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Abstract

Recent works have shown the promise of using neural networks for the task of
program synthesis from input-output examples. The Karel dataset has been a
benchmark for evaluating program synthesis approaches. Several techniques have
been proposed to use neural guided program synthesis with Karel being used as a
baseline. Most of these techniques use an LSTM based model for decoding and
improve performance by proposing complex algorithmic additions, such as using
inferred execution traces, latent execution of partial programs and debugging gener-
ated programs. We observe that by changing the base architecture to a transformer
based one, specifically GPT2, we are able to apply simple execution guidance on
top to achieve a generalization accurary of 89.64%, which is within 2.36 percentage
points of the current state-of-the-art on Karel which uses ensembling.

1 Introduction

Programming by example is program generation task such that the generated program satisfies a
specification given in the form of input-output pairs. Advances in neural networks have spurred
interest in using deep learning techniques to solve problems in the programming languages space.
While domains such as performing arithmetic operations, string manipulation, list sorting, query
generation, etc have been studied in literature, generating programs for languages with more complex
structures like looping and conditionals is a harder problem to solve.

The Karel programming language [28] was used in the 1980s as an introductory language by Stanford
CS students. Its DSL is aimed at controlling a robot in a grid space, where it must navigate to pick and
place markers while avoiding the walls. The DSL specification (Fig. 1) has support for conditional
and looping constructs, which make it an ideal test bed for evaluating program synthesis approaches.
Devlin et al.[10] introduced the Karel dataset for performing neural program induction. Their task
was to learn to represent a program and by training on input-output examples and predicting the
output of a program given a new input grid. Our work is focused on program synthesis, whereby we
aim to generate a program given the input-output pairs obtained on executing the program. Bunel
et al.[3] introduced a neural approach for program synthesis using the Karel dataset as a benchmark.
They used 5 IO pairs as an input to the model to synthesize the program, while using the 6th pair as a
held out test sample to evaluate the generalization performance.

Since then a number of approaches have been proposed and studied to improve the performance in
the Karel program synthesis task. These include inferring trace executions [32], using execution
based decoding [6], learning to execute latent programs [7] and to repair programs after decoding
[16]. These methods focus on making complex changes to how the input and output to the model is
processed, while keeping the base architecture as an LSTM. We posit that transformer based models
should be able to achieve much better base performance on Karel which can be improved further by
adding relatively simpler execution guided search.
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Figure 1: Karel DSL specification. Figure from Devlin et al.[10]

2 Related Work

With the advent of neural program synthesis [27, 11], the models are able to work on different
domains with little modification and are more robust towards giving generalizable results. Initial
works in neural program synthesis utilized neural networks to prune the search space for traditional
program synthesis techniques [19, 25], but then [3] introduced neural models using LSTM layers
capable of generating programs. Subsequent works improved upon Bunel et al.’s work while keeping
the network architecture relatively unchanged. [32] showed that using the information from traces of
individual examples helps the model in generating better programs. [7, 6, 24] devised techniques
to execute the partially generated programs on the inputs to obtain the intermediate states that help
the model get a better estimation of the next tokens to be generated. While [6] uses methods to
sample executable partial programs from the output beams to perform search, [7] try to execute
partial programs in the latent space, removing the need for algorithmic methods of sampling partial
programs. Gupta et al. [16] improve upon execution guided search by introducing a neural debugger
to repair the generated programs.

Introduction of Transformers [34] in Natural Language Processing (NLP) has been revolutionary.
Transformers overcame pitfalls of LSTMs and GRUs like exploding and vanishing gradients, weak-
ness in modelling long-term dependencies by using a multi-head attention mechanism that can process
the input tokens in parallel rather than sequentially. With time, larger and more capable Transformer
models were introduced that improved the performance of neural models in different problem state-
ments within NLP [9, 23, 21, 22, 30] and produced comparable performance in computer vision [4,
12, 20] and speech processing as well [5, 35, 36].

Recently, a lot of attention is being paid towards problems such as source code generation, code
completion, function naming, bug fixing, etc., in programming languages and impressive results
are produced with transformer models. [33] is a general purpose code completion tool for multiple
programming languages, [2, 14, 26, 8, 17] used transformers for natural language to code generation,
[30] introduced an unsupervised neural transcompiler that learns to translate programs between
C++, Java and Python even in the absence of parallel training corpus, [13] utilized a BERT based
architecture for natural language code search and code documentation generation. Scholak, Schucher,
and Bahdanau[31] show that using vanilla transformers along with some execution guided search are
able to perform well in synthesizing SQL queries. ProgRES [1], a recently introduced large scale
few-shot program induction benchmark on C++ programs, uses a transformer architecture (BART) as
a baseline model for synthesizing programs. This shows that transformers can capture the syntactical
information of the programming languages they are trying to model. The results show that large
language models are capable of solving programming tasks without the need of adding additional
contextual information.
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Figure 2: Model Architecture: The architecture is based on [3].

3 Approach

3.1 Dataset

The Karel dataset consists of a train/validation/test split of around 1.1 million synthetically generated
programs written in the Karel language for the training set, and 2.5k programs each for the validation
and testing set. Each program is accompanied by 6 input output(IO) pairs. These IO pairs are image
representations of the state of the Karel robot in the grid world. We use the programs and IO pairs in
the training set to train our model, and report results by running our inference procedure on the IO
samples in the test set.

3.2 Model Architecture

Our input-output encoding is handled by a convolutional neural network as described in [3]. For our
transformer decoder, we used GPT2 architecture with 6 layers as our base model. We downloaded
the model available on [18] as our starting point for the transformer, but initialized both the IO
encoder and GPT2 decoder layers with random weights which are then learned end-to-end. Our
model architecture is shown in Figure 2.

3.3 Training Hyperparameters

Following [3], we set up the task as supervised sequence generation conditioned on a set of input-
output representations. The decoder is fed a combined representation of the IO encoding and the
output of the previous timestep. We used Adam optimizer, batch size 8 (due to computational
constraints), with initial learning rate of 1e-4. We used a linear learning rate scheduler with warmup
of 139606 steps (around 1 epoch) and gradient clipping to ensure that the transformer model doesn’t
diverge during training [29] and trained for 20 epochs. The model was trained on a DGX-1 machine
with an Intel Xeon E5-2698 CPU, 32GB of available system memory to the training job, and an
Nvidia Tesla V100 GPU, using an allocation of 16GB VRAM.
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Method Top-1 Gen Exact Match
Leveraging Grammar + LSTM [3] 73.67% 39.94%

IO->Trace->Program [32] 81.30% 42.80%
Latent Execution [7] 83.68% 41.12%

Execution Guided Decoding [6] 86.04% 40.88%
Learning to Repair [16] 89.80% 43.48%

Execution Guided Decoding (Ensemble) [6] 92.00% 47.08%
LSTM Decoder 73.48% 40.88%
LSTM + SEG 84.48% 43.28%

Transformer Decoder 82.40% 43.36%
Transformer + SEG 89.64% 44.80%

Transformer + Debugger 90.44% 44.88%

Table 1: Results on Karel test dataset.

3.4 Simple Execution Guidance for Search

During inference, we take the top ranked beam output of the model as the chosen program for
evaluation. When adding simple execution guidance (SEG), we sample the top 50 beams of the
model, and use the Karel interpreter to evaluate them on the 5 IO pairs. We take the top ranked
program which satisfies all the 5 pairs, before using this to evaluate against the 6th held out IO sample.
If no beam satisfies all the 5 pairs, then we return a NULL program which counts as an incorrect
output during evaluation. This method of using the interpreter as guidance for beam selection is more
rudimentary than methods detailed in the past [6] and is similar to the greedy search employed by
[16]. However, since we do not execute partial programs, we do not need to add measures to deal
with issues surrounding sampling for looping and branching constructs.

4 Results

Table 1 shows our top-1 generalisation and exact match accuracies on the Karel test dataset. Our
generalisation accuracy is calculated by using the program obtained by feeding 5 input-output pairs
to the model and evaluating this against the 6th held out IO sample. We compare our results against
previous approaches published for program synthesis. Chen, Liu, and Song [6] report results for both
a single decoder model, as well as using ensemble approaches. We have reported both results here,
however our approach only uses a single model during inference. For SEG results, this accuracy is
calculated on the program selected after searching the beams. We observe a generalisation accuracy of
82.4% on our base transformer model which increases to 89.64% after adding the execution guidance.
We also observe an exact match accuracy of 44.8% after performing SEG during inference.

We also conducted experiments to validate the advantage of using a transformer model on the current
state-of-the-art which is the SED approach by Gupta et al. We fed the output beams of our transformer
model to the debugger LSTM trained without fine-tuning as per [16]. We used an implementation
available on GitHub [15]. With this approach, mentioned as Transformer + Debugger in Table 1, we
achieved a top-1 generalisation accuracy of 90.44%. One thing to note here, we did not perform the
fine-tuning step which was described by Gupta et al. due to memory constraints in our system.

4.1 Error Analysis

While analyzing the results on the test set of 2500 programs, we found that in 86.4% (or 2160
instances), the execution guidance was selecting the top ranked beam from the model output. In 124
cases, our SEG inference method returned a NULL program, indicating that no beam satisfied all 5
input-output pairs. Figure 3a shows that accuracy of the model decreases as the length of the ground
truth program increases. Figure 3b shows that in the majority of cases, the programs generated by the
model are shorter than the ground truth program. This bias could perhaps be rectified by balancing
the length of the programs in the dataset. Figure 3c shows that SEG seems to choose longer programs
when the top beam doesn’t satisfy all 6 IO pairs. Figure 3d analyzes the programs that satisfied all
6 IO pairs, while not being an exact match to the ground truth. It shows the number of programs
that have the same trace as the target program for N IO pairs. This shows that the gap between the
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Figure 3: Analysis of the model output.

generalization and exact match accuracies could be explained by the fact that two programs could
have the same trace for the IO pairs despite being not an exact match. Figure 3e shows that the
accuracy of the model increases as more IO pairs are provided to the model. Figure 3f shows that the
accuracy of the model shows a rising trend as the number of beams searched during SEG is increased.

5 Conclusion

We report results for program synthesis on Karel by using transformers as the base architecture,
replacing the LSTM-based models that have been reported earlier. We show that this change in
architecture results in a significant improvement in generalisation accuracy. Further, adding even
performing simple execution guided search over the beam outputs, we are able to achieve performance
at par with more complex approaches.
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