time-to-event distribu-
tions output by hy and hy.

D.3 SURVIVAL META-LEARNERS

T-Learner-Survival (Bo et al., [2024; Noroozizadeh et al.,2025). The T-Learner can be adapted
to right-censored survival data by fitting separate survival models for each treatment group. Let
W € {0,1} denote the treatment indicator, X be the covariate vector, and T the observed survival
time with censoring indicator §, and h the maximum follow-up time.

1. Split data by treatment: Partition the dataset into (X°,7°,8°) for W = 0 and (X!, T?,6%)
for W = 1.

2. Train separate survival models: Fit a survival model (e.g., Random Survival Forest, Deep-
Surv, DeepHit) to each group:

So(u|z) = Survival model fitted on (X°, 77, §°)
5y (u|x) = Survival model fitted on (X*, 7", 6)

3. Estimate Restricted Mean Survival Time (RMST): Compute RMST for each treatment as:

h h
fole) = | Soluleldu, fa(e) = [ Si(ule)du
0 0
4. Estimate CATE: For any z, estimate treatment effect:
?T—learner(l') = ﬁl (1') - //ZO (.’ﬂ)

S-Learner-Survival (Bo et al.,[2024; [Noroozizadeh et al.,2025). The S-Learner adapts by training
a single survival model over all data with treatment as a covariate.

1. Fit survival model: Train a survival model over the full dataset using (X, W) as inputs:

S(ulz,w) = Survival model fitted on ((X, W), T, §)
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2. Estimate Restricted Mean Survival Time (RMST): Compute RMST under both treatment
conditions:
h

h
p(z,0) = S(ul|z,0)du, p(xz,1) = / S(ulx, 1)du
0 0

3. Estimate CATE:
7/:S-leamer(x) = ,L/Z(I, 1) - ZZ(I, 0)

Matching-Survival (Noroozizadeh et al., [2025). The Matching-Learner estimates the CATE by
imputing the counterfactual Restricted Mean Survival Time (RMST) using matched data points from
the opposite treatment group.

1. Estimate factual RMST: Fit a survival model on the full dataset and compute:

h
0

2. Find matches: For each individual ¢, identify K nearest neighbors Jk (i) from the opposite
treatment group (1 — W;).
3. Estimate counterfactual RMST: Average factual RMSTs of matched neighbors:

~ 1 ~
fa-wi (X)) = 2= > (X))
JEJK(7)
4. Estimate CATE: Compute CATE for each unit:
Tmatching(Xi) = (Aw, (Xi) — ii—w, (X5)) - (2W; — 1)

This approach makes minimal modeling assumptions beyond nearest-neighbor similarity and is par-
ticularly helpful in settings with low overlap or where global models may be misspecified.
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E MODEL TRAINING DETAILS AND HYPERPARAMETERS ON
BENCHMARKING WITH SYNTHETIC DATA

To rigorously evaluate and compare the performance of causal inference models under controlled
conditions, we conducted extensive benchmarking on synthetic datasets. Each synthetic dataset
consisted of 50,000 samples generated under known data-generating processes explained in Ap-
pendix [A] For each experimental repeat, we selected a subset of 5,000 samples for training, 2,500
for validation, and 2,500 for testing, using 10 distinct random seeds (experimental repeats) to en-
sure robustness. Hyperparameters for each model were tuned on the validation set to minimize the
Conditional Average Treatment Effect Root Mean Squared Error (CATE-RMSE). Throughout this
paper, final results are always reported on the held-out test set using the best-performing configura-
tion. Appendix [F.7| provides complementary experiments that analyze the convergence behavior of
each method under varying training set sizes.

This appendix details the hyperparameter grids used for model selection, the specific survival and
outcome models applied within each causal inference framework, and the average computational
cost associated with each method class.

E.1 HYPERPARAMETERS FOR OUTCOME IMPUTATION METHODS

For methods based on outcome imputation, we employed standard regressors to estimate the con-
ditional mean of the survival outcome given covariates and treatment assignment. We considered
Lasso regression, Random Forest, and XGBoost as base models. Each was optimized using cross-
validated grid search on the training set. The corresponding hyperparameter grids are listed in
Table

Table 9: Hyperparameter Grids for Outcome Imputation Regressors

Regressor Hyperparameter Grid
Lasso Alpha: {0.001, 0.01, 0.1, 1, 10}

Random Forest Number of trees: {50, 100}
Maximum depth: {3, 5, None}

XGBoost Number of trees: {50, 100}
Learning rate: {0.01, 0.1}
Maximum depth: {3, 5}

E.2 HYPERPARAMETERS FOR DIRECT SURVIVAL CATE MODELS

For direct modeling of survival outcomes, we employed the Causal Survival Forest (CSF), which
adapts the Causal Forest framework to handle right-censored data. We used the default hyperparam-
eters from the original implementation. These are summarized in Table [I0]

Table 10: Default Hyperparameters for Causal Survival Forest

Parameter Default Value
Number of trees grown 2000

Fraction of data per tree 0.5

Variables tried per split min([,/p + 201, p)
Minimum samples in a leaf 5

Maximum imbalance of splits 0.05

Penalty for imbalance at split 0

Account for treatment and censoring in split stability TRUE

Trees per subsample for confidence intervals 2

For SurvITE (Curth et al.| 2021a)), we implemented a PyTorch version based on the original architec-
ture and repository and used the default training hyperparameters from the original paper, adapted

29



Under review as a conference paper at ICLR 2026

for our datasets. The main configuration is summarized in Table[TT] Unless otherwise noted, we use
the same settings for all datasets; for mimic_syn we increase the hidden layer widths to 64 units to
accommodate the higher-dimensional feature space.

Table 11: Default Hyperparameters for SurvITE

Parameter Value

Latent representation dimension z_dim 32

Shared hidden layer width h_dim1 32 (64 for mimic_syn)
Head hidden layer width h_dim2 32 (64 for mimic_syn)
Number of shared layers num_layersl 3

Number of head layers num_layers2 2

Activation function ReLU

Dropout rate 0.3

IPM type Wasserstein

IPM regularization weight 3 1073

Smoothing parameter vy 0

Learning rate 1073

Batch size 256

Maximum epochs 1500

Early stopping patience 20

E.3 HYPERPARAMETERS FOR SURVIVAL META-LEARNERS

For survival meta-learners—specifically T-Learner-Survival, S-Learner-Survival, and Matching-
Learner-Survival-we used three different base survival models: Random Survival Forest (RSF),
DeepSurv, and DeepHit. Each of these models was tuned using a predefined hyperparameter grid,
listed in Table

Table 12: Set of Hyperparameters for Survival Analysis Models

Model Hyperparameter Values
Number of estimators {100, 250, 500}
RSF Minimum samples per split {5, 10, 20}
Minimum samples per leaf {2,5,10}
Number of nodes per layer {32, 64, 128, 256}
Batch normalization {True, False}
Dropout rate {0.0,0.1,0.2, 0.3}
.. Learning rate {0.001, 0.01, 0.05}
DeepHit  patch size {128, 256, 512}
Epochs {200, 512, 1000}
Alpha {0.1,02,0.3,0.5}
Sigma {0.05,0.1,0.2, 0.3}
Number of nodes per layer {32, 64, 128, 256}
Batch normalization {True, False}
DeepSury Dropout rate {0.0,0.1,0.2, 0.3}
P Learning rate {0.001, 0.01, 0.05}
Batch size {128, 256, 512}
Epochs {200, 512, 1000}

Hyperparameters were selected through empirical tuning informed by prior literature. For neural
network-based models (DeepSurv, DeepHit), we used early stopping to mitigate overfitting. All
experiments were made reproducible by setting random seeds. The best-performing hyperparame-
ter configuration was selected using CATE-RMSE on the validation set, and all final results were
obtained on the test set using these optimal configurations.
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E.4 COMPUTATION TIME OF CAUSAL METHODS

We also measured the computational cost of each CATE estimation method in terms of average run-
time per dataset and experimental repeat. Each runtime was recorded using Python’s time. time()
and averaged across 40 synthetic datasets and 10 random seeds. Table[I3]presents the mean runtime
(in seconds) and standard deviation (excluding the time required for imputation). As expected, neu-
ral network-based survival models incur substantially higher computational costs than classical or
tree-based methods. All experiments were conducted on a machine equipped with an AMD Ryzen
9 5900X CPU, 128GB RAM, and an NVIDIA GeForce RTX 4090 GPU (CUDA version 12.2).

Table 13: Average computation time per dataset per experimental repeat for each causal method.
Runtime is reported in seconds with standard deviation across runs.

Method Class Method Runtime (s)
T-learner 2.14 £ 1.38
Outcome Imputation Method: S-learner 1.84 £ 1.22
Meta-learners X-learner 292 +£242
DR-learner 3.34 £ 1.88
Outcome Imputation Method: Double ML 5.27 £ 040
Forest / ML-based learners Causal Forest 5.75 £ 0.40
. . Causal Survival Forest 0.78 4+ 0.06
Direct-Survival CATE Models SurvITE 4326 + 6.62
T-learner Survival 31.31 4+ 16.88
Survival Meta-Learners S-learner Survival 22.99 + 14.23

Matching-Survival 49.40 +£23.25
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F ADDITIONAL EXPERIMENTAL RESULTS FOR SYNTHETIC DATASET

This section provides comprehensive experimental results on our synthetic datasets, expanding on
the key findings presented in the main text. We begin in Appendix [F.I] with a full Borda rank-
ing of all 53 model combinations, summarizing global performance across every causal configura-
tion and survival scenario. In Appendix [F.2] we explore how performance varies across different
survival scenarios—illustrating the impact of censoring patterns and time-to-event distributions on
method rankings. Appendix [F3] then delves into how violations of causal assumptions (treatment
randomization, ignorability, positivity, and censoring mechanisms) reshape the ranking of models
for effectiveness of each causal method.

Subsequent sections (F4] and [F-3) present detailed performance metrics—CATE RMSE and ATE
bias, respectively—across all 8 causal configurations and 5 survival scenarios, with box plots cap-
turing variability over 10 experiment repetitions. We also evaluate auxiliary components in [F6]
including imputation methods and base learners (regression, survival, and propensity models), and
in Appendix [F77] we examine convergence behavior under varying training set sizes. Together, these
detailed results support the robustness, sensitivity, and practical trade-offs of each model family in
a wide spectrum of data-generating and causal settings.

In addition to average-rank summaries, in Appendix [FT}-[F3] we also report a set of win-rate anal-
yses that track how often each method family attains Top-1, Top-3, and Top-5 performance on
both CATE RMSE and ATE Bias. Overall win-rates across all survival scenarios and causal con-
figurations are summarized in Table 5] while Tables [I6] [I7] and [T8] provide scenario-specific and
causal-configuration-specific win-rates. These complementary views highlight not only which meth-
ods achieve strong average performance, but also which ones most consistently appear among the
top performers across varying censoring regimes, survival experimental conditions, and patterns of
causal assumption violations.

F.1 FULL RANKING OF MODELS

To compare the overall performance of the methods across all synthetic datasets, we computed a
Borda ranking based on the average rank of each method’s test set CATE RMSE (Table [T4). The
ranking procedure aggregates method performance across all combinations of causal configurations
and survival scenarios. For each method, we first computed its RMSE on the test subset of the
CATE predictions for each (causal configuration, survival scenario) pair. We then ranked all 53
methods (described in Appendix [C) within each pair and calculated the average rank across these
conditions. This average rank represents the method’s Borda score and serves as a unified summary
of its performance robustness in our synthetic data experiments.

In addition to the Borda rankings, we also summarize how often each method family achieves lead-
ing performance across all experimental settings by reporting the percentage of times a method
appears in the Top-1, Top-3, and Top-5 for both CATE RMSE and ATE Bias. This provides a com-
plementary view that focuses on frequency of strong performance rather than average rank, and
helps separate methods that occasionally perform well from those that do so consistently across our
full set of survival scenarios and causal configurations.

Overall, the patterns in Table[I3]show that Causal Survival Forest is the most stable and competitive
method family, with the highest Top-1 win rate on both CATE RMSE and ATE Bias and a dominant
presence in the Top-3 and Top-5 categories. Double-ML also performs strongly on CATE RMSE,
especially in the Top-3 and Top-5 ranges. SurvITE, S-Learner-Survival, and Matching-Survival ap-
pear regularly among the higher-performing methods, although less frequently than Causal Survival
Forest. In contrast, the classical meta-learners without survival adjustments (T-, S-, X-, and DR-
Learners) rarely reach Top-1 positions, highlighting the benefit of models that directly account for
time-to-event structure when estimating treatment effects.
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Table 14: Borda Ranking of All Methods

Rank Method Score Rank Method Score
1 (Matching-Survival, DeepSurv) 5.60 28 (Causal Forest, Pseudo-Obs) 24.45
2 (S-Learner-Survival, DeepSurv) 5.78 29 (S-Learner, IPCW-T, RandomForest) 25.40
3 (Double-ML, Margin) 6.75 30 (T-Learner, Margin, RandomForest) 26.43
4 (Double-ML, IPCW-T) 11.98 31 (SurvITE) 27.80
5 (Causal Forest, Margin) 12.20 32 (S-Learner, Margin, Lasso) 28.95
6 (Causal Survival Forest) 12.68 33 (S-Learner, IPCW-T, Lasso) 28.95
7 (S-Learner-Survival, RSF) 13.85 34 (S-Learner, Pseudo-Obs, Lasso) 29.20
8 (Double-ML, Pseudo-Obs) 14.83 35 (T-Learner-Survival, DeepHit) 29.95
9 (X-Learner, Margin, RandomForest) 16.45 36 (T-Learner-Survival, RSF) 30.48

10 (Causal Forest, IPCW-T) 16.88 37 (T-Learner, IPCW-T, RandomForest) 30.63
11 (S-Learner, Margin, XGB) 18.33 38 (S-Learner, Pseudo-Obs, RandomForest)  32.28
12 (Matching-Survival, DeepHit) 18.38 39 (S-Learner, Pseudo-Obs, XGB) 32.98
13 (DR-Learner, Margin, Lasso) 19.05 40 (X-Learner, Margin, XGB) 34.50
14 (T-Learner-Survival, DeepSurv) 19.10 41 (X-Learner, Pseudo-Obs, RandomForest)  34.90
15 (S-Learner-Survival, DeepHit) 19.73 42 (X-Learner, IPCW-T, XGB) 36.25
16 (T-Learner, Margin, Lasso) 20.55 43 (DR-Learner, Margin, RandomForest) 36.83
17 (X-Learner, Margin, Lasso) 20.60 44 (DR-Learner, IPCW-T, RandomForest) 38.03
18 (Matching-Survival, RSF) 20.98 45 (T-Learner, Margin, XGB) 41.18
19 (DR-Learner, Pseudo-Obs, Lasso) 21.10 46 (T-Learner, IPCW-T, XGB) 42.13
20 (S-Learner, IPCW-T, XGB) 21.75 47 (T-Learner, Pseudo-Obs, RandomForest)  43.45
21 (X-Learner, IPCW-T, RandomForest) 21.85 48 (DR-Learner, Margin, XGB) 46.38
22 (S-Learner, Margin, RandomForest) 22.30 49 (DR-Learner, IPCW-T, XGB) 46.75
23 (DR-Learner, IPCW-T, Lasso) 22.88 50 (X-Learner, Pseudo-Obs, XGB) 47.73
24 (X-Learner, Pseudo-Obs, Lasso) 22.90 51 (DR-Learner, Pseudo-Obs, RandomForest) 48.80
25 (T-Learner, Pseudo-Obs, Lasso) 23.00 52 (T-Learner, Pseudo-Obs, XGB) 50.50
26 (X-Learner, IPCW-T, Lasso) 24.10 53 (DR-Learner, Pseudo-Obs, XGB) 52.70
27 (T-Learner, IPCW-T, Lasso) 24.10

Table 15: Win-Rate of Method Families Across All Experimental Configurations. Values denote the
percentage of times a method appears in the Top-1, Top-3, and Top-5 according to CATE RMSE

and ATE Bias.

Method Family

CATE RMSE

ATE Bias

Top-1 Top-3 Top-5

Top-1 Top-3 Top-5

Outcome Imputation Methods

T-Learner 0 0 0 0 175 25.0
S-Learner 0 25 125 5.0 75 275
X-Learner 0 0 0 2.5 75 175
DR-Learner 0 0 0 0 10.0 375
Double-ML 27.5 625 85.0 25 150 375
Causal Forest 25 400 525 25 275 400
Direct-Survival Methods

Causal Survival Forest 35.0 67.5 82.5 52.5 750 825
SurvITE 250 375 450 15.0 37.5 550
Survival Meta-Learners

T-Learner-Survival 0 10.0 40.0 12.5 30.0 40.0
S-Learner-Survival 10.0 450 975 50 300 650
Matching-Survival 0 350 85.0 25 425 725
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F.2 RANKING OF CAUSAL METHODS FOR DIFFERENT SURVIVAL SCENARIOS

In Figure[6] we present the Borda ranking of all causal model families across five different survival
scenarios (A—E). For each scenario, the average rank of each method is computed over 8 distinct
causal configurations, allowing us to assess robustness across varying underlying data-generating
processes. The horizontal layout of each plot ranks methods from best (left, top to bottom) to worst
(right, bottom to top), with rank values annotated next to each method for clarity.

These plots illustrate how model performance shifts as censoring rates and survival distributions
vary. In Scenario A, which involves minimal censoring, outcome regression-based methods such as
Double-ML and X-Learner dominate the rankings. However, as we move toward Scenarios D and
E-both characterized by higher censoring—direct survival modeling approaches such as S-Learner-
Survival, Matching-Survival, and Causal Survival Forest consistently rise to the top. This pattern
suggests that survival-specific modeling is better suited to handle the uncertainty introduced by
heavy censoring, outperforming outcome imputation strategies in such settings.
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Figure 6: Average Ranking of Each Model for each Survival Scenario. Shaded regions indicate the
standard error of the rank across datasets.

In addition to the global rankings in Figure[6] we report scenario-specific win-rates in Table[T6] For
each survival scenario (A-E), we compute how often each method family appears in the Top-1, Top-
3, and Top-5 positions for CATE RMSE and ATE Bias across the eight causal configurations. This
allows us to examine how the relative advantages of outcome imputation, direct-survival, and sur-
vival meta-learner approaches change as we vary both the survival time model (Cox, AFT, Poisson)
and the censoring rate (low, medium, high; Table |Z[)

Under low censoring (Scenarios A and B), outcome regression methods remain competitive, but
their strengths are scenario-dependent. In Scenario A (Cox, low censoring), Double-ML dominates
CATE RMSE with a 100% Top-1/Top-3/Top-5 win-rate, while Causal Forest is almost always in
the Top-3 and Top-5. ATE Bias is more dispersed: SurvITE, DR-Learner, and several meta-learners
share Top-1 and Top-3 positions, and Causal Survival Forest is frequently among the top methods.
In Scenario B (AFT, low censoring), Causal Survival Forest becomes the main winner, achieving
the highest CATE RMSE win-rates (62.5% Top-1 and 100% Top-3/Top-5) and strong ATE Bias
performance, with Double-ML and Causal Forest also appearing often in the Top-3 and Top-5.

As censoring increases, survival-specific modeling becomes more important. In Scenario C (Pois-
son, medium censoring), Causal Survival Forest clearly leads in both CATE RMSE and ATE Bias,
with Double-ML and SurvITE providing additional support in the Top-3 and Top-5. Under high
censoring (Scenarios D and E), the advantage of survival-focused methods is even more pronounced.
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Table 16: Win-Rate of Method Families by Survival Scenario. Values denote the percentage of times
a method appears in the Top-1, Top-3, and Top-5 according to CATE RMSE and ATE Bias across
the eight causal configurations for each scenario.

Scenario A: Cox, low censoring

Scenario B: AFT, low censoring

CATE RMSE
Top-1 Top-3 Top-5

ATE Bias
Top-1 Top-3 Top-5

Method Family

ATE Bias
Top-1 Top-3 Top-5

CATE RMSE
Top-1 Top-3 Top-5

Method Family

QOutcome Imputation Methods

QOutcome Imputation Methods

T-Learner 0 0 0 0 375 375 T-Learner 0 0 0 0 250 25.0
S-Learner 0 125 375 250 375 625 S-Learner 0 0 0 0 0 0
X-Learner 0 0 0 0 250 25.0 X-Learner 0 0 0 125 125 250
DR-Learner 0 0 0 0 0 50.0 DR-Learner 0 0 0 0 50.0 87.5
Double-ML 100.0 100.0 100.0 0 375 500 Double-ML 25.0 100.0 100.0 125 37.5 100.0
Causal Forest 0 100.0 100.0 0 375 75.0 Causal Forest 125 75.0 75.0 125 875 875
Direct-Survival Methods Direct-Survival Methods

Causal Survival Forest 0 250 250 250 375 375 Causal Survival Forest 62.5 100.0 100.0 62.5 750 750
SurvITE 0 0 0 37.5 50.0 50.0 SurvITE 0 0 250 0 0 125
Survival Meta-Learners Survival Meta-Learners

T-Learner-Survival 0 25.0 50.0 0 0 0 T-Learner-Survival 0 0 12.5 0 125 250
S-Learner-Survival 0 25.0 100.0 125 250 625 S-Learner-Survival 0 12.5 100.0 0 0 250
Matching-Survival 0 125 875 0 125 50.0 Matching-Survival 0 125 875 0 0 375

Scenario C: Poisson, medium censoring Scenario D: AFT, high censoring
CATE RMSE ATE Bias CATE RMSE ATE Bias

Method Family

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Method Family

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Outcome Imputation Methods

Outcome Imputation Methods

T-Learner 0 0 0 0 125 50.0 T-Learner 0 0 0 0 125 125
S-Learner 0 0 0 0 0 0 S-Learner 0 0 12.5 0 0 75.0
X-Learner 0 0 0 0 0 12.5 X-Learner 0 0 0 0 0 12.5
DR-Learner 0 0 0 0 0 37.5 DR-Learner 0 0 0 0 0 0
Double-ML 125 75.0 100.0 0 0 12.5 Double-ML 0 0 250 0 0 0
Causal Forest 0 125 75.0 0 125 125 Causal Forest 0 125 125 0 0 125
Direct-Survival Methods Direct-Survival Methods
Causal Survival Forest 50.0 87.5 100.0 62.5 87.5 100.0 Causal Survival Forest 12.5 37.5 875 62.5 100.0 100.0
SurvITE 25.0 50.0 50.0 125 625 750 SurvITE 625 875 875 0 125 75.0
Survival Meta-Learners Survival Meta-Learners
T-Learner-Survival 0 0 25.0 25.0 50.0 625 T-Learner-Survival 0 125 875 125 125 250
S-Learner-Survival 12.5 37.5 100.0 0 125 625 S-Learner-Survival 250 875 875 125 875 875
Matching-Survival 0 37.5 50.0 0 62.5 75.0 Matching-Survival 0 62.5 100.0 125 75.0 100.0

Scenario E: Poisson, high censoring

. CATE RMSE ATE Bias
Method Family

Top-1 Top-3 Top-5

Outcome Imputation Methods

Top-1 Top-3 Top-5

T-Learner 0 0 0 0 0 0
S-Learner 0 0 12.5 0 0 0
X-Learner 0 0 0 0 0 12.5
DR-Learner 0 0 0 0 0 12.5
Double-ML 0 37.5 100.0 0 0 25.0
Causal Forest 0 0 0 0 0 12.5
Direct-Survival Methods

Causal Survival Forest 50.0 87.5 100.0 50.0 75.0 100.0
SurvITE 375 50.0 62.5 250 625 625
Survival Meta-Learners

T-Learner-Survival 0 125 250 250 750 875
S-Learner-Survival 12.5 62.5 100.0 0 250 875
Matching-Survival 0 50.0 100.0 0 62.5 100.0

In Scenario D (AFT, high censoring), SurvITE and the survival meta-learners (S-Learner-Survival,
Matching-Survival, and T-Learner-Survival) capture most Top-1 and Top-3 spots in CATE RMSE,
while Causal Survival Forest and the same survival meta-learners dominate ATE Bias. In Scenario E
(Poisson, high censoring), Causal Survival Forest and the survival meta-learners again account for
nearly all Top-1 and Top-3 positions for both metrics, with Double-ML mainly contributing through
Top-5 appearances. Across these settings, classical meta-learners without survival structure rarely
win, reinforcing that explicit survival modeling is crucial once censoring becomes moderate or high.
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F.3 RANKING OF CAUSAL METHODS FOR DIFFERENT CAUSAL CONFIGURATIONS

In Figure|/| we present the Borda ranking of causal model families across eight distinct causal con-
figurations, each representing different combinations of assumptions related to treatment assignment
(RCT vs. observational), ignorability, positivity, and censoring mechanisms. Within each configura-
tion, the average rank of each method is computed over all survival scenarios, allowing us to isolate
how assumption violations affect model performance independently of survival data characteristics.

Notably, outcome imputation approaches such as X-Learner and Double-ML perform best in ran-
domized settings with unbalanced treatment (e.g., RCT-5%, panel b), but their performance dete-
riorates as we move to settings with unmeasured confounding, or more visibly with informative-
censoring. In contrast, survival-specific methods such as S-Learner-Survival, Matching-Survival,
and Causal Survival Forest consistently rise in the rankings under these challenging conditions—
particularly when multiple violations occur simultaneously (e.g., panel g and h). This trend suggests
that survival meta-learners and direct modeling of the survival process offer increased robustness
to violations of standard causal assumptions, especially in the presence of unmeasured confound-
ing and informative censoring. Another finding here is that Causal Survival Forest maintains strong
performance across many configurations, consistently ranking in the top half—particularly in settings
involving unmeasured confounding or informative censoring. However, when the positivity assump-
tion is violated (e.g., Figure[7g and h), its performance declines, suggesting limitations in modeling
highly sparse regions of the covariate space with deterministic treatment assignment.
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Figure 7: Average ranking of each model for each causal configuration. Shaded regions indicate the
standard error of the rank across datasets.

In addition to the configuration-agnostic rankings in Figure [7] we report win-rates by causal con-
figuration in Tables[T7]and [T8] For each configuration, we compute how often each method family
appears in the Top-1, Top-3, and Top-5 positions for CATE RMSE and ATE Bias, aggregating over
the five survival scenarios. This lets us separate the effect of causal assumptions (randomization, ig-
norability, positivity, and censoring) from the influence of the survival time model. The randomized
settings (RCT-50, RCT-5) serve as our classical baselines, while the observational settings introduce
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Table 17: Win-Rate of Method Families by Causal Configuration (Randomized Settings). Values
denote the percentage of times a method appears in the Top-1, Top-3, and Top-5 according to CATE
RMSE and ATE Bias across the five survival scenarios for each configuration.

RCT-50: 50% treatment rate RCT-5: 5% treatment rate

Method Family CATE RMSE ATE Bias Method Family CATE RMSE ATE Bias

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
Outcome Imputation Methods Outcome Imputation Methods
T-Learner 0 0 0 0 200 40.0 T-Learner 0 0 0 0 40.0 60.0
S-Learner 0 0 0 0 0 20.0 S-Learner 0 20.0 40.0 20.0 20.0 40.0
X-Learner 0 0 0 20.0 20.0 20.0 X-Learner 0 0 0 0 1] 20.0
DR-Learner 0 0 0 0 0 40.0 DR-Learner 0 0 0 0 0 20.0
Double-ML 40.0 80.0 80.0 0 0 400 Double-ML 20.0 60.0 80.0 20.0 40.0 80.0
Causal Forest 0 40.0 60.0 0 20.0 20.0 Causal Forest 0 40.0 60.0 0 40.0 80.0
Direct-Survival Methods Direct-Survival Methods
Causal Survival Forest 0 60.0 80.0 60.0 60.0 60.0 Causal Survival Forest 60.0 80.0 80.0 60.0 60.0 60.0
SurvITE 60.0 60.0 60.0 0 40.0 60.0 SurvITE 20.0 40.0 60.0 0 40.0 60.0
Survival Meta-Learners Survival Meta-Learners
T-Learner-Survival 0 20.0 60.0 0 60.0 60.0 T-Learner-Survival 0 0 20.0 0 0 0
S-Learner-Survival 0 20.0 100.0 20.0 40.0 60.0 S-Learner-Survival 0 40.0 100.0 0 20.0 40.0
Matching-Survival 0 200 60.0 0 400 80.0 Matching-Survival 0 200 60.0 0 40.0 40.0

unmeasured confounding, positivity violations, and informative censoring in a controlled way (Ta-
ble[T).

In the randomized configurations, outcome regression tends to perform well on CATE RMSE but
is not uniformly dominant. Under RCT-50, Double-ML achieves the highest CATE RMSE win-
rates (40.0 Top-1 and 80.0 Top-3/Top-5), with Causal Survival Forest and SurvITE also frequently
appearing among the top methods. When treatment becomes sparse in RCT-5, Causal Survival
Forest and Double-ML share the lead on CATE RMSE (Causal Survival Forest reaches 60.0 Top-1
and 80.0 Top-3/Top-5; Double-ML attains 20.0 Top-1 and 80.0 Top-5), while survival meta-learners
such as S-Learner-Survival and Matching-Survival repeatedly enter the Top-3 and Top-5. Across
both randomized settings, survival-specific approaches are already competitive on ATE Bias, with
Causal Survival Forest, SurvITE, and several survival meta-learners appearing regularly among the
top positions.

The observational configurations highlight how violations of standard causal assumptions shift the
balance further toward survival-focused methods. In OBS-CPS (no unmeasured confounding, no
positivity or informative censoring), Double-ML and SurvITE are strong for CATE RMSE, but
Causal Survival Forest and the survival meta-learners (especially S-Learner-Survival and Matching-
Survival) capture most of the Top-1 and Top-3 spots for ATE Bias. Once unmeasured confounding is
introduced (OBS-UConf), Causal Survival Forest, SurvITE, and the survival meta-learners dominate
both metrics: Causal Survival Forest and Double-ML still perform well on CATE RMSE, but ATE
Bias win-rates are almost entirely driven by Causal Survival Forest, SurvITE, S-Learner-Survival,
and Matching-Survival. When positivity is violated (OBS-NoPos), Double-ML and SurvITE retain
high CATE RMSE win-rates, whereas Causal Survival Forest and SurvITE achieve strong ATE Bias
performance, and survival meta-learners again appear often in the Top-3 and Top-5.

Informative censoring amplifies these trends. In 0BS-CPS-InfC, Causal Survival Forest, S-Learner-
Survival, and Matching-Survival account for most of the Top-1 and Top-3 appearances for both
CATE RMSE and ATE Bias, while Double-ML is mostly confined to Top-5 ranks. Under
0BS-UConf-InfC, Causal Survival Forest becomes overwhelmingly dominant, reaching 80.0 Top-1
and 100.0 Top-3/Top-5 for CATE RMSE and similarly high win-rates for ATE Bias, with survival
meta-learners providing additional support. Finally, in OBS-NoPos-InfC, Double-ML and Causal
Survival Forest still perform well on CATE RMSE, but ATE Bias is largely controlled by Causal
Survival Forest and the survival meta-learners, particularly T-Learner-Survival, S-Learner-Survival,
and Matching-Survival. Overall, these patterns reinforce that direct survival modeling and survival
meta-learning offer robustness as assumptions are progressively violated, especially when unmea-
sured confounding and informative censoring are present.
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Table 18: Win-Rate of Method Families by Causal Configuration (Observational Settings). Values
denote the percentage of times a method appears in the Top-1, Top-3, and Top-5 according to CATE
RMSE and ATE Bias across the five survival scenarios for each configuration.

0BS-CPS: no violations, CPS

0BS-UConf: unmeasured confounding

CATE RMSE
Top-1 Top-3 Top-5

ATE Bias
Top-1 Top-3 Top-5

Method Family

CATE RMSE
Top-1 Top-3 Top-5

ATE Bias
Top-1 Top-3 Top-5

Method Family

Outcome Imputation Methods

Outcome Imputation Methods

T-Learner 0 0 0 0 20.0 20.0 T-Learner 0 0 0 0 0 0
S-Learner 0 0 0 0 0 20.0 S-Learner 0 0 0 0 20.0 40.0
X-Learner 0 0 0 0 200 200 X-Learner 0 0 0 0 0 0
DR-Learner 0 0 0 0 0 400 DR-Learner 0 0 0 0 0 20.0
Double-ML 20.0 80.0 80.0 0 200 200 Double-ML 40.0 60.0 80.0 0 200 200
Causal Forest 20.0 40.0 60.0 20.0 20.0 20.0 Causal Forest 0 60.0 60.0 0 20.0 40.0
Direct-Survival Methods Direct-Survival Methods
Causal Survival Forest 0 60.0 80.0 60.0 80.0 80.0 Causal Survival Forest 40.0 60.0 80.0 40.0 80.0 80.0
SurvITE 40.0 60.0 60.0 20.0 60.0 80.0 SurvITE 20.0 40.0 40.0 60.0 80.0 80.0
Survival Meta-Learners Survival Meta-Learners
T-Learner-Survival 0 0 40.0 0 20.0 40.0 T-Learner-Survival 0 20.0 40.0 0 0 20.0
S-Learner-Survival 20.0 20.0 100.0 0 20.0 60.0 S-Learner-Survival 0 40.0 100.0 0 40.0 100.0
Matching-Survival 0 40.0 80.0 0 40.0 100.0 Matching-Survival 0 20.0 100.0 0 40.0 100.0
0BS-NoPos: positivity violation 0BS-CPS-InfC: CPS with with InfC
Method Family CATE RMSE ATE Bias Method Family CATE RMSE ATE Bias

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Outcome Imputation Methods

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Outcome Imputation Methods

T-Learner 0 0 0 0 200 200 T-Learner 0 0 0 0 200 200
S-Learner 0 0 200 0 0 400 S-Learner 0 0 0 0 0 200
X-Learner 0 0 0 0 0 20.0 X-Learner 0 0 0 0 20.0 40.0
DR-Learner 0 0 0 0 20.0 40.0 DR-Learner 0 0 0 0 20.0 40.0
Double-ML 40.0 80.0 80.0 0 20.0 40.0 Double-ML 20.0 40.0 100.0 0 0 20.0
Causal Forest 0 20.0 40.0 0 40.0 40.0 Causal Forest 0 60.0 80.0 0 20.0 40.0
Direct-Survival Methods Direct-Survival Methods

Causal Survival Forest 20.0 60.0 80.0 60.0 100.0 100.0 Causal Survival Forest 40.0 60.0 80.0 40.0 60.0 80.0
SurvITE 40.0 60.0 80.0 20.0 40.0 80.0 SurvITE 0 0 0 20.0 20.0 40.0
Survival Meta-Learners Survival Meta-Learners

T-Learner-Survival 0 0 20.0 0 20.0 20.0 T-Learner-Survival 0 20.0 40.0 20.0 40.0 40.0
S-Learner-Survival 0 60.0 100.0 0 20.0 60.0 S-Learner-Survival 40.0 60.0 100.0 20.0 40.0 80.0
Matching-Survival 0 20.0 80.0 20.0 20.0 40.0 Matching-Survival 0 60.0 100.0 0 60.0 80.0
0BS-UConf-InfC: unmeasured Conf + InfC 0BS-NoPos-InfC: NoPos + InfC

CATE RMSE ATE Bias CATE RMSE ATE Bias

Method Family

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Method Family

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Outcome Imputation Methods

Outcome Imputation Methods

T-Learner 0 0 0 0 0 0 T-Learner 0 0 0 0 200 40.0
S-Learner 0 0 200 20.0 20.0 20.0 S-Learner 0 0 200 0 0 200
X-Learner 0 0 0 0 0 0 X-Learner 0 0 0 0 0 20.0
DR-Learner 0 0 0 0 200 80.0 DR-Learner 0 0 0 0 200 200
Double-ML 20.0 40.0 80.0 0 0 200 Double-ML 20.0 60.0 100.0 0 200 60.0
Causal Forest 0 40.0 40.0 0 20.0 40.0 Causal Forest 0 20.0 20.0 0 40.0 40.0
Direct-Survival Methods Direct-Survival Methods

Causal Survival Forest 80.0 100.0 100.0 60.0 100.0 100.0 Causal Survival Forest 40.0 60.0 80.0 40.0 60.0 100.0
SurvITE 0 200 200 0 200 40.0 SurvITE 20.0 20.0 40.0 0 0 0
Survival Meta-Learners Survival Meta-Learners

T-Learner-Survival 0 0 40.0 20.0 40.0 80.0 T-Learner-Survival 0 20.0 60.0 60.0 60.0 60.0
S-Learner-Survival 0 60.0 100.0 0 20.0 60.0 S-Learner-Survival 20.0 60.0 80.0 0 40.0 60.0
Matching-Survival 0 40.0 100.0 0 60.0 60.0 Matching-Survival 0 60.0 100.0 0 400 80.0
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F.4 FIGURE RESULTS - CATE RMSE

This section presents the complete CATE RMSE results for each family of causal inference meth-
ods across various survival analysis scenarios. For each scenario, we display performance under
8 distinct causal configurations, each varying in terms of treatment assignment (RCT vs. observa-
tional), ignorability, positivity, and censoring assumptions. These results highlight the robustness
and sensitivity of different methods under varying degrees of assumption violations.

For each survival scenario and causal configuration, we selected the best hyperparameter setting
and base model configuration for each causal method family based on validation set performance.
The RMSE values shown in the figures reflect the performance of these selected models on the test
set. The box plots are from the 10 independent experimental repeats to account for random seed
variability.
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F.5 FIGURE RESULTS - ATE BIAS

This section presents the ATE bias results for each family of causal inference methods across various
survival scenarios. As with the CATE RMSE results in Appendix [F4] we display performance
under 8 distinct causal configurations per scenario, each varying in treatment assignment (RCT vs.
observational), ignorability, positivity, and censoring assumptions.

For each survival scenario and causal configuration, the model shown corresponds to the best hyper-
parameter setting and base model configuration selected based on CATE RMSE performance on the
validation set — ATE bias was not used for model selection for consistent results with other sections.
The reported ATE bias values are computed on the test set and defined as the difference between the
predicted ATE from the test population and the frue ATE in the full population.

Each box plot represents results from 10 independent experimental repeats to account for random
seed variability. For meta-learners and double machine learning models, which by design can
provide 95% confidence intervals for ATE estimates, we also include these intervals in the plots—
adjusted accordingly to center around the ATE bias. These confidence intervals are obtained via 100
bootstrap samples and are notably wider than the variability observed across the 10 experimental
repeats. The zero bias line is shown as a dashed reference line.
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Figure 15: ATE Bias across different experiments in Scenario C.
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Figure 17: ATE Bias across different experiments in Scenario E.
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F.6 EVALUATION ON AUXILIARY IMPUTATION AND BASE LEARNERS

In this section, we report the performance of auxiliary imputation and base regression or survival
learners on the test sets.

F.6.1 IMPUTATION EVALUATION

Table [T9) reports the MAE of the three imputation methods (Pseudo-obs, Margin, IPCW-T) across
eight causal configurations and five censoring scenarios on the test sets. Recall that Scenarios A and
B have low censoring (<30%), Scenario C medium (30-70%), and Scenarios D and E high (>70%),
except it is switched in -InfC causal configurations, as mentioned in Appendix|Al We can tell that
the imputation method Pseudo-obs is only competitive under minimal censoring and suffers from
high variability. Margin imputation provides the best balance of accuracy and robustness, especially
as censoring intensifies. [IPCW-T imputation improves over Pseudo-obs in most cases, but generally
underperforms relative to Margin in medium- and high-censor contexts.

F.6.2 BASE REGRESSION LEARNER EVALUATION

See Table 20} 21] 2] 23] for MAE of prediction by the base regression learners for S-, T-, X-, DR-
learners. The MAE is calculated by comparing a base learner’s predicted event times and imputed
event times by the imputation method (the latter is used as the “ground truth” for the base regression
learners). Since there are three imputation methods used, we first take the average of MAE across
three different imputation methods within each random split, then report the mean and standard
deviation of the average MAE across 10 experimental repeats with different random splits.

See Table[24|for the AUC on the evaluation of the predicted propensity score of DR-learners.

F.6.3 BASE SURVIVAL LEARNER EVALUATION

See Table [25] [26] [27] for time-dependent concordance index on different base survival learners by
the base survival learners for S-, T-, matching-learners. We report the mean and standard deviation
across 10 experimental repeats with different random splits.
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Table 19: Evaluation on imputation methods across different survival scenarios and causal config-
urations. MAE between the imputed and true event times on testing set is reported as mean =+ std.
over 10 experimental repeats. “Total Win” row counts the number of survival configurations X
random split combinations (8 x 10 = 80) in which each method achieved the lowest MAE, and is
calculated within each scenario. The same rule applies to all the tables below in Appendix @

Survival Causal Imputation Method
Scenario Configuration Pseudo-obs  Margin IPCW-T
RCT-50 0.437+0.021 0.446+0.025 0.470+0.027
RCT-5 0.378+0.027 0.387£0.029 0.405+0.032
0BS-CPS 0.448+0.014 0.459+0.014 0.481+0.015
0BS-UConf 0.423+0.026 0.520-£0.028 0.455+0.03
A 0BS-NoPos 0.411+0.023 0.420-£0.023 0.442+0.025

0BS-CPS-InfC  0.39040.020 0.374+0.014 0.388+0.014
0BS-UConf-InfC 0.3694+0.029 0.482+0.027 0.362+0.028
0BS-NoPos-InfC 0.34740.023 0.336:0.024 0.349+0.026

Total Win 51 21 8
RCT-50 0.061+0.005 0.05+0.003 0.048+0.004
RCT-5 0.027+0.003 0.02240.002 0.021+0.003
0BS-CPS 0.052+0.005 0.0424-0.004 0.040+0.003
0BS-UConf 0.058+0.004 0.15240.007 0.046:0.004
B 0BS-NoPos 0.068+0.008 0.057+0.005 0.056+0.005

0BS-CPS-InfC  0.03940.005 0.037£0.005 0.036+0.005
0BS-UConf-InfC 0.04040.004 0.140=£0.005 0.038+0.004
0BS-NoPos-InfC 0.048+0.007 0.046=£0.008 0.045+0.008

Total Win 0 3 77
RCT-50 0.837+0.008 0.83840.008 0.841+0.007
RCT-5 0.803+0.013 0.80440.013 0.793+0.009
0BS-CPS 0.829+0.014 0.8304+0.014 0.828+0.014
0BS-UConf 0.835+0.026 2.70140.033 0.837+0.027
C 0BS-NoPos 0.845+0.014 0.8454+0.015 0.855+0.012

0BS-CPS-InfC  2.786+0.079 2.090+0.046 2.858+0.055
0BS-UConf-InfC 2.753+0.074 2.443+0.023 2.8524+0.058
0BS-NoPos-InfC 2.904+0.061 2.197+0.045 3.006+0.034

Total Win 23 35 22
RCT-50 3.303£0.333 2.241+0.065 2.62440.054
RCT-5 2.897+0.257 1.845+0.059 2.192+0.059
0BS-CPS 3.191+£0.449 2.109+0.062 2.421+0.068
0BS-UConf 3.463£0.706 2.361+0.198 2.610+0.073
D 0BS-NoPos 3.536+0.435 2.404+0.074 2.853+0.072

0BS-CPS-InfC  1.395+0.067 1.289+0.064 1.3660.068
0BS-UConf-InfC 1.524+0.069 1.737+0.054 1.511+£0.063
0BS-NoPos-InfC 1.68940.074 1.595+0.069 1.698+0.073

Total Win 3 68 9
RCT-50 2.6724+0.348 1.595+0.019 2.033+0.022
RCT-5 2.2384+0.218 1.468-+0.023 1.823+0.023
0BS-CPS 2.446+0.262 1.577+0.022 1.992+0.032
0BS-UConf 2.5314+0.191 2.65140.054 2.051+0.031
E 0BS-NoPos 2.66940.288 1.639+0.021 2.102+0.035

0BS-CPS-InfC  3.32440.136 2.483+0.05 3.491+0.054
0BS-UConf-InfC 3.346+0.147 2.686+0.071 3.526+0.036
0BS-NoPos-InfC 3.3731+0.101 2.541+0.038 3.648+0.072

Total Win 0 70 10
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Table 20: S-Learner MAE

Survival Causal Base Regression Model

Scenario Configuration

Lasso Reg. Random Forest XGBoost

RCT-50 0.661+0.012  0.655+0.014 0.671+0.013
RCT-5 0.645+0.011 0.649+0.012 0.667+0.014
0BS-CPS 0.653+0.011 0.646+0.010 0.662+0.012
0BS-UConf 0.604+0.009 0.608+0.009 0.620+0.007
A 0BS-NoPos 0.657+0.010 0.654+0.011 0.67140.013
0BS-CPS-InfC  0.727+0.018 0.730+0.021 0.752+40.023
0BS-UConf-InfC 0.675+0.019 0.693+0.023 0.713+0.023
0BS-NoPos-InfC 0.724+0.014 0.732+0.018  0.755+0.02
Total Win 44 36 0
RCT-50 0.33+0.008  0.315+0.011 0.334+0.015
RCT-5 0.2784+0.006 0.277+0.006 0.292+0.008
0BS-CPS 0.315+0.011 0.307+0.012 0.32440.019
0BS-UConf 0.3544+0.007 0.341+0.008 0.359+0.011
B 0BS-NoPos 0.3454+0.009 0.323+0.011 0.341+0.011
0BS-CPS-InfC  0.301+0.007 0.294+0.006 0.309+0.008
0BS-UConf-InfC 0.34+0.004 0.328+0.005 0.347+0.006
0BS-NoPos-InfC 0.337+0.005 0.319+0.006 0.337+0.007
Total Win 3 77 0
RCT-50 1.430+0.022 1.593+0.025 1.738+0.024
RCT-5 1.403+0.019 1.532+0.018 1.687+0.027
0BS-CPS 1.409+0.021 1.555+0.025 1.706+0.028
0BS-UConf 1.41940.023 1.563+0.026 1.721+0.020
C 0BS-NoPos 1.453+0.019 1.612+0.024 1.75540.022
0BS-CPS-InfC  0.931+0.027 1.011+0.03 1.148+0.045
0BS-UConf-InfC 0.895+0.033 0.966+0.04 1.096+0.059
0BS-NoPos-InfC 0.916+0.057 1.003+0.067 1.123+0.086
Total Win 80 0 0
RCT-50 0.941+0.18 1.002+0.202 1.082+0.206
RCT-5 1.016+0.121 1.095+0.123  1.210+0.248
0BS-CPS 1.031+0.258 1.082+0.264 1.188+0.345
0BS-UConf 0.985+0.34 1.015+0.300 1.073+0.383
D 0BS-NoPos 0.967+0.238  1.03+£0.249  1.107+0.295
0BS-CPS-InfC  1.146+0.030 1.148+0.034 1.209+0.044
0BS-UConf-InfC 1.1794+0.024 1.172+0.031 1.234+0.032
0BS-NoPos-InfC 1.169+0.026 1.169+0.026 1.230+0.028
Total Win 48 29 3
RCT-50 1.754+0.186 1.906+0.207 2.124+0.247
RCT-5 1.604+0.125 1.731+£0.133  1.901+0.17
0BS-CPS 1.651+0.161 1.799+0.201 1.990+0.243
0BS-UConf 1.630+0.127 1.779+0.159 1.97440.212
E 0BS-NoPos 1.698+0.139 1.856+0.162 2.059+0.202
0BS-CPS-InfC  0.917+0.089 1.012+0.113 1.14040.141
0BS-UConf-InfC 0.968+0.130 1.074+0.164 1.222+0.237
0BS-NoPos-InfC 0.928+0.060 1.012+0.063 1.1304+0.071
Total Win 80 0 0
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Table 21: T-Learner MAE

Survival Causal

Base Regression Model (Treated)

Base Regression Model (Control)

Scenario Configuration

Lasso Reg. Random Forest XGBoost \Lasso Reg. Random Forest XGBoost

RCT-50 0.669+0.012 0.652+0.013 0.68040.015/0.652+0.019 0.657+0.019 0.685+0.019
RCT-5 0.656+0.044 0.641+0.049 0.67740.050/0.644+0.011 0.650+0.012 0.668+0.014
0BS-CPS 0.711+£0.012 0.697+0.012 0.72740.012|0.588+0.014 0.595+0.014 0.621+0.018
0BS-UConf 0.640+0.009 0.641+£0.007 0.668+0.005|0.558+0.012 0.566+0.013 0.593+0.015
A OBS-NoPos 0.568+0.014 0.561+0.013 0.58740.016/0.733+0.015 0.747+0.016 0.776+0.016
0BS-CPS-InfC  0.799+0.020 0.797+0.022 0.838+0.023|0.646+0.023 0.664+0.025 0.699+0.029
0BS-UConf-InfC 0.723+0.023 0.740+0.031 0.7784+0.030(0.614+0.019 0.633+0.023 0.668+0.025
0BS-NoPos-InfC 0.608+0.018 0.609+0.016 0.64240.020(0.824+0.021 0.855+0.021 0.895+0.029
Total Win 28 52 0 ‘ 77 3 0
RCT-50 0.375+0.012 0.350+0.014 0.37440.016/0.279+0.007 0.281+£0.008 0.303+0.006
RCT-5 0.393+0.051 0.383+0.047 0.40440.043|0.271+0.005 0.273+0.005 0.287+0.006
0BS-CPS 0.326+0.014 0.302+£0.014 0.32240.016/0.305+0.011 0.313+£0.012 0.338+0.015
0BS-UConf 0.375+0.008 0.348+0.009 0.3714+0.011/0.327+0.008 0.334+0.007 0.363+0.012
B 0OBS-NoPos 0.425+0.014 0.411+£0.015 0.44240.017|0.231+0.007 0.235+0.007 0.253+0.008
0BS-CPS-InfC  0.311+£0.007 0.292+0.006 0.31140.008{0.291+£0.009 0.297+0.010 0.3224+0.011
0BS-UConf-InfC 0.365+0.004 0.344+0.007 0.37040.009(0.310+0.007 0.313+0.007 0.337+0.008
0BS-NoPos-InfC 0.415+0.009 0.406:0.009 0.43840.011|0.2284+0.005 0.233+0.006 0.249+0.006
Total Win 4 76 0 ‘ 68 12 0
RCT-50 1.5344+0.037 1.653+0.041 1.839+0.046|1.387+0.029 1.5424+0.020 1.747+0.027
RCT-5 1.6431+0.091 1.751+0.085 1.935+0.074|1.393+0.020 1.5274+0.02 1.688+0.021
OBS-CPS 1.4844-0.026 1.599+0.031 1.797+0.036|1.3794+0.030 1.52940.029 1.726+0.033
0BS-UConf 1.4934+0.037 1.617+0.034 1.809+0.028|1.363+0.019 1.5284+0.021 1.740+0.027
C 0BS-NoPos 1.568+0.040 1.665+0.038 1.860+0.037|1.420+0.037 1.565+0.027 1.763+0.035
0BS-CPS-InfC  0.909+0.047 1.002:£0.052 1.14440.050(0.953+0.042 1.040+£0.048 1.198+0.060
0BS-UConf-InfC 0.876+0.039 0.951+£0.052 1.088+0.070(0.916+0.044 1.004+0.056 1.166+0.079
0BS-NoPos-InfC 0.902+0.057 1.009+0.074 1.14940.088|0.928+0.076 1.016+0.087 1.152+40.088
Total Win 79 1 0 \ 80 0 0
RCT-50 0.302+0.083 0.316£0.093 0.339+0.11 |1.546+0.304 1.691+0.484 1.767+0.429
RCT-5 0.284+0.044 0.296+0.049 0.3124+0.052|1.051+0.127 1.118+0.129 1.285+0.304
0BS-CPS 0.347+0.084 0.366+0.087 0.3844+0.094|1.651+0.416 1.758+0.443 1.924+0.594
0OBS-UConf 0.328+0.134 0.343+0.130 0.36240.138|1.691+0.564 1.797+0.529 1.809+0.705
D 0BS-NoPos 0.334+0.105 0.342+0.117 0.36640.129|1.571+0.382 1.659+0.392 1.939+0.612
OBS-CPS-InfC  1.138+0.029 1.097+0.027 1.17140.028|1.147+0.041 1.201+£0.051 1.300+0.056
0BS-UConf-InfC 1.206+0.029 1.156+0.043 1.2404+0.044|1.146+0.023 1.197+0.028 1.298+0.029
0BS-NoPos-InfC 1.216+0.030 1.198+0.035 1.29740.046|1.100+0.030 1.143+0.037 1.222+0.035
Total Win 45 35 0 ‘ 66 10 4
RCT-50 1.78440.230 1.955+0.255 2.2240.310 |1.7204+0.154 1.8994+0.184 2.108+0.198
RCT-5 1.607+0.244 1.859+0.436 1.969+0.335|1.605+0.121 1.7334+0.131 1.894+0.147
0BS-CPS 1.670+0.194 1.852+0.261 2.092+0.312|1.637+0.141 1.7854+0.158 1.993+0.200
0OBS-UConf 1.6504+0.145 1.809+0.167 2.053+0.239|1.616+0.130 1.7634+0.144 1.982+0.201
E 0BS-NoPos 1.740+0.161 1.907+0.200 2.198+0.338|1.663+0.140 1.804+0.148 2.027+0.167
OBS-CPS-InfC  0.911+0.111 1.007£0.123 1.14640.140(0.9254+0.074 1.015+£0.096 1.158+0.104
0BS-UConf-InfC 0.953+0.107 1.049+0.118 1.22140.146|0.987+0.159 1.103+0.222 1.271£0.228
0BS-NoPos-InfC 0.949+0.085 1.043+0.095 1.2214+0.112/0.908+0.046 1.000+0.044 1.136+0.064
Total Win 80 0 0 ‘ 80 0 0
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Table 22: X-Learner MAE

Survival Causal

Base Regression Model (Treated)

Base Regression Model (Control)

Scenario Configuration

Lasso Reg. Random Forest XGBoost \Lasso Reg. Random Forest XGBoost

RCT-50 0.620+0.011 0.6224+0.013 0.6314+0.013|0.624+0.019 0.624-+0.019 0.631+0.018
RCT-5 0.6131+0.048 0.62440.056 0.63440.050(0.618+0.012 0.617+£0.012 0.623+0.010
0BS-CPS 0.664+0.011 0.667+0.010 0.6754+0.012|0.561+£0.013 0.562+£0.014 0.568-0.013
0BS-UConf 0.608+0.008 0.6104+0.008 0.61640.008|0.530+0.012 0.531£0.012 0.538+0.012
A 0BS-NoPos 0.532+0.013 0.533+0.013  0.539+0.015]0.711+£0.014 0.712+0.014 0.718+0.015
0BS-CPS-InfC  0.747+0.018 0.7514+0.018 0.7634+0.019|0.616+0.021 0.616-£0.022 0.623+£0.022
0BS-UConf-InfC 0.689+0.024 0.6914+0.023 0.6984+0.024|0.583+0.019 0.585+0.020 0.592+0.019
0BS-NoPos-InfC 0.570+0.016 0.570+0.017 0.5784+0.018/|0.800+£0.021 0.802£0.021 0.809-+0.020
Total Win 64 16 0 \ 47 33 0
RCT-50 0.339+0.012  0.3284+0.012 0.333+0.012|0.265+£0.007  0.261£0.007 0.264-0.007
RCT-5 0.365+0.045 0.364+0.051 0.3684+0.046|0.256+0.005 0.253+0.004 0.255+0.004
0BS-CPS 0.296+0.014  0.283+0.013 0.2874+0.013]0.290+0.010 0.290+0.012 0.29140.011
0BS-UConf 0.3394+0.009  0.3274+0.008 0.33140.008|0.312+0.008  0.309+0.006 0.311-£0.008
B 0BS-NoPos 0.396+0.013  0.387+0.014 0.393+0.013|0.221£0.006 0.217£0.007 0.219+0.007
0BS-CPS-InfC  0.28340.006 0.2724+0.007 0.27540.006|0.277+0.008 0.275+£0.008 0.278-£0.009
0BS-UConf-InfC 0.3324+0.005 0.3214+0.006 0.32640.006|0.295+0.008 0.291+£0.007 0.293+0.007
0BS-NoPos-InfC 0.388+0.008 0.379+0.008 0.386+0.008|0.219+0.005 0.2154+0.005 0.21620.005
Total Win 3 73 4 \ 5 70 5
RCT-50 1.5424+0.041 1.547+0.032 1.533+0.033|1.4174+0.025 1.42240.023 1.403+0.026
RCT-5 1.651+0.092  1.662+0.091 1.640+0.087|1.411+0.018 1.4144+0.019 1.400+0.019
0BS-CPS 1.492+0.031 1.4924+0.031 1.481+0.026|1.409+0.032 1.4134+0.030 1.394+-0.031
0BS-UConf 1.509+0.038 1.510+0.039 1.497+0.042|1.396+0.016 1.4024+0.014 1.385+0.016
C 0BS-NoPos 1.5624+0.042 1.5634+0.038 1.561+0.038|1.445+0.033 1.449+0.035 1.433+0.037
0BS-CPS-InfC  0.909+0.047 0.915+0.048 0.909+0.046|0.952+0.043 0.9594+0.041 0.95410.043
0BS-UConf-InfC 0.876+0.039 0.8794+0.042 0.87540.039|0.9160.044 0.921£0.045 0.919+0.047
0BS-NoPos-InfC 0.902+0.058 0.909+0.061 0.904+0.060|0.928+0.076 0.9354+0.081 0.928+0.074
Total Win 27 11 42 \ 17 7 56
RCT-50 0.306+0.088 0.300+0.089  0.292+0.083|1.633+0.342 1.613+0.503 1.506+0.302
RCT-5 0.283+0.046 0.2804+0.042 0.27740.047|1.124+0.125 1.055+0.128 1.033-+£0.150
0BS-CPS 0.3554+0.085 0.3431+0.080 0.33440.081|1.819+£0.545 1.681+£0.456 1.613+0.436
0BS-UConf 0.336+0.137  0.3244+0.126  0.3224+0.123|1.772+£0.571 1.737£0.498 1.613+£0.557
D 0BS-NoPos 0.336+0.110 0.3224+0.106  0.3194+0.104|1.688+0.418 1.607£0.383 1.540-+0.388
0BS-CPS-InfC  1.0674+0.026 1.043+0.025 1.0494+0.026|1.133+£0.041 1.137£0.043 1.136£0.043
0BS-UConf-InfC 1.1164+0.032 1.098+0.033 1.103+0.027|1.135+£0.021 1.138+0.021 1.136+0.021
0BS-NoPos-InfC 1.1604+0.029 1.13740.029 1.14040.029|1.085+£0.032 1.088+0.032 1.087+0.031
Total Win 4 36 40 \ 17 21 42
RCT-50 1.771+0.226  1.798+0.237 1.7724+0.230|1.73440.154 1.748+0.156 1.721+0.150
RCT-5 1.607+0.240 1.731£0.366 1.608+0.245|1.602+0.120 1.606+0.121 1.597+0.118
0BS-CPS 1.668+0.199 1.722+0.244 1.668+0.197|1.638+0.138 1.652+0.139 1.633+0.141
0BS-UConf 1.661+0.157 1.659+0.151 1.646+0.152|1.613+0.130 1.6324+0.132 1.635+0.187
E 0BS-NoPos 1.726+0.162 1.753+0.176 1.773+0.226{1.670+0.137 1.671+0.135 1.656+0.136
0BS-CPS-InfC  0.911+0.111 0.919£0.108 0.913+0.107]0.925+0.074 0.930+0.081 0.924+0.075
0BS-UConf-InfC 0.953+0.107 0.960+0.114 0.9534+0.106|0.987+0.159 1.008£0.209 0.986-0.151
0BS-NoPos-InfC 0.9494+0.085 0.947+0.077 0.95140.083|0.908+0.046 0.923+0.043 0.910+0.047
Total Win 37 14 29 \ 26 11 43
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Table 23: DR-Learner MAE

Survival Causal Base Regression Model
Scenario Configuration Lasso Reg. Random Forest XGBoost
RCT-50 0.661+£0.012  0.658+0.013 0.685+0.013
RCT-5 0.645+0.011 0.652+0.013 0.680+0.014
0BS-CPS 0.653+£0.011 0.649+0.012 0.676+0.012
0BS-UConf 0.604+0.009 0.611+£0.009 0.635+0.010
A 0BS-NoPos 0.657+£0.010 0.656+0.011 0.684+0.014

0BS-CPS-InfC  0.7274+0.018 0.73540.023 0.77040.025
0BS-UConf-InfC 0.675+£0.019 0.696+0.022 0.730+0.023
0BS-NoPos-InfC 0.724+0.014 0.7354+0.015 0.770+0.020

Total Win 54 26 0
RCT-50 0.3304+0.008 0.318+0.011 0.341+0.015
RCT-5 0.278+0.006 0.278+0.006 0.300+0.007
0BS-CPS 0.316+0.011 0.308+0.013 0.332+0.017
0BS-UConf 0.354+0.007 0.34440.008 0.370+0.010
B 0BS-NoPos 0.3454+0.009 0.326+0.011 0.349+0.012

0BS-CPS-InfC  0.301£0.007 0.295+0.006 0.316+0.008
0BS-UConf-InfC 0.340+0.004 0.331+0.004 0.355+0.006
0BS-NoPos-InfC 0.337+0.005 0.321+0.005 0.345+0.007

Total Win 6 T4 0
RCT-50 1.430+0.022 1.591+0.021 1.79140.024
RCT-5 1.404+0.019 1.540+0.018 1.7424+0.021
0BS-CPS 1.410+0.021 1.564+0.026 1.76340.021
0BS-UConf 1.420+0.023 1.572+0.024 1.777+0.019
C 0BS-NoPos 1.454+0.019 1.614+0.020 1.805+0.015

0BS-CPS-InfC  0.931+0.027 1.021+0.030 1.173+0.038
0BS-UConf-InfC 0.895+0.033 0.9774+0.044 1.133+0.054
0BS-NoPos-InfC 0.916+0.057 1.0094+0.065 1.17240.083

Total Win 80 0 0
RCT-50 0.943+0.180 0.986+0.187 1.096+0.253
RCT-5 1.020+0.120  1.095+0.118 1.17740.176
0BS-CPS 1.0314+0.256 1.103+0.259 1.158+0.339
0BS-UConf 0.986+0.340 1.024+0.345 1.119+0.357
D 0BS-NoPos 0.969+0.238 1.038+0.292 1.124+0.243

0BS-CPS-InfC  1.146+0.030 1.1544+0.037 1.238+0.048
0BS-UConf-InfC 1.179+0.024 1.176+0.031 1.262+0.034
0BS-NoPos-InfC 1.169+0.026 1.173+0.026 1.260+0.028

Total Win 65 15 0
RCT-50 1.753+0.185 1.917+0.206 2.16140.243
RCT-5 1.605+0.127 1.7424+0.144 1.949+0.161
0BS-CPS 1.652+0.163 1.811+0.199 2.033+0.241
0BS-UConf 1.632+0.127 1.785+0.166 2.04140.255
E 0BS-NoPos 1.701+0.139  1.859+0.162 2.11240.202

0BS-CPS-InfC  0.917+0.089 1.016+0.104 1.164+0.114
0BS-UConf-InfC 0.969+0.130 1.080+0.158 1.276+0.240
0BS-NoPos-InfC 0.928+£0.060 1.022+0.068 1.18240.096

Total Win 80 0 0

Table 24: DR-Learner propensity score AUC. Note that we use the leconml package in Python,
which by default uses logistic regression for predicting the treatment assignment. Thus, we report
the AUC of the treatment prediction by the logistic regression.

Causal Configuration Logistic Regression

RCT-50 0.501+0.005
RCT-5 0.497+0.011
0BS-CPS 0.661£0.007
0BS-UConf 0.548+0.007
0BS-NoPos 0.820+0.005
0OBS-CPS-InfC 0.661+0.007
0BS-UConf-InfC 0.548+0.007
0BS-NoPos-InfC 0.820+0.005
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Table 25: Survival S-Learner concordance index

Survival Causal Base Regression Model
Scenario Configuration RSF DeepSury DeepHit
RCT-50 0.568+0.008 0.595-+0.003 0.557+0.007
RCT-5 0.551+0.008 0.580-£0.004 0.558+0.006
0BS-CPS 0.565+0.004 0.596-£0.004 0.567+0.008
0BS-UConf 0.55640.005 0.587+0.006 0.558+0.010
A 0BS-NoPos 0.56540.009 0.594+0.004 0.553+0.006

0BS-CPS-InfC  0.563+0.005 0.597+0.004 0.546+0.010
0BS-UConf-InfC 0.55740.006 0.585+0.006 0.538+0.008
0BS-NoPos-InfC 0.5624+0.006 0.591+0.003 0.539+0.008

Total Win 0 80 0
RCT-50 0.640+0.003 0.645+0.004 0.645+0.004
RCT-5 0.616+0.003 0.6224+0.005 0.621+0.004
0BS-CPS 0.631+0.005 0.6324+0.003 0.631+0.003
0BS-UConf 0.632+0.005 0.634+-0.005 0.634+0.004
B 0BS-NoPos 0.650+0.003 0.656+0.002 0.6560.002

0BS-CPS-InfC  0.63040.004 0.632+0.004 0.629+0.003
0BS-UConf-InfC 0.6304+0.004 0.633+0.005 0.631+0.005
0BS-NoPos-InfC 0.64940.003 0.655+0.003 0.654+0.003

Total Win 10 50 20
RCT-50 0.545+0.009 0.576+0.004 0.570+0.005
RCT-5 0.522+0.007 0.55440.007 0.540+0.014
0BS-CPS 0.538+0.006 0.5734+0.005 0.562+0.004
0BS-UConf 0.536+0.007 0.566+0.007 0.561+0.008
C 0BS-NoPos 0.5504+0.007 0.583+0.005 0.575+0.007

0BS-CPS-InfC  0.498+0.015 0.558+0.026 0.546+0.017
0BS-UConf-InfC 0.50240.023 0.560-£0.029 0.541+0.020
0BS-NoPos-InfC 0.511+£0.029 0.586+0.019 0.561+0.023

Total Win 0 70 10
RCT-50 0.633+0.027 0.676+0.021 0.696+0.013
RCT-5 0.569+0.019 0.626+0.017 0.628+0.011
0BS-CPS 0.61040.029 0.668+0.019 0.683+0.011
0BS-UConf 0.63440.027 0.702=£0.015 0.696+0.018
D 0BS-NoPos 0.61540.032 0.678+0.016 0.683+0.015

0BS-CPS-InfC  0.626%0.011 0.634+0.005 0.629+0.007
0BS-UConf-InfC 0.6394+0.005 0.646+:0.005 0.643+0.007
0BS-NoPos-InfC 0.63540.006 0.644+0.006 0.640+0.005

Total Win 4 40 36
RCT-50 0.544+0.010 0.591+0.011 0.578+0.011
RCT-5 0.513+0.009 0.55440.015 0.547+0.012
0BS-CPS 0.538+0.013 0.583+0.010 0.566+0.018
0BS-UConf 0.533+0.016 0.5744+0.018 0.567+0.017
E 0BS-NoPos 0.544+0.015 0.599+0.010 0.589+0.012

0BS-CPS-InfC  0.482+0.041 0.546:£0.030 0.538+0.028
0BS-UConf-InfC 0.44540.029 0.542+0.045 0.534+0.017
0BS-NoPos-InfC 0.47440.017 0.565+0.035 0.563+0.022

Total Win 0 60 20
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Table 26: Survival T-Learner concordance index

Survival Causal
Scenario Configuration

Base Regression Model (Treated)
RSF DeepHit |

Base Regression Model (Control)
RSF DeepHit

DeepSurv DeepSurv

RCT-50 0.579+0.009 0.612+0.006 0.5814+0.015
RCT-5 0.567+0.031 0.604+0.018 0.592+0.025
0BS-CPS 0.569+0.008 0.603+0.009 0.582+0.011
0BS-UConf 0.546+0.008 0.579+0.010 0.553+0.012
0BS-NoPos 0.567+0.009 0.598+0.008 0.56410.016

0BS-CPS-InfC  0.569+0.006 0.602:£0.009 0.559+0.018
0BS-UConf-InfC 0.546+0.009 0.578-+0.008 0.540+0.012
0BS-NoPos-InfC 0.564+0.009 0.598+0.006 0.545+0.013

0.546+0.010 0.5784-0.007 0.549+0.014
0.549+£0.007 0.581+0.005 0.557+0.012
0.546£0.006 0.577+0.007 0.548-+0.009
0.557+£0.009 0.5854-0.007 0.554+0.009
0.534+0.006 0.5644-0.009 0.544+0.005
0.546£0.007 0.578+0.006 0.541+0.017
0.555+0.012 0.58440.006 0.538+0.019
0.531+£0.009 0.564+-0.007 0.537+0.010

Total Win 0 75 5

0 80 0

RCT-50 0.651+0.004 0.656+0.004 0.654+0.005
RCT-5 0.628+0.017 0.62740.027 0.609+0.022
0BS-CPS 0.630£0.006 0.637+0.005 0.6341-0.005
0BS-UConf 0.644+0.008 0.648+0.006 0.64610.006
0BS-NoPos 0.628+0.005 0.636+0.004 0.631+0.005

0BS-CPS-InfC  0.628+0.005 0.633+0.005 0.63240.003
0BS-UConf-InfC 0.642+0.004 0.645+0.005 0.6461-0.005
0BS-NoPos-InfC 0.624+0.007 0.634+0.005 0.6284-0.005

0.610+£0.005 0.618+0.005 0.616+0.005
0.610+£0.007 0.61940.004 0.620+0.004
0.605+0.006 0.6124-0.006 0.607+0.007
0.598+0.005 0.6054-0.007 0.602+0.008
0.593+£0.008 0.601+0.004 0.600+0.007
0.603+0.006 0.6114+0.008 0.610+0.007
0.598+0.009 0.605+-0.004 0.603+0.007
0.59240.006 0.6024-0.004 0.600+0.007

Total Win 14 44 22

7 51 22

RCT-50 0.532£0.015 0.565+0.013 0.5574+0.015
RCT-5 0.536+0.031 0.54140.050 0.544-0.027
0BS-CPS 0.5360.008 0.568+0.009 0.555+0.011
0BS-UConf 0.537+0.010 0.568+0.012 0.557+0.007
0BS-NoPos 0.524+0.016 0.55540.012 0.543+0.014

0BS-CPS-InfC  0.487+0.041 0.550+0.032 0.54240.038
0BS-UConf-InfC 0.49140.044 0.552:0.031 0.550+0.032
0BS-NoPos-InfC 0.47040.045 0.549+0.037 0.54410.032

0.512+0.008 0.5414+0.011 0.524+0.010
0.518+0.014 0.54740.010 0.541+0.007
0.516£0.007 0.540+0.011 0.523+0.009
0.509+0.010 0.533+0.012 0.521+0.012
0.521£0.012 0.54740.011 0.535+0.008
0.497+0.018 0.53740.021 0.522+0.033
0.484+0.021 0.5134+0.035 0.519+0.018
0.489+0.029 0.538+0.023 0.513£0.033

Total Win 3 57 20

0 64 16

RCT-50 0.646+0.038 0.683+0.084 0.727+0.024
RCT-5 0.447+0.174 0.41240.158 0.672+0.135
0BS-CPS 0.584+0.052 0.646+0.038 0.672+0.022
0BS-UConf 0.655+0.038 0.73140.028 0.7451-0.012
0BS-NoPos 0.668+0.051 0.658+0.085 0.773+£0.024

0BS-CPS-InfC  0.63240.010 0.639+0.005 0.637+0.006
0BS-UConf-InfC 0.6734+0.005 0.675+0.007 0.676+0.007
0BS-NoPos-InfC 0.664+0.009 0.671+0.007 0.6681-0.007

0.565+£0.025 0.61440.018 0.623+0.025
0.573£0.019 0.626+0.016 0.625+0.015
0.543+£0.023 0.60940.032 0.620+0.024
0.536+0.034 0.5884-0.036 0.597+0.029
0.547+£0.027 0.593+0.019 0.586+0.021
0.556+£0.010 0.5754-0.010 0.566+0.010
0.549+0.011 0.569+0.007 0.556=+0.008
0.549+0.007 0.5634-0.006 0.553+0.009

Total Win 5 25 50

2 49 29

RCT-50 0.539+0.020 0.589+0.024 0.575+0.017
RCT-5 0.481£0.065 0.518+0.047 0.51610.065
0BS-CPS 0.533+0.021 0.57440.022 0.562+0.020
0BS-UConf 0.534+0.023 0.587+0.024 0.552+0.014
0BS-NoPos 0.520+0.024 0.53940.032 0.547+0.024

0BS-CPS-InfC  0.485+0.047 0.551+0.042 0.5201+0.034
0BS-UConf-InfC 0.437+0.064 0.525+0.048 0.5411+-0.065
0BS-NoPos-InfC 0.46440.046 0.520-0.038 0.505+0.040

0.514+£0.020 0.54740.019 0.537+0.014
0.518+0.011 0.5544-0.010 0.544+0.013
0.508+0.018 0.5444-0.015 0.535+0.014
0.510+£0.014 0.52040.023 0.531+0.022
0.516+£0.020 0.5464-0.016 0.534+0.015
0.454+0.038 0.5154-0.045 0.508+0.042
0.455+0.025 0.4954-0.037 0.499+0.041
0.453+£0.043 0.51440.027 0.537+£0.023

Total Win 2 53 25

5 43 32
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Table 27: Survival Matching-Learner concordance index

Survival Causal Base Survival Model
Scenario Configuration RSF DeepSury DeepHit
RCT-50 0.568+0.008 0.59540.003 0.557+0.007
RCT-5 0.551+0.008 0.5804-0.004 0.558+0.006
0BS-CPS 0.556+0.005 0.596+0.004 0.567+0.008
0BS-UConf 0.556+0.005 0.587+0.006 0.558+0.010
A 0BS-NoPos 0.565+0.009 0.594+0.004 0.553+0.006

0BS-CPS-InfC  0.563+0.005 0.597+0.004 0.546+0.010
0BS-UConf-InfC 0.55740.006 0.585+0.006 0.538+0.008
0BS-NoPos-InfC 0.5624+0.006 0.591+0.003 0.539+0.008

Total Win 0 80 0
RCT-50 0.640+0.003 0.645+0.004 0.645+0.004
RCT-5 0.616+0.003 0.6224+0.005 0.621+0.004
0BS-CPS 0.631+0.005 0.6324+0.003 0.631+0.003
0BS-UConf 0.632+0.005 0.634+-0.005 0.634+0.004
B 0BS-NoPos 0.650+0.003 0.656+0.002 0.6560.002

0BS-CPS-InfC  0.63040.004 0.632+0.004 0.629+0.003
0BS-UConf-InfC 0.6304+0.004 0.633+0.005 0.631+0.005
0BS-NoPos-InfC 0.64940.003 0.655+0.003 0.654+0.003

Total Win 9 50 21
RCT-50 0.545+0.009 0.576+0.004 0.570+0.005
RCT-5 0.522+0.007 0.55440.007 0.540+0.014
0BS-CPS 0.538+0.006 0.5734+0.005 0.562+0.004
0BS-UConf 0.536+0.007 0.566+0.007 0.561+0.008
C 0BS-NoPos 0.5504+0.007 0.583+0.005 0.575+0.007

0BS-CPS-InfC  0.498+0.015 0.558+0.026 0.546+0.017
0BS-UConf-InfC 0.50240.023 0.560-£0.029 0.541+0.020
0BS-NoPos-InfC 0.511+£0.029 0.586+0.019 0.561+0.023

Total Win 0 70 10
RCT-50 0.633+0.027 0.676+0.021 0.696+0.013
RCT-5 0.569+0.019 0.626+0.017 0.628+0.011
0BS-CPS 0.61040.029 0.668+0.019 0.683+0.011
0BS-UConf 0.63440.027 0.702=£0.015 0.696+0.018
D 0BS-NoPos 0.61540.032 0.678+0.016 0.683+0.015

0BS-CPS-InfC  0.626%0.011 0.634+0.005 0.629+0.007
0BS-UConf-InfC 0.6394+0.005 0.646+:0.005 0.643+0.007
0BS-NoPos-InfC 0.63540.006 0.644+0.006 0.640+0.005

Total Win 4 40 36
RCT-50 0.544+0.010 0.591+0.011 0.578+0.011
RCT-5 0.513+0.009 0.55440.015 0.547+0.012
0BS-CPS 0.538+0.013 0.583+0.010 0.566+0.018
0BS-UConf 0.533+0.016 0.5744+0.018 0.567+0.017
E 0BS-NoPos 0.544+0.015 0.599+0.010 0.589+0.012

0BS-CPS-InfC  0.482+0.041 0.546:£0.030 0.538+0.028
0BS-UConf-InfC 0.44540.029 0.542+0.045 0.534+0.017
0BS-NoPos-InfC 0.47440.017 0.565+0.035 0.563+0.022

Total Win 0 60 20
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F.7 CONVERGENCE RESULTS

Figure [I§] presents the convergence behavior of different causal inference methods under eight con-
figurations of assumptions, all within Scenario C that was the main focus in Section[4.1] The x-axis
shows increasing training set sizes (ranging from 50 to 10,000), while the y-axis plots the root mean
squared error (RMSE) of the estimated CATE on the test set. (Note that, all models are selected
based on performance on the validation set).

Across all configurations, we observe general convergence trends where CATE RMSE decreases as
training size increases. Among the survival methods, the T-learner Survival consistently converges
the slowest, especially under small training sizes. This may be due to the model requiring sufficient
uncensored samples per treatment arm to function effectively. Double-ML also tends to require more
data to stabilize, particularly in the presence of low treatment rate or lack of positivity. The Causal
Survival Forest shows slower convergence under settings with non-ignorable censoring or positiv-
ity violations, reflecting its convergence sensitivity to these assumptions despite its nonparametric
structure. Overall, while standard meta-learners and tree-based methods show relatively stable con-
vergence behavior, survival-specific adaptations appear more data-hungry and assumption-sensitive
for convergence. These trends highlight the importance of choosing appropriately robust methods
with respect to the dataset size in practice, especially in real-world settings where assumptions like
positivity or ignorability may be compromised.
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Figure 18: Convergence properties: CATE RMSE in Scenario C as number of training data increases.
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G SEMI-SYNTHETIC DATASETS: SETUP AND ADDITIONAL RESULTS

G.1 SEMI-SYNTHETIC DATASETS SETUP

To complement synthetic benchmarks and real-world case studies, we construct semi-synthetic
datasets that pair real covariates with simulated treatments and survival outcomes. This strategy pre-
serves realistic covariate distributions and correlations while enabling controlled evaluation against
known ground-truth CATEs. Below, we describe the ACTG- and MIMIC-based semi-synthetic
datasets and provide detailed summary statistics. Table [28| reports overall dataset sizes, covariate
counts, and censoring/treatment rates.

Table 28: Semi-synthetic dataset overview.

Data size No. covariates Censoring rate Treatment Rate

ACTG semi-synthetic 2,139 23 51.19% 56.15%
MIMIC-7 semi-synthetic 25,170 36 88.49% 49.92%
MIMIC-ii semi-synthetic 25,170 36 81.65% 49.92%
MIMIC-ii¢ semi-synthetic 25,170 36 74.10% 49.92%
MIMIC-7v semi-synthetic 25,170 36 66.34% 49.92%
MIMIC-v semi-synthetic 25,170 36 53.35% 49.92%

G.1.1 ACTG SEMI-SYNTHETIC DATASET

The ACTG semi-synthetic dataset is derived from the ACTG 175 HIV clinical trial (Hammer et al.,
1996)), which contains 23 baseline covariates. Following the construction procedure of |(Chapfuwa
et al.| (2021), we simulate treatment assignments and event times. This dataset captures realistic
treatment imbalance and moderate censoring (~51%). It serves as a smaller-scale but clinically
grounded benchmark, preserving the covariate structures observed in trial participants.

More concretely, following Chapfuwa et al.|(2021)), we simulate a covariate-dependent logistic treat-
ment assignment, and generate potential outcomes using a Gompertz—Cox survival model combined
and an AFT-based censoring mechanism. Below is our generative scheme:

X = ACTG covariates
1
P(A=1X=12)= - x (a+ o (n(AGE — pagg + CD40 — ucpao)))

b
U ~ Uniform(0, 1)
1 agloglU
Ta oA log |1 Aaexp (zT84)
log C' ~ Normal(yc, 02)
Y = min(Ty, C)

where {4, @4, Aa, b, a,n, fic, 0.} are hyper-parameters and {uacE, icpao } are the means for age
and CD40 respectively.

G.1.2 MIMIC SEMI-SYNTHETIC DATASETS

The second family of datasets is derived from MIMIC-IV ICU records (Johnson et al., |2023). We
extract 36 covariates that span laboratory test abnormalities (e.g., creatinine, glucose, hemoglobin),
demographic features (e.g., age, sex, race, marital status), and admission descriptors (e.g., admission
type, recurrent admissions, night admission). Treatments (W) are simulated as Bernoulli(0.5), and
event times are generated following the formulation of Meir et al.| (2025), where baseline hazards
depend on subsets of laboratory and demographic covariates. Five variants are created by altering the
censoring distribution, resulting in censoring rates ranging from 53% to 88%. This design mimics
the range of censoring observed in longitudinal EHR studies, from moderate censoring to highly
censored survival outcomes.

Tables [29)and [30] provide detailed covariate statistics and demographic distributions for the MIMIC
datasets and Figure[20|provides an overview of correlation among the MIMIC covariates.
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Table 29: Summary statistics of MIMIC semi-synthetic covariates. Reported values are mean +
standard deviation. Physiological covariates are coded as indicators for abnormal values where
mean reflects prevalence of abnormality.

Covariate Mean + Std Covariate Mean =+ Std
Sodium 0.12 £ 0.32 Admission age 61.39 £ 17.97
Potassium 0.08 £ 0.28 Sex:Male 0.51 £ 0.50
Chloride 0.19 4+ 0.39 Race:White 0.70 + 0.46
Bicarbonate 0.24 4 0.43 Race:Black 0.14 + 0.35
Anion gap 0.09 £ 0.29 Race:Hispanic 0.05 £0.22
Creatinine 0.28 4+ 0.45 Race:Other 0.07 £ 0.25
Urea nitrogen 0.40 4 0.49 Insurance:Medicare 0.42 + 0.49
Glucose 0.65 £+ 0.48 Insurance:Other 0.52 + 0.50
Calcium total 0.29 4+ 0.45 Marital status:Married ~ 0.45 + 0.50
Magnesium 0.09 4+ 0.28 Marital status:Single 0.33 + 0.47
Phosphate 0.28 4 0.45 Marital status:Widowed 0.14 + 0.34
Hemoglobin 0.73 4+ 0.44 Direct emergency:Yes  0.11 + 0.31
Hematocrit 0.69 4 0.46 Night admission:Yes 0.54 + 0.50

Previous admission

MCV 0.20 + 0.40 . ) 0.08 &+ 0.27
this month: Yes

MCH 0.26 £ 0.44 Admissions number:2 0.16 £ 0.37

MCHC 0.31 &+ 0.46 Admissions number:3+ 0.22 4+ 0.42

Platelet count 0.29 + 0.45

RDW 0.29 £0.45

White blood cells 0.40 £ 0.49
Red blood cells  0.76 + 0.43

Treatment assignment. Treatment is assigned independently as a Bernoulli random variable with
probability 0.5:
W ~ Bernoulli(0.5).

This ensures balanced treatment groups while maintaining independence from baseline covariates.

Potential outcomes. Let X;.5 denote the first five binary covariates corresponding to abnormal
laboratory values (Anion gap, Bicarbonate, Calcium total, Chloride, Creatinine), and let X3¢ denote
the standardized Admission age. The sum of abnormal indicators is written as

5
S=>"X;.
j=1

Potential survival times under control (7°(0)) and treatment (7°(1)) are drawn from Poisson distribu-
tions with means linearly dependent on .S and X3¢:

T(0) ~ Poisson(30 + 0.755 + 0.75X34) ,
T(1) ~ Poisson(30 + 0.75X36 — 0.45) .

The individual treatment effect is defined as
7(x) =E[T'(1) - T(0) | X = z].
We record the true CATE for each unit as T'(1) — 7(0).

Observed outcome. The realized survival time depends on treatment assignment:
T=W-T(1)+ (1 -W)-T(0).

Censoring. Censoring times are drawn independently from a Poisson distribution with mean pa-
rameter \.:
C' ~ Poisson(\,;),

where A\, € {21,23,24.7,26.5,29} controls the censoring severity across the five dataset variants
(MIMIC-[i-v]).
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Final observed data. For each individual, we define the observed time and event indicator as
Y = min(T, C),
0=1{T < C},

where Y is the observed follow-up time and ¢ is the event indicator (1 if the event was observed, 0
if censored).

G.1.3 ADDITIONAL CONFOUNDED AND NON-LINEAR MIMIC VARIANTS (MIMIC-vi TO
MIMIC-iz).

In addition to the five baseline variants described above (MIMIC-[i—v]), we construct four fur-
ther semi-synthetic MIMIC datasets that introduce (i) observed confounding through covariate-
dependent treatment assignment, and (ii) non-linear and interaction effects in both the event-time
and censoring mechanisms. These datasets are denoted MIMIC-[vi—ix], and correspond to the fol-
lowing generative combinations:

* MIMIC-v:: treatment assignment depends linearly on covariates, and both event times and
censoring times depend linearly on covariates;

* MIMIC-vei: treatment assignment depends linearly on covariates, while event times and
censoring times depend non-linearly on covariates with interactions;

* MIMIC-viii: treatment assignment depends non-linearly on covariates with interactions,
while event times and censoring times depend linearly on covariates;

e MIMIC-i2: treatment assignment, event times, and censoring times all depend non-
linearly on covariates with interactions.

All four variants reuse the same baseline covariates as MIMIC-[i—v], ensuring that differences
in difficulty are driven solely by the assignment and outcome/censoring mechanisms rather than
by changes in covariate support. Empirically, these variants yield treatment prevalences around
51%-54% and censoring rates around 53% (see summary below), matching the magnitude of im-
balance and censoring commonly observed in ICU EHR studies.

Notation shared by MIMIC-vi—iz. Let X34 denote the standardized admission age (Admission
age), and define the abnormal-lab burden S = Z?=1 X, where X5 are the five abnormal labora-
tory indicators (Anion gap, Bicarbonate, Calcium total, Chloride, Creatinine). Thus, S € 0,1,...,5
counts the number of abnormal lab values at baseline, while A captures patient age on a standardized
scale.

Covariate-dependent treatment assignment. We consider two propensity score families:

* Linear treatment assignment without interactions. Treatment probability follows a lo-
gistic model that is linear in X3¢ and S:

n(z) = ap + a1 Xze + a2,
e(x) =Pr(W =1| X =z) = o(n(z)),
where o(+) is the sigmoid. Treatment is then drawn as W | X ~ Bernoulli(e(X)).

* Non-linear treatment assignment with a quadratic term and an interaction. Treatment
probability follows a logistic model that includes X%, and the interaction X34S:

77($) = Bo + B1X36 + B25 + 63X§6 + B4 X365
e(z) =Pr(W =1| X = x) = logit " (n(x)).
Treatment is then drawn as W | X ~ Bernoulli(e(X))

We clip e(z) into [0.05,0.95] to avoid deterministic treatment assignment and preserve overlap.
Coefficients are chosen (by checking the realized E[W]) so that treatment prevalence remains close
to 0.5 while still inducing meaningful confounding via X3¢ and S.
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Event-time and censoring mechanisms. For the four new variants, potential outcomes and cen-
soring are defined through Poisson means with an identity link, clipped below at 1 to ensure positiv-
ity. Two families are used:
* Linear dependence on covariates.
fio(2) = oo + 1o1S + 102 X36 + o3 X36 + 104 X365,
p1(z) = P10 + 115 + 12 X36 + V13X 36 + 114 X365,
which define
T(0) ~ Poisson (uo(X)),
T(1) ~ Poisson (p1 (X)).
The censoring mean is also linear in X3¢ and .S
Ae(®) = wo + w1 S + wa X3 + w3 Xz + wi X369
C ~ Poisson(Ac(X)).

* Non-linear dependence with quadratic and interaction terms. Both potential event-time
means include X2, and the interaction X34S:

1o(x) = Yoo + 1015 + Y02 X36 + V03 X6 + Y04 X365,
p1(x) = 1o + 1115 + Y12 X36 + V13 X356 + Y14 X365,
which define
T(0) ~ Poisson (po(X)),
T(1) ~ Poisson (u1 (X)).
The censoring mean is defined analogously with the same non-linear structure:
Ae(®) = wo + w1 S + wa X3 + w3 Xz + Wi X369
C ~ Poisson(Ac(X)).

These mechanisms allow survival outcomes and censoring to vary non-linearly with baseline severity
(lab abnormalities) and age, thereby creating heterogeneous and more realistic treatment effects.

Observed outcomes and fixed-horizon survival probabilities. As before, factual event times are
obtained by consistency,
T=W-T1)+(1-W)-T(0), Y =min(7,.C), §=1{T <C}.
Because event times are Poisson-distributed, the conditional survival (event-free) probability for arm
w € {0, 1} at any discrete horizon ¢ is
[t]
Su(t| X)=Pr(T(w)>t|X)=1->_
k=0
In each dataset, we compute individual-level ground-truth survival probabilities at horizons corre-
sponding to the empirical 25th, 50th, and 75th percentiles of the realized event-time distribution.
These are stored as

ety (X)*
Rl

{psurvtgg,,wo ) pSuthsoiwg ) pSuI‘Vt757w0 } and {pSuI‘Vt257w1 b psuth507w1 ) psurvt75,w1 }7

and are used when evaluating survival-probability CATE estimands.

Empirical summary. Across all MIMIC variants, the sample size is N = 25,170, and the covari-
ate distributions in Table 29]remain unchanged. The baseline datasets MIMIC-i—v isolate increasing
censoring severity while keeping W L X; their censoring rates range from 53% to 88% with treat-
ment rate ~ 0.50. The new datasets MIMIC-vi—iz additionally introduce observed confounding
and non-linearities; in our instantiation, they yield a treatment rate around 0.51-0.54, and a censor-
ing rate of around 0.53: Thus, MIMIC-vi—ix complement MIMIC-i—v by testing robustness to both
confounding and misspecified or non-linear hazard/censoring relationships.
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Figure 19: (Semi-synthetic datasets) Kaplan-Meier curves for event and censoring distributions.
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Table 30: Demographic and categorical distributions in MIMIC semi-synthetic datasets. Reported
values are proportions.

Demographics Admission-related
Variable Proportion Variable Proportion
Sex Direct emergency
Male 0.512 Yes 0.110
Female 0.488 No 0.890
Race Night admission
White 0.699 Yes 0.539
Black 0.141 No 0.461
OFher . 0.066 Previous admission
H1§panlc 0.053 this month
Asian 0.041 Yes 0.081
Insurance No 0.919
Other 0.522 Admissions number
Medicare 0.421 1 0.615
Medicaid 0.057 2 0.164
Marital status 3+ 0.222
Married 0.449
Single 0.334
Widowed 0.136
Divorced 0.081

Correlation of Semi-Synthetic MIMIC Covariates

Direct emergency:Yes [l
Night admission:Yes
Admission age [ | 1.0
Insurance:Medicare | [ ] .
Insurance:Other [ |}
Marital status:Widowed [ |
Marital status:Married
Marital status:Single ] |
Race:Hispanic [ ]
Race:Other [ ]
Race:Black [ | -0.5
Race:White | |
Admissions number:2 [ |
Previous admission this month:Yes [ ]
Admissions number:3+ | ]
Glucose [ ]
White blood cells [ ]
Magnesium [ ]
Potassium | ] -0.0
Chloride [ |
Sodium | |
Phosphate [ ]
Creatinine [ |
Urea nitrogen | |
Anion gap [ ]
Bicarbonate F—
MCH .. 0.5
MCV u
MCHC ]
RDW ]
Sex:Male [ ]
Platelet count [ |
Calcium total
Red blood cells
Hematocrit
Hemoglobin

Pearson Correlation

-1.0

2P 22 S RPN S @ N X 230 S QLS R

2GS N RS e AP 0 N S S S

R S S R GRS
O 2@

S % -
QO I RUR 5Q? e @&
é.e‘&b ?&’o\({‘}%\z@\ < \4’\(\2\0(\ &
SR W S
X
e W T
o
N
3

Figure 20: Correlation heatmap of the 36 semi-synthetic MIMIC covariates. Variables include de-
mographic features, admission descriptors, insurance and marital status indicators, and laboratory
measurements. Most correlations are weak to moderate, with stronger dependencies visible among
related laboratory values (e.g., hematocrit, hemoglobin, and red blood cell count).
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G.2 DETAILED ANALYSIS OF SEMI-SYNTHETIC RESULTS

This section provides additional analysis of semi-synthetic results in Section[4.2]and Table[3] exam-
ining performance patterns, stability characteristics, and practical implications for method selection.

Method-Specific Performance Analysis. The ACTG dataset reveals clear performance hierarchies.
Double-ML achieves the lowest RMSE (10.651 £ 0.239), representing a 3.9% improvement over the
next-best method, X-Learner (11.072 + 0.196). This advantage aligns with our synthetic findings
where sophisticated causal machinery excels in moderate-dimensional settings. However, survival
meta-learners struggle on ACTG, with S-Learner Survival (11.713 + 0.237) and Matching Survival
(12.523 + 0.289) showing the worst performance.

The pattern reverses on MIMIC data. S-Learner Survival achieves the best performance on four of
five MIMIC variants: MIMIC-: (7.921 £ 0.044), MIMIC-z2z (7.900 £ 0.045), MIMIC-iv (7.901 =
0.046), and MIMIC-v (7.897 £ 0.042). This consistency demonstrates robustness across varying
censoring intensities in high-dimensional settings.

Censoring Gradient Analysis. The MIMIC censoring rate range (53% - 88%) enables analysis
of degradation patterns. S-Learner Survival maintains consistent performance across this range,
with RMSE ranging from 7.897 to 7.921—Iess than 0.3% variation despite 35 percentage points of
censoring difference. In contrast, T-Learner Survival shows clear instability, particularly at MIMIC-
1t (82% censoring), where standard deviation jumps to +0.233, indicating unreliable estimates.

Double-ML exhibits an interesting non-monotonic pattern: performing well at extreme censoring
(MIMIC-:: 7.954 +0.047) and low censoring (MIMIC-v: 7.891 + 0.050) but showing degradation at
intermediate levels. This suggests that Double-ML’s robustness may depend on specific censoring-
covariate interactions rather than censoring rate alone.

Variance and Stability Patterns. Standard deviations reveal important stability trade-offs. On
ACTG, imputation methods show relatively low variance (0.175-0.239 range) while survival meth-
ods exhibit higher variability (0.160-0.289). This pattern suggests that survival-specific methods
may be more sensitive to the particular covariate-outcome relationships present in clinical trial data.

However, this relationship inverts on MIMIC data. Survival meta-learners achieve consistently low
variance (0.042-0.075 range), while imputation methods show slightly higher variability (0.043-
0.050 range). The exception is T-Learner Survival’s instability at high censoring, which appears
dataset-specific rather than method-inherent.

Performance Convergence in High-Dimensional Settings. The MIMIC results demonstrate per-
formance convergence absent in synthetic experiments. Across all MIMIC variants, the RMSE range
spans only 7.891 to 8.007—approximately 1.4% variation. This convergence contrasts sharply with
ACTG’s 15% performance spread (10.651 to 12.523), suggesting that high-dimensional, realistic
covariate structures may level the playing field between method families.

This convergence has practical implications: in EHR-like settings with many correlated covariates,
method selection may prioritize stability and interpretability over raw performance, since perfor-
mance differences become negligible.

Cross-Dataset Generalization Challenges. No single method achieves consistent top-tier perfor-
mance across both datasets. Double-ML excels on ACTG but performs moderately on MIMIC.
S-Learner Survival dominates MIMIC but struggles on ACTG. This inconsistency highlights a crit-
ical limitation of synthetic-only evaluation: performance rankings established on one data structure
may not transfer to others, even when both represent realistic medical scenarios.

Practical Method Selection Guidelines. Based on these findings, a suggested actionable recom-
mendation can be formed as follows: (1) For clinical trial-like data with moderate dimensional-
ity and balanced censoring, prioritize Double-ML or X-Learner. (2) For EHR-like data with high
dimensionality and variable censoring, S-Learner Survival provides the best combination of per-
formance and stability. (3) Avoid T-Learner Survival in high-censoring scenarios due to variance
instability. (4) When performance differences are small (<2%), prioritize methods with lower com-
putational cost and better interpretability.

These semi-synthetic results demonstrate that while our synthetic benchmark captures important
performance trends, real-world method selection requires considering dataset-specific characteris-
tics that pure synthetic evaluation cannot fully capture.
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G.3 ADDITIONAL EXPERIMENT RESULTS AND ESTIMANDS

To complement the CATE RMSE results of MIMIC-:—v semi-synthetic datasets reported in Table
we additionally provide CATE RMSE evaluations for the MIMIC-vi—ix datasets in Section |G.3.
These results extend the main-paper table to cover the full set of semi-synthetic MIMIC scenarios.

In our main paper, we focus on RMST (with a large horizon) as the main estimand. We also add
horizon-specific survival-probability CATEs (e.g., at 25/50/75 percentiles of the event-time distribu-
tion) and RMST at median event time to directly analyze time-horizon sensitivity.

G.3.1 CATE RMSE RESULTS ON ADDITIONAL MIMIC SEMI-SYNTHETIC DATASETS

We report CATE RMSE results for the additional semi-synthetic datasets MIMIC-vi through
MIMIC-iz (Appendix [G.1.3), extending the earlier results to the complete set of MIMIC-based
scenarios. As summarized in Table [31] the performance patterns remain consistent with those ob-
served for MIMIC-i—v: Causal Survival Forest continues to achieve the strongest overall accuracy,
SurvITE performs competitively though less consistently, and survival meta-learners show moder-
ate performance with some sensitivity to dataset variation. Among survival meta-learners, S-Learner
Survival and Matching Survival show stability with respect to non-linear treatment assignment, but
exhibit slight performance degradation when the outcome depends non-linearly on the covariates.

Table 31: CATE RMSE on additional semi-synthetic datasets across 10 experimental repeats, using
RMST with respect to max event time of each dataset as the estimand

Method Family MIMIC-vi  MIMIC-viz MIMIC-viie  MIMIC-ix
Outcome Imputation Methods

T-Learner 7.184 £0.052 7.374 £ 0.067 7.220 £ 0.046 7.354 + 0.048
S-Learner 7.176 £ 0.048 7.308 £0.068 7.197 £ 0.049 7.275 + 0.061
X-Learner 7.182 £0.053 7.318 £0.069 7.203 £ 0.045 7.273 + 0.044
DR-Learner 7.145 £ 0.054 7.295 £ 0.061 7.167 £0.046 7.263 + 0.045
Double-ML 7.127 £ 0.051 7.259 £ 0.072 7.147 + 0.049 7.226 + 0.056
Causal Forest 7.142 £ 0.052 7.288 £ 0.068 7.162 + 0.047 7.247 + 0.043

Direct-Survival Methods
Causal Survival Forest 7.123 £ 0.048 7.281 + 0.064 7.149 + 0.045 7.227 + 0.054
SurvITE 7243 £0.154 7.378 £0.112 7.268 £0.117 7.347 £0.078

Survival Meta-Learners

T-Learner Survival 7.465 +0.364 7.487 +0.179 7.266 +0.053 7.465 +0.254
S-Learner Survival 7.183 +0.051 7.345 +0.066 7.198 +0.042 7.283 + 0.049
Matching Survival 7.219 +0.060 7.393 +0.074 7.240 +0.043 7.357 +0.046

G.3.2 CATE BASED ON SURVIVAL PROBABILITIES

In addition to RMST-based estimands, we also consider a treatment effect defined in terms of the
survival probability function. Let S;(w;h) := Pr(T;(w) > h) denote the potential-outcome sur-
vival function for unit ¢ under treatment w € {0, 1}, evaluated at a user-specified horizon h > 0. In
this case, the transformation y(-) in equationis replaced by

y(Ti(w)) := Si(w; h),

so that the corresponding estimand becomes the conditional average treatment effect on survival
probability at horizon h:

h(x) :=E[S;(1;h) — S;(0;h) | X; = x]. (6)

This quantity captures the treatment-induced difference in survival probability at a particular point
along the survival curve. In our benchmark, we evaluate 75, () at three horizons determined by the
empirical event-time distribution of each dataset: the 25th, 50th, and 75th percentiles. These choices
let us examine how reliably methods estimate treatment effects at relatively early, intermediate, and
later portions of the survival trajectory.
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The RMSE results of CATE Based on survival probability for 25th, 50th, and 75th percentiles on the
4 new semi-synthetic datasets are reported in Tables [32] [33] and [34] respectively. Note that, unlike
the RMST-based CATE, the survival probability-based CATE estimand can only be computed using
direct-survival methods and survival meta-learners. It cannot be obtained from outcome-imputation
methods, as those are designed for point estimates rather than modeling the full survival distribution.
Across all three horizons, Causal Survival Forest remains the strongest overall performer, similar to
what we observed in the RMST-based analysis. However, its advantage here is more nuanced: at
earlier horizons (25th percentile), the gaps between methods are wider, while at later horizons the
separation becomes smaller but the overall ordering stays the same. SurvITE consistently struggles
relative to Causal Survival Forest under this estimand, showing noticeably higher RMSE across
datasets and quantiles. Among the survival meta-learner approaches, the S-Learner Survival tends
to be the most stable, whereas Matching Survival is generally the weakest performer, especially at
later horizons where its error increases more noticeably. Overall, the method rankings appear stable
across the 25th, 50th, and 75th percentile horizons, with no major reversals as i changes.

Table 32: CATE RMSE on semi-synthetic datasets across 10 experimental repeats, using survival
probability at 25th quantile event time of each dataset as the estimand

Method Family MIMIC-vi  MIMIC-vii MIMIC-viie  MIMIC-ix

Direct-Survival Methods
Causal Survival Forest 0.044 + 0.003 0.035 = 0.003 0.038 = 0.005 0.041 + 0.003
SurvITE 0.108 +£0.024 0.099 +£0.013 0.107 £0.016 0.099 + 0.013

Survival Meta-Learners

T-Learner Survival 0.085 +£0.008 0.068 + 0.016 0.085 +0.008 0.069 + 0.010
S-Learner Survival 0.064 +£0.002 0.065 +0.002 0.069 +0.001 0.067 + 0.002
Matching Survival 0.076 = 0.005 0.079 = 0.006 0.083 +0.004 0.091 + 0.005

Table 33: CATE RMSE on semi-synthetic datasets across 10 experimental repeats, using survival
probability at median event time of each dataset as the estimand

Method Family MIMIC-vi  MIMIC-viz  MIMIC-viie  MIMIC-ix

Direct-Survival Methods
Causal Survival Forest 0.052 + 0.005 0.044 = 0.006 0.054 +0.005 0.054 + 0.004
SurvITE 0.125 +£0.022 0.109 £ 0.016 0.116 £0.016 0.116 + 0.025

Survival Meta-Learners

T-Learner Survival 0.104 = 0.010 0.098 +=0.039 0.106 = 0.009 0.091 +0.014
S-Learner Survival 0.086 +0.003 0.085 + 0.002 0.090 + 0.002 0.085 + 0.002
Matching Survival 0.096 +£0.007 0.101 = 0.008 0.105 +0.007 0.115 +0.007

Table 34: CATE RMSE on semi-synthetic datasets across 10 experimental repeats, using survival
probability at 75th quantile event time of each dataset as the estimand

Method Family MIMIC-vi  MIMIC-viz MIMIC-viie  MIMIC-ix

Direct-Survival Methods
Causal Survival Forest 0.053 +£0.004 0.05 + 0.002 0.047 +0.004 0.056 + 0.005
SurvITE 0.094 +0.017 0.084 +0.013 0.099 +0.024 0.096 +0.014

Survival Meta-Learners

T-Learner Survival 0.101 £ 0.009 0.091 = 0.023 0.094 + 0.009 0.088 +0.014
S-Learner Survival 0.074 +£0.004 0.078 +0.004 0.073 +0.002 0.082 + 0.004
Matching Survival 0.089 = 0.006 0.094 +0.007 0.087 = 0.006 0.106 + 0.006
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G.3.3 SENSITIVITY ANALYSIS OF VARYING HORIZON FOR CATE ESTIMATE BASED ON
RESTRICTED MEAN SURVIVAL TIME

In this sensitivity analysis, we evaluate how CATE estimation based on Restricted Mean Survival
Time (RMST) changes when varying the prediction horizon. The main results in the paper use the
RMST defined up to the maximum observed event time 7,,,, but here we additionally consider a
shorter horizon based on the median event time 7},,.q in each dataset. This allows us to assess whether
individual method families behave differently when estimating treatment effects over longer versus
shorter time spans. The trends indicate that the relative ordering of method families remains broadly
consistent across these two horizons. Rather than comparing absolute values across datasets, the
focus here is on understanding which methods are more robust to horizon length, an aspect that
appears stable across the configurations examined.

Table 35: CATE RMSE on new semi-synthetic datasets across 10 experimental repeats, comparing
RMST estimands at different horizons h = Ty, and h = Tieq.

MIMIC-vi MIMIC-vii MIMIC-viii MIMIC-iz
Method Family h = Thax h = Thed h = Tmax h = Thed h = Thax h = Thea h = Thax h = Ted

Direct-Survival Methods
Causal Survival Forest 7.123 + 0.048 3.850 + 0.032 7.281 + 0.064 3.740 + 0.025 7.149 + 0.045 3.839 £ 0.031 7.227 + 0.054 3.725 +0.032
SurvITE 7.243 £0.154 3.908 £ 0.067 7.378 £ 0.112 3.869 £ 0.177 7.268 £ 0.117 3.886 + 0.057 7.347 £ 0.078 3.813 + 0.055

Survival Meta-Learners

T-Learner Survival 7.465 +0.364 4.314 £0.563 7.487 £0.179 3.967 £ 0.241 7.266 + 0.053 3.904 + 0.081 7.465 £ 0.254 4.093 +0.379
S-Learner Survival 7.183 £0.051 3.866 +0.036 7.345 £ 0.066 3.760 + 0.024 7.198 + 0.042 3.852 + 0.030 7.283 +£0.049 3.742 + 0.032
Matching Survival 7.219 +£0.060 5.192 +0.203 7.393 +0.074 5.358 +0.323 7.240 + 0.043 5.207 + 0.189 7.357 + 0.046 5.420 + 0.205
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H REAL-WORLD DATASETS: SETUP AND ADDITIONAL RESULTS

We evaluate our benchmark on two real-world datasets: the Twins dataset (with known ground truth)
and the ACTG 175 HIV clinical trial dataset (without known ground truth). This section provides
detailed descriptions of data preprocessing and additional experimental results.

H.1 TwINS DATASET

The Twins dataset is derived from all births in the USA between 1989-1991 (Almond et al., |2005)
focusing on twin births. Following [Curth et al.| (2021a), we artificially create a binary treatment
where W = 1 (W = 0) denotes being born the heavier (lighter) twin. The outcome of interest is
the time-to-mortality (in days) of each twin in their first year, administratively censored at ¢ = 365
days. Since we have records for both twins, we treat their time-to-event outcomes as two potential
outcomes 7(1) and 7(0) with respect to the treatment assignment of being born heavier. While
the Twins dataset is a widely used benchmark (Louizos et al., 2017; Du et al., 2021} |Curth et al.,
2021a}; |Curth & Van der Schaar, 2021} |Curth et al., 2021b), we note that treating twins as perfect
counterfactuals at the very best is an approximation. The “ground-truth” relies on the assumption
that the unobserved potential outcome of one twin is identical to the observed of their sibling, which
in reality may not fully capture genetic or environmental heterogeneity.

We obtained 30 features (43 feature dimensions after one-hot encoding categorical features) for
each twin relating to the parents, pregnancy, and birth characteristics including marital status, race,
residence, number of previous births, pregnancy risk factors, quality of care during pregnancy, and
number of gestation weeks prior to birth. We select only twins weighing less than 2kg and without
missing features, resulting in more than 11,000 twin pairs.

To create an observational time-to-event dataset with known ground truth, we follow the semi-
synthetic experimental design from |Curth et al.| (2021a). The treatment assignment is given by
W |z ~ Bernoulli(o(3] = + €)) where B; ~ Uniform(—0.1,0.1)***! and e ~ N(0, 12). The time-
to-censoring is given by C' ~ Exp(100 - o(35 )) where B2 ~ N(0, 12). This results in a treatment
rate of 68.1% and censoring rate of 38.2%.

We split the data 50/25/25 for training/validation/testing samples and repeat all the experiments 10
times with different random splits. CATE RMSE are reported on the testing sets. In Section 43| we
display the CATE RMSE with horizon i = 30 days. Here, we show CATE RMSE results for the
Twins dataset with horizon h = 180 days in Figure [21] and we can see it indicates similar results as
h = 30.
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Figure 21: CATE RMSE for twin birth data using different estimator families with 2 = 180. Box
plots show the distribution of error across 10 experimental runs (added SurvITE results).
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H.2 ACTG 175 HIV CLINICAL TRIAL DATASET

We use data from the AIDS Clinical Trials Group Protocol 175 (ACTG 175) (Hammer et al.,|1996),
a double-blind, randomized controlled trial that compared four treatment regimens in adults infected
with HIV type I: monotherapy with zidovudine (ZDV), monotherapy with didanosine (ddI), com-
bination therapy with ZDV and ddI, or combination therapy with ZDV and zalcitabine (Zal). The
publicly available datase includes 2,139 HIV-infected patients randomized into four groups with
assigned treatments: ZDV, ZDV+ddI, ZDV+Zal, and ddI. An event occurrence was defined as the
first of either a decline in CD4 cell count, an event indicating AIDS progression, or death.

Following |Meir et al.| (2025), after fetching raw data from the UCI Machine Learning Repository,
we change the resolution from days to months and add synthetic censoring based on a Bernoulli
distribution with parameter p = 0.6 + 0.25 - Z30, where Z30 is a feature that is available in the
data and indicates whether a patient started taking ZDV prior to the assigned treatment, and it is not
included in the covariates for CATE estimation. We conduct three pairwise comparisons with ZDV
as the baseline treatment (/W = 0): ZDV vs. ZDV+ddl (HIV1), ZDV vs. ZDV+Zal (HIV2), and
ZDV vs. ddI (HIV3). The baseline censoring rate is less than 15% for different treatment groups.
After applying the censoring injection procedure from Meir et al.[(2025)), increasing censoring rates
to over 90%. For each treatment group, we establish baseline CATE estimates by running Causal
Survival Forest 10 times and averaging the estimated conditional average treatment effects. Since
there are many variants of outcome imputation and survival meta-learner families due to different
imputation and base learner options, for display purposes in the HIV dataset results, we use a model
selection criterion based on closeness (CATE RMSE) to estimation by Causal Survival Forest. We
have looked the results using other variants of same CATE estimator as well, and similar trends are
observed.

In Sectionf4.3] we display the comparisons of CATE estimates between baseline and high-censoring
conditions for group HIV1. Here we display the same sets of results for HIV2 and HIV3 groups in
Figure 22] 23] Consistent patterns emerge across all three treatment comparisons: Causal Survival
Forest produces estimates that cluster tightly around their baseline CATE estimations on data be-
fore additional censoring injection; outcome imputation methods show higher variation in baseline
estimates but more concentrated predictions under high censoring, and survival meta-learners dis-
play substantial deviations from the 45-degree line, indicating sensitivity to censoring conditions.
The consistency of these patterns across different treatment pairs reinforces the robustness of our
findings regarding how different estimator families respond to increased censoring.

Shttps://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175
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Figure 22: CATE Estimation comparison between baseline and high-censoring conditions under
ZDV vs. ZDV+Zal treatments (HIV2). Each point represents an individual patient in test sets, with
the dashed diagonal line indicating perfect consistency between baseline CATE estimation and that

with the additional censoring injected.
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Figure 23: CATE Estimation comparison between baseline and high-censoring conditions under
ZDV vs. ddI treatments (HIV3). Each point represents an individual patient in test sets, with the
dashed diagonal line indicating perfect consistency between baseline CATE estimation and that with
the additional censoring injected.
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I ADDITIONAL INFORMATIVE CENSORING VIA UNOBSERVED
CONFOUNDING

In the main paper, we model informative censoring by making censoring times stochastically depen-
dent on event times, reflecting realistic scenarios where patients with shorter expected survival may
drop out earlier. Here we complement this setting with an alternative mechanism where the ignor-
able censoring assumption is violated due to unobserved confounding. This extension illustrates the
extensibility of our modular data generation framework.

Data generation process. We follow the same covariate generation procedure as in our synthetic
datasets: observed covariates X ~ Uniform(0, 1)® and an unobserved covariate U ~ Uniform(0, 1).
Treatment assignment follows the OBS-UConf configuration, where U enters into both treatment
assignment and outcome generation but remains unobserved during estimation.

We focus on survival Scenario C (Poisson hazards with medium censoring). Event times and cen-
soring times are generated as follows, where w € {0, 1} is the treatment indicator:

A(w):X22+X3+6+2<\/O.3-X1+0.7-U—0.3>-w+e, %)
T(w) ~ Poisson(A(w)), (8)
o0 ifU < 0.6,
= . )
1+ 1(X4 <0.5) otherwise,

where ¢ ~ N(0,0.1) adds stochastic variation. The censoring distribution thus depends directly
on the unobserved variable U, creating dependence between censoring and survival that cannot be
explained away by the observed X alone.

Summary statistics Similar to the other synthetic datasets, we include up to 50,000 samples with
treatment assigned according to an observational study mechanism. The treatment rate is 53.9%, the
censoring rate is 39.7% (driven by U), and the population-level ATE is 0.7737 (computed from the
50,000 samples by averaging the CATEs). This setup mirrors real-world contexts such as clinical
trials with dropout patterns influenced by latent health status.

Experimental results We evaluated representative estimators from all three method families. Fig-
ure 24| reports CATE RMSE (mean =+ standard error) across 10 random splits.
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Figure 24: CATE RMSE and ATE bias under informative censoring induced by unobserved con-
founding.

The results indicate that causal survival forest and survival meta-learners with matching tend to
perform best under this setting, consistent with findings from the main synthetic datasets.

Extensibility to other settings. Here we illustrate one case: OBS-UConf combined with Sce-
nario C. However, the same mechanism can be straightforwardly extended to other causal config-
urations (e.g., randomized trials with imbalance) and survival scenarios (e.g., AFT or Cox models).
We leave systematic exploration of these additional combinations for future work, but their ease
of inclusion highlights the flexibility of SURVHTE-BENCH to accommodate alternative censoring
mechanisms.
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