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Abstract
We investigate an emerging setup in which a small,
on-device language model (LM) with access to
local data communicates with a frontier, cloud-
hosted LM to solve real-world tasks involving
financial, medical, and scientific reasoning over
long documents. Can a local-remote collabora-
tion reduce cloud inference costs while preserving
quality? First, we consider a naı̈ve collaboration
protocol where the local and remote models sim-
ply chat back and forth. Because only the local
model ingests the full context, this protocol re-
duces cloud costs by 30.4×, but recovers only
87% of the performance of the frontier model.
We identify two key limitations of this protocol:
the local model struggles to (1) follow multiple
instructions at once and (2) reason over long con-
texts. Motivated by these observations, we pro-
pose MINIONS, a protocol in which the remote
model decomposes the task into easier subtasks
over shorter chunks of the document, that are exe-
cuted locally in parallel. MINIONS reduces costs
by 5.7× on average while recovering 97.9% of the
remote-only performance. Our analysis reveals
several key design choices that influence the trade-
off between cost and performance in local-remote
systems.

1. Introduction
Today’s cloud-hosted frontier Language Models (LMs) can
perform data-intensive reasoning: they can generate and
refactor code across entire repositories and make decisions
based on financial, legal, and medical documents. How-
ever, accessing these models is expensive: processing a

*Equal contribution 1Department of Computer Science, Stan-
ford University 2Department of Statistics, Stanford Univer-
sity 3Together AI 4Department of Biomedical Data Science,
Stanford University. Correspondence to: Sabri Eyuboglu
<eyuboglu@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

standard million-token code repository with OpenAI’s o1
API costs > $15 per query. At the same time, smaller LMs
(1-8B parameters) are rapidly improving and can now run on
personal computers (Ollama, llama.cpp) and smartphones
(Mehta et al., 2024; Yi et al., 2024; Xu et al., 2024). Yet, to-
day, these small, on-device LMs are used mostly for simple
tasks such as tone adjustment and text completion (Gunter
et al., 2024). They do not play a role in data-intensive
reasoning tasks.

Inspired by the growing literature on multi-agent sys-
tems (Wang et al., 2024a; Guo et al., 2024), in this work
we ask: how can a small, on-device LM collaborate with
a frontier LM in the cloud to reduce inference costs on
data-intensive reasoning tasks? In particular, we study the
communication protocols that govern how the two LMs talk
to each other, focusing on the tradeoff between cost and
accuracy. To mimic realistic use cases, we study tasks that
involve varying levels of reasoning over large volumes of
medical, financial, and academic data (Islam et al., 2023;
Adams et al., 2024; Dasigi et al., 2021).

As our first attempt, we study a simple communication
protocol we call MINION: an unconstrained chat between
the local and remote models. MINION reduces cloud costs
by only “reading” the data locally, and communicating a
compressed version of the context to the remote model.
We show that while MINION achieves a 30.4× reduction in
remote model costs, it trails behind the remote-only baseline
by 9.4 accuracy points on average (with an 8B local model;
see Section 4 for details). In isolated ablations, we identify
two key limitations of small LMs that hinder MINION’s
performance (Section 4):

• Small LMs struggle to follow multiple instructions at
once. Large LMs often dispatch complex instructions.
We find that splitting complex instructions into separate
requests improves performance by 56%.

• Small LMs get confused by long contexts. Increasing
context length from < 1K to > 65K decreases perfor-
mance by 13% on a simple extraction task.

Motivated by these limitations, we propose MINIONS, an
extension of MINION where the remote LM decomposes
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Figure 1. Local-Remote Systems. MINION and MINIONS protocols. (Left) Problem set-up: local and remote LM collaborate on a
data-intensive reasoning task. (Center) MINION: A simple communication protocol in which the local and remote models have an
“unconstrained” back and forth chat. (Right) MINIONS: an extension of MINION where the remote LM decomposes a query into many
jobs that are processed in parallel by the local model. Each job is a single instruction over a chunk of the context.

the problem into a set of single instructions to be performed
on smaller chunks of the document. Crucially, the remote
model has to do this without reading the full document,
which it achieves by generating code that is later executed
locally where the document is. More precisely, MINIONS
involves a loop over three steps:

1. Decompose: Given a task, the remote model writes
code that decomposes it into “bite-sized” subtasks.

2. Execute: The local LM then executes the subtasks in
parallel and sends a filtered selection of the responses
back to the remote model.

3. Aggregate: The remote model aggregates the local
outputs and either finalizes the solution or loops back
to the Decompose step.

Averaged across tasks, MINIONS with an 8B parameter
local LM can recover 97.9% of the performance of remote-
only systems at 18.0% of the cloud cost (see Figure 2). With
a 3B parameter local LM, MINIONS achieves 93.4% of the
performance of remote-only systems at 16.6% of the cloud
cost (see Figure 2).

We perform a detailed analysis of the design and hyperpa-
rameter space of MINIONS . Our analysis highlights several
“knobs” that allow us to trade off cost for quality.

(a) Model choice How does the size and family of the lan-
guage models affect the cost and quality? We show that
MINIONS became feasible only with mid-2024 releases like
GPT4-TURBO and LLAMA-3.1 and is now performant with
the latest 3B-parameter models running locally.

(b) Scaling parallel workloads on-device. How should we

structure parallel workloads at the edge to maximize perfor-
mance? In Section 6.3, we study three different strategies
for increasing the parallel workload on-device: (a) repeated
sampling, (b) decomposition, and (c) context chunking. We
show that all three can independently improve quality at the
expense of increased remote cost.

(c) Sequential communication protocols. Can multiple
rounds of communication improve quality? At what cost?
We show that by increasing the number of sequential rounds
of communication, we can pay more to improve quality.

To summarize, our main contributions are as follows:

• Propose MINION, a naı̈ve local-remote LM commu-
nication protocol, that achieves 30.4× efficiency over
remote-only workloads while recovering 87% of per-
formance.

• Propose MINIONS, an extension that overcomes the
limitations we identify in MINION, achieving 5.7×
cost-reduction over remote-only workloads and recov-
ering 97.9% of performance.

• Conduct an in-depth analysis of MINIONS, exploring
design choices to traverse the cost-accuracy trade-off.

2. Related Work
See Appendix A for an extended discussion of related work.

This study is inspired by a large body of work that explores
how to combine multiple LMs and tools to improve quality
and reduce cloud inference costs. These include:

• Retrieval-Augmented Generation (RAG) RAG work-
flows append retrieved chunks to a large LM’s
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Figure 2. Cost-Accuracy Tradeoff in Edge-Remote Systems.
Macro-average accuracy (y-axis) vs. cost (x-axis) across FI-
NANCEBENCH (Islam et al., 2023), LONGHEALTH (Adams et al.,
2024), and QASPER (Dasigi et al., 2021). Accuracy represents
the fraction of correct predictions, while cost is the average USD
per query based on GPT-4O rates (Jan 2025: $2.50/1M input to-
kens, $10.00/1M output tokens); see Section 3. The table compares
MINION (Section 4) and MINIONS (Section 5) protocols against
local-only and remote-only baselines. Points, colored by local LM,
use GPT-4O as the remote LM. Exact metrics in Table 1.

prompt (Lewis et al., 2020; Karpukhin et al., 2020; Lee
et al., 2019), mitigating hallucinations and externaliz-
ing knowledge. Instead of sharing raw text chunks with
the remote LM, we provide the filtered output of a flex-
ible local LM executing tasks on these chunks, further
compressing the input.

• Multi-LLM collaboration and routing A growing
body of work explores multi-agent or multi-LLM sys-
tems (Guo et al., 2024; Wang et al., 2024a) and model-
routing (Chen et al., 2023; 2024a; Zheng et al., 2025).
Typically, these either combine multiple large models or
choose one LM from a ”menu” of models for the entire
task. In contrast, we explicitly study a two-model collab-
oration where the smaller local LM handles extensive
on-device context, while the larger remote LM is called
on selectively, reducing cloud inference costs.

• Compound LM systems A broader line of research inte-
grates LMs with retrieval modules, tool use, or orches-
trators (Saad-Falcon et al., 2024; Khattab et al., 2023).
While they optimize accuracy or adapt prompts, they
do not usually focus on asymmetric edge-cloud costs or
local parallelization.

The specific techniques used in MINIONS build upon sev-
eral important ideas proposed in the literature:

• Orchestration for long-contexts Prior works have used
“divide-and-conquer” strategies to process long docu-
ments in smaller chunks (Zhang et al., 2024c; Zhou
et al., 2024; Shankar et al., 2024). These methods define
chunking and processing protocols, often with pipeline
optimizations, but typically rely on a single large LM or
symmetric LMs—unlike our asymmetric local-remote
setup with cost constraints. They also don’t explore
parallel on-device tasks or multi-round cloud commu-
nication. Other approaches improve single-LM han-
dling of lengthy inputs by compressing, summarizing,
or streaming data. Techniques like MemGPT (Packer
et al., 2023), PRISM (Jayalath et al., 2024), and writing-
in-the-margins (Russak et al., 2024) store partial results
or structured data across external memory. While such
approaches reduce context overhead for a single LM,
they do not address distributing computation across a
local-remote system with distinct cost models.

• Decomposition techniques The decomposition tech-
niques used in MINIONS are inspired by prior work
showing how prompting for decomposition can improve
small LM quality (Arora et al., 2022; Patel et al., 2022;
Wu et al., 2022).The MINIONS protocol builds on using
code to aid reasoning (Arora et al., 2023; Li et al., 2023).

• Test-time sampling and verification In MINIONS we
pair repeated test-time sampling on-device with veri-
fication in the cloud. This technique is motivated by
extensive literature demonstrating the promise of using
test-time sampling and verification to improve reasoning
capabilities (Brown et al., 2024; Song et al., 2024; Hassid
et al., 2024; Snell et al., 2024; Wu et al., 2024).

• Speculative decoding and collaborative inference.
Speculative decoding (Leviathan et al., 2023; Zhang
et al., 2024a; Chen et al., 2024b) accelerates inference by
sampling from a small ”draft” model while only using a
larger ”target” model for verifying tokens. Collaborative
inference approaches selectively sample from the tar-
get model to correct tokens identified as low-confidence
((Hao et al., 2024) places the small model on an edge
device). In (Xia et al., 2023), the cloud model further
retrieves external documents, generating summaries that
inform the small model’s generation. Our work differs by
enabling the remote model to orchestrate the local model
(in MINIONS, using code), extending beyond simple
token evaluation or correction.

• Prompt compression One way to reduce cloud inference
costs is to shorten input token sequences by removing
tokens identified as less informative ((Jiang et al., 2023)).
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Informativeness is measured by token probabilities or
learned classification heads (Pan et al., 2024). In contrast,
we achieve compression by offloading all raw context
processing to a small LM, which can summarize and
execute tasks on the context.

Some recent works have explored aspects of the local-
remote setting. Several study how local-remote systems
can limit leakage of private information to a cloud-hosted
LM API (Siyan et al., 2024; Zhang et al., 2024b). In this
work, we do not address privacy concerns, though these
privacy techniques can be used in conjunction with MIN-
IONS. Other techniques partition LM layers between local
and cloud devices (Jin & Wu, 2024; Yang et al., 2024) with-
out a multi-round dialogue. Our system is distinct in that
the local LM and remote LM collaborate in natural lan-
guage on tasks that draw on a large private context. This
two-model interplay underlies our focus: reducing cloud
inference costs while preserving performance.

3. Preliminaries
We first outline the problem setup and then provide details
on how we measure accuracy and cost.

Problem setup We study language tasks that involve a
context c (e.g. a long document), a query q against that
context, and a ground-truth answer y (see (1) in Figure 1).

Context (c): The Fiscal Year 2015 10-K
report for Advanced Micro Devices, Inc.
Query (q): Compute the 2015 depreciation and amortization
margin for AMD (in percentage).
Answer (y): US$394,328 million

A local-remote system S (see (2) in Figure 1), consists of
two language models that must collaborate to solve the
task—a small LM (LocalLM) running on on-device, and
a large frontier LM (RemoteLM) running in the cloud. S
ingests a context and a query, and applies both models in
conjunction to output a predicted answer: ŷ ∼ S(c,q).

Measuring quality We evaluate the performance of S
on a dataset D = {(ci,qi,yi)}Ni=1, via a scoring metric
s(ŷi,yi). Here, s(·, ·) is binary (correct/incorrect) and we
report accuracy. As baselines, we compare S to ŷremote ∼
RemoteLM(c,q) and ŷlocal ∼ LocalLM(c,q).

Measuring cost Monetary cost (in $USD) is our primary
cost metric. We assume that RemoteLM calls incur a cost
while LocalLM calls are free, ignoring the fixed cost of the
hardware and marginal cost of energy consumption.

More concretely, the cost of calls to RemoteLM are propor-
tional to a weighted sum of the number of prefill (i.e. input)
tokens and decode (i.e. output) tokens:

Cremote(nprefill, ndecode) ∝ nprefill + α · ndecode,
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Figure 3. Analysis of small LM limitations. Evaluation of
LLAMA-3.2-3B on simple extraction tasks (see Section E.2).
(Left) Performance drops significantly as context length increases.
(Right) Increasing sub-task complexity reduces performance, with
fewer sub-tasks yielding better results.

where α varies by provider (≈1– 5) (Dubey et al., 2024;
Anthropic, 2024). Decode tokens are more expensive since
the decoding stage is IO-bound (Leviathan et al., 2023) and
has lower GPU utilization. This is because generating each
decode token requires loading the full model and KV cache
into GPU SRAM.

Although our focus is on monetary cost, we also measure
end-to-end latency of local-remote systems. For these exper-
iments, the LocalLM is running on a single consumer-grade
GPU (e.g. RTX 4090, MSRP $1,599). We also include a
theoretical framework for estimating latency in Appendix C.

4. MINION: A naı̈ve communication protocol
In this section, we describe MINION, a baseline communica-
tion protocol, which implements a multi-turn conversation
between LocalLM and RemoteLM. The former has exclu-
sive access to the input context c, and the latter sees only
the query q and potential metadata about the context.

The exchange begins with system prompts: the RemoteLM
is told it will collaborate with a smaller, local model that
can answer context-related questions, while LocalLM is in-
structed to answer questions based on the provided context.
The RemoteLM initiates the dialogue by asking a ques-
tion and the LocalLM replies using the available context.
This back-and-forth continues until RemoteLM signals it
is ready to answer the query or a maximum number of
steps is reached. At each turn, the RemoteLM produces a
structured output with a message (to pass to the LocalLM)
and a decision (to continue or terminate the conversation
loop).This setup lets RemoteLM reason over long contexts
without accessing them directly, using LocalLM as a re-
trieval and summarization interface. See Appendix D.1 for a
detailed description of the MINION protocol.

We compare MINION to a baseline where RemoteLM is
given the full context and the query. Excitingly, MINION
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reduces RemoteLM costs by 38.13×, 31.3×, and 20.9×
on FINANCEBENCH, LONGHEALTH and QASPER, respec-
tively (see Section 6.1 for dataset details). Averaged across
these datasets, it closes 87.0% of the quality gap between
the RemoteLM versus the LocalLM operating alone.

To further close the gap, we analyze MINION conversa-
tions and find that in unconstrained chat, RemoteLM of-
ten gives LocalLM complicated instructions over long con-
texts. Appendix E.2 presents micro-experiments illustrating
LocalLM’s struggles with these instructions:

1. LocalLM struggles to handle multiple instructions
at once. Using GPT-4O, we generate requests with
varying numbers of instructions. We then show that
processing each instruction separately leads to a 56 point
performance improvement (see Figure 3).

2. LocalLM struggles to reason across long contexts.
We show how increasing context length from < 1K
to > 65K tokens can decrease performance by 13% on
a simple extraction instruction (see Figure 3).

Put simply, these smaller LMs are currently better equipped
to answer simple queries on shorter contexts.

5. MINIONS: A decomposition-based
communication protocol

Motivated by these observations, we design MINIONS, a
simple extension of MINION that uses an iterative, divide-
and-conquer approach. In each step, RemoteLM breaks
the task into jobs—atomic instructions tied to context
chunks—executed in parallel on-device (see (4) in Fig-
ure 1). Rather than a single assistant, MINIONS runs a
fleet handling smaller tasks. The key challenge: How can
RemoteLM create jobs for unseen context? We solve this
by having it generate code that runs locally where the con-
text lives.

5.1. Protocol description

Each iteration of MINIONS consists of three steps:

1. On remote. RemoteLM generates code to create job
specifications for LocalLM (see 4(a) in Figure 1). The
code is sent to device.

2. On device. The generated code is executed locally to
produce the job specifications. Jobs are then executed
by LocalLM, and the job outputs are filtered locally for
relevance (see 4(b) in Figure 1), and sent to remote.

3. On remote. RemoteLM synthesizes the filtered outputs
and decides whether to output an answer or continue to
the next iteration (see 4(c) in Figure 1).

Step 1: Programmatic job preparation on remote. Our
goal it to create a list of job specifications for LocalLM.
Each job specification is a tuple including an instruction and
a chunk of context to run it on t(i) = (q̃(i), c̃(i)). The list
of job specifications is denoted with T = [t(1), t(2), . . .].

Instruction (q̃(i)): Extract the total revenue for FY2015,
abstain if not present. Try to look for the income statement
and make sure it is from 2015.
Context (c̃(i)): “Operating income for North America for the
years ended...”

Crucially, to create Tt (at iteration t) without seeing the
context c, we instead have RemoteLM generate a Python
function, f(c,Tt−1), that accepts the full context c and
previous job specifications Tt−1 – both available only on-
device – and outputs a new list of jobs Tt. Access to Tt−1

allows RemoteLM to use previous job outputs to allocate
work to specific chunks of context.

We illustrate an abbreviated version of a Python function that
was generated by RemoteLM. It includes fourteen lines of
code, but can generate hundreds of jobs when executed (for
a complete code example, see Appendix G).

1 @dataclass
2 class Job:
3 instruction: str
4 chunk: str
5
6 def f(ctx: str, last_jobs: List[Job]) -> List[

Job]:
7 jobs = []
8 instructions = ["Extract the total revenue

for...", "In the statement of cash flow...
"]

9 chunks = chunk_on_pages(ctx) # chunk
context into pages

10 for chunk in chunks:
11 for instr in instructions:
12 for _ in range(5):
13 jobs.append(Job(instr, chunk))
14 return jobs

To generate such a function, we prompt RemoteLM with
the query q and instruction prompt pdecompose: f(·, ·) ∼
RemoteLM(q,pdecompose). The function is then executed
locally to create the list of job specifications Tt.

This strategy, which builds on work using LMs to generate
code for information extraction (Arora et al., 2023; Li et al.,
2023), allows us to decouple the number of unique jobs
from the number tokens generated by the cloud model.

Step 2: Job execution and filtering on-device. In this
step, we convert jobs T = [t(1), t(2), ...] into prompts and
execute them in batch(es) locally. The prompt further guides
LocalLM to produce a structured output, with fields expla-
nation (concisely stating its reasoning), citation (a direct
snippet of text supporting the answer), and answer, setting
the values to null if the instruction cannot be completed con-
fidently on this chunk. We denote each LocalLM response
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Scaling Tasks Scaling Samples Scaling Chunks

Figure 4. Scaling parallel jobs on-device improves quality. The x-axis represents tokens processed by the remote model, and the y-axis
shows macro-average accuracy across LONGHEALTH and QASPER. The cloud model is GPT-4O. Each plot varies a different MINIONS
hyperparameter affecting parallelism, with annotated values. (Left) Varying the number of unique instructions. (Middle) Varying the
number of unique samples. (Right) Varying the chunking granularity in code f . See Section 5 for details.

with z(i),
z(i) ∼ LocalLM(t(i),pworker) (1)

We discard any z(i) for which the model abstained – intu-
itively, many instructions will be irrelevant to their paired
chunks – allowing us to avoid sending unnecessary infor-
mation to the RemoteLM. The surviving instruction-chunk
pairs are concatenated into a single string w.

Step 3: Job synthesis on remote. RemoteLM receives w
and a synthesis prompt psynthesize, that, like in MINION, asks
it to generate a structured output a with decision and
answer fields:

ŷ ∼ RemoteLM(w,psynthesize) (2)

If the RemoteLM decides that more information is needed,
the loop continues from Step 1.

There are several ways to maintain context across MINIONS
rounds. One is to keep the entire the conversation in con-
text, yet, this incurs significant additional cost, even with
prompt caching. We experiment with two alternatives: (1)
simple retries, in which only the RemoteLM’s advice is
carried over between rounds and (2) scratchpads, in which
the RemoteLM can record what it learned from the round
before proceeding to the next.

5.2. Protocol hyper-parameters

MINIONS has three hyper-parameters: choice of
RemoteLM and LocalLM (model choice), job preparation
strategy (scale of parallel workloads on-device), and looping
strategy (sequential communication protocol).

Model choice. Different model sizes (e.g. 3B vs. 8B),
families (e.g. QWEN2.5 vs. LLAMA) can be used for both
the LocalLM and the RemoteLM.

Scale of parallel workload on-device. MINIONS has three

knobs for increasing the degree of task decomposition and
thus, workload parallelization: (1) number of tasks per
round (i.e. “Extract the ARR for Q1 of 2014”), (2) number
of samples per task (i.e. number of repeated generations
created with LocalLM, ≥ 1), and (3) chunk size (i.e. chunk
by page, chunk by paragraph, etc; smaller chunks will send
more information to cloud).

Sequential communication protocol. In practice, it is
important to cap the number of times MINIONS can loop.
After the maximum number of rounds, the synthesis prompt
is modified to force the model to produce a final answer.
The choice of this maximum affects accuracy and cost. The
strategy for maintaining context between rounds (simple
retries vs. scratchpads) is another important hyperparameter.

We analyze these hyperparameters in Section 6.

6. Results
Here, we analyze how the design of MINIONS affects cost
and quality. Our main takeaways are: (a) On average across
three datasets, MINIONS can recover 97.9% of the perfor-
mance of remote-only systems while spending 5.7× less;
(b) We identify protocol hyper-parameters that let us flex-
ibly trade-off cost and quality; (c) As local models grow
stronger, MINIONS becomes increasingly cost-effective.

We structure our analysis around three core design choices:

1. Model choice How does the choice of local and remote
model effect cost and quality? We examine different
model types and sizes for LocalLM in Section 6.2.

2. Scaling parallel workloads on-device How should we
structure parallel workloads on the local device to maxi-
mize performance and minimize cost? We highlight how
scaling the local workloads can improve performance
(Section 6.3) and study the effects on cost.
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Protocol Local Model Remote Model Macro Avg. FINANCEBENCH LONGHEALTH QASPER
Acc. Cost Acc. Cost Acc. Cost Acc. Cost

Remote Only — GPT-4O 0.724 $0.233 0.826 $0.261 0.748 $0.301 0.598 $0.137

Local Only LLAMA-8B — 0.444 $0.000 0.326 $0.000 0.468 $0.000 0.538 $0.000
Local Only LLAMA-1B — 0.038 $0.000 0.000 $0.000 0.115 $0.000 0.000 $0.000
Local Only LLAMA-3B — 0.213 $0.000 0.130 $0.000 0.345 $0.000 0.164 $0.000
Local Only QWEN-3B — 0.140 $0.000 0.087 $0.000 0.177 $0.000 0.156 $0.000

MINION LLAMA-8B GPT-4O 0.630 $0.008 0.804 $0.007 0.635 $0.010 0.450 $0.007
MINION LLAMA-3B GPT-4O 0.518 $0.010 0.698 $0.010 0.482 $0.009 0.372 $0.011
MINION QWEN-3B GPT-4O 0.236 $0.028 0.217 $0.029 0.281 $0.021 0.210 $0.035

MINIONS LLAMA-8B GPT-4O 0.709 $0.042 0.804 $0.053 0.740 $0.054 0.582 $0.019
MINIONS LLAMA-3B GPT-4O 0.662 $0.052 0.726 $0.079 0.703 $0.057 0.558 $0.020
MINIONS QWEN-3B GPT-4O 0.676 $0.039 0.783 $0.059 0.645 $0.043 0.600 $0.015

Table 1. Accuracy and cost of local-remote systems. Evaluation of cost and accuracy on 3 evaluations datasets. The table compares two
edge-remote protocols—MINION (Section 4) and MINIONS (Section 5)—against edge-only and remote-only baselines. We assess 3 local
models and 1 remote model. Cost (USD) is the average per-query expense, based on GPT-4O rates (Jan 2025: $2.50M/input tokens,
$10.00M/output tokens). Local model execution is assumed free (see Section 3 for cost details).

3. Sequential communication protocol Can multiple
rounds of communication improve quality? At what cost?
We explore this trade-off in Section 6.4.

Our findings are detailed in Sections 6.2, 6.3, and 6.4.
Additionally, we analyze latency in Section 6.5.

6.1. Experimental setup

Datasets and models We evaluate MINIONS on three
benchmarks that are well suited for data-intensive reason-
ing: FINANCEBENCH, LONGHEALTH, and QASPER. FI-
NANCEBENCH tests financial document understanding with
complex reasoning over reports. LONGHEALTH focuses
on tracking and interpreting longitudinal health records.
QASPER assesses question answering over dense scientific
papers. See Appendix B.0.1 for details. We use two open-
source model families (LLAMA, QWEN2.5) as LocalLM
and GPT-4O as RemoteLM (details in Appendix B.0.2).

6.2. Model choice

This section explores the model requirements and general-
ization capabilities of MINIONS , examining the local model
sizes necessary for effective collaboration, the sensitivity of
the communication protocol across different local-remote
model pairings, and the longitudinal evolution of MINIONS
’ performance with advances in model capabilities over time.

What size does LocalLM have to be in order to be effective
in MINIONS? Our results demonstrate that MINIONS
starts being competitive with RemoteLM-only baseline at
the 3B parameter model scale. When considering both the
QWEN2.5 and LLAMA model families running locally, at
1B scale, MINIONS recovers 49.5% of the GPT-4O-only
baseline performance, 3B scale recovers 93.4% and 8B re-
covers 97.9% accuracy (see Table 1 for more details). We
note that it is now feasible to run 1-8B parameter mod-
els on modern laptops (Apple M-Series) and workstations
(NVIDIA DGX Spark) (Apple, 2024).

How does the capacity of LocalLM affect the cost-
accuracy tradeoff? In our system, LocalLM implicitly
acts as an information encoder, optimizing the Information
Bottleneck objective (Tishby et al., 2000) by compressing
input context while preserving predictive information (see
Appendix D.2). To measure this, we analyze the tradeoff be-
tween remote “prefill” tokens (fewer tokens indicate greater
compression) and accuracy (higher accuracy means better
retention). Figure 5 shows that as LocalLM size increases,
representations become more compressed and accurate, im-
proving Information Bottleneck values. Larger LocalLM
models trade local FLOPs for communication, with 7–8B
models being 1.53× more token-efficient than 1B models.
Additionally, the QWEN2.5 family follows a different trade-
off than LLAMA, yielding more compressed representations.
This suggests that as small LMs improve, local-remote sys-
tems will become increasingly cost-efficient.

Does the performance of MINIONS relative to the remote-
only baseline change with increasing task complexity? In
Tables 8 and 9, we stratify the queries by complexity. Our
main finding is that the accuracy of MINIONS relative to the
remote-only baseline actually improves with increasing task
complexity. For example, on simple information extraction
tasks in FINANCEBENCH, MINIONS with QWEN2.5 trails
the remote only baseline by −22.7 accuracy points, but on
tasks requiring numerical reasoning on top of extracted data,
MINIONS outperforms the remote only baseline by +4.60
points. On LONGHEALTH, LLAMA-8B MINIONS trails by
−6.2 points on questions requiring a single evidence span
but outperforms the remote only baseline by +16.0 points
on questions requiring synthesis of three evidence spans.
This pattern is consistent across local model sizes.

Is MINIONS sensitive to different local/remote pairs?
We ask whether the communication protocol in MINIONS
is invariant to changing the model types (i.e. LLAMA vs
QWEN2.5 locally and LLAMA vs GPT-4O remotely). Our
results indicate that MINIONS performs similarly with dif-
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ferent local-remote LM combinations (see the Table 1):
varying the LocalLM from QWEN2.5 to LLAMA-3.2, re-
sults in performances within ± .05 performance points (see
Table 1). Furthermore, we find that holding the LocalLM
fixed as LLAMA-3.2-3B and varying RemoteLM from
GPT-4O to LLAMA-3.3-70B leads to similar overall perfor-
mances within ± 0.07 points (see Table 3 in Appendix).

How have local / remote model capabilities changed over
time, and what effects do they have on MINIONS? In
Table 4, we provide a retrospective analysis demonstrating
how the quality of MINIONS would have changed with
model releases over time. From 2023 to 2025, the average
performance of MINIONS with the best models available
has improved from 0.26 to 0.66 (see Table 4 in Appendix).
Interestingly, it was only in July 2024 — with the release
of GPT4-TURBO and LLAMA-3.1-8B — that MINIONS
could have come within 12% of the best frontier model
performance at the time (see Table 4 in Appendix).

6.3. Scaling parallel workloads on-device

In MINIONS, there are three levers for maximizing local
compute resources through parallelized, batched processing:
(1) number of tasks per round, (2) number of samples taken
per task, and (3) number of chunks. We ablate each, showing
their impact on performance. We find that (1) and (3) are
more cost effective ways of increasing performance.

How does the number of tasks per round affect perfor-
mance? Increasing tasks per round proxies task decom-
position, with more sub-tasks enhancing decomposition.
Raising tasks from 1 to 16 boosts performance by up to 14
points but doubles RemoteLM prefill costs. Optimal task
count varies, but exceeding 16 reduces performance.

How does scaling local samples affect performance? We
explore whether increased sampling at an individual {task,
context} level improves performance. Increased sampling
enables us to better utilize the available compute resources
while improving task-level accuracy (Brown et al., 2024).
Our results indicate that increasing the number samples
from 1 to 32 can improve performance on average 7.4 points,
but comes at the cost of 5× the RemoteLM prefill costs.
Though, increasing sampling beyond 16 starts hurting per-
formance because the remote model struggles to parse many
conflicting responses (Kuratov et al., 2024).

What effect does chunk size have on downstream perfor-
mance? We test whether increasing local utilization by
using more chunks per task improves performance. Our
results indicate that increasing # of chunks per task (by de-
creasing the number of “pages” per chunk from 100 to 5)
leads to an 11.7 point accuracy lift. However, this lift comes
with a 2.41× increase in RemoteLM prefill costs.

6.4. Scaling sequential communication

Both the MINION and MINIONS communication protocols
feature sequential communication: they allow for multiple
rounds of exchange between the local and remote models.

Does performance improve as we increase the maximum
number of rounds? At what cost? We vary the maxi-
mum communication rounds and find it is correlated with
accuracy and cost (see Figure 5). By simply increasing the
maximum number of rounds in MINION from 1 to 5, we
enable a 8.5-point lift in average accuracy across the three
tasks (with LLAMA-3.2 on-device). However, this accuracy
improvement comes at a cost: each additional round of com-
munication increases the cost by $0.006 per query while
boosting accuracy by 4.2 points.
How should we maintain context between MINIONS
rounds? We experiment with two sequential protocol
strategies: (1) simple retries and (2) scratchpad. See Sec-
tion 5 for details of these strategies. As shown in Figure 7,
both strategies show consistent increases in both accuracy
and cost when increasing the maximum number of rounds,
with the scratchpad strategy achieving a slightly better cost-
accuracy tradeoff. Notably, each additional round of com-
munication with the scratchpad strategy leads to a larger
improvement in accuracy (6.1 accuracy points) which are
mostly offset by larger increases in cost (8.6 dollars).

6.5. Latency of local-remote systems

Here, we compare the latency of running MINION and MIN-
IONS with the latency of remote-only or local-only systems.

As reported in Table 2, on a single RTX 4090, a consumer-
grade graphics card for gaming (MSRP $1,599), MINION
with LLAMA-3B runs only 3.5% slower than a remote only
system. With LLAMA-8B, MINION’s latency increases by
only 44.4%. Although MINIONS processes far more tokens
than MINION or the the remote only baselines (16× more
in these experiments), with careful batching and hardware-
aware prefix sharing (Juravsky et al., 2024), we show we can
run MINIONS on a single RTX 4090 at 2.15× and 2.89×
the latency of the remote only system.

The measurements described above are imperfect for pro-
jecting the latency that future users of local-remote systems
would experience. For one, they depend on a number of
unobserved variables on the remote side (e.g. remote hard-
ware and user load) that are subject to change in the future.
Furthermore, local hardware is improving rapidly as is the
software used for serving LLMs efficiently on edge devices.

To address these limitations, in Appendix C, we include a
theoretical framework for estimating the latency overhead of
a local-remote system. This framework can be applied to any
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Figure 5. Trade-offs in edge model performance, communication efficiency, and cost of sequential communication. (Left) Accuracy
vs. local LM size, with the purple dashed line showing the GPT-4O model baseline. (Right) Communication efficiency of MINIONS with
different local LMs, where larger LMs (7–8B) are more token-efficient.

Protocol Local Remote Latency (RTX 4090) Latency (RTX 6000 Ada)
Total Local Remote Total Local Remote

Remote Only — GPT-4O 11.00 0.00 11.00 11.00 0.00 11.00

Local Only LLAMA-8B — 21.13 21.13 0.00 19.25 19.25 0.00
Local Only LLAMA-3B — 11.33 11.33 0.00 11.01 11.01 0.00

MINION LLAMA-8B GPT-4O 15.88 9.71 6.17 29.19 14.16 15.03
MINION LLAMA-3B GPT-4O 11.39 5.51 5.88 15.32 5.51 9.81

MINIONS LLAMA-8B GPT-4O 31.81 16.99 14.82 35.08 19.39 15.69
MINIONS LLAMA-3B GPT-4O 23.65 9.23 14.42 26.79 10.76 16.03

Table 2. Latency of local-remote systems. Latency is measured
in seconds on ten samples from the LONGHEALTH dataset. The
LocalLM is run on a single a consumer-grade GPU: Nvidia RTX
4090 (MSRP $1,599) or Nvidia RTX 6000 Ada (∼$7,000). See
Appendix C for an accompanying theoretical analysis of latency.

local and remote configuration by simply plugging in model
and hardware specifications (e.g. memory bandwidth, model
size). For instance, we estimate that running MINIONS with
LLAMA-8B on a single RTX 4090 locally and Llama 405B
on a full 8× H100 node remotely would incur a 4.75×
latency increase compared to running on the remote alone.

7. Discussion
MINIONS offers insights into evolving workload distribu-
tions and the expanding role of local compute. We explore
two protocols—MINION and MINIONS — for collaboration
between on-device and cloud LMs. Our results show that
cloud compute costs can be reduced by 5–26× by enabling
remote LMs to delegate work to local ones. We also discuss
broader implications and future directions.

User experience Soon, commodity hardware—laptops,
smartphones, and IoT devices—will host powerful GPUs,
enabling always-on local models for tasks like code refac-
toring, document analysis, and anomaly detection. As
LocalLM capabilities grow, offloading complex, tool-
augmented tasks to local compute becomes viable, reducing

our reliance on cloud API’s. We take a preliminary step by
extending the MINION framework to support local tool use
(see Section E.5), showing that 3B models can complete
multi-step tasks with light remote guidance—approaching
GPT-4O performance while using far fewer remote tokens.

Local-remote model co-design There is great promise
in going beyond orchestration and finetuning small models
to be better minions. Our preliminary results show that
MINION accuracy can be improved by simple supervised
finetuning of LocalLM on the target domain (see G.2). Fu-
ture work should train minions to more concisely and ac-
curately communicate with remote models, and, eventually,
jointly train two models to cooperate better. Furthermore,
communication should not be limited to natural language.

Energy efficient inference systems Local-remote frame-
works like MINIONS can cut the energy footprint of AI by
shifting compute from centralized data centers to efficient
edge devices. Cloud inference is energy-intensive due to
overheads like cooling and idle overprovisioning (Strubell
et al., 2019; Henderson et al., 2020). Offloading to on-device
models reduces reliance on power-hungry accelerators. As a
first step, we quantify these savings in Section E.4, showing
that MINIONS uses up to 12× less energy than fully remote
execution, highlighting hybrid deployment as a promising
path for sustainable AI.

Privacy implications MINIONS offers a promising path
to greater privacy by keeping user data on local devices
during LLM inference. More broadly, local-remote systems
raise important questions around privacy and security. Fu-
ture work should establish formal guarantees against data
leakage and secure the interface between local and remote
components—for example, preventing reverse engineering
or tampering of transmitted representations. Advancing
adversarial robustness, secure protocols, and local model
auditing will be key to hardening these systems.
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Impact Statement
MINIONS advances cost-efficient AI by demonstrating how
small on-device language models can collaborate with pow-
erful cloud-hosted models to perform data-intensive reason-
ing. By reducing reliance on expensive remote inference,
MINIONS makes advanced AI more accessible and sus-
tainable. This has broad societal implications, including
lowering barriers to AI adoption and enhancing data privacy
by keeping more computations local. However, careful con-
sideration must be given to potential biases in small models
and the security risks of local code execution.
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Trummer, I., and Ré, C. Language models enable simple
systems for generating structured views of heterogeneous
data lakes. arXiv:2304.09433, 2023.

Biderman, D., Portes, J., Ortiz, J. J. G., Paul, M., Greengard,
P., Jennings, C., King, D., Havens, S., Chiley, V., Frankle,
J., et al. Lora learns less and forgets less. Transactions
on Machine Learning Research, 2024.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V.,
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Guha, N., Ré, C., et al. Archon: An architecture search
framework for inference-time techniques. arXiv preprint
arXiv:2409.15254, 2024.

Shankar, S., Parameswaran, A. G., and Wu, E. Docetl: Agen-
tic query rewriting and evaluation for complex document
processing. arXiv preprint arXiv:2410.12189, 2024.

Shuster, K., Kiela, D., Perez, E., de Vries, H., Urbanek, J.,
Szlam, A., and Weston, J. Retrieval augmentation reduces
hallucination in conversation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, 2021.

Siyan, L., Raghuram, V. C., Khattab, O., Hirschberg, J., and
Yu, Z. Papillon: Privacy preservation from internet-based
and local language model ensembles. arXiv preprint
arXiv:2410.17127, 2024.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Song, Y., Wang, G., Li, S., and Lin, B. Y. The good, the bad,
and the greedy: Evaluation of llms should not ignore non-
determinism. arXiv preprint arXiv:2407.10457, 2024.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in nlp. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 3645–3650. Association
for Computational Linguistics, 2019.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Wang, J., Wang, J., Athiwaratkun, B., Zhang, C., and Zou,
J. Mixture-of-agents enhances large language model
capabilities. arXiv preprint arXiv:2406.04692, 2024a.

Wang, K., Pan, J., Shi, W., Lu, Z., Ren, H., Zhou, A., Zhan,
M., and Li, H. Measuring multimodal mathematical
reasoning with math-vision dataset. Advances in Neu-
ral Information Processing Systems, 37:95095–95169,
2024b.

Wu, T., Terry, M., and Cai, C. J. Ai chains: Transparent
and controllable human-ai interaction by chaining large
language model prompts. In Proceedings of the 2022
CHI conference on human factors in computing systems,
pp. 1–22, 2022.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. An
empirical analysis of compute-optimal inference for
problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Xia, M., Zhang, X., Couturier, C., Zheng, G., Rajmohan,
S., and Ruhle, V. Hybrid-RACA: Hybrid Retrieval-
Augmented Composition Assistance for Real-time Text
Prediction. arXiv e-prints, art. arXiv:2308.04215, August
2023. doi: 10.48550/arXiv.2308.04215.

Xu, D., Zhang, H., Yang, L., Liu, R., Huang, G., Xu,
M., and Liu, X. Empowering 1000 tokens/second on-
device llm prefilling with mllm-npu. arXiv preprint
arXiv:2407.05858, 2024.

Yang, Z., Yang, Y., Zhao, C., Guo, Q., He, W., and Ji, W. Per-
llm: Personalized inference scheduling with edge-cloud
collaboration for diverse llm services. arXiv preprint
arXiv:2405.14636, 2024.

Yi, R., Li, X., Xie, W., Lu, Z., Wang, C., Zhou, A., Wang,
S., Zhang, X., and Xu, M. Phonelm: an efficient and
capable small language model family through principled
pre-training. arXiv preprint arXiv:2411.05046, 2024.

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Huang,
Z., Guestrin, C., and Zou, J. Textgrad: Automatic” dif-
ferentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Zhang, K., Wang, J., Ding, N., Qi, B., Hua, E., Lv, X., and
Zhou, B. Fast and slow generating: An empirical study on
large and small language models collaborative decoding.
arXiv preprint arXiv:2406.12295, 2024a.

Zhang, K., Wang, J., Hua, E., Qi, B., Ding, N., and Zhou, B.
Cogenesis: A framework collaborating large and small

12

https://aclanthology.org/2024.findings-acl.57/
https://aclanthology.org/2024.findings-acl.57/


MINIONS: Collaboration Between On-device and Cloud Language Models

language models for secure context-aware instruction
following. arXiv preprint arXiv:2403.03129, 2024b.

Zhang, Y., Sun, R., Chen, Y., Pfister, T., Zhang, R., and
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A. Extended Related Work
Orchestration of LMs Recent works attempt to improve long document processing by taking a divide-and-conquer
approach akin to MINIONS. Instead of using single LM calls with the entire context, the task is decomposed into smaller
tasks to be executed on chunks of context. (Zhang et al., 2024c; Zhou et al., 2024) use a predefined protocol for chunk
processing (defined by a prompt). (Shankar et al., 2024) performs a more involved automated pipeline optimization (via
agent-based rewrite directives). Crucially, none of the works study the cost-efficient interaction between a small local LM
and large remote LM and instead focus exclusively on larger LMs (70B parameters and above). Moreover, they do not
explore multi-round communication patterns for document analysis.

Long-context management techniques These works aim to improve single LM accuracy in long context tasks. (Russak
et al., 2024) prefill the context using chunks of the document, summarize each chunk (using a predefined prompt), and
aggregate the results. This improves accuracy and requires marginal additional computation. PRISM similarly (Jayalath
et al., 2024) processes the context as a stream of chunks, and writes important information into a typed data structure which
can be amended as needed. MemGPT (Packer et al., 2023) proposes a virtual memory paging system inspired by operating
systems, where the LLM manages information across main context (akin to RAM) and external storage (akin to disk). When
approaching context limits, the system actively decides what information to preserve and can later retrieve this information
through paginated function calls. Orthogonally, other methods explore the usage of code for context management (Arora
et al., 2023).

Cost-efficient multi-LLM Systems A plethora of recent works show that multiple LMs can collaborate on a task to
improve both accuracy and efficiency (Guo et al., 2024). The most similar work is perhaps (Wang et al., 2024a) which
neither investigates LMs with with asymmetric capabilities nor optimizes for local compute efficiency.

Model routing techniques Our work studies a collaboration of LMs, and thus should be differentiated from model routing
techniques (Chen et al., 2024a; 2023) that route a prompt to the appropriate single LM that can completely answer it using
the full context. This is often done for cost reduction, identifying that simple tasks can be executed by smaller and cheaper
LMs.

Compound LM systems Recent works explore the use of LMs as part of more elaborate pipelines that, retrieval models,
tool use, and more. (Saad-Falcon et al., 2024; Khattab et al., 2023; Yuksekgonul et al., 2024) seeks to optimize the pipeline
architecture and prompts using different approaches, which we do not pursue on this work.

Retrieval-Augmented Generation (RAG) RAG is a hybrid approach that integrates information retrieval into the text
generation process, leveraging external knowledge sources to enhance the output of language models (LMs). Instead of
relying solely on parametric memory, RAG reduces the number of tokens processed by an LM by first retrieving a subset of
relevant documents or document chunks and appending them as context to the LM (Lewis et al., 2020; Karpukhin et al.,
2020; Lee et al., 2019; Izacard & Grave, 2021; Guu et al., 2020). This retrieval step mitigates issues such as hallucination
and knowledge staleness, which are common in traditional autoregressive models (Shuster et al., 2021; Petroni et al., 2019).
We differ in two ways: first, our local LM can perform tasks beyond information extraction, such as summarization or
reasoning. Second, by performing arbitrary tasks on document chunks, the small LM communicates its compact answer
instead of the raw document chunk, which amounts to sending fewer tokens to remote.

Speculative decoding Speculative decoding (Leviathan et al., 2023; Zhang et al., 2024a; Chen et al., 2024b) techniques
are addressing the different question of how to effectively sample from the distribution of a large LM by only sampling
from smaller LM and using the large LM for cheaper, likelihood evaluation (using the “acceptance-complement algorithm”
(Devroye, 2006)). It neither considers a collaboration between two LMs, nor attempts to minimize the communication
between them.

On-device language models for privacy Siyan et al. (2024); Zhang et al. (2024b) attempt to prevent leaks of private
information to a cloud-hosted LM API by mediating the communication with a local privacy-aware LM that removes private
information from the prompt. While the local-remote LM setup bears resemblance to ours, we do not study the aspects of
privacy, but rather focus on reducing cloud costs by delegating work to devices while maintaining accuracy. Moreover, we
have additional focus on local runtime efficiency.
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Local-remote systems Recent work has explored efficient routing patterns between local and remote computation for LM
workloads, albeit without two models communicating or collaborating on a solution. (Jin & Wu, 2024) partition a single
LLM with early layers on the edge and later layers in the cloud, routing to the cloud when confidence is low. (Yang et al.,
2024) propose a complementary task scheduling framework that routes to cloud or local based on resource constraints and
service requirements.

B. Extended Description of Experimental Setup
B.0.1. DATASET DETAILS

In this section we provide additional details on dataset preparation. In order to extend the context length of the problems in
LONGHEALTH and QASPER, we make a few modification to the dataset.

FINANCEBENCH We filter the original FINANCEBENCH to include only the numerical reasoning, resulting in a dataset of
length 64. Each sample has an average context length of 142.9K(±79224.32).

LONGHEALTH In the original instantiation of the LONGHEALTH dataset, each question is paired with a set of medical
documents corresponding to a single patient. To increase the complexity of the dataset, we include medical documents from
10 other patients in the context. We evaluate over the entire dataset (400 problems) for results reported in Table 1. Each
sample has an average context length of 120.1K(±1, 237) tokens. For all ablations in Section 6, we use a fixed subset of
128 problems.

QASPER Similarly, in the QASPER dataset, the original dataset provides questions that are associated with a single
scientific paper. In order to increase complexity, we include 10 other papers in the context. We evaluate over a random
subset of 500 problems for results reported in Table 1. Each sample has an average context length of 54281 tokens (±2403).
For all ablations in Section 6, we use a fixed subset of 128 problems.

B.0.2. MODEL DETAILS

Local Models. For QWEN2.5 we use the following models: QWEN2.5-1.5-Instruct, QWEN2.5-3B-Instruct, QWEN2.5-7B-
Instruct. For LLAMA, we use the following models: LLAMA-3.2-1B-Instruct, LLAMA-3.2-3B-Instruct, LLAMA-3.1-8B-
Instruct.

Remote Models. We use GPT-4O and LLAMA-3.2-70B-Instruct, LLAMA-3.1-70B-Instruct

All “local-only” and “remote-only” experiments are run with temperature of 0.2. For all MINIONS experiments run in
Table 1, we run the RemoteLM with a temperature of 0.0 and LocalLM with a temperature of 0.2 for FINANCEBENCH
and 0.00001 for QASPER and LONGHEALTH. We run our local models on A100 GPUs.

C. Extended Discussion of Cost Model
Here, we explain in detail the costs of the different communication protocols discussed in this paper—remote-only, MINION,
and MINIONS—with a strong focus on the latency of these methods. This section is organized as follows:

• Section C.1: We review background on language model inference, to motivate our cost and latency models.

• Section C.2: We present mathematical models for the latency of the remote-only, MINION, and MINIONS protocols.

• Section C.3: We present Proposition C.1, an upper bound on the total latency of MINIONS, relative to that of the
remote-only model, demonstrating that MINIONS is not much slower than the naive approach of performing the full
query in the cloud. As an example, we show that a Llama-8B model on a GTX-4090 GPU collaborating via MINIONS
with a Llama-405B model on a 8×H100 server is at most 4.75× slower than the remote-only protocol.

C.1. Background on language model inference

Language model inference consists of a sequence of forward passes through a model, one for prefill (i.e. input) followed
by one for each additional token generated (i.e. output). At low/medium batch sizes, each forward pass after prefill is I/O
bound, meaning the time it takes to load weights from memory exceeds the time it takes to actually compute the output. As
the batch size increases, the computational cost of the forward pass eventually exceeds the I/O cost. Strikingly, for most
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Figure 6. Exploring the trade-off between cost and quality through multiple rounds. The x-axis represents the remote model’s token
cost, while the y-axis shows accuracy. Point labels indicate communication rounds. The purple dashed line marks GPT-4O ’s performance
as a benchmark.

models and hardware, this happens at a batch size > 100 (Leviathan et al., 2023; Chen et al., 2024b). As a result of this
transition from being I/O bound to being compute bound, we can model (as is common in the literature) the cost of running
a forward pass as a piecewise linear function CM,E(n) = max(λ, α · n+ β) of the number of tokens n being processed.
This is because for small n, the IO cost dominates (and is roughly constant as n grows), whereas at larger n the compute
cost dominates and scales roughly linearly with n (assuming n is not too large).

In the cloud, the provider can batch generation requests from multiple users to keep hardware utilization high. Therefore, the
cost of each output token is typically within a small multiple of the cost of each input token, and the total cost of processing
the request scales as nprefill + α · ndecode, for some small α ≤ 5.

On-device, we cannot assume we’ll have enough concurrent user requests to form a large enough batch to achieve high
utilization. As a result, the latency of a request does not scale linearly with the number of tokens. A single request can occur
similar latency to hundreds run in parallel. As a result, tokens are a poor proxy for cost on-device and we instead measure
latency in micro experiments (see Section 6.3).

C.2. Latency models for all protocols: Remote-only, MINION, MINIONS

We now model the latency of each of these protocols (remote-only, MINION, MINIONS). We will then use these results in
the following section to upper bound the latency of MINIONS by a scalar multiple of the latency of the remote-only protocol.

First, we introduce the following assumptions and notation:

• We assume we have a local GPU (e.g. RTX-4090) with peak compute Fl (flops/sec), and peak bandwidth Ml (bytes/sec),
and a remote GPU (e.g. H100) with peak compute Fr (flops/sec), and peak bandwidth Mr (bytes/sec),

• We also assume for now simple transformer architectures for both the local and remote models:

– LocalLM: Ll layers, each with 8d2l params in MLP (Up/down projections each of size dl × 4dl, and 4d2l parameters
in the WQ,K,V,O projections. The total memory required for the (non-embedding/LM head) parameters is thus
Pl = 2 · 12Lld

2
l . For simplicity, we assume the memory for the LM head is small relative to Pl.

– RemoteLM: Equivalent architecture to the LocalLM, but with Lr layers, dr hidden dimension, and Pr total
non-embedding/LM-head parameter memory (again assumed to be much greater than the number of LM head
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parameters).

• We model the number of input/output tokens of each protocol as follows, letting n denote the number of tokens in the
original document:

– Remote-only: n prefill tokens and nr
out decode tokens. Note that we assume—here and below—that the number of

tokens in the query is negligible relative to n. We assume n ≫ nr
out so we can effectively ignore the KV-cache load

time for the output tokens.
– MINION: For LocalLM, we assume n prefill tokens and nl

out decode tokens. For RemoteLM, we assume nl
out

prefill tokens, and nr
out decode tokens. In the case of multiple rounds of communication, the KV cache for the

document can be stored to avoid recomputation.
– MINIONS: For LocalLM, we assume n/c prefill tokens per chunk (c chunks total), and nl

out decode tokens per
job (though we assume only p fraction of output jobs do not abstain). For RemoteLM, we assume J · nl

out · p
prefill tokens, and nr

out decode tokens, letting J = cks denote the total number of jobs in MINIONS (c chunks, k
instructions, s samples). In the case of multiple rounds of communication, the KV cache for each document chunk
can be stored to avoid recomputation.

• Throughout, we use the fact that a [m× n] · [n× k] matmul takes 2 ·mnk flops, and assume model parameters are stored
in half-precision (2 bytes/param).

We are now ready to present the latency models for the three protocols (remote-only, MINION, MINIONS).

C.2.1. REMOTE-ONLY

• Prefill: We are compute bound, so time is approximately given by total flops/Fr. We can break down total flops into
the matmuls (MLP up/down projections, and QKVO operations) and attention operations.

– Matmuls: 2 · 12nd2 per layer. Equivalent to a [n× dr] · [dr × 12dr] matmul.
– Attention: 2 · n2dr per layer. Equivalent to [n× dr] · [dr × n] matmul.
– Time: Lr · (24nd2r + 2n2dr)/Fr = (nPr + 2Lrdrn

2)/Fr.

• Decode: We are memory bound (batch size 1 for Minion), so time is approximately given by total memory/Mr per
decode step. We can break down total memory into model parameters and KV cache.

– Model parameters: 2 · 12d2r bytes per layer.
– KV-cache: 2 · 2ndr bytes per layer (K and V are each [n× d] matrices).
– Time: Lr · nr

out · (24d2r + 4ndr)/Mr = nr
out(Pr + 4Lrdrn)/Mr.

Total time is given by the sum of prefill and decode times:

Tremote =
nPr + 2Lrdrn

2

Fr
+

nr
out(Pr + 4Lrdrn)

Mr

C.2.2. MINION

The latency of the LocalLM in the MINION protocol can be modeled equivalently to the latency of the remote-only protocol,
but replacing the remote parameters with the corresponding local ones. Thus, total local latency is:

TMINION
local =

nPl + 2Lldln
2

Fl
+

nl
out(Pl + 4Lldln)

Ml

The total remote latency can also be expressed using these same equations, but with nl
out prefill tokens, and nr

out decode
tokens.

TMINION
remote =

nl
outPr + 2Lrdr(n

l
out)

2

Fr
+

nr
out(Pr + 4Lrdrn

l
out)

Mr

17



MINIONS: Collaboration Between On-device and Cloud Language Models

C.2.3. MINIONS

The LocalLM latency of the MINIONS protocol has some important differences from the MINION protocol—the prefill
computation avoids cross-chunk attention (which saves time), while the decode operations can actually be compute bound if
batching of the different jobs is done. We review these details below:

• Prefill: We are compute bound, so time is approximately given by total flops/F . We can break down total flops into
the matmuls (MLP up/down projections, and QKVO operations) and attention operations.

– Matmuls: 2 · 12nd2l per layer. Equivalent to c [nc × dl] · [dl × 12dl] matmuls (where nc = n/c).
– Attention: 2 · cn2

cdl = 2 · c (n/c)2dl = 2n2dl/c per layer. Equivalent to c [nc × dl] · [dl × nc] matmuls.
– Time: Ll · (24nd2l + 2n2dl/c)/F = (nPl + 2Lldln

2/c)/F .

• Decode: We will now assume we are compute bound during decode, because we have many jobs (ks) per chunk, and
many chunks (c) per document, which we can batch together. Thus, time is approximately given by total flops/Fl per
decode step. We can break down total flops into matmuls and attention. The flops below are per job, per output token
(so for total flops we will multiply by nl

out · pcks):

– Matmuls: 2 · 12d2l per layer. Equivalent to a [1× dl] · [dl × 12dl] matmul.
– Attention: 2 · ncdl = 2dl n/c per layer. Equivalent to [1× dl] · [dl × nc] matmul.
– Time: Ll · nl

out · pcks · (24d2l + 2dln/c)/F = nl
out · pcks · (Pl + 2Lldln/c)/F .

The total local latency for MINIONS is given by the sum of prefill and decode times: MINIONS

TMINIONS
local =

nPl + 2Lldln
2/c

Fl
+

nl
out · pcks · (Pl + 2Lldln/c)

Fl
.

The total remote latency for MINIONS can be expressed using the same equations as MINION, but with pcks · nl
out prefill

tokens, and nr
out decode tokens.

TMINIONS
remote =

(pcks · nl
out)Pr + 2Lrdr(pcks · nl

out)
2

Fr
+

nr
out(Pr + 4Lrdr(pcks · nl

out))

Mr

C.3. MINIONS vs. remote-only comparison

Proposition C.1. Assume nl
out · pcks = an, for some a < 1, and that Fr,l, dr,l, and Lr,l are all as defined in Appendix C.2.

In this case, we can show that the ratio of total latency of MINIONS vs. the remote-only protocol is upper-bounded by the
following expression:

TMINIONS
remote + TMINIONS

local

Tremote
< 1 +

(
1 + a

)
· Fr

Fl
· Lldl
Lrdr

.

Proof. Let’s assume nl
out · pcks = an, for some a < 1.

TMINIONS
local =

nPl + 2Lldln
2/c

Fl
+

an · (Pl + 2Lldln/c)

Fl

<
(
1 + a

)
· nPl + 2Lldln

2/c

Fl

TMINIONS
remote =

(an)Pr + 2Lrdr(an)
2

Fr
+

nr
out(Pr + 4Lrdr(an))

Mr

< a

(
nPr + 2Lrdrn

2

Fr
+

nr
out4Lrdrn

Mr

)
+

nr
outPr

Mr

Tremote =
nPr + 2Lrdrn

2

Fr
+

nr
out(Pr + 4Lrdrn)

Mr
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Thus, it is easy to see that T MINIONS
remote

Tremote
< 1. Now let’s look at T MINIONS

local

Tremote
, and show it is upper bounded by a constant:

TMINIONS
local

Tremote
<

(
1 + a

)
· nPl+2Lldln

2/c
Fl

nPr+2Lrdrn2

Fr

=
(
1 + a

)
· Fr

Fl
· nPl + 2Lldln

2/c

nPr + 2Lrdrn2

≤
(
1 + a

)
· Fr

Fl
·max

(
Pl

Pr
,
Lldl
Lrdrc

)
=

(
1 + a

)
· Fr

Fl
·max

(
Lld

2
l

Lrd2r
,
Lldl
Lrdrc

)
<

(
1 + a

)
· Fr

Fl
· Lldl
Lrdr

.

Thus, combining the above two results we can see that:

TMINIONS
remote + TMINIONS

local

Tremote
< 1 +

(
1 + a

)
· Fr

Fl
· Lldl
Lrdr

.

Real example: Let’s assume that the local GPU is a RTX 4090 (Fl ≈ 160 TFLOPS), the remote server is a full node of 8
H100s (Fr ≈ 8000 TFLOPS across full node), the local model is Llama-8B (Ll = 32, dl = 4096), and the remote model
is Llama-405B (Ll = 126, dl = 16384). Furthermore, let’s assume a ≈ 0.2, which is actually a bit larger than we see in
practice. In this case:

1 +
(
1 + a

)
· Fr

Fl
· Lldl
Lrdr

≈ 1 + 1.2 · 8000
160

· 32 · 4096
126 · 16384

≈ 1 + 1.2 · 50 · 1

16
= 4.75.

Note that if we perform multiple rounds of MINIONS , this ratio gets multiplied by at most the number of rounds, though as
mentioned previously, we can save time by only performing prefill on all the document chunks in the first round.

D. Extended discussion of methods
D.1. Extended description of MINION

In this section, we describe MINION, a baseline local-remote communication protocol. We ask whether we can reduce remote
prefill tokens, and thus cost, by simply orchestrating a free-form conversation between the LocalLM and the RemoteLM in
which only the LocalLM has direct access to the context c.

The protocol proceeds with initialization step followed by a simple correspondence between the two models, which
terminates when the remote model can answer the question or a maximum iteration limit is reached.

Iteration i = 1: Initialize. The RemoteLM receives the task query q along with a system prompt premote that instructs it
to interact with a small LM that has full access to context. It outputs a first message m

(1)
remote:

m
(1)
remote ∼ RemoteLM(q,premote)
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The message is then provided to LocalLM, along with the full context c, the query c, and a minimal system prompt plocal
that instructs it to answer questions on the context:

m
(1)
local ∼ LocalLM(m

(1)
remote,q,plocal, c)

Iteration i > 1. Step 1: Message from remote to local. RemoteLM consumes the conversation history and outputs new
messages:

m
(i)
remote ∼ RemoteLM(m

(:i−1)
remote ,m

(:i−1)
local ,q,premote)

In its message, RemoteLM indicates whether it has sufficient information to terminate the loop and answer the question, or
alternatively raises additional questions.

Step 2: Message from local to remote LocalLM consumes the latest remote message and conversation history, and outputs
m

(i)
local.

m
(i)
local ∼ LocalLM(m

(:i−1)
remote ,m

(:i−1)
local ,q,plocal, c)

We then increment the iteration i and loop back to Step 1 until the break condition is met or we reach a maximum number
of iterations.

D.2. Information Bottleneck Perspective

How does local model capacity affect the cost-accuracy tradeoff?

The Information Bottleneck (IB) principle (Tishby et al., 2000) provides a useful analogy. One communication round of a
local-remote system does as follows:

z ∼ p(z|c) [Extract info. from context]
y ∼ p(y|z) [Predict outcome from extracted info]

The IB principle seeks to find a p(z | c), our LocalLM, as follows:

min
p(z|c)

[
I(C;Z) − β I(Z;Y )

]
, (3)

i.e. find a mapping that forces the latent representation to be maximally informative of the label I(Z;Y ) and minimally
informative of the input I(C;Z), with a tradeoff parameter β. Here, we do not optimize the mapping p(z | c) but instead
only get to choose it by setting LocalLM.

Since we cannot compute these quantities in closed form for nonlinear distributions over tokens, we use (coarse) empirical
proxies as follows. As a proxy for I(C;Z), we compute the number of prefill tokens sent to RemoteLM, capturing
the intuition that more tokens carry more information on the input. I(Z;Y ) is estimated as the average accuracy of the
local-remote system, quantifying the preservation of task-relevant information in z. While these proxies do not exactly
match the underlying mutual informations, they capture the core tension of compressing the input vs. preserving predictive
power.

We plot these quantities in Figure ??. We find that across both QWEN2.5 and LLAMA model families, as we increase
LocalLM size, we send fewer tokens to RemoteLM (≈ I(C;Z) ↓), and improve accuracy (≈ I(Z;Y ) ↓). We find that
LLAMA has higher ≈ I(C;Z) and higher ≈ I(Z;Y ).

E. Extended Results
E.1. Model Analysis

We include additional experiment results from Section 6.2. In Table 3 we show the effects of varying RemoteLM on
MINIONS . In Table 4, we show the performance of MINIONS using the best in-class models at the time (from late 2023 to
late 2024).
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Simple retry
Scratchpad

Strategy

Figure 7. Comparing strategies for maintaining context between MINIONS rounds. The x-axis represents the number of tokens
processed by the remote model, while the y-axis shows the accuracy achieved.

Local Model Remote Model Release Date Accuracy (Longhealth) Accuracy (QASPER) Accuracy (Finance)

llama-3B gpt-4o May 2024 0.7025 0.598 0.7826
llama-3B gpt-4-turbo April 2024 0.6247 0.614 0.6304
llama-3B gpt-3.5-turbo-0125 Jan 2024 0.2157 0.4314 0.1707
llama-3B gpt4o-mini July 2024 0.6275 0.568 0.6522
llama-3B llama3-70B-Instruct-Turbo April 2024 0.3525 0.144 0.1818
llama-3B llama3.1-70B-Instruct-Turbo July 2024 0.6193 0.514 0.4348
llama-3B llama3.3-70B-Instruct-Turbo December 2024 0.6658 0.534 0.6739

Table 3. Accuracy Results for Longhealth, QASPER, and Finance across Various Models

E.2. MINION LocalLM Analysis

We perform an empirical analysis evaluating the robustness of LocalLM. We perform experiments to evaluate two axes of
model capabilities: (1) ability to reason over long contexts and (2) ability to solve multi-part queries. To test (1) and (2)
we curate a synthetic dataset built over the FINANCEBENCH dataset wherein we use GPT-4O to construct an extraction
based question-answering dataset over chunks (length 512 tokens) of documents in the FINANCEBENCH dataset. We then
construct two settings evaluating over LLAMA-3.2-3B-Instruct.

Long Context Reasoning: To evaluate long-context reasoning, we concatenate between {1,16,32,64,128} chunks to
construct the context. At least one chunk in the concatenated context contains the ground truth result. As seen in Table 5,
increasing the context length from 512 to 65.5K tokens leads to a 13 point drop in accuracy.

Multi-step Queries To evaluate the ability of LocalLM to fulfill multi-step queries, we construct queries that have between
{1,2,3,4} sub-tasks. Our results indicate increasing from 1 to sub-tasks leads to a 56.3 point drop in accuracy (see Table 6).

Local Model Remote Model Accuracy (Longhealth) Accuracy (QASPER) System Date

Llama-2-7b-chat-hf gpt-4-1106-preview 0.340 0.178 November 2023
Llama-3.1-8B-Instruct gpt-4-turbo 0.645 0.528 April 2024
Llama-3.1-8B-Instruct gpt-4o 0.740 0.582 July 2024
— gpt-4-turbo 0.768 0.391 April 2024

Table 4. Point in time results for MINIONS configurations with best-in-class LocalLM and RemoteLM

21



MINIONS: Collaboration Between On-device and Cloud Language Models

Total Chunks In-Context Accuracy

1 0.59375
16 0.53906
32 0.50000
64 0.48438
128 0.46094

Table 5. Accuracy vs. Number of Chunks in Context
Each chunk has 512 tokens.

Number of Sub Tasks Accuracy

1 0.70313
2 0.39844
3 0.19531
4 0.14844

Table 6. Accuracy vs. Number of Sub Tasks

E.3. Relationship with Retrieval-Augmented Generation

In this section, we discuss the relationship between local-remote collaboration and retrieval-augmented generation (RAG), a
technique that reduces the number of tokens processed by an LM by retrieving a subset of relevant documents or chunks
LM (Lewis et al., 2020; Karpukhin et al., 2020; Lee et al., 2019).

Retrieval-augmented generation and local-remote collaboration (e.g. MINIONS) are complementary techniques. They both
provide a means to reduce cost by providing an LLM with a partial view of a large context. But, as we discuss below, they
also have different error profiles and can be used in conjunction to improve performance.

E.3.1. COMPARISON OF MINIONS AND RAG ON FINANCEBENCH

In Figure 8 (left), we plot the quality-cost trade-off on FINANCEBENCH for local-remote systems (MINION and MINIONS)
and RAG systems using BM25 and OpenAI’s text-embedding-3-small embeddings (Robertson & Zaragoza, 2009;
Neelakantan et al., 2022). For RAG, we use a chunk size of 1000 characters, which we found to be optimal for this dataset
after sweeping over chunk sizes with the BM25 retriever (see Figure 8 (center)). We show how a simple hyperparameter
(number of retrieved chunks provided to the remote model) allows us to trade off quality of the RAG system for remote cost.
Furthermore, we note that when the BM25 RAG system provides 50 or more chunks of the document to the remote model,
it exceeds the performance of the remote model with the full context. This likely indicates that RAG helps in minimizing
distractions from the long context. For FINANCEBENCH, when compared to MINIONS, the RAG system with OpenAI
embeddings reaches similar points in the quality-cost trade-off space. Interestingly however, none of the RAG configurations
are are able to match the quality of MINION at the same low cost.

E.3.2. COMPARISON OF MINIONS AND RAG (EMBEDDINGS + BM25) ON SUMMARIZATION TASKS

In this section, we discuss the relationship between local-remote collaboration (e.g. MINIONS) and retrieval-augmented
generation (RAG). These are complementary techniques with different strengths, which can be combined.

We perform a quantitative and qualitiateive compartive analysis demonstrating the different benefits of the two techniques.
We analyze MINIONS, MINION, and RAG on two data intensive reasoning tasks: one that relies heavily on extraction
(FINANCEBENCH) and another that requires long-document summarization (BOOOKSCORE). Our results demonstrate
that, on FINANCEBENCH (see App. E.3.1), RAG can achieve similar, sometimes better, cost-accuracy tradeoffs compared
to MINIONS, but is less cost-effective than MINION. On BOOOKSCORE (see App. E.3.2) — which requires integrating
information dispersed across the document — we find that MINIONS generates summaries comparable to a GPT-4O-only
baseline when evaluated using an LLM-as-a-judge (see App. Table 10), while RAG results in lower quality summaries that
miss critical plotlines, characters and details (see App. Table 11).
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Protocol Local Model Remote Model FINANCEBENCH LONGHEALTH QASPER
Acc. Cost In

Tok.
(1k)

Out
Tok.
(1k)

Acc. Cost In
Tok.
(1k)

Out
Tok.
(1k)

Acc. Cost In
Tok.
(1k)

Out
Tok.
(1k)

Remote
Only

— GPT-4O 0.826 $0.261 103.04 0.32 0.748 $0.301 120.10 0.07 0.598 $0.137 54.40 0.09

Local
Only

LLAMA-8B — 0.326 $0.000 0.00 0.00 0.468 $0.000 122.58 0.07 0.538 $0.000 54.41 0.06

Local
Only

LLAMA-1B — 0.000 $0.000 0.00 0.00 0.115 $0.000 122.58 0.07 0.000 $0.000 54.41 0.10

Local
Only

LLAMA-3B — 0.130 $0.000 0.00 0.00 0.345 $0.000 122.58 0.08 0.164 $0.000 54.41 0.08

Local
Only

QWEN-3B — 0.087 $0.000 0.00 0.00 0.177 $0.000 31.24 0.08 0.156 $0.000 32.58 0.08

MINION LLAMA-8B GPT-4O 0.804 $0.007 0.88 0.46 0.635 $0.010 1.85 0.50 0.450 $0.007 0.92 0.42
MINION LLAMA-3B GPT-4O 0.698 $0.010 1.74 0.52 0.482 $0.009 1.56 0.47 0.372 $0.011 2.26 0.53
MINION QWEN-3B GPT-4O 0.217 $0.029 8.28 0.82 0.281 $0.021 5.70 0.68 0.210 $0.035 10.51 0.87

MINIONS LLAMA-8B GPT-4O 0.804 $0.053 15.99 1.29 0.740 $0.054 18.96 0.65 0.582 $0.019 5.10 0.61
MINIONS LLAMA-3B GPT-4O 0.726 $0.079 24.67 1.77 0.703 $0.057 20.11 0.66 0.558 $0.020 5.62 0.60
MINIONS QWEN-3B GPT-4O 0.783 $0.059 17.20 1.56 0.645 $0.043 14.43 0.65 – – – –
MINIONS QWEN-7B GPT-4O – – – – – – – – 0.600 $0.015 3.44 0.61

Table 7. Accuracy and cost of local-remote systems. Evaluation of cost and accuracy on the FINANCEBENCH (Islam et al., 2023),
LONGHEALTH (Adams et al., 2024), and QASPER (Dasigi et al., 2021). The table compares two edge-remote communication protocols
— Naı̈ve (Section 4) and MINIONS (Section 5) — alongside edge-only and remote-only baselines. Three different edge models are
considered (LLAMA-8B, LLAMA-3B, QWEN-3B, and LLAMA-1B) and a remote model (GPT-4O). Accuracy (Acc.) is the fraction of
correct predictions across the dataset. Cost (USD) is the average cost in USD per query in the dataset computed. Costs are incurred for
any calls to the remote model at GPT-4O rates (January 2025: $2.50 per million input tokens and $10.00 per million output tokens). We
assume that running the edge model is free; see Section 3 for details on the cost model. In tokens is the number of input (i.e. prefill)
tokens sent to the remote model. Out tokens is the number of output (i.e. decode) tokens generated from the remote model. Both values
are shown in thousands.

Protocol Local Model Remote Model Macro Avg. Information Extraction Numerical Reasoning
Acc. Cost Acc. Cost Acc. Cost

Remote Only — GPT-4O 0.883 $0.259 1.000 $0.246 0.767 $0.271

Local Only LLAMA-8B — 0.367 $0.000 0.467 $0.000 0.267 $0.000
Local Only LLAMA-1B — 0.000 $0.000 0.000 $0.000 0.000 $0.000
Local Only LLAMA-3B — 0.150 $0.000 0.200 $0.000 0.100 $0.000
Local Only QWEN-3B — 0.083 $0.000 0.067 $0.000 0.100 $0.000

MINION LLAMA-8B GPT-4O 0.850 $0.007 0.933 $0.006 0.767 $0.007
MINION LLAMA-3B GPT-4O 0.743 $0.010 0.831 $0.013 0.656 $0.007
MINION QWEN-3B GPT-4O 0.233 $0.028 0.267 $0.025 0.200 $0.032

MINIONS LLAMA-8B GPT-4O 0.840 $0.048 0.893 $0.031 0.787 $0.064
MINIONS LLAMA-3B GPT-4O 0.730 $0.077 0.693 $0.067 0.767 $0.087
MINIONS QWEN-3B GPT-4O 0.793 $0.055 0.773 $0.044 0.813 $0.067

Table 8. Stratified analysis of local-remote systems on FINANCEBENCH. Evaluation of cost and accuracy on the FINANCEBENCH

(Islam et al., 2023) stratified by question type. We consider two types of questions: Information Extraction, questions that require
extracting specific data or textual content from filings, and, Numerical Reasoning, which requires performing additional numerical
reasoning and calculations on extracted data. The table compares two edge-remote communication protocols — MINION (Section 4)
and MINIONS (Section 5) — alongside edge-only and remote-only baselines. Three different edge models are considered (LLAMA-8B,
LLAMA-3B, QWEN-3B, and LLAMA-1B) and a remote model (GPT-4O). Accuracy (Acc.) is the fraction of correct predictions across
the dataset. Cost (USD) is the average cost in USD per query in the dataset computed. Costs are incurred for any calls to the remote
model at GPT-4O rates (January 2025: $2.50 per million input tokens and $10.00 per million output tokens). We assume that running the
edge model is free; see Section 3 for details on the cost model.
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Protocol Local Model Remote Model Macro Avg. 1 evidence span 2 evidence spans 3 evidence spans 4+ evidence spans
Acc. Cost Acc. Cost Acc. Cost Acc. Cost Acc. Cost

Remote Only — GPT-4O 0.668 $0.301 0.815 $0.301 0.661 $0.302 0.600 $0.302 0.596 $0.301

Local Only LLAMA-8B — 0.448 $0.000 0.498 $0.000 0.390 $0.000 0.520 $0.000 0.386 $0.000
Local Only LLAMA-1B — 0.097 $0.000 0.124 $0.000 0.102 $0.000 0.040 $0.000 0.123 $0.000
Local Only LLAMA-3B — 0.327 $0.000 0.375 $0.000 0.271 $0.000 0.400 $0.000 0.263 $0.000
Local Only QWEN-3B — 0.174 $0.000 0.185 $0.000 0.186 $0.000 0.200 $0.000 0.123 $0.000

MINION LLAMA-8B GPT-4O 0.582 $0.011 0.683 $0.009 0.627 $0.009 0.560 $0.017 0.456 $0.011
MINION LLAMA-3B GPT-4O 0.436 $0.009 0.529 $0.008 0.390 $0.009 0.440 $0.008 0.386 $0.010
MINION QWEN-3B GPT-4O 0.259 $0.019 0.298 $0.023 0.288 $0.016 0.240 $0.017 0.211 $0.018

MINIONS LLAMA-8B GPT-4O 0.731 $0.056 0.753 $0.053 0.763 $0.051 0.760 $0.060 0.649 $0.060
MINIONS LLAMA-3B GPT-4O 0.665 $0.058 0.741 $0.056 0.661 $0.055 0.680 $0.061 0.579 $0.062
MINIONS QWEN-3B GPT-4O 0.635 $0.045 0.649 $0.041 0.678 $0.040 0.600 $0.050 0.614 $0.048

Table 9. Stratified analysis of local-remote systems on LONGHEALTH. Evaluation of cost and accuracy on LONGHEALTH (Adams
et al., 2024) stratified by the dispersion of the supporting evidence for each question. We measure dispersion with the number of distinct
spans in the context which contain information relevant to the question. We include performance for questions with 1, 2, 3, and 4+ distinct
evidence spans. The table compares two edge-remote communication protocols — MINION (Section 4) and MINIONS (Section 5) —
alongside edge-only and remote-only baselines. Three different edge models are considered (LLAMA-8B, LLAMA-3B, QWEN-3B, and
LLAMA-1B) and a remote model (GPT-4O). Accuracy (Acc.) is the fraction of correct predictions across the dataset. Cost (USD) is the
average cost in USD per query in the dataset computed. Costs are incurred for any calls to the remote model at GPT-4O rates (January
2025: $2.50 per million input tokens and $10.00 per million output tokens). We assume that running the edge model is free; see Section 3
for details on the cost model.

Chunk Size

Figure 8. Relationship with retrieval-augmented generation.

RAG is a very suitable approach for FINANCEBENCH, since all of the questions heavily rely on information extraction from
specific sections of financial statements. However, RAG will not be suitable for a summarization task, unlike small LMs.
Therefore, we use the long-document summarization dataset, BOOOOKSCORE (Chang et al., 2023). BOOOOKSCORE which
contains a set of 400 books published between 2023-2024. The average story length in BOOOOKSCORE is 128179 tokens
with a max of 401486 tokens and a minimum of 26926 tokens. We utilize both MINIONS , RAG (w/Embeddings + BM25),
and GPT-4O only to complete the task. We describe the set-up for all three approaches next.

MINIONS for summarization In applying MINIONS to the task, the LocalLM (LLAMA-3.2-3B-Instruct) provides
summaries on chunks of the original text, passing a list of chunk summaries to the RemoteLM (GPT-4O). RemoteLM
produces the final summary.

RAG (Embedding) for summarization In our embedding-based RAG approach, we use the OpenAI TEXT-EMBEDDING-3-
SMALL to embed chunks of the original text (of length 5000 characters) and we retrieve the top-15 most relevant chunks
using the query “Summarize the provided text”. We then prompt GPT-4O to generate a complete summary over the retrieved
chunks.

RAG (BM25) for summarization In our BM25-based RAG approach, we use the BM25 to retrieve chunks of the original
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text (of length 5000 characters) based on the query: “Summarize the provided text”. We retrieve the top-15 most relevant
chunks and prompt GPT-4O to produce a final summary over the retrieved chunks. We choose top-15 to ensure the number
of tokens passed up by the baseline is comparable with those passed up by MINIONS.

GPT-4o In our final baseline, we use GPT-4O alone to create the story summaries. For texts that extend beyond the 128K
context length window, we truncate the stories.

Evaluation

• Qualitative In Table 11 we provide samples outputs from each of the 4 methods described above. We highlight major
events in red, themes in green, locations in blue and names in indigo. The samples demonstrate that amongst all the
methods, MINIONS outputs contain the most entity mentions and story specific details. Moreover, when compared to
GPT-4O-only RemoteLM, MINIONS is 9.3× more efficient — 11,500 versus the full 108,185 prefill tokens.

The summaries from MINIONS are generally 1.3× longer and more verbose than the RAG systems’ summaries, likely
indicating that the former is more effective at “passing forward” salient information. Moreover, RAG systems’ summaries
are missing the main arc of the narrative in favor of what seems an assortment of facts.

• Quantitative We additionally perform a quantitative analysis of the generated summaries using a LLM-as-a-judge frame-
work. As an evaluator, we use the CLAUDE-3.5-SONNET model, to avoid any biases between the evaluator and the
supervisor model. We prompt the model with the generated summary, ground truth summary (gpt4-4096-inc-cleaned)
provided from the original BOOOOKSCORE generations, and a grading rubric (see Figure 9). The rubric evaluates 7
criteria: coherence, relevance, conciseness, comprehensiveness, engagement & readability, accuracy, and thematic depth.
We prompt CLAUDE-3.5-SONNET to generate a score (1-5) for each of the criteria and average the scores. We find
that summaries generated by MINIONS score comparably with GPT4O-only generated summaries, while RAG based
baselines perform worse. Our results can be found in Table 10.

Evaluation Rubric for Summaries

1. Coherence (1-5): Summary is logically structured, with clear connections between events, avoiding abrupt jumps
or inconsistencies.

2. Relevance (1-5): Accurately reflects key themes, events, and characters, focusing on essential details without
unnecessary plot points.

3. Conciseness (1-5): Thorough yet avoids excessive detail, presenting necessary information without redundancy.

4. Comprehensiveness (1-5): Covers all major characters, events, and themes, ensuring a complete overview
without omissions.

5. Engagement & Readability (1-5): Engaging and easy to read, with well-constructed sentences and clear, precise
language.

6. Accuracy (1-5): Stays true to the book’s storyline, themes, and tone, with correct details, names, and events.

7. Thematic Depth (1-5): Identifies underlying themes and messages, providing insights into conflicts, motivations,
and resolutions.

Figure 9. Evaluation Rubric for Summaries
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Method Score
MINIONS 3.01
GPT4o 3.06
RAG (BM25) 2.48
RAG (Embedding) 2.38

Table 10. Comparison of Methods and Rubric Scores

Table 11: Comparative Analysis of Story Summaries Across Different Methods

Story Ti-
tle

Minions GPT-4o BM25 Embedding

A Likely
Story

The novel follows the complex
dynamics of the Manning fam-
ily, focusing on Isabelle Man-
ning, a struggling writer grap-
pling with the legacy of her fa-
mous father, Ward Manning,
and the recent death of her
mother, Claire. As Isabelle nav-
igates her career and personal
life, she uncovers family se-
crets, including her father’s pla-
giarism and her mother’s hid-
den manuscript, which chal-
lenge her identity and ambi-
tions. The narrative explores
themes of fame, family expec-
tations, and personal growth,
culminating in Isabelle’s jour-
ney towards self-discovery and
independence. Set against the
backdrop of New York City
and Sag Harbor, the story
delves into the intricacies of fa-
milial relationships and the pur-
suit of creative fulfillment.

Isabelle Manning, daughter of
a famous author, discovers an
unfinished manuscript by her
late mother, Claire. She com-
pletes and publishes it as her
own, leading to success but
also guilt and exposure. Her
father, Ward, reveals he sabo-
taged her first book to teach
her resilience, deepening her
sense of betrayal. Ultimately,
Isabelle confesses her actions,
seeks redemption, and begins
to redefine her identity beyond
her father’s shadow.

Isabelle Manning, overshad-
owed by her famous father
Ward, receives a threatening
text, ”I KNOW WHAT YOU
DID,” hinting at a secret tied
to her book, ”Underpaint-
ing.” Meanwhile, her mother
Claire’s past support and her fa-
ther’s hidden illness add layers
to Isabelle’s challenges.

In a narrative spanning New
York and Sag Harbor, Claire
Cunningham grapples with her
identity beyond being a Vassar
graduate, while her daughter Is-
abelle faces personal and pro-
fessional challenges, including
her father’s illness and her own
writing struggles.

All the
Dan-
gerous
Things

Isabelle Drake, a woman grap-
pling with the traumatic dis-
appearance of her son Mason,
navigates a complex web of
grief, guilt, and suspicion. As
she becomes entangled with
true crime enthusiasts and in-
vestigators, including podcast
host Waylon and Detective
Dozier, Isabelle’s quest for
truth reveals unsettling fam-
ily secrets and personal betray-
als. Her journey is marked
by strained relationships, par-
ticularly with her ex-husband
Ben and his connections to
other women, including Valerie
and Allison. Throughout the
narrative, themes of mother-
hood, mental health, and so-
cietal judgment are explored,
culminating in a deeper under-
standing of the pressures and
expectations faced by women.

Isabelle Drake, plagued by in-
somnia and guilt, is desperate
to find her missing son, Ma-
son. She suspects her husband,
Ben, and his new partner, Va-
lerie. With Waylon’s help, she
discovers Abigail Fisher, ma-
nipulated by Valerie, took Ma-
son believing she was rescuing
him.

The narrative follows Isabelle,
dealing with Mason’s disap-
pearance. She works with
podcaster Waylon, uncovering
links to Ben’s deceased wife,
Allison.

Isabelle, struggling with grief
and insomnia, joins a grief
counseling group. She meets
Valerie and collaborates with
Waylon, but becomes wary af-
ter finding unsettling informa-
tion on his laptop.

Continued on next page
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Continued from previous page
Story Ti-
tle

Minions GPT-4o BM25 Embedding

A Living
Remedy:
A Memoir

Nicole Chung, a Korean Amer-
ican adoptee, reflects on her
complex relationships with her
adoptive parents, her identity,
and the challenges of navigat-
ing life as a minority in a pre-
dominantly white community
in Oregon. Her memoir ex-
plores themes of family, loss,
and resilience, as she recounts
her father’s death from kidney
failure, and her mother’s battle
with cancer. Amidst these per-
sonal challenges, Chung grap-
ples with her own grief, fi-
nancial struggles, and the im-
pact of the COVID-19 pan-
demic, while finding solace in
her family, faith, and writing.
Her journey is marked by a
deep appreciation for her par-
ents’ sacrifices, the support of
her husband and children, and
the enduring legacy of love
and forgiveness instilled by her
mother.

Nicole Chung’s memoir ex-
plores her journey after the loss
of her adoptive parents. As
a Korean adoptee, she reflects
on family’s financial struggles,
parents’ health battles, and
their deaths’ impact on her
identity. She finds solace in
writing and her own family.

The protagonist struggles with
visiting her dying mother dur-
ing the COVID-19 pandemic.
The story explores grief, fam-
ily responsibility, and cherish-
ing life amidst adversity.

A woman reflects on her par-
ents’ illnesses and deaths, bal-
ancing her role as a daughter
and mother. She finds solace
in childhood memories and the
legacy of her parents’ love.

A House
with Good
Bones

Samantha, a 32-year-old ar-
chaeoentomologist, returns to
her childhood home on Lam-
mergeier Lane in North Car-
olina, where she confronts
her family’s dark past, in-
cluding her grandmother Gran
Mae’s mysterious and malevo-
lent legacy. As Samantha nav-
igates her mother’s strange be-
havior and the eerie presence
of vultures, she uncovers se-
crets involving ritual magic, a
jar of human teeth, and the su-
pernatural ”underground chil-
dren.” With the help of her
friend Gail and handyman Phil,
Samantha faces the haunting
manifestations of her family’s
history. The novel explores
themes of family, memory, and
the supernatural, blending ele-
ments of horror and fantasy.

Samantha Montgomery returns
home to find her mother act-
ing strangely and the house de-
void of insects. She uncov-
ers a dark history involving her
great-grandfather, a sorcerer,
and her grandmother, who used
roses to wield power. With
help from Gail and Phil, she
confronts the terrifying ”under-
ground children,” using rose
power to banish threats.

The protagonist returns to their
grandmother’s unchanged gar-
den, filled with roses but myste-
riously devoid of insects. They
uncover unsettling truths about
their grandmother’s past and
their mother’s current state of
mind. The narrative explores
themes of family legacy and
the passage of time.

Samantha, an archaeoentomol-
ogist, returns to her childhood
home and finds herself investi-
gating insect collections. Deal-
ing with sleep paralysis and
memories of her grandmother,
she discovers the peculiar ab-
sence of insects in the garden.
She navigates family dynamics
and her mother’s anxiety amid
an eerie atmosphere.

E.4. Energy Consumption Analysis
We perform an energy analysis of MINIONS workloads by measuring the total energy consumed by LocalLM and estimating the energy consumed by RemoteLM, using
Joules (J) as the primary unit of measurement. For our RemoteLM energy consumption estimates, we use the inference-time energy estimate calculations provided by
Epoch AI (AI, 2024). We perform our analysis running our local workloads on two types of hardware: an A100 Nvidia GPU and Apple M1 Max GPU. For measuring energy
consumption on these hardware set-ups, we use off the shelf packages such as powermetrics and nvidia-smi. We sweep our experiments across two LocalLM variants
(LLAMA-3.2-1B and LLAMA-3.2-3B) and use GPT-4O as the RemoteLM. As a baseline, we estimate the cost of entirely running the MINIONS workload on RemoteLM
estimating the total energy consumption that GPT-4O would have if it performed the equivalent work (as measured by input / output tokens) of the LocalLM. We compare
energy consumption between MINIONS and remote-only setups, varying the length of the input context length. Our results indicate that we can achieve up to 12× energy
consumption savings when using a 1B parameter local model and up to 6× savings with a 3B parameter model running local workloads on an A100. Similarly, we see energy
consumption reductions when running workloads on the M-series hardware of up to 8×. Please see Figure 10 for more details.

E.5. Local LM Agentic Tool Use
We take a preliminary step in extending MINIONS to support LocalLM tool calling. This configuration enables the LocalLM to autonomously execute tools necessary for task
completion, guided by the RemoteLM awareness of available local tools (i.e., the RemoteLM might request the LocalLM to describe the contents of the local filesystem,
further suggesting it use the tool that lists all local files). We evaluate this extended setup on a hand-curated set of queries (see Table 13 for sample queries) against a local folder
containing reciepts, giving the LocalLM access to the following tools: listDirectory, readFile, readMultipleFiles, writeFile, createDirectory, and
searchFiles. For the purposes of our evaluation, we use QWEN2.5-3B and QWEN2.5-1B as our LocalLM’s and GPT-4O as the RemoteLM. We compare performance
against a remote-only baseline which answers the queries given all the documents in context. We find that when using QWEN2.5-3B locally, MINIONS performance is
comparable to the GPT-4O baseline, will only using < 28% of remote token usage (see Listing 1 for a sample Minion trace with tool calling enabled). However, we find that
QWEN2.5-1B is unable to achieve parity in performance and lacks the ability to effectively utilize tools. See Table 12 for complete results.

1 {
2 "task": "Do I have a receipt for Guapas? If yes, please tell me the total amount.",
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Figure 10. Energy savings of Minions vs. cloud-only workload across varying input context lengths We compare the energy
consumption of local execution of Minion using two hardware configurations—NVIDIA A100 and Apple M1 Max—against a cloud-only
baseline powered by GPT-4O. Local workloads are run using LLAMA-3.2-1B and LLAMA-3.2-3B models, with energy measured via
nvidia-smi and powermetrics, while remote energy use is estimated following methodology from Epoch AI (AI, 2024). Across both
hardware types, local execution yields substantial energy savings, reaching up to 12× with the 1B model on A100, and consistent gains
across other configurations.

Local Model Remote Model Task Completion Rate Total Remote Tokens
Processed

QWEN2.5-1.5B GPT-4O 0.10 29697.6
QWEN2.5-3B GPT-4O 0.70 8741.1
— GPT-4O 0.70 32498.3

Table 12. Comparison of task completion rates and token costs: the MINIONS set-up performs comparable with the GPT-4O-only baseline
while reducing RemoteLM prefill costs by 3.7×.

Question Answer

Tell me all the dates I ordered sprouts 3/5, 1/26, 1/29, 2/10, 9/24

I am tracking my calories. Did I order a tiramisu at Terun? Yes

How many times did I eat at Sultana? 3

What is the most common menu item ordered across all my
Asian Box receipts?

The Workout

Table 13. Queries for agentic tool use analysis: sample question/answer pairs for the reciept history question-answering task used in
Section E.5.

3 "steps" : [
4 {
5 "user": "remote",
6 "prompt": "We need to perform the following task.\n\n### Task\nDo I have a receipt for Guapas? If yes, please tell me the

total amount.\n\n### Instructions\nYou will not have direct access to the context, but can chat with a small language model
has access to local context via the following tools:\n...\n",

7 "output": "{\"message\":\Please search for files related to guapas: "search_files(path=’.’, pattern=’*Guapas*’,
exclude_patterns=[’*.jpg’, ’*.png’, ’*.gif’])\"}"

8 },
9 {

10 "user": "local",
11 "prompt": "search_files(path=’.’, pattern=’*Guapas*’, exclude_patterns=[’*.jpg’, ’*.png’, ’*.gif’])",
12 "output": ""
13 },
14 {
15 "user": "tool",
16 "tool": "search_files",
17 "arguments": {
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18 "exclude_patterns": ["*.jpg", "*.png", "*.gif"],
19 "path": ".",
20 "pattern": "*Guapas*"
21 },
22 "output": "Found ’guapas.pdf’ in the current directory. Not necessarily a receipt."
23 },
24 {
25 "user": "remote",
26 "prompt": "Analyze the response from the local language model...",
27 "output": "1. We found ’guapas.pdf’.\n2. Not sufficient. Need to read the file.\n3. Missing content.\n4. Next tool:

read_file.\n\n{\"message\": \"read_file(file_path=’guapas.pdf’)\"}"
28 },
29 {
30 "user": "remote",
31 "prompt": "Response after step-by-step thinking...",
32 "output": "{\"message\": \"read_file(file_path=’guapas.pdf’)\"}"
33 },
34 {
35 "user": "remote",
36 "prompt": "If task is complete, provide final answer. Otherwise, request additional info.",
37 "output": "{ \"decision\": \"request_additional_info\", \"message\": \"Please read the file ’guapas.pdf’ to determine if

it is a receipt and, if so, extract the total amount mentioned in it.\" }"
38 },
39 {
40 "user": "local",
41 "prompt": "Please read the file ’guapas.pdf’ to determine if it is a receipt and, if so, extract the total amount

mentioned in it.",
42 "output": ""
43 },
44 {
45 "user": "tool",
46 "tool": "read_file",
47 "arguments": {
48 "file_path": "guapas.pdf"
49 },
50 "output": "The file contains a DoorDash receipt for Guapas Mexican Grill. Total Amount: $659.57"
51 },
52 {
53 "user": "remote",
54 "prompt": "Analyze the final tool output and determine if sufficient.",
55 "output": "1. ’guapas.pdf’ is a receipt.\n2. Information is sufficient.\n3. No missing info.\n4. Final Answer:\n\n{\"

decision\": \"provide_final_answer\", \"answer\": \"Yes, you have a receipt for Guapas. The total amount is $659.57.\"}"
56 },
57 {
58 "user": "remote",
59 "prompt": "Final confirmation step",
60 "output": "{\"decision\": \"provide_final_answer\", \"answer\": \"Yes, you have a receipt for Guapas. The total amount is

$659.57.\"}"
61 }
62 ]
63 }

Listing 1. Full Minion trace with local LLM tool calling

E.6. Analysis of Network latency
We measure network latency in the MINION setup. In our evaluation, the MINION configuration uses LocalLM as LLAMA-3.2-1B and RemoteLM as GPT-4O. For each
round of communication, we record the time spent on calls to LocalLM and RemoteLM, as well as the time spent on communication between the local and remote clients.
Across 15 queries, each with an input context length of 12,234 tokens, we find that communication time accounts for less than < 0.002% of the total time per round.

E.7. Extension to Multimodal Tasks
We demonstrate the extension of MINIONS to multimodal settings. Specifically, we evaluate on a multimodal math question-answering task: MATH-VISION (Wang et al.,
2024b). MATH-VISION is a challenging dataset that tests a wide range of mathematical skills, ranging from algebra to geometry to combinatorics, which require reasoning over
visual input (i.e., diagrams). For our setup, we set LocalLM to be GEMMA3-4B (a SOTA VLM) and use GPT-4O as the RemoteLM. For our MINIONS implementation, the
image stays local and is not seen by RemoteLM. For our remote-only baseline, the image and question are passed directly to GPT-4O. On a sample of the test set, we find that
MINIONS is within 10 points of the GPT-4O-only baseline – 18.2% vs 27.8% accuracy.

F. Prompts
F.1. MINION

RemoteLM
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1 We need to answer the following question based on a {doc_type}.
2
3 ### Question
4 {query}
5
6 ### Instructions
7 You will not have direct access to the {doc_type}, but can chat with a small language model which has

read the entire thing.
8
9 Feel free to think step-by-step, but eventually you must provide an output

10 in the format below:
11
12 <think step by step here>
13 ‘‘‘json
14 {{
15 "message": "<your message to the small language model>"
16 }}
17 ‘‘‘

LocalLM

1 You will help a user answer the following question based on a {doc_type}.
2
3
4 Read the {doc_type} below and prepare to answer questions from an expert user.
5 ### {doc_type}
6 {context}
7
8 ### Question
9 {query}

Conversation

1 Here is the response from the small language model:
2
3 ### Response
4 {response}
5
6
7 ### Instructions
8 Analyze the response and think-step-by-step to determine if you have enough
9 information to answer the question.

10
11 If you have enough information, provide a final numeric answer in the format
12 below.
13
14 <think step by step here>
15 ‘‘‘json
16 {{
17 "decision": "provide_final_answer",
18 "answer": "<your answer>"
19 }}
20 ‘‘‘
21
22 Otherwise, request additional information from the small language model by
23 outputting the following:
24
25 <think step by step here>
26 ‘‘‘json
27 {{
28 "decision": "request_additional_info",
29 "message": "<your message to the small language model>"
30 }}
31 ‘‘‘

F.2. MINIONS
MINIONS: FINANCEBENCH

Decompose
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1 # Decomposition Round #{step_number}
2
3 You do not have access to the raw document(s), but instead can assign tasks to small and less capable

language models that can read the document(s).
4 Note that the document(s) can be very long, so each task should be performed only over a small chunk of

text.
5
6 Write a Python function that will output formatted tasks for a small language model.
7 Make sure that NONE of the tasks require calculations or complicated reasoning.
8 Any information you mentioned in your task should be given an extraction task.
9

10 Please use chunks of {pages_per_chunk} pages using the ‘chunk_on_multiple_pages(doc = context,
pages_per_chunk ={pages_per_chunk})‘ function.

11
12 If you have multiple tasks, consider using nested for-loops to apply a set of tasks to a set of chunks.

Though it’s not required to have more than one task.
13
14 {ADVANCED_STEPS_INSTRUCTIONS}
15
16 Assume a Pydantic model called ‘JobManifest(BaseModel)‘ is already in global scope. For your reference,

here is the model:
17 ‘‘‘
18 {manifest_source}
19 ‘‘‘
20 Assume a Pydantic model called ‘JobOutput(BaseModel)‘ is already in global scope. For your reference,

here is the model:
21 ‘‘‘
22 {output_source}
23 ‘‘‘
24 DO NOT rewrite or import the model in your code.
25
26 The function signature will look like:
27 ‘‘‘
28 {signature_source}
29 ‘‘‘
30
31 You can assume you have access to the following chunking function(s). Do not reimplement the function,

just use it.
32 ‘‘‘
33 {chunking_source}
34 ‘‘‘

Worker

1 Your job is to complete the following task using only the context below. The context is a chunk of text
taken arbitrarily from a document, it might or might not contain relevant information to the task.

2
3 ## Document
4 {context}
5
6 ## Task
7 {task}
8
9 {advice}

10
11 Return your result in JSON with the following keys: "explanation", "citation", and "answer".
12
13 - "explanation": A concise statement of your reasoning or how you concluded your answer.
14 - "citation": A direct snippet of the text that supports your answer. If nothing is found, put "None".
15 - "answer": The extracted answer. If nothing is found, put "None".
16
17 Be certain to only rely on the provided text. If you cannot determine the information confidently from

this chunk, respond with "None" for all fields.

Synthesize
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1
2 Now synthesize the findings from multiple junior workers (LLMs).
3 Your task is to finalize an answer to the question below **if and only if** you have sufficient,

reliable information.
4 Otherwise, you must request additional work.
5
6 ---
7 ## Inputs
8 1. Question to answer:
9 {question}

10
11 2. Collected Job Outputs (from junior models):
12 {extractions}
13
14 ---
15 First think step-by-step and then answer the question using the exact format below.
16
17 ## ANSWER GUIDELINES
18 1. **Determine if the collected Job Outputs provide enough trustworthy, consistent evidence to

confidently answer the question.**
19 - If the data is incomplete or contradictory, do NOT guess. Instead, specify what is missing.
20 - If the evidence is sufficient, provide a final answer.
21
22 2. **Be conservative.** When in doubt, ask for more information.
23
24 3. **Address conflicts.** If multiple jobs give different answers, rely on whichever is best supported

by a valid "explanation" and "citation".
25 - If you need more information from the conflicting jobs you could request additional work from

those specific jobs (be sure to mention the specific job IDs in your additional_info field).
26 - Then, in the next round you can make a smaller set of jobs to determine which answer is correct.
27
28 4. **Required JSON Output**: You must output a JSON object with these keys:
29 - "decision": Must be either "provide_final_answer" OR "request_additional_info".
30 - Use "provide_final_answer" if you have enough information.
31 - Use "request_additional_info" if you cannot conclusively answer.
32 - "explanation": A short statement about how you arrived at your conclusion or what is still missing

.
33 - "answer": The final answer string if "decision"="provide_final_answer", or null otherwise. Should

contain ONLY the final answer, without additional calculations or explanations.
34
35 Here is the template for your JSON response (with no extra text outside the JSON):
36
37 <think step-by-step here>
38 ‘‘‘json
39 {{
40 "decision": "...",
41 "explanation": "...",
42 "answer": "... or null", # Good answer format: "0.56"; Bad answer format: "The ratio is calculated as

1-0.27*2 = 0.56"
43 }}
44 ‘‘‘
45
46 **Important**:
47 - If there is not enough information, set "answer" to null, set "decision" to "request_additional_info

", and specify exactly what else you need in "missing_info" and from which job IDs.
48
49 Now, carefully inspect the question, think step-by-step and perform any calculations before outputting

the JSON object.

MINIONS: LONGHEALTH

Decompose
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1 # Decomposition Round #{step_number}
2
3 You do not have access to the raw document(s), but instead can assign tasks to small and less capable

language models that can read the document(s).
4 Note that the document(s) can be very long, so each task should be performed only over a small chunk of

text.
5
6 Write a Python function that will output formatted tasks for a small language model.
7 Make sure that NONE of the tasks require multiple steps. Each task should be atomic!
8 Consider using nested for-loops to apply a set of tasks to a set of chunks.
9 The same ‘task_id‘ should be applied to multiple chunks. DO NOT instantiate a new ‘task_id‘ for each

combination of task and chunk.
10 Use the conversational history to inform what chunking strategy has already been applied.
11
12 {ADVANCED_STEPS_INSTRUCTIONS}
13
14 Assume a Pydantic model called ‘JobManifest(BaseModel)‘ is already in global scope. For your reference,

here is the model:
15 ‘‘‘
16 {manifest_source}
17 ‘‘‘
18 Assume a Pydantic model called ‘JobOutput(BaseModel)‘ is already in global scope. For your reference,

here is the model:
19 ‘‘‘
20 {output_source}
21 ‘‘‘
22 DO NOT rewrite or import the model in your code.
23
24 The function signature will look like:
25 ‘‘‘
26 {signature_source}
27 ‘‘‘
28
29
30 You can assume you have access to the following chunking function(S). Do not reimplement the function,

just use it.
31 ‘‘‘
32 {chunking_source}
33 ‘‘‘
34
35 Here is an example
36 ‘‘‘
37 task_id = 1 # Unique identifier for the task
38 for doc_id, document in enumerate(context):
39 # if you need to chunk the document into sections
40 chunks = chunk_by_section(document)
41 # or if you need to chunk the document into pages
42 chunks = chunk_by_page(document)
43
44 for chunk_id, chunk in enumerate(chunks):
45 # Create a task for extracting mentions of specific keywords
46 task = (
47 "Extract all mentions of the following keywords: "
48 "’Ca19-9’, ’tumor marker’, ’September 2021’, ’U/ml’, ’Mrs. Anderson’."
49 )
50 job_manifest = JobManifest(
51 chunk_id=f"doc_id_chunk_id",
52 task_id=task_id,
53 chunk=chunk,
54 task=task,
55 advice="Focus on extracting the specific keywords related to Mrs. Anderson’s tumor marker

levels."
56 )
57 job_manifests.append(job_manifest)
58 ‘‘‘

pworker
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1 Your job is to complete the following task using only the context below. The context is a chunk of text
taken arbitrarily from a document, it might or might not contain relevant information to the task.

2
3 ## Document
4 {context}
5
6 ### Question you are trying to answer:
7 {question}
8
9 # You have been instructed to extract information pertaining to the following concepts:

10 # \"Date of visit\", {task}
11
12 Format your response as follows:
13 {{
14 "Date of visit" : "‘direct quote extracted text‘",
15 "<keyword_1>" : "‘direct quote extracted text‘",
16 "<keyword_2>" : "‘direct quote extracted text‘",
17 ...
18 }}
19
20 Can you please extract the relevant sections from the document that are related to the concepts

provided? Extract direct quotes or sentences. If concept is not mentioned, leave it out.
21
22 Your Answer:

psynthesize

1 Answer the following by the synthesizing findings from multiple junior workers (LLMs).
2
3
4 ---
5 ## Inputs
6 1. Question to answer:
7 {question}
8
9 2. Collected Job Outputs (from junior models):

10 {extractions}
11
12 ---
13 First think step-by-step and then answer the question using the exact format below.
14
15 ## ANSWER GUIDELINES
16
17 **Required JSON Output**: You must output exactly one JSON object with these keys:
18 - "decision": Must be "provide_final_answer".
19 - "explanation": A short statement about how you arrived at your conclusion or what is still missing

.
20 - "answer": The final answer string (that matches one of the provided options) if "decision"="

provide_final_answer", or null otherwise.
21
22
23 Here is the template for your JSON response:
24
25 <think step-by-step here>
26
27
28 {{
29 "decision": "...",
30 "explanation": "...",
31 "answer": "...",
32 }}
33
34
35 Now, carefully inspect the question, think step-by-step and perform any calculations before outputting

the JSON object. If answer choices are provided, your answer must **exactly** match one of the
answer choices.

36
37 Question:
38 {question}
39
40 Your Answer:

MINIONS: QASPER
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pdecompose

1 # Decomposition Round #{step_number}
2
3 You do not have access to the raw document(s), but instead can assign tasks to small and less capable

language models that can read the document(s).
4 Note that the document(s) can be very long, so each task should be performed only over a small chunk of

text.
5
6 Write a Python function that will output formatted tasks for a small language model.
7 Make sure that NONE of the tasks require multiple steps. Each task should be atomic!
8 Consider using nested for-loops to apply a set of tasks to a set of chunks.
9 The same ‘task_id‘ should be applied to multiple chunks. DO NOT instantiate a new ‘task_id‘ for each

combination of task and chunk.
10 Use the conversational history to inform what chunking strategy has already been applied.
11
12 {ADVANCED_STEPS_INSTRUCTIONS}
13
14 Assume a Pydantic model called ‘JobManifest(BaseModel)‘ is already in global scope. For your reference,

here is the model:
15 ‘‘‘
16 {manifest_source}
17 ‘‘‘
18 Assume a Pydantic model called ‘JobOutput(BaseModel)‘ is already in global scope. For your reference,

here is the model:
19 ‘‘‘
20 {output_source}
21 ‘‘‘
22 DO NOT rewrite or import the model in your code.
23
24 The function signature will look like:
25 ‘‘‘
26 {signature_source}
27 ‘‘‘
28
29
30 You can assume you have access to the following chunking function(S). Do not reimplement the function,

just use it.
31 ‘‘‘
32 {chunking_source}
33 ‘‘‘
34
35 Here is an example
36 ‘‘‘
37 task_id = 1 # Unique identifier for the task
38 for doc_id, document in enumerate(context):
39 # if you need to chunk the document into sections
40 chunks = chunk_by_section(document)
41 # or if you need to chunk the document into pages
42 chunks = chunk_by_page(document)
43
44 for chunk_id, chunk in enumerate(chunks):
45 # Create a task for extracting mentions of specific keywords
46 task = (
47 "Extract all mentions of the following keywords: "
48 "’Ca19-9’, ’tumor marker’, ’September 2021’, ’U/ml’, ’Mrs. Anderson’."
49 )
50 job_manifest = JobManifest(
51 chunk_id=f"doc_id_chunk_id",
52 task_id=task_id,
53 chunk=chunk,
54 task=task,
55 advice="Focus on extracting the specific keywords related to Mrs. Anderson’s tumor marker

levels."
56 )
57 job_manifests.append(job_manifest)
58 ‘‘‘

pworker
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1 Your job is to complete the following task using only the context below. The context is a chunk of text
taken arbitrarily from a document, it might or might not contain relevant information to the task.

2
3 ## Document
4 {context}
5
6 ### Question you are trying to answer:
7 {question}
8
9 # You have been instructed to extract information pertaining to the following concepts:

10 # \"Date of visit\", {task}
11
12 Format your response as follows:
13 {{
14 "Date of visit" : "‘direct quote extracted text‘",
15 "<keyword_1>" : "‘direct quote extracted text‘",
16 "<keyword_2>" : "‘direct quote extracted text‘",
17 ...
18 }}
19
20 Can you please extract the relevant sections from the document that are related to the concepts

provided? Extract direct quotes or sentences. If concept is not mentioned, leave it out.
21
22 Your Answer:

psynthesize

1 Answer the following by the synthesizing findings from multiple junior workers (LLMs).
2
3
4 ---
5 ## Inputs
6 1. Question to answer:
7 {question}
8
9 2. Collected Job Outputs (from junior models):

10 {extractions}
11
12 ---
13 First think step-by-step and then answer the question using the exact format below.
14
15 ## ANSWER GUIDELINES
16
17 **Required JSON Output**: You must output exactly one JSON object with these keys:
18 - "decision": Must be "provide_final_answer" or "need more information"
19 - "explanation": A short statement about how you arrived at your conclusion or what is still missing

.
20 - "answer": a final answer that is a text span pulled directly from the job output citations.
21
22
23 Here is the template for your JSON response:
24
25 <think step-by-step here>
26
27 {{
28 "decision": "...",
29 "explanation": "...",
30 "answer": "..,",
31 }}
32
33 Now, carefully inspect the question, think step-by-step and perform any calculations before outputting

the JSON object.
34 - If answer choices are provided, your answer must **exactly** match one of the answer choices.
35 - Don’t paraphrase the final answer --- extract text directly from the document(s) or previous job

outputs.
36
37 Question:
38 {question}
39
40 Your Answer:
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G. Generated code
G.1. Minions: Example generated code for task decomposition
The document is a 10k statement for Amazon. The question is: ”What is the breakdown of Amazon’s operating expenses as a percentage of net sales for 2019?”. The code
generated by the remote model for creating task specification (first round) appears below. The code includes to functions, one to prepare the list of job specifications, and one to
aggregate the outputs returned from executing these jobs, formatting them into a single string.

1 def prepare_jobs(
2 context: List[str],
3 prev_job_manifests: Optional[List[JobManifest]] = None,
4 prev_job_outputs: Optional[List[JobOutput]] = None,
5 ) -> List[JobManifest]:
6 # Chunk the document into manageable sections
7 chunks = chunk_by_section(context[0], max_chunk_size=3000, overlap=20)
8
9 # Define the task to extract operating expenses and net sales

10 task = "Extract the operating expenses and net sales figures for 2019 from this chunk. Include any
percentages if available."

11
12 # Create job manifests for each chunk
13 job_manifests = []
14 for chunk in chunks:
15 job_manifests.append(JobManifest(chunk=chunk, task=task, advice="Focus on financial data and

percentages."))
16
17 return job_manifests
18
19 def transform_outputs(
20 jobs: List[Job],
21 ) -> str:
22 # Initialize a dictionary to store extracted data
23 extracted_data = {}
24
25 # Process each job output
26 for job in jobs:
27 output = job.output
28 if output.answer:
29 # Aggregate the answers by chunk_id
30 chunk_id = job.manifest.chunk_id
31 if chunk_id not in extracted_data:
32 extracted_data[chunk_id] = []
33 extracted_data[chunk_id].append(output.answer)
34
35 # Combine all extracted data into a single string for further analysis
36 aggregated_output = ""
37 for chunk_id, answers in extracted_data.items():
38 aggregated_output += f"Chunk {chunk_id}:\n"
39 for answer in answers:
40 aggregated_output += f"{answer}\n"
41
42 return aggregated_output

For this example query, the model decides to chunk the context with a maximum of 3000 characters per chunk (line 7). It then assigns a single extraction task to be performed on
all chunks (line 10).

Note that a generic character-based chunking function is specified by us and made available in the global workspace during code execution:

1 def chunk_by_section(
2 doc: str, max_chunk_size: int = 3000, overlap: int = 20
3 ) -> List[str]:
4 sections = []
5 start = 0
6 while start < len(doc):
7 end = start + max_chunk_size
8 sections.append(doc[start:end])
9 start += max_chunk_size - overlap

10 return sections

Our framework enables providing a library of chunking functions to select from. Future work should have the model come up with the chunking function itself.

G.2. Improving Minions with Supervised Finetuning
Can we make a better minion through finetuning? There are at least two possibilities for doing so:

• Training on the domain. Having the small model specialize on the target domain, by training it to solve problems and answer questions on input documents from the new
domain.

• Training to be a Minion. Training the small model to produce correct and concise responses to a supervisor model, to arrive at correct responses quickly.
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Figure 11. Supervised finetuning improves minion performance on LongHealth. We compare baseline QA (answering a query on a
document) and MINION protocols, with and without finetuning (blue and gray, respectively), using LLM-as-a-judge accuracy (y-axis).
Left: 1B LocalLM. Right: 3B LocalLM.

Here we present preliminary results on the first possibility.

Experimental Setup We finetune small models (LLAMA-3.2-1B-Instruct and LLAMA-3.2-3B-Instruct) on the LONGHEALTH dataset (Adams et al., 2024). We train
on 317 questions and test on 17 held-out questions. We finetune models using Low-Rank Adaptation (LoRA; (Hu et al., 2022)), following best practices for hyperparameter
selection (r = 16, α = 2r, dropout0.05, targeting all modules of the transformer and training for four epochs; (Biderman et al., 2024)), and sweeping over learning rates (best
LR for 1B was 1e − 4 and 3B 2e − 4).

Evaluation We use LLM-as-a-Judge (Zheng et al., 2023) with GPT-4O to determine if the predicted response matches the ground-truth response, avoiding strict string
matching.

For each model size, we analyze accuracy in four conditions:

• Baseline QA – asking the small model to answer a test question the context, without any finetuning or local-remote protocols

• SFT QA – asking a finetuned small model to answer a test question on the context

• Baseline Minion – without any finetuning, using the small model as part of the MINION protocol

• SFT Minion – using a finetuned model as part of MINION

Results See Figure 11. Across dataset regimes, we find that Minion is superior to vanilla QA, that is, the small model does better when it is guided by a frontier model that
asks one question at a time until reaching a solution. For 1B but not 3B, SFT improves the baseline QA performance. Using the SFT’d checkpoints as part of the Minion protocol
results in further gains for both model sizes.

We caveat that this is a relatively small finetuning dataset, and that future work is needed to reproduce the results on larger scales.
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