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Abstract

Recent research has shown that aligning fine-grained text descriptions with localized image
patches can significantly improve the zero-shot performance of pre-trained vision-language
models (e.g., CLIP). However, we find that both fine-grained text descriptions and localized
image patches often contain redundant information, making text-visual alignment less
effective. In this paper, we tackle this issue from two perspectives: view refinement and
description refinement, termed as Bi-refinement for Fine-grained Text-visual Alignment
(BiFTA). View refinement removes redundant image patches with high Intersection over
Union (IoU) ratios, resulting in more distinctive visual samples. Description refinement
removes redundant text descriptions with high pairwise cosine similarity, ensuring greater
diversity in the remaining descriptions. BiFTA achieves superior zero-shot performance on 6
benchmark datasets for both ViT-based and ResNet-based CLIP, justifying the necessity to
remove redundant information in visual-text alignment. Our code is available at: https:
//anonymous.4open.science/r/BiFTA-A707.

1 Introduction

Drawing from the profound strides made in large-scale pre-training within natural language processing
(Radford et al., 2018; 2019; Devlin et al., 2019; Brown et al., 2020), the CLIP model (Radford et al., 2021)
aligns vast collections of images with their corresponding natural language captions (e.g., “a photo of a
{label}”) into a unified embedding space using large datasets. The scaling of the pre-training data in CLIP
empowers the model to deliver considerable performance in zero-shot classification (Radford et al., 2021).
To push the limits of CLIP’s zero-shot capabilities, several studies (Menon & Vondrick, 2023; Pratt et al.,
2023) harness the power of LLMs to craft detailed, fine-grained textual descriptions for each label category
by using label-integrated prompt templates (e.g., “describe what does a/an {label} look like”), achieving a
more precise alignment between an entire image and descriptive textual representations. Building upon this,
Li et al. (2024) propose weighted visual-text cross alignment (WCA), which aligns these fine-grained textual
descriptions with localized image patches based on weighted similarities to further refine the synergy between
visual and textual representations, achieving state-of-the-art (SOTA) zero-shot performance.

However, we find that both fine-grained textual descriptions and localized image patches often contain
redundant information, as demonstrated in Figure 1, making text-visual alignment less effective. For example,
following WCA (Li et al., 2024), we use random cropping to obtain localized image patches of an image
sample (e.g., a border collie), as depicted in Figure 1. We find that these image patches often include
certain redundant views exhibiting exceptionally high pairwise cosine similarities (i.e., approaching to 1),
which is attributed to the randomness in the cropping method. Similarly, we observe that the diversity of
LLM-generated textual descriptions is often restricted by the invariant label-integrated prompt template,
leading to redundant descriptions (see Figure 1). These redundant views and descriptions can cause significant
biases when computing the similarity scores, since they are overrepresented. Consequently, the CLIP model
may overemphasize duplicated features, and thus skew the result toward the redundant features. These
observations motivate us to remove redundant information within these image patches and textual descriptions.
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Figure 1: Weaknesses of weighted visual-text cross alignment (Li et al., 2024). Weakness 1: Pairwise
similarity scores of highly overlapping crop bounding boxes. We demonstrate that image patches
A, B, and C, exhibiting significant overlap and redundancy, which provide limited semantic information
and consequently contribute minimally to accurate classification. Weakness 2: Redundant textual
descriptions generated by LLM. We gather textual descriptions from previous work and demonstrate that
a significant portion of these descriptions are redundant for a given category, thereby diluting the contribution
of meaningful and informative descriptions.

To this end, we propose Bi-refinement for Fine-grained Text-visual Alignment (BiFTA), a new method
to tackle the above-mentioned issue from two perspectives: view refinement and description refinement.
Specifically, view refinement uses Intersection over Union (IoU) as the filter metric to efficiently identify
and eliminate redundant cropped image patches based on their overlaps of the bounding box. We aim
to remove image patches with high IoU ratios, making the remaining visual samples more distinctive. In
contrast, description refinement first computes the pairwise cosine similarity of the textual descriptions at the
representation level, aiming to filter out redundant ones. Then, we select top-k textual descriptions that have
the highest cosine similarities with the label caption (“a photo of a/an {label}”) from the remaining ones. To
better understand BiFTA, we provide theoretical justifications in Section 4.3 to show that our method indeed
prioritizes more effective image patches and descriptions while filtering out redundant information.

Through extensive evaluations across 6 benchmark datasets, we show that BiFTA outperforms baseline
methods by notably improving the zero-shot classification accuracy for both ViT-based and ResNet-based
CLIP, justifying the necessity to remove redundant information in visual-text alignment.

We summarize the main contributions of our work as follows:

• We observe that localized image patches and fine-grained textual descriptions often contain redundant
information, making current SOTA visual-text alignment methods less effective.

• We propose a new method, namely BiFTA, to mitigate such redundancy through view refinement
and description refinement, enhancing the alignment between visual and textual modalities.

• We empirically show that BiFTA outperforms baseline methods by achieving significant improvements
in zero-shot classification accuracy across 6 benchmark datasets with various CLIP backbones.

2 Related Work

Zero-shot learning for Vision-Language Models. Vision-language models (VLMs) have shown their
emergent capabilities on image captioning, visual question answering and image classification, which are
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not specifically pre-trained or explicitly finetuned for these downstream tasks (Radford et al., 2021; Cho
et al., 2021; Wang et al., 2021; Kim et al., 2021; Xue et al., 2021; Li et al., 2022a; Alayrac et al., 2022).
CLIP (Radford et al., 2021) demonstrates that integrating large-scale pre-training on image-text pairs with
a contrastive loss function could enable zero-shot transfer to downstream tasks by simply using natural
language prompts. Similarly, ALIGN (Jia et al., 2021) further demonstrates robust representation learning
capability of VLMs by pre-training on noisy image-text pairs at large scale. By increasing the scale of the
pre-training data and model size, Florence (Yuan et al., 2021) introduces a unified vision-language foundation
model capable of zero-shot image classification and retrieval. On the other hand, CoCa (Yu et al., 2022)
combines contrastive and generative objectives to improve zero-shot generalization across diverse tasks. The
scaling of pre-training data and the contrastive learning paradigm contribute to deeper visual-text alignment
and visual understanding of the model.

Textual prompt engineering in VLMs. By scaling the training data, VLMs can learn and understand
diverse visual concepts, which can then be transferred to downstream tasks through specific textual label
prompting (Radford et al., 2021; Jia et al., 2021; Yuan et al., 2021; Li & Liang, 2021; Singh et al., 2022;
Zhou et al., 2022; Shu et al., 2022; Cui et al., 2025). The LLM-integrated textual description generation
shows a great generalization ability comparing with existing prompt-learning methods, which often overfit to
training data (Li et al., 2022b; Wang et al., 2022; Wu et al., 2023; Tanwisuth et al., 2023). CLIP (Radford
et al., 2021) achieves zero-shot classification by generating classification weights through encoding textual
descriptions that uses CLIP template and categories via its text encoder. It then compares these text
embeddings with image features extracted by the image encoder to determine the most likely class. Zhou
et al. (2022) discover that manually prompt tuning is a time-consuming task and propose CoOp, which
models context words with continuous vectors. Subsequently, Menon & Vondrick (2023); Pratt et al. (2023)
automatically generates textual category-specific descriptions by leveraging LLMs with different prompt
templates. These textual descriptions can accurately reflect visual features of images in each category. More
recently, retrieval-augmented generation (RAG) is proposed to help to generate accurate descriptions of
categories, which is a training-free framework that can be directly integrated during inference time (Yu
et al., 2024; Chan et al., 2024; Guo et al., 2024). It retrieves semantically relevant documents by computing
embedding vector similarity and provides the retrieved information as supplementary context to LLMs,
enabling more accurate and informed responses.

Fine-grained visual-text alignment. Weighted visual-text cross alignment (WCA) (Li et al., 2024) has
done empirical observation on the embedding alignment between visual patches and textual descriptions. It
uses random crops to augment image samples and utilizes cosine similarity to extract informative patches.
Similarly, it utilizes distinctive textual descriptions from LLM to cross-align with the image patches. There
are uncertainties when cropping samples randomly, and the textual descriptions are not corresponding to
fine-grained image patches. AttrVR (Cai et al., 2025) uses descriptive and distinctive attributes of each
categories from LLM outputs. In our method, we augment the textual descriptions by integrating various
description generation methods to further select the high-quality textual descriptions.

3 Preliminary

CLIP Zero-shot Classification. CLIP (Radford et al., 2021) is a pre-trained VLM that consists of a
text encoder ftxt : T → Z and an image encoder fimg : X → Z, where T is a discrete text space, X is a
continuous image space and Z ⊆ Rn is a shared n-dimensional embedding space. These encoders take an
image X ∈ X and a text T ∈ T as input pair (X, T ), mapping them into the shared latent space Z. Then
the similarity score between the image and text embedding is calculated as:

simCLIP(X, T ) = cos (Zi, Zt) /τ, with Zi = fimg(X), and Zt = ftxt(T ),

where cos(·, ·) denotes the cosine similarity such that cos(Zi, Zt) = Zi·Zt

∥Zi∥∥Zt∥ and τ is a temperature parameter.

For downstream classification tasks, the text encoder of CLIP model receives a label prompt string T̂y (e.g.,
“This is a photo of a/an [y]”), where y ∈ Y. Subsequently, CLIP model predicts the label which maximizes
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the probability of pCLIP(Y |X), given by:

arg max
y∈Y

pCLIP(Y = y | X) =
exp

(
simCLIP(X, T̂y)

)
∑

y′∈Y exp
(

simCLIP(X, T̂y′)
) .

Here, the label y that maximizes the conditional probability pCLIP(Y = y | X) will be chosen, where the
visual and textual representations exhibit the highest similarity within the embedding space Z. This enables
zero-shot classification capability on CLIP model, as it can generalize to unseen categories without additional
fine-tuning.

Weighted Cross-Alignment (WCA). WCA is a scoring method specifically designed to improve the
visual-text cross-alignment capability of the CLIP model (Li et al., 2024). First, an original image X = x
is randomly cropped with a window size ranging from [α, β] ∈ [0, 1] for n times. It obtain n cropped
image patches denote as Ii = rnd_crop(x), i ∈ [0, n], where rnd_crop(·) is the random cropping function
that obtains localized visual features (Li et al., 2024). On the other hand, WCA would prepare m textual
descriptions T1, T2, ..., Tm generated by LLMs, which encompass descriptive features of each category y ∈ Y.
The textual descriptions are collected by leveraging a LLM with manually crafted prompt templates, such as
“Describe what a/an category looks like." (Pratt et al., 2023). Then the visual-text similarity score matrix
can be presented as: simCLIP(I1, T1) · · · simCLIP(I1, Tm)

...
. . .

...
simCLIP(In, T1) · · · simCLIP(In, Tm)

 ,

where simCLIP(Ii, Tj) represents the similarity scores between a specific textual description Tj and an image
patches Ii. When applying WCA, the overall similarity score between image x and label y is as follows:

simWCA(X = x, Y = y) =
n∑

i=1

m∑
j=1

wivjsimCLIP(Ii, Tj), (1)

where wi and vj are weights for image patch Ii and textual description Tj , respectively. They are obtained
from the similarity between Ii and the original image x, or Tj and the label prompt string T̂y, i.e., wi =
softmax(cos(fimg(x), fimg(Ii))) and vj = softmax(cos(ftxt(T̂y), ftxt(Tj))). WCA effectively aligns visual-text
pairs with aforementioned weights (Li et al., 2024). However, redundant information may appear in image
patches and textual descriptions, leading to the weaknesses shown in Figure 1.

4 BiFTA: View Refinement and Description Refinement

We introduce BiFTA from two key perspectives: (1) view refinement (Section 4.1), which involves filtering
out localized image patches generated through random cropping; and (2) description refinement (Section
4.2), which encompasses strategies designed to collect fine-grained textual descriptions. An overview of
BiFTA is illustrated in Figure 2. Our approach integrates efficient data filtering and refinement techniques to
refine cross-aligned image-text pairs, ultimately enhancing the quality and accuracy of image classification.
Furthermore, in Section 4.3, we mathematically prove that BiFTA generates more effective views and
descriptions by leveraging posterior probability analysis.

4.1 View Refinement

As shown in Section 3, in WCA, for a single image x, a set of randomly selected patches V = {I1, I2, ..., In}
is used for subsequent classification. However, as illustrated in Figure 1, this may introduce redundancy,
affecting the classification results. Therefore, without changing the size of the patch queue |V |, we employ a
filtering function fIoU(·) to ensure that each newly cropped image added to current V does not have excessive
overlap with the existing images in the set. For a newly cropped image Ii = rnd_crop(x), the filtering
function can be expressed as:

fIoU(Ii, V ) =
{

1 ∀I ∈ V, IoU(I, Ii) < 1− δ
0 ∃I ∈ V, IoU(I, Ii) ≥ 1− δ

, (2)
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Figure 2: An Overview of BiFTA. To reduce potential redundancy in views and descriptions, the randomly
cropped views undergo filtering with the IoU filter (Section 4.1), while the randomly sampled description
texts are processed using the CoS filter (Section 4.2) when computing the similarity between a single image
and a single label. The similarity score is then calculated on the refined views and descriptions.

where IoU(.) is the Jaccard index1 (i.e., intersection over union) between two patches, and 1 − δ is a
hyperparameter representing the IoU threshold detailed in Section 5. When fIoU(Ii, V ) = 0, the view set V
remains unchanged. However, if fIoU(Ii, V ) = 1, V will be appended with the new view Ii, i.e., V ← V ∪{Ii}.
Thus, while keeping the size of V unchanged, this effectively augments more effective views.

4.2 Description Refinement

In previous works, CuPL (Pratt et al., 2023) used label-integrated prompt templates such as “Describe what
a/an [label] looks like” to obtain various appearance descriptions of different classes. Meanwhile, AttrVR
(Cai et al., 2025) employs prompts like “Describe the appearance of [task] [label]” to obtain DesAttr (which
describes intra-class features) and DistAttr (which distinguishes inter-class features). Here, we take the union
of the descriptions obtained by these methods as the preliminary refinement data.

For a given label y, let us denote the three sets of descriptions as T CuPL(y), T Des(y), T Dist(y), respectively.
We can then formulate the equation as:

T CuPL(y) = fLLM(y|[cupl_prompt]), T Des(y) = fLLM(y|[des_prompt]), T Dist(y) = fLLM(y|[dist_prompt]),

where fLLM(·) returns the LLM output given queries, and cupl_prompt, des_prompt, dist_prompt are
aforementioned prompts used by these methods.

Similar to the view refinement, in order to alleviate the redundancy when obtaining description set D =
{T1, T2, ..., Tm}, we also employ a filtering function fCoS(·, ·) during random sampling. When sampling text
Ti ∈ T CuPL(y) ∪ T Des(y) ∪ T Dist(y), the filter function fCoS(Ti, D)–which determines whether new sampled
Ti should be included in current set D–can be represented as fCoS(Ti, D) = fCS(Ti, D) · fTopK(Ti, D), which
consists of a filter fCS(·, ·) that removes similar descriptions:

fCS(Ti, D) =
{

1 ∀T ∈ D, cos(ftxt(T ), ftxt(Ti)) < 1− ϵ
0 ∃T ∈ D, cos(ftxt(T ), ftxt(Ti)) ≥ 1− ϵ

,

and another filter fTopK(·, ·) for eliminating noisy or irrelevant descriptions:

fTopK(Ti, D) =
{

1 Ti ∈ Top-K(cos(ftxt(T̂y), ftxt(T ))|T ∈ D)
0 Ti /∈ Top-K(cos(ftxt(T̂y), ftxt(T ))|T ∈ D)

,

where ϵ is a hyperparameter representing the threshold, Top-K(·) returns the set of variable T s corresponding
to the top k function values, and T̂y is the label prompt string (e.g. “This is a photo of a/an [label]”).

1https://en.wikipedia.org/wiki/Jaccard_index
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The use of fCS(·, ·) ensures that the selected description set contains as little repetitive or redundant textual
content as possible. The use of fTopK(·, ·) minimizes the presence of distracting descriptions in the candidate
description set (e.g., noisy text generated by an LLM). When fCoS(Ti, D) = 0, the description set D remains
unchanged. However, if fCoS(Ti, D) = 1, D will be appended with the new description Ti, i.e., D ← D ∪ {Ti}.

Overall, by applying these functions, the descriptions becomes more diverse under fixed set size |D|, effectively
increasing the number of useful descriptions. This is equivalent to performing description refinement.

4.3 Overall Pipeline

The overall pipeline of BiFTA is illustrated in Figure 2. When computing the similarity between a image and
a label, the randomly cropped views are filtered using the IoU filter fIoU and stored by a patch queu V , while
the randomly sampled description texts are filtered using the CoS filter fCoS. Then, the similarity between
views and descriptions is computed using Eq. 1 to obtain the final prediction. The detailed algorithm is
provided in Appendix A.

4.4 Understanding BiFTA Through Posterior Probability

In this section, we will explain that the label predictions obtained using our method contain more effective
views and descriptions through the angle of posterior probability.

We will first define the concept of Redundant Views/Descriptions in Definition 1 and Deduplicated Set in
Definition 2.
Definition 1. (Redundant Views/Descriptions). Assuming Ii and Ij are two views of image x, if IoU(Ii, Ij) ≥
1 − δ, where 1 − δ is the IoU threshold, then Ii and Ij are considered to have a significant overlap, i.e.,
Ii and Ij are redundant views of each other. Regarding textual descriptions Tp and Tq for label y, if
cos(ftxt(Tp), ftxt(Tq)) ≥ 1− ϵ, where 1− ϵ is the threshold, then the two descriptions can be considered nearly
identical, i.e., they are mutually redundant descriptions.
Definition 2. (BiFTA-Deduplicated Set). For a set containing views V = {I1, I2, ..., In} with the size n, V
is a deduplicated view set if and only if it satisfies:

∀Ii, Ij ∈ V, IoU(Ii, Ij) < 1− δ.

Similarly, for a set D = {T1, T2, ..., Tm} containing m descriptions, D is a deduplicated description set if and
only if it satisfies:

∀Tp, Tq ∈ D, cos(ftxt(Tp), ftxt(Tq)) < 1− ϵ.

Through Definition 2 and Section 4.1 to 4.3, it can be concluded that view and description sets used by our
method are BiFTA-deduplicated set. However, view and description sets utilized in WCA do not belong to
BiFTA-deduplicated sets, as no constraints are established during random cropping of images or sampling of
description texts.
Proposition 3. For a pair of redundant views Ii and Ij (cf. Definition 1), when δ → 0, then for a label y, it
can be obtained that p(Ii|y) ≈ p(Ii, Ij |y). Similarly, for a pair of redundant descriptions Tp and Tq, assuming
the text encoder ftxt(·) is an injective function, when ϵ→ 0, then p(Tp|y) ≈ p(Tp, Tq|y).

Proposition 3 states that as δ approaches 0, the conditional probability of two mutually redundant views given
the label y approximately equals the conditional probability of one of the views given y. The redundancy
descriptions follow accordingly. See detailed proof of Proposition 3 in Appendix B.1.
Proposition 4. Assuming that the label y ∈ Y follows a uniform distribution, then applying our method, the
posterior probability of y can be formulated as:

p̂ours(y|I1, I2, ..., In, T1, T2, ..., Tm) ∝ p(I1, I2, ..., In, T1, T2, ..., Tm|y),

where both {I1, I2, ..., In} and {T1, T2, ..., Tm} are BiFTA-deduplicated sets (cf.Definition 2). Under the same
condition in Proposition 3, when applying WCA, the posterior probability can be estimated as:

p̂wca(y|I ′
1, I ′

2, ..., I ′
n, T ′

1, T ′
2, ..., T ′

m) ∝ p(V ′, D′|y),
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Table 1: Zero-shot classification accuracy (%) across various baseline methods with the pre-trained CLIP
model (ViT-B/32). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green. The results of our method are highlighted
and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 62.05 51.21 85.04 42.93 82.60 38.51

CLIP-E 63.37 52.74 87.38 43.83 83.93 39.28
CLIP-D 63.01 52.69 84.46 44.20 84.12 39.90
Waffle 63.30 52.04 85.50 42.98 83.98 39.47
CuPL 64.37 49.76 87.03 47.50 84.20 39.08
WCA 66.49 56.74 89.05 49.89 86.11 40.55

BiFTA (ours) 66.58±0.06 58.24±0.17 89.74±0.14 53.22±0.26 86.43±0.06 41.55±0.06
∆ +0.09 +1.50 +0.69 +3.33 +0.32 +1.00

Table 2: Average classification accuracy (%) across various baseline methods with different CLIP models.
The improvements ∆(%) over the top-performing baseline (i.e., WCA) are highlighted in green. We use
bold to represent the best-performing method and underlined to represent the second-best method.

Model Architecture CLIP CLIP-E CLIP-D Waffle CuPL WCA BiFTA
(ours) ∆

ViT-B/32 60.39 61.76 61.40 61.21 62.16 64.81 65.96 +1.15
ViT-B/16 63.59 64.51 64.67 64.34 66.09 67.87 68.29 +0.42
ViT-L/14 68.94 70.12 69.87 69.61 71.31 72.50 72.98 +0.48

RN-50 56.97 58.64 58.39 57.92 60.01 62.00 62.54 +0.54
RN-101 59.14 60.50 59.22 58.89 59.04 61.14 62.03 +0.89

where V ′ and D′ are the largest dedupicated set satisfying V ′ ⊆ {I ′
1, I ′

2, ..., I ′
n}, D′ ⊆ {T ′

1, T ′
2, ..., T ′

m}. The
actual effective numbers of views and descriptions should be less than or equal to that of our method (i.e.,
|V ′| ≤ m, |D′| ≤ n).

According to Proposition 4 (proved in Appendix B.2), when the numbers of views and descriptions are
fixed, our refinement-and-filtering approach prioritizes the more effective ones while filtering out redundant
information. This is equivalent to increasing the number of effective views and descriptions after removing
duplicated ones.

5 Experiment

In this section, we first provide the detailed experimental settings in Section 5.1. We evaluate the effectiveness
of BiFTA through comprehensive experiments across 6 benchmark datasets and 5 different CLIP model
architectures. In Section 5.2, we present the main experimental result of utilizing the CLIP model with
a ViT-B/32 backbone across various datasets. Additionally, we provide complete experimental results of
other model architectures in Appendix C. In Section 5.3, we conduct ablation studies to validate our design
principles of view refinement and description refinement. Limitations are presented in Appendix F.

5.1 Experimental Settings

Datasets. To evaluate BiFTA, we conduct experiments on 6 downstream classification tasks under a zero-shot
setting, including: (1) ImageNet (Deng et al., 2009), a large-scale dataset comprising 1,000 diverse object
classes; (2) CUB (Welinder et al., 2010), a fine-grained dataset of 200 bird species, focusing on subtle visual
distinctions; (3) Oxford Pets (Parkhi et al., 2012), a dataset of 37 pet categories; (4) DTD (Cimpoi et al.,
2014), a texture dataset containing 47 categories of materials and surfaces; (5) Food101 (Bossard et al., 2014),
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Sample Views of

Ours (w/ IoU Filter)

Sample Views of

WCA

Sample Descriptions of Ours (w/ CoS Filter)

Sample Descriptions of WCA

• Geese are waterfowl with long necks and webbed 

feet.

• A goose is a large bird with a long necks and 

webbed feet.

• A goose is a waterfowl with a long necks and 

webbed feet. 

• The object goose is a medium-sized bird with a 

plump, elongated body.

• Geese are waterfowl with long necks and webbed 

feet.

• The object goose is a bird that typically has a long, 

slender body covered in feathers.

Figure 3: A visualization comparing the effectiveness of view refinement and description refinement in BiFTA
against WCA. Left: with an IoU filter, the cropped samples exhibit diverse and distinctive localized features.
Right: with a CoS filter, the texts can describe various local features of a category.

a dataset of 101 food categories; and (6) Place365 (Zhou et al., 2017), a scene recognition dataset with 365
categories of indoor and outdoor environments. These datasets span a wide range of categories, encompassing
various visual domains, involving scenes, textures, food, animals and fine-grained objects. This ensures the
robustness and generalizability of BiFTA across various real-world applications.

Baselines. Our evaluation of zero-shot visual classification integrates 6 baselines: (1) CLIP (Radford et al.,
2021), a naive approach that incorporates a manually crafted label prompt; (2) Ensemble CLIP (CLIP-
E) (Radford et al., 2021), an advance approach that incorporates a series of label prompts; (3) CLIP-D (Menon
& Vondrick, 2023), an approach that utilizes category descriptions generated by a LLM instead of label
prompting approach; (4) Waffle (Roth et al., 2023), a novel approach that replaces LLM-generated category
descriptions with random word descriptions; (5) CuPL (Pratt et al., 2023), a method that leverages LLM
and improves the quality and variety of textual descriptions compared with CLIP-D; (6) WCA (Li et al.,
2024), a method that cross-aligns localized image patches with fine-grained textual descriptions.

Implementation Details. We use CLIP as the pre-trained model and evaluated on both Vision Transformer
(ViT) and ResNet backbone architectures, specifically ViT-B/32, ViT-B/16, ViT-L/14, RN-50 and RN-101.
These architectures are selected to enable a thorough analysis of the proposed method across varying scales
and complexities. We keep the shared hyperparameters consistent with WCA settings (Li et al., 2024): we
use n = 60 for the patch queue length (this is equivalent to number of crops) and m = 50 for the number of
textual descriptions per category. We utilize the same cropping window size ranging from [αlow, βhigh], where
αlow = 0.5 and βhigh = 0.9 across all experiments. Additionally, we adopt the same technique as WCA to
store the embeddings of localized image patches during the initial execution (Li et al., 2024). This allows for
their reuse when evaluating different sets of textual descriptions, significantly reducing computational costs.

5.2 Zero-shot Image Classification Results

In Table 1, the classification performance of CLIP (B/32) underscores the consistent superiority of BiFTA
over existing baselines. In specific, BiFTA achieves an average performance gain of ∆avg = 1.15% compared
to WCA across all downstream tasks and outperforms previous baselines that utilize label prompts by a large
margin. Notably, BiFTA achieves a 3.33% accuracy gain over WCA on the DTD dataset, which contains
various texture information. This improvement stems from the dataset’s inherent challenges: textual patterns
in DTD are often homogeneous, and random cropping tends to produce semantically similar image regions.
To address this, our view refinement systematically prunes similar image patches using the IoU thresholds.
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Figure 4: Left: Accuracy of different IoU thresholds on DTD dataset with CLIP (B/32). Right: Accuracy
of increasing the patch queue length of storing cropped samples on DTD dataset with CLIP (B/32).

The resulting patch queue V consists of semantically independent candidates. Then, they are dynamically
weighted via a softmax function shown in Section 3, our visual refinement can effectively adjust a proper
weight to each image patch from the process. This allows the model to prioritize discriminative patches
during inference, enhancing robustness to repetitive textures. Furthermore, in Table 2, BiFTA exhibit similar
trend observed in WCA that smaller backbone models (e.g., B/32) exhibit more significant improvements
(+1.15%) comparing with their larger counterparts (e.g., L/14), (+0.48%). This consistency confirms that
our refinements retain the visual-text cross-alignment principles of WCA. More experimental results on other
CLIP model architectures can be found in Appendix C. The average results over all benchmarks are concluded
in Table 2, where we show that BiFTA achieves the best performance within various model architectures.

In Figure 3, the left section shows an image of a goose, BiFTA captures semantically diverse image regions
(e.g., head, wings, neck and fur), whereas WCA exhibit redundancy in acquired image patch (e.g., repeated
neck or irrelevant patches). This demonstrates how view refinement mitigates feature overlapping through
IoU-guided filtering. The right section presents some text samples describing a goose, we see that sample
descriptions through CoS Filter are more diverse and distinctive. The CoS Filter (Section 4.2) retains
semantically distinct prompts (e.g., “plump, elongated body.” and “a long, slender body”), while pruning
redundant phrases (e.g., “long necks and webbed feet”).

5.3 Hyperparameter Analysis and Ablation Studies

Hyperparameter tuning. Figure 4 illustrates the impact of the hyper-parameters: IoU threshold η = 1− δ
and patch queue length L = |V |. The experiments are conducted on the DTD dataset using CLIP (B/32).
On the left, the classification accuracy varies as the η changes, with accuracy gradually rising and then
dropping as η increases, which suggest that a moderate η is needed to achieve an optimal performance. In
practice, a lower η often results in a critic threshold where insufficient image patches are satisfied to build
up the patch queue. To address this, we re-sample from the patch queue until the required length L is
met, this could potentially lead to more redundant image patches in the patch queue. The trend further
suggests that the redundant image patches negatively influence the classification accuracy. Notably, BiFTA
performance converges to WCA as η approaches 1, where the decreasing trend since IoU = 0.80 indicates the
view refinement is effective. For consistency across all experiments, we set η = 0.80. On the right, it shows
that increasing the patch queue length L (equivalent to increase patch samples) has a positive impact on
classification accuracy, whereas the increasing trend reaches a plateau at L = 60.

Ablation studies of various description refinement. Figure 5 presents the ablation studies of choosing
different set of textual descriptions. These textual descriptions are generated by LLM with different prompt
template designs, which are introduced in Section 4.2. Only the mixed description set from our description
refinement shown superior performance over most of the downstream tasks, where the shown result is averaged
across 3 different CLIP architectures: ViT-B/32, ViT-B/16 and ViT-L/14. Also, the dash line exhibits
the average results of WCA method, we compare and observe that BiFTA can show different extent of
improvement to WCA with various textual description sets. Notably, textual descriptions generated by
RAG-prompt templates are unsatisfactory comparing with other description sets, we include details of the
implementation of RAG-prompt templates in Appendix D. In addition, the performance of CuPL shown
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Figure 5: Comparing view refinement with different description sets and strategies on BiFTA. The results are
averaged across 3 image encoder backbones of the CLIP model, where ‘mix’ is the strategy BiFTA finally
utilized for view refinement.

in the chart is equivalent to only adapt view refinement of BiFTA. This suggests that only adapting view
refinement is enough to boost the zero-shot image classification performance. There are more detailed results
shown in Appendix E. Furthermore, we also evaluate the changes of β and observed that larger β yields
better results as demonstrated in Table 7 of Appendix E.

Ablation studies of BiFTA w/o view refinement and description refinement. We also compare the
experimental results of WCA with a complete version of BiFTA and partial BiFTA in Table 8 of Appendix
E. We show that BiFTA with refinement on single modality is enough to improve the cross-alignment
performance. For ImageNet and Food101 datasets, the models often exhibit better performance with BiFTA
w/o description refinements, which indicates our merged description set might not be an optimal description
set. As we inspired from the RAG-prompt template discussed in Appendix D, we believe that utilizing
a larger database could improve the quality of textual descriptions. Hence, the description set could be
further improved by integrating RAG with a considerable size database. Overall, BiFTA with both modality
refinements achieves the best average results across all three CLIP model architectures.

6 Conclusion

In this work, we identified a critical limitation in existing fine-grained visual-text alignment methods: the
presence of redundant information in both localized image patches and LLM-generated textual descriptions.
To address this, we propose BiFTA, a novel framework that introduces two key innovations: (1) view
refinement via IoU-based filtering to eliminate spatially overlapping image patches, and (2) description
refinement through cosine similarity thresholding to remove semantically redundant textual descriptions. Our
experiments across 6 benchmark datasets demonstrate that BiFTA consistently outperforms state-of-the-art
methods in zero-shot classification accuracy over the previous methods. The ablation studies validate the
necessity of both components: IoU filtering ensures diverse visual features, while cosine-based text pruning
enhances semantic specificity. Theoretical analysis further justifies our method by linking redundancy
reduction to improved posterior probability estimation in multi-modal alignment.
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A Appendix 1: Additional Algorithms for the BiFTA Implementation

Algorithm 1 Zero-Shot Classification Pipeline of BiFTA
1: Input Query image I0 ∈ RH×W ×3; labels y ∈ Y; hyperparameters: a patch queue Q, crop count N ,

textual description count M , a label prompt T̂y, and pre-trained CLIP model with encoders fimg(·)
(image) and ftxt(·) (text).

2: Initialize Q← [I1] by Eq. 2
# Step 1: View Refinement

3: for i = 2 to N do
4: Generate Ii by Eq. 2
5: Check Is_Redundant(Ii) by Algo. 2
6: Is_Redundant(Ii) == false, Q.push(Ii)
7: Compute wi = softmax(cos(fimg(I0), fimg(Ii)))
8: end for

# Step 2: Description Refinement
9: for y ∈ Y do

10: Obtain T y = {Tj}J
j=1 where J > M

11: Remove Tj ∈ T y based on Algo. 3
12: Obtain T̃ y ⊆ T y from Line (11)
13: Initialize T̂y

14: Select top-M T s by arg maxT ∈T̃ y cos(ftxt(T ), ftxt(T̂y))
15: Compute vj for all {Tj}M

j=1 via vj = softmax(cos(ftxt(T̂y), ftxt(Tj))
16: Compute simy

WCA via Eq. 1
17: end for
18: Output y∗ = arg maxy∈Y simy

WCA

Algorithm 2 Implementation of Redundant Image Patch Filtering
1: Input: A patch queue Q contains all the previous saved image patches, a new cropped image patch Ii,

an IoU threshold η = 1− δ.
2: Initialize Is_Redundant == false
3: for k = 1 to |Q| do
4: Compute ηk = IoU(Ii, Q[k])
5: if ηk ≥ η then
6: Is_Redundant← true, break
7: end if
8: end for
9: Output: Is_Redundant

Algorithm 3 Implementation of Redundant Textual Description Filtering
1: Input: A set of textual descriptions of label y, T y = {Tj}J

j=1, where J is the number of descriptions in
the merged textual description set; τ = 1− ϵ is the tolerance for the duplicate texts, setting to 1.0, ftxt is
a text encoder.

2: for j = 1 to J − 1 do
3: for k = j + 1 to J do
4: Compute S = cos(ftxt(Tj), ftxt(Tk))
5: if S ≥ τ then
6: Remove Tk from T y

7: end if
8: end for
9: end for

10: Obtain T̃ y = T y

11: Output: T̃ y
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B Appendix 2: Detailed Proof

B.1 Proof for Proposition 3

Proof.

Redundant Views: For views variables Ii and Ij , when δ → 0, we have IoU(Ii, Ij)→ 1.It means that two
views are nearly completely overlapping, which is equivalent to:

||Ii − Ij ||2 → 0,

where || · ||2 represents the Euclidean norm.,

By applying the conditional probability formula, it is not difficult to obtain:

p(Ii|y) · p(Ij |Ii, y) = p(Ii, Ij |y),

where:
p(Ij |Ii, y) = p(Ij , Ii, y)

p(Ii, y) .

As Ii nearly completely overlaps with Ij , we got: p(Ii, y)→ p(Ij , Ii, y), and thus:

p(Ij |Ii, y)→ 1.

Conclusively, we have:
lim

IoU(Ii,Ij)→1
p(Ii|y)→ p(Ii, Ij |y).

Therefore, when δ → 0, we have p(Ii|y) ≈ p(Ii, Ij |y).

Redundant Descriptions: For description variable Tp and Tq, when ϵ→ 0, we have cos(ftxt(Tp), ftxt(Tq))→
1. It implies that the text embeddings of these two descriptions are nearly identical, which is equivalent to:

||ftxt(Tp)− ftxt(Tq)||2 → 0.

Similarly, following the same steps above, we will have:

lim
cos(ftxt(Tp),ftxt(Tq))→1

p(Tp|y)→ p(Tp, Tq|y).

Therefore, when ϵ→ 0, assuming the fixed text encoder ftxt(·) is an injective function, we have p(Tp|y) ≈
p(Tp, Tq|y).

B.2 Proof for Proposition 4

According to Bayes’ theorem, we can obtain

p(y|I1, I2, ..., Tn, T1, T2, ..., Tm) = p(I1, I2, ..., In, T1, T2, ..., Tm|y) · p(y)
p(I1, I2, ..., Tn, T1, T2, ..., Tm) .

As is assumed, the downstream label y ∈ Y follows the uniform distribution. Therefore, the prior probability
satisfies p(yi) = p(yj),∀yi, yj ∈ Y . Besides, p(I1, I2, ..., Tn, T1, T2, ..., Tm) can be regarded as the normalization
factor. Therefore, we have:

p(y|I1, I2, ..., Tn, T1, T2, ..., Tm) ∝ p(I1, I2, ..., In, T1, T2, ..., Tm|y).
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Applying V, D to represent the sets, we have V = {I1, I2, ..., In}, D = {T1, T2, ..., Tm}. We assume that
V ′ ∈ V, D′ ∈ D represent the largest BiFTA-deduplicated sets of V, D. Then:

∀Ii ∈ V − V ′ : ∃Ij ∈ V ′, IoU(Ii, Ij) ≥ 1− δ, and

∀Ii, Ij ∈ V, IoU(Ii, Ij) < 1− δ.

Similarly, for textual descriptions, we have:

∀Tp ∈ D −D′ : ∃Tq ∈ D′, cos(ftxt(Ii), ftxt(Ij)) ≥ 1− ϵ, and

∀Tp, Tq ∈ D, cos(ftxt(Ii), ftxt(Ij)) < 1− ϵ.

For any Ii in V − V ′, there exists an element Ij ∈ V ′ such that Ii and Ij are mutually redundant. The same
applies to the description set. Therefore, according to Proposition 3, we can obtain

p(y|I1, I2, ..., Tn, T1, T2, ..., Tm) ∝ p(V, D|y) ≈ p(V ′, D′|y).

Since the view sets and description sets obtained through our method are BiFTA-deduplicated sets, while the
sets obtained by WCA are not BiFTA-deduplicated sets, the statement in Proposition 4 can be derived.

C Appendix 3: More Experimental Results

Table 3: Zero-shot classification accuracy (%) across various baseline methods with the pre-trained CLIP
model (ViT-B/16). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green and red. The results of our method are
highlighted and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 66.74 56.01 88.14 42.98 88.40 39.27

CLIP-E 68.37 56.16 89.10 45.27 88.83 40.30
CLIP-D 68.04 57.08 87.52 46.17 88.85 40.34
Waffle 68.12 56.89 86.51 44.68 89.06 40.76
CuPL 69.61 56.42 91.14 50.53 88.98 39.83
WCA 71.05 59.87 92.13 52.87 89.99 41.33

BiFTA (ours) 71.14±0.04 60.06±0.15 91.67±0.11 54.64±0.16 90.11±0.05 42.12±0.04
∆ +0.09 +0.19 -0.46 +1.77 +0.12 +0.79

Table 4: Zero-shot classification accuracy (%) across various baseline methods with the pre-trained CLIP
model (ViT-L/14). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green. The results of our method are highlighted
and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 73.48 62.12 93.24 52.61 92.55 39.63

CLIP-E 75.52 62.53 93.62 55.43 93.07 40.55
CLIP-D 75.03 63.26 93.30 55.05 93.03 40.55
Waffle 75.31 62.27 91.55 54.31 93.33 40.89
CuPL 76.62 62.15 94.33 60.59 93.37 40.77
WCA 77.32 65.12 94.67 61.74 93.93 42.19

BiFTA (ours) 77.82±0.04 65.67±0.13 94.96±0.10 62.45±0.26 93.97±0.04 42.98±0.05
∆ +0.50 +0.55 +0.29 +0.71 +0.04 +0.79
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Table 5: Zero-shot classification accuracy (%) across various baseline methods with the ResNet-based CLIP
model (RN-50). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green. The results of our method are highlighted
and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 58.15 45.67 83.65 38.67 78.62 37.04

CLIP-E 59.82 46.58 85.66 41.22 80.82 37.73
CLIP-D 59.62 47.76 83.70 42.23 79.92 37.13
Waffle 59.82 46.76 83.54 38.88 80.74 37.77
CuPL 61.43 47.91 87.05 47.39 80.50 37.78
WCA 62.82 50.16 88.40 49.45 81.25 38.91

BiFTA (ours) 63.54±0.06 50.43±0.17 88.74±0.12 51.41±0.22 81.39±0.09 39.70±0.06
∆ +0.72 +0.27 +0.34 +1.96 +0.14 +0.79

Table 6: Zero-shot classification accuracy (%) across various baseline methods with the ResNet-based CLIP
model (RN-101). We report the averaged results and standard deviations σ of 20 runs, with the improvement
∆(%) over the top-performing baseline WCA highlighted in green and red. The results of our method are
highlighted and we use bold to represent the best-performing method.

Method ImageNet CUB Oxford Pets DTD Food101 Place365
CLIP 61.26 49.34 84.96 40.05 82.44 36.77

CLIP-E 62.31 49.65 86.97 43.62 83.64 37.81
CLIP-D 60.65 50.29 82.53 42.82 83.25 35.75
Waffle 61.25 48.05 83.70 40.05 82.48 37.83
CuPL 61.43 42.85 87.63 43.83 82.74 35.77
WCA 62.82 44.64 87.43 49.91 83.92 38.11

BiFTA (ours) 65.24±0.05 45.86±0.12 86.81±0.15 50.87±0.23 84.02±0.05 39.40±0.06
∆ +2.42 +1.22 -0.62 +0.96 +0.10 +1.29

Tables 3 - 6 present the results of methods using various architectures of the CLIP image encoder. For all
models, we employed the same experimental settings as those used in CLIP (B/32). The results demonstrate
significant improvements on the DTD dataset, which are consistent across all CLIP architectures. In specific,
BiFTA achieves an average accuracy improvement of 0.42% to 0.90% across 6 benchmarks compared to WCA.
Notably, CLIP models with ResNet-based backbones exhibit larger performance improvements compared
to other architectures. In summary, BiFTA consistently outperforms other baselines across all benchmarks,
with the exception of CLIP (B/16) on the Oxford Pets dataset.

D Appendix 4: RAG-based Text Generation

We further investigate a novel prompt template based on Retrieval-Augmented Generation (RAG), but the
performance is unexpected as shown in figure 5. First, we begin by constructing a knowledge database using
a pre-processed Wikipedia dataset 2 comprising 1.8 million documents. These document data are truncated,
tokenized and encoded into embedding vectors using the “text-embedding-ada-002” text encoding model3,
which are then efficiently stored in the ChromaDB vector database. To generate textual descriptions, we
manually craft a prompt template that integrates user queries with retrieved documents. The retrieval process
relies on semantic similarity between the query and the database entries. These prompts are subsequently fed
into a GPT model to produce the final textual descriptions. Despite these efforts, the resulting descriptions
perform poorly when applied to CLIP-based classification tasks. Notably, we only utilize a small subset

2https://huggingface.co/datasets/Salesforce/wikitext/viewer/wikitext-103-v1
3An embedding model published by OpenAI.
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(approximately 150k documents) of the whole dataset, as it would take approximately 46 days to save those
encoded documents into the database. Hence, we hypothesize that the retrieved documents may lack relevance
to the target categories. We leave it as future work to explore whether expanding the database size could
improve retrieval accuracy and then enhance the textual descriptions.

E Appendix 5: Extra Ablation Studies

Table 7: The ablation study on β. This experiment is evaluated on the ImageNet dataset by leveraging CLIP
(B/32). We set the lower bound α to 0.5 and report the Top-1 Accuracy (%).

α = 0.5
β

0.6 0.7 0.8 0.9 1
WCA 61.77±0.06 63.21±0.05 64.45±0.05 66.49±0.07 66.06±0.08
Ours 64.40±0.07 65.46±0.07 65.91±0.05 66.58±0.06 66.73±0.08

In Table 7, the ablation study compares the Top-1 accuracy (%) of WCA and BiFTA when varying the
window size upper bound β. We observe a consistent growing trend of accuracies as the β increases, where
BiFTA exhibits a significant improvement when β is low. This suggests that when the cropping windows are
smaller, redundant small patches have a more pronounced negative impact on the weighted scores, whereas
this issue is effectively addressed by integrating the view refinement introduced in BiFTA.
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Figure 6: Results of exploring textual description studies, using the results of CLIP (B/32). “RAG” computes
similarity using RAG-generated descriptions. “attrVR” uses both descriptive and distinctive texts to calculate
similarity. “CuPL” directly employs descriptions from the CuPL method. “mix” combines “attrVR” and
“CuPL” descriptions.

We provide additional experimental results for ablation studies by selecting different sets of textual descriptions.
Figures 6 to 8 present the classification accuracy across all benchmarks for the 4 different description sets.
Each figure represents the results obtained from CLIP ViT-B/32, ViT-B/16 and ViT-L/14, respectively. In
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Figure 7: Results of exploring textual description studies, using the results of CLIP (B/16).
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Figure 8: Results of exploring textual description studies, using the results of CLIP (L/14).
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conclusion, the mixed set of descriptions, combining the CuPL and AttrVR descriptions and filtering them
based on top-k similarities, demonstrates superior performance compared to other description sets.

Table 8: Ablation studies of comparing the performance of WCA and BiFTA between single modality
refinement (w/o VF and w/o DF) and full refinements, using CLIP models (B/32, B/16 and L/14). VF:
View Refinement; DF: Description Refinement. The best result for a single dataset across each model is
underlined, and the best averaged results (%) are highlighted in bold.

Methods ImageNet CUB Oxford
Pets DTD Food101 Place365 Avg.

B/32

WCA 66.49 56.74 89.05 49.89 86.11 40.55 64.81
BiFTA (w/o VF) 66.51 58.11 88.56 51.27 86.41 41.80 65.44
BiFTA (w/o DF) 66.77 56.94 89.17 50.51 87.46 40.85 65.28

BiFTA (ours) 66.58 58.24 89.74 53.22 86.43 41.55 65.96

B/16

WCA 71.05 59.87 92.13 52.87 89.99 41.33 67.87
BiFTA (w/o VF) 70.67 59.36 90.58 51.36 90.20 42.23 67.40
BiFTA (w/o DF) 71.10 59.91 91.83 53.56 90.38 42.11 68.15

BiFTA (ours) 71.14 60.06 91.67 54.64 90.11 42.12 68.29

L/14

WCA 77.32 65.12 94.67 61.74 93.93 42.19 72.50
BiFTA (w/o VF) 77.14 65.46 94.63 62.09 93.94 42.51 72.63
BiFTA (w/o DF) 77.89 65.56 94.78 62.17 94.04 42.58 72.84

BiFTA (ours) 77.82 65.67 94.96 62.45 93.97 42.98 72.98

F Appendix 6: Limitation

One potential limitation we observed is that the textual descriptions generated by the LLM do not consistently
focus on local features of the object. These descriptions often tend to be generic, making it difficult to
associate specific parts of the text with corresponding local image patches from a human perspective. To
address this, we aim to explore more advanced approaches to generate precise and localized descriptive texts
that better align with the visual details of an image.

19


	Introduction
	Related Work
	Preliminary
	BiFTA: View Refinement and Description Refinement
	View Refinement
	Description Refinement
	Overall Pipeline
	Understanding BiFTA Through Posterior Probability

	Experiment
	Experimental Settings
	Zero-shot Image Classification Results
	Hyperparameter Analysis and Ablation Studies

	Conclusion
	Appendix 1: Additional Algorithms for the BiFTA Implementation
	Appendix 2: Detailed Proof
	Proof for Proposition 3
	Proof for Proposition 4

	Appendix 3: More Experimental Results
	Appendix 4: RAG-based Text Generation
	Appendix 5: Extra Ablation Studies
	Appendix 6: Limitation

