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Abstract
A molecule’s 2D representation consists of its
atoms, their attributes, and the molecule’s cova-
lent bonds. A 3D (geometric) representation of a
molecule is called a conformer and consists of its
atom types and Cartesian coordinates. Every con-
former has a potential energy, and the lower this
energy, the more likely it occurs in nature. Most
existing machine learning methods for molecular
property prediction consider either 2D molecular
graphs or 3D conformer structure representations
in isolation. Inspired by recent work on using
ensembles of conformers in conjunction with 2D
graph representations, we propose E(3)-invariant
molecular conformer aggregation networks. The
method integrates a molecule’s 2D representation
with that of multiple of its conformers. Contrary
to prior work, we propose a novel 2D–3D aggrega-
tion mechanism based on a differentiable solver
for the Fused Gromov-Wasserstein Barycenter
problem and the use of an efficient conformer
generation method based on distance geometry.
We show that the proposed aggregation mecha-
nism is E(3) invariant and propose an efficient
GPU implementation. Moreover, we demonstrate
that the aggregation mechanism helps to signifi-
cantly outperform state-of-the-art molecule prop-
erty prediction methods on established datasets.
Our implementation is available at this link.

1. Introduction
Machine learning is increasingly used for modeling and
analyzing properties of atomic systems with important ap-
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plications in drug discovery and material design (Butler
et al., 2018; Vamathevan et al., 2019; Choudhary et al.,
2022; Fedik et al., 2022; Batatia et al., 2023). Most existing
machine learning approaches to molecular property predic-
tion either incorporate 2D (topological) (Kipf & Welling,
2017; Gilmer et al., 2017b; Xu et al., 2018; Veličković
et al., 2018) or 3D (geometric) information of molecular
structures (Schütt et al., 2017; Schütt et al., 2021; Batzner
et al., 2022; Batatia et al., 2022). 2D molecular graphs
describe molecular connectivity (covalent bonds) but ig-
nore the spatial arrangement of the atoms in a molecule
(molecular conformation). 3D graph representations cap-
ture conformational changes but are commonly used to en-
code an individual conformer. Many molecular properties,
such as solubility and binding affinity (Cao et al., 2022),
however, inherently depend on a large number of confor-
mations a molecule can occur as in nature, and employing
a single geometry per molecule limits the applicability of
machine-learning models. Furthermore, it is challenging to
determine conformers that predominantly contribute to the
molecular properties of interest. Thus, developing expres-
sive representations for molecular systems when modeling
their properties is an ongoing challenge.

To overcome this, recent work has introduced molecular rep-
resentations that incorporate both 2D molecular graphs and
3D conformers (Zhu et al., 2023). These methods aim to en-
code various molecular structures, such as atom types, bond
types, and spatial coordinates, leading to more comprehen-
sive feature embeddings. The latest algorithms, including
graph neural networks, attention mechanisms (Axelrod &
Gómez-Bombarelli, 2023), and long short-term memory
networks (Wang et al., 2024b), have demonstrated improved
generalization capabilities in various molecular prediction
tasks. Despite their effectiveness, these methods struggle to
balance model complexity and performance and face scal-
ability challenges mainly due to the computational cost of
generating 3D conformers. These problems are exacerbated
when using several conformers per system, underscoring
the need for strategies to mitigate these limitations.

Contributions. We propose a new message-passing neu-
ral network architecture that integrates both 2D and en-
sembles of 3D molecular structures. The approach intro-
duces a geometry-aware conformer ensemble aggregation
strategy using Fused Gromov-Wasserstein (FGW) barycen-
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ters (Titouan et al., 2019), in which interactions between
atoms across conformers are captured using both latent atom
embeddings and conformer structures. The aggregation
mechanism is invariant to actions of the group E(3)—the
Euclidean group in 3 dimensions—such as translations, ro-
tations, and inversion as well as to permutations of the input
conformers. To make the proposed method applicable to
large-scale problems, we accelerate the solvers for the FGW
barycenter problem with entropic-based techniques (Rioux
et al., 2023), allowing the model to be trained in parallel
on multiple GPUs. We also experimentally explore the im-
pact of the number of conformers and demonstrate that,
within our framework, a modest number of conformers gen-
erated through efficient distance geometry-based sampling
achieves state-of-the-art accuracy. We partially explain this
through a theoretical analysis showing that the empirical
barycenter converges to the target barycenter at a rate of
O (1=K), where K denotes the number of conformers. Fi-
nally, we conduct a systematic evaluation of our proposed
approaches, comparing their performance to state-of-the-art
algorithms. The results show that our method is competitive
and frequently surpasses existing methods across a variety
of datasets and tasks.

2. Background
We first provide notations used in the paper. We
note the simplex histogram with n-bins as ∆n :=�
! 2 Rn+ :

P
i !i = 1

	
and Sn(A) as the set of symmet-

ric matrices of size n taking values in A � R. For any
x 2 
, �x denotes the Dirac measure in x. Let P(
) be
the set of all probability measures on a space 
. We denote
[K] = f1; 2; : : : ;Kg for any K 2 N. We denote the ma-
trix scalar product associated with the Forbenius norm as
h�i. The tensor-matrix multiplication will be denoted as 
,
i.e., given any tensor L := (Lijkl) and matrixB := (Bkl),
L
B is the matrix (

P
kl LijklBkl)ij .

A graph G is a pair (V;E) with finite sets of vertices or
nodes V and edges E � ffu; vg � V j u 6= vg. We set
n := jV j and write that the graph is of order n. For ease of
notation, we denote the edge fu; vg in E by (u; v) or (v; u).
The neighborhood of v in V is denoted by N(v) := fu 2
V j (v; u) 2 Eg and the degree of a vertex v is jN(v)j. An
attributed graph G is a triple (V;E; ‘f ) with a graph (V;E)
and (vertex-)feature (attribute) function ‘f : V ! R1�d, for
some d 2 N?. Then ‘f (v) is an attribute or feature of v,
for v in V . When we have multiple attributes, we have a
pair G = (G;H), where G = (V;E) and H in Rn�d is
a node attribute matrix. For a matrix H in Rn�d and v in
[n], we denote byHv in R1�d the vth row ofH such that
Hv := ‘f (v). Analogously, we can define attributes for the
edges of the graph. Furthermore, we can encode an n-order
graph G via an adjacency matrix A(G) 2 f0; 1gn�n.

2.1. Message-Passing Neural Networks
Message-passing neural networks (MPNN) learn d-
dimensional real-valued vector representations for each ver-
tex in a graph by exchanging and aggregating information
from neighboring nodes. Each vertex v is annotated with a
feature h

(0)
v in Rd representing characteristics such as atom

positions and numbers in the case of chemical molecules. In
addition, each edge (u; v) is associated with a feature vector
e(u; v). An MPNN architecture consists of a composition
of permutation-equivariant parameterized functions.

Following Gilmer et al. (2017a) and Scarselli et al. (2009),
in each layer, ‘ > 0, we compute vertex features

h(‘)
v := UPD(‘)

�
h(‘�1)
v ;AGG(‘)

�
ffm(‘)

v;u j u 2 N(v)gg
��

m(‘)
v;u := M(‘)

�
h(‘�1)
v ;h(‘�1)

u ; ev;u

�
2 Rd; (1)

where UPD(‘), M(‘), and AGG(‘) are differentiable param-
eterized functions. In the case of graph-level regression
problems, one uses

hG := READOUT
�
ffh(L)

v j v 2 V (G)gg
�
2 Rd; (2)

to compute a single vectorial representation based on
learned vertex features after iteration L where READOUT
can be a differentiable parameterized function.

Molecules are 3-dimensional structures that can be repre-
sented by geometric graphs, capturing each atom’s 3D po-
sition. To obtain more expressive representations, we also
consider geometric input attributes and focus on vectorial
features #�v v;

#�vu of nodes. Since we address the problem of
molecular property prediction, where we assume the proper-
ties to be invariant to actions of the group E(3), we focus
on E(3)-invariant MPNNs for geometric graphs.

2.2. Fused Gromov-Wasserstein Distance
Fused Gromov-Wasserstein. An undirected attributed
graphG of order n in the optimal transport context is defined
as a tuple G := (H;A;!), where H 2 Rn�d is a node
feature matrix andA is a matrix encoding relationships be-
tween nodes, and ! 2 ∆n denotes the probability measure
of nodes within the graph, which can be modeled as the rel-
ative importance weights of graph nodes. Without any prior
knowledge, uniform weights can be chosen (! = 1n=n)
(Vincent-Cuaz et al., 2022). The matrixA can be the graph
adjacency matrix, the shortest-path matrix or other distance
metrics based on the graph topologies (Peyré et al., 2016;
Titouan et al., 2019; 2020). Given two graphs G1; G2 of or-
der n1; n2, respectively, Fused Gromov-Wasserstein (FGW)
distance can be defined as follows:

FGWp;�(G1; G2)

:= min
�2�(!1;!2)

h(1� �)M + �L (A1;A2)
 �;�i : (3)
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Figure 1.Overview of the proposed conformer aggregation network with alanine dipeptide as example input.

HereM := ( df (H 1[i ]; H 2[j ])p)n 1 � n 2
2 Rn 1 � n 2 is the

pairwise node distance matrix,L (A 1; A 2) = ( jA 1[i; j ] �
A 2[l; m]jp) ijlm the 4-tensor representing the alignment
cost matrix, and� (! 1; ! 2) := f � 2 Rn 1 � n 2

+ j� 1n 2 =
! 1; � 1n 1 = ! 2g is the set of all valid couplings between
node distributions! 1 and! 2. Moreover,df (�; �) is the dis-
tance metric in the feature space, and� 2 [0; 1] is the weight
that trades off between the Gromov-Wasserstein cost on the
graph structure and Wasserstein cost on the feature signal.
In practice, we usually choosep = 2 , Euclidean distance
for df (�; �), and� = 0 :5 to calculate FGW distance.

Entropic Fused Gromov-Wasserstein.The entropic FGW
distance adds an entropic term (Cuturi, 2013) as

FGW�
p;� (G1; G2) := FGWp;� (G1; G2) � � H(� ); (4)

where the entropic scalar� facilitates the tunable trade-off
between solution accuracy and computational performance
(w.r.t. lower and higher� , respectively). Solving this en-
tropic FGW involves iterations of solving the linear en-
tropic OT problem Equation (37) with (stabilized) Sinkhorn
projections (Proposition 2 (Peyré et al., 2016)), described
in Appendix C and Algorithm 2.

3. CONAN: Conformer Aggregation Networks
via Fused Gromov-Wasserstein Barycenters

In what follows, we refer to the representation of atoms
and covalent bonds and their attributes as the 2D structure
and the atoms, their 3D coordinates, and atom types as 3D
structures. The following subsections describe each part of
the framework in detail.

3.1. Conformer Generation

To ef�ciently generate conformers, we employ distance
geometry-based algorithms, which convert distance con-
straints into Cartesian coordinates. For atomistic systems,
constraints typically de�ne lower and upper bounds on in-
teratomic squared distances. In a 2D input graph, covalent
bond distances adhere to known ranges, while bond angles

are determined by corresponding geminal distances. Adja-
cent atoms or functional groups adhere to cis/trans limits
for rotatable bonds or set values for rigid groups. Other
distances have hard sphere lower bounds, usually chosen
approximately 10% below van der Waals radii (Hawkins,
2017). Chirality constraints are applied to every rigid
quadruple of atoms.

A distance geometry algorithm now randomly generates a3-
dimensional conformation satisfying the constraints. To bias
the generation towards low-energy conformations, a simple
and ef�cient force �eld is typically applied. We use ef�cient
implementations from the RDKit package (Landrum, 2016).

3.2. Conformer Aggregation Network

We propose a new MPNN-based neural network that con-
sists of three parts as depicted in Figure 1. First, a 2D
MPNN model is used to capture the general molecular
features such as covalent bond structure and atom fea-
tures. Second, a novel FGW barycenter-based implicit
E (3)-invariant aggregation function that integrates the rep-
resentations of molecular 3D conformations computed by
geometric message-passing neural networks. Finally, a per-
mutation andE(3)-invariant aggregation function will be
used to combine the 2D graph and 3D conformer represen-
tations of the molecules.

2D Molecular Graph Message-Passing Network.Each
molecule is represented by a 2D graphG = ( V; E) with
nodesV representing its atoms and edgesE representing its
covalent bonds, annotated with molecular featuresh (0)

v and
ev;u , respectively (see Section 6 for details). To propagate
features across a molecule and get 2D molecular represen-
tations, we use GAT layers, which utilize a self-attention
mechanism in message-passing with the following opera-
tions:

h ( ` )
v := AGG( ` ) � ff m ( ` )

v;u j u 2 N (v)gg
�

=
X

u2 N (v)

m ( ` )
v;u

with m ( ` )
v;u = � v;u Wh ( l � 1)

u ; (5)
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and where� v;u are the GAT attention coef�cients and
W a learnable parameter matrix. Following Veli�cković
et al. (2018), the attention mechanism is implemented with
a single-layer feedforward neural network. To obtain a
per-molecule embedding, we computeh2D

G =
P

v2 V h (L )
v ,

whereL is the number of message-passing layers.

3D Conformer Message-Passing Network.A conformer
(atomic structure) of a molecule is de�ned asS =
f r i ; Z i gN

i =1 whereN is the number of atoms,r i 2 R3

are the Cartesian coordinates of atomi , andZ i 2 N is
the atomic number of atomi . We use weighted adjacency
matricesA 2 Rn � n to represent pairwise atom distances.
In some cases we will apply a cutoff radius to these dis-
tances. We employ the geometric MPNN SchNet (Schütt
et al., 2017), although it is worth noting that alternative
E(3)-invariant neural networks could be seamlessly inte-
grated. The selection of SchNet is motivated not only by its
pro�cient balance between model complexity and ef�cacy
but also by its proven utility in previous works (Axelrod &
Gómez-Bombarelli, 2023). SchNet performsE(3)-invariant
message-passing by using radial basis functions to incorpo-
rate the distances of the geometric node features#�v v ; #�v u .
We refer the reader to Appendix D.1 for more details. We
denote the matrix whose columns are the atom-wise features
of SchNet from the last message-passing layerL with H ,
that is,H [v] = h (L )

v .

To compute the vector representation for a conformerS,
we aggregate the atom-wise embeddings obtained from the
last message-passing layerL of SchNet into a single vector

representation ash3D
S =

P
v2 V

�
Ah (L )

v + a
�

, whereV is
the set of atoms andA anda learned during training. For a
set ofK conformers, the output of our 3D MPNN models
is a matrix whose columns are the embeddingshSk for
conformerk, that is,H 3D[k] = h3D

Sk
.

FGW Barycenter Aggregation. We now introduce
an implicit and differentiable neural aggregation function
whose output is determined by solving an FGW barycen-
ter optimization problem. Its input isK graphsGk =
(H k ; A k ; ! k ) for each conformerSk = f r k;i ; Zk;i gN

i =1 ,
with featuresH k computed by anE(3)-invariant MPNN,
with weighted adjacency matrixA k of pairwise atomic dis-
tances, and the probability mass of each atom! k , typically
set to1=N. The output of the barycenter conformer, denoted
asG = ( H ; A ; ! ), represents the geometric mean of the
input conformers, incorporating both their structural char-
acteristics and features (Figure 1). The barycenterG is the
conformer graph that minimizes the sum of weighted FGW
distances among the conformer graphs(Gk )k2 [K ] with fea-
ture matrices(H k )k2 [K ] , structure matrices(A k )k2 [K ], and
base histograms(! k )k2 [K ] 2 � K

n . That is, given any �xed
K 2 N and any� 2 � K , the FGW barycenter is de�ned

Figure 2.Illustration of the feature-based and structural distances
of conformers (here: alanine dipeptide) we use for the computation
of the Fused Gromov-Wasserstein barycenter.

as

G := arg min
G

KX

k=1

� k FGWp;� (G; Gk ); (6)

whereFGWp;� (G; Gk ) is the fused Gromov-Wasserstein
distance de�ned in Equation (3), and where we set, for
each pair of conformer graphsG = ( H ; A ; ! ) and

Gk = ( H k ; A k ; ! k ), M :=
�

(H [i ] � H k [j ])2
�

n � n
2

Rn � n as the feature distance matrix, andL (A ; A k ) =
(A [i; j ] � A k [l; m]j) ijlm as the 4-tensor representing the
structural distance when aligning atomsi to l and j to
m (Figure 2). Solving Equation (6), we obtain a unique
FGW barycenter graphG = ( H ; A ; ! ) with representation
hv = H [v] for each atomv. We aggregate the atom-wise
embeddings obtained from the FGW barycenterG into a sin-
gle vector representation usinghBC

G
=

P
v2 V

�
A hv + a

�
.

Intuitively, barycenter-based aggregation in Eq.(6) can be
seen as a more distance (structure) preserving pooling oper-
ation rather than standard mean aggregation. For instance,
consider two conformers, where one is a 180-degree rotation
of the other. Averaging their coordinates collapses the hy-
drogen atoms into the same position, creating an unphysical
structure. On the contrary, employing the FGW Barycenter
might prevent such issues.

Invariant Aggregation of 2D and 3D Representations.
We integrate the representations of the 2D graph and the 3D
conformer graphs using an average aggregation as well as
the barycenter-based aggregation. The requirement for this
aggregation is that it isinvariant to the order of the input
conformers; that is, it treats the conformers as a set as well
as invariant to actions of the groupE(3).

Let H 2DandH BCbe the matrices whose columns are, respec-
tively, K copies of the 2D and barycenter representations
from previous sections. Using learnable weight matrices
W 2D, W 3D, andW BC, we obtain the �nal atom-wise feature
matrices as

H comb= W 2DH 2D + W 3DH 3D +  W BCH BC; (7)

where is a hyper-parameter controlling the contribution
of the barycenter-based feature. Intuitively, this aggregation
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function, where we use multiple copies of the 2D graph and
barycenter representations, provides a balanced contribu-
tion of the three types of representations and is empirically
highly bene�cial. Finally, to predict a molecular property,
we apply a linear regression layer on a mean-aggregation of
the per-conformations embedding as:

ŷ = W G

 
1
K

KX

k=1

H comb[k]

!

+ bG : (8)

We can show that the function de�ned by Equation (5) to
Equation (8) is invariant to actions of the groupE(3) and
permutations acting on the sequence of input conformers.

Theorem 3.1. Let G be the 2D graph and(S1; :::; SK )
with Sk = f r k;i ; Zk;i gN

i =1 , 1 � k � K , be a se-
quence ofK conformers of a molecule. Let̂y =
f � (G; (S1; :::; SK )) be the function de�ned by Equa-
tion (5) to Equation(8). For any g1; :::; gK 2 E(3) we
have thatf � (G; (g1S1; :::; gK SK )) = f � (G; (S1; :::; SK )) .
Moreover, for any � 2 Sym([K ]) we have that
f � (G; (S� (1) ; :::; S� (K ) )) = f � (G; (S1; :::; SK )) .

4. Ef�cient and Convergent Molecular
Conformer Aggregation

In this section, we provide some theoretical results to justify
our novel FGW barycenter-based implicitE (3)-invariant
aggregation function that integrates the representations
of molecular 3D conformations computed by geometric
message-passing neural networks in Section 3.2. We es-
tablished a fast convergence rate of the empirical FGW
barycenters to the true barycenters as a function of the num-
ber of conformer samplesK .

Undirected Attribute Graph Space. Let us de�ne a struc-
tured object to be a triplet(
 ; A ; � ), 
 = 
 s � 
 f ,
where(
 f ; df ) and(
 s; A ) are feature and structure met-
ric spaces, respectively, and� is a probability measure
over 
 . By de�ning ! , the probability measure of the
nodes, the graphG represents a fully supported probabil-
ity measure over the feature/structure of the product space,
� =

P
k ! k � (x k ;a k ) , which describes the entire undirected

attributed graph. We noteX the set of all metric spaces. The
space of all structured objects over(
 f ; df ) will be written
asS(
 ), and is de�ned by all the triplets(
 ; A ; � ), where
(
 f ; df ) 2 X and� 2 P (
 ).

True and Empirical Barycenters. Given (
 ; A ; � ) 2
S(
 ), the variance functional� 2 of a distributionP 2
P(Pp(
 )) is de�ned as follows:

� 2
P =

Z

P p ( 
 )
FGWp

p;� (� 0; � )dP(� ); (9)

where� 0 is atrue barycenterde�ned in equation (10). We
will then restrict our attention to the subsetPp(Pp(
 )) =�

P 2 P (Pp(
 )) : � 2
P < + 1

	
. Note thatPp(
 ) is a sub-

set ofP(
 ) with �nite variance and de�ned the same way
asPp(Pp(
 )) but on(
 ; A ; � ). For anyP 2 P p(Pp(
 )) ,
we de�ne the true barycenter ofP is any� 0 2 P p(
 ) s.t.

� 0 2 arg min
� 2P p ( 
 )

Z

P p ( 
 )
FGWp

p;� (�; � )dP(� ): (10)

In our context of predicting molecular properties, the true
barycenter� 0 is unknown. However, we can still drawK
random sample independently of the 3D molecular repre-

sentationf � k gk2 [K ] =
nP k

l =1 ! l � (x l ;a l )

o

k2 [K ]
from P.

Then, anempirical barycenteris de�ned as a barycenter of
the empirical distributionPK = (1 =K )

P
k � � k , i.e.,

� K 2 arg min
� 2P p ( 
 )

1
K

X

k

FGWp
p;� (�; � k ): (11)

4.1. Fast Convergence of Empirical FGW Barycenter

This work establishes a novel fast rate convergence for
empirical barycenters in the FGW space via Theorem 4.1,
which is proved in Appendix B. To the best of our knowl-
edge, this is new in the literature, where only the result for
Wasserstein space exists in Le Gouic et al. (2022).

Theorem 4.1. Let P 2 P 2(P2(
 )) be a probability mea-
sure on the 2-FGW space. Let� 0 2 P 2(
 ) and � 2

P be
barycenter and variance functional ofP satisfying (10)
and (9), respectively. Let; � > 0 and suppose that ev-
ery � 2 supp(P) is the pushforward of� 0 by the gradi-
ent of an -strongly convex and� smooth function � 0 ! � ,
i.e., � = ( r  � 0 ! � )# � 0. If � �  < 1, then� 0 is unique
and any empirical barycenter� K of P satis�es

E
�
FGW2

2;� (� 0; � K )
�

�
4� 2

P

(1 � � +  )2K
: (12)

The upper bound in Equation (12) implies that the empirical
barycenter converges to the target distribution at a rate of
O(1=K ), whereK is the number of 3D conformers. This
suggests utilizing small values ofK , such asK 2 f 5; 10g,
would yield a satisfactory approximation for� 0. We con�rm
this empirically in experiments in Section 6.5.

Algorithm 1 Entropic FGW Barycenter
Input: ! , f Gs := ( H s; A s; ! s)gK

s=1 , � .
Optimizing: G; f � s 2 �( ! ; ! s)gK

s=1 .
repeat

for s = 1 to K do
Solvearg min� ( k )

s
FGW�

p;� (G
(k )

; Gs) with Alg. 2.
end for
UpdateA

(k+1)
 1

! ! >
1
K

P K
s=1 � (k )

s A s � (k )
s

>
.

UpdateH
(k+1)

 diag(1=! ) 1
K

P K
s=1 � (k )

s H s

until k in outer iterationsandnot converged

4.2. Empirical Entropic FGW Barycenter

To train on large-scale problems, we propose to solve the
entropic relaxation of Equation (6) to take advantage of
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GPU computing power (Peyré et al., 2019). Given a set
of conformer graphsf Gs := ( H s; A s; ! s)gK

s=1 , we want
to optimize the entropic barycenterG, where we �xed the
prior on nodes!

G = arg min
G

1
K

KX

s=1

FGW�
p;�

�
G; Gs

�
: (13)

with � s = 1=K; 8s 2 [1; K ]. Titouan et al. (2019)
solve Equation (13) using Block Coordinate Descent, which
iteratively minimizes the original FGW distance between
the current barycenter and the graphsGs. In our case, we
solve forK couplings of entropic FGW distances to the
graphs at each iteration, then following the update rule for
structure matrix (Proposition 4, (Peyré et al., 2016))

A
(k+1)

 
1

! ! >

1
K

KX

s=1

� (k )
s A s � (k )

s
>

; (14)

and for the feature matrix (Titouan et al., 2019; Cuturi &
Doucet, 2014)

H
(k+1)

 diag(1=! )
1
K

KX

s=1

� (k )
s H s; (15)

leading to Algorithm 1. More details on practical imple-
mentations and algorithm complexity are in Appendix C.

5. Related Work
Molecular Representation Learning.The traditional ap-
proach for molecular representation referred to as connec-
tivity �ngerprints (Morgan, 1965) encodes the presence of
different substructures within a compound in the form of
a binary vector. Modern molecular representations used
in machine learning for molecular properties prediction in-
clude 1D strings (Ahmad et al., 2022; Wang et al., 2019),
2D topological graphs (Gilmer et al., 2017a; Yang et al.,
2019; Rong et al., 2020; Hu et al., 2020b) and 3D geomet-
ric graphs (Fang et al., 2021; Zhou et al., 2023; Liu et al.,
2022a). The use of an ensemble of molecular conformations
remains a relatively unexplored frontier in research, despite
early evidence suggesting its ef�cacy in property prediction
(Axelrod & Gómez-Bombarelli, 2023; Wang et al., 2024b).
Another line of work uses conformers only at training time
in a self-supervised loss to improve a 2D MPNN (Stärk
et al., 2022). Contrary to prior work, we introduce a novel
and streamlined barycenter-based conformer aggregation
technique, seamlessly integrating learned representations
from both 2D and 3D MPNNs. Moreover, we show that cost-
effective conformers generated through distance-geometry
sampling are suf�ciently informative.

Geometric Graph Neural Networks. Graph Neural Net-
works (GNNs) designed for geometric graphs operate based
on the message-passing framework, where the features of
each node are dynamically updated through a process that
respects permutation equivariance. Examples are models
such as SphereNet (Liu et al., 2022b), GMNNs (Zaverkin &
Kästner, 2020), DimeNet (Gasteiger et al., 2020b), GemNet-

T (Gasteiger et al., 2021), SchNet (Schütt et al., 2017), GVP-
GNN, PaiNN, E(n)-GNN (Satorras et al., 2021), MACE
(Batatia et al., 2022), ICTP (Zaverkin et al., 2024), SEGNN
(Brandstetter et al., 2022), SE(3)-Transformer (Fuchs et al.,
2020), and VisNet (Wang et al., 2024a).

Optimal Transport in Graph Learning. By model-
ing graph features/structures as probability measures, the
(Fused) GW distance (Titouan et al., 2020) serves as a ver-
satile metric for comparing structured graphs. Previous ap-
plications of GW distance include graph node matching (Xu
et al., 2019b), partitioning (Xu et al., 2019a; Chowdhury &
Needham, 2021), and its use as a loss function for graph met-
ric learning (Vincent-Cuaz et al., 2021; 2022; Chen et al.,
2020; Zeng et al., 2023). More recently, FGW has been
leveraged as an objective for encoding graphs (Tang et al.,
2023) in tasks such as graph prediction (Brogat-Motte et al.,
2022) and classi�cation (Ma et al., 2023). To the best of our
knowledge, we are the �rst to introduce the entropic FGW
barycenter problem (Peyré et al., 2016; Titouan et al., 2020)
for molecular representation learning. By employing the
entropic formulation (Cuturi, 2013; Cuturi & Doucet, 2014),
our learning pipeline enjoys a tunable trade-off between
barycenter accuracy and computational performance, thus
enabling an ef�cient hyperparameter tuning process. More-
over, we also present empirical barycenter-related theories,
demonstrating how this entropic FGW barycenter frame-
work effectively captures meaningful underlying structures
of 3D conformers, thereby enhancing overall performance.

6. Experiments
6.1. Implementation Details

We encode each molecule in the SMILES format and em-
ploy the RDKit package to generate 3D conformers. We set
the size of the latent dimensions of GAT (Veli�cković et al.,
2018) to128=256. Node features are initialized based on
atomic properties such as atomic number, chirality, degree,
charge, number of hydrogens, radical electrons, hybridiza-
tion, aromaticity, and ring membership, while edges are
represented as one-hot vectors denoting bond type, stereo
con�guration, and conjugation status. Each 3D conformer
generated by RDKit comprisesn atoms with the correspond-
ing 3D coordinates representing their spatial positions. Sub-
sequently, we establish the graph structure and compute
atomic embeddings utilizing the force-�eld energy-based
SchNet model (Scḧutt et al., 2017), extracting features prior
to theREADOUT layer. Our SchNet con�guration incor-
poratesthree interaction blockswith feature maps of size
F = 128, employing a radial function de�ned on Gaus-
sians spaced at intervals of0:1�A with a cutoff distance of
10 �A. The output of each conformerk 2 [K ] forms a graph
Gk , utilized in solving the FGW barycenterG as de�ned
in Eq. (6). Subsequently, we aggregate features from 2D,
3D, and barycenter molecule graphs using Eqs. (7-8), fol-
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lowed by MLP layers. Leveraging Sinkhorn iterations in our
barycenter solver (Algorithm 1), we speed up the training
process across multiple GPUs using PyTorch's distributed
data-parallel technique. Training the entire model employs
the Adam optimizer with initial learning rates selected from
1e� 3; 1e� 3=2; 1e� 4, halved using ReduceLROnPlateau af-
ter10epochs without validation set improvement. Further
experimental details are provided in the Appendix.

To accelerate the training process, especially in large-scale
settings (e.g., BDE dataset), we �rst train the model with 2D
and 3D features for some epochs, and then load the saved
model and continue to train with full con�gurations as in
Eq.(7) till converge. We set empirically in Eq.(7) is0:2.

Table 1.Number of samples for each split on molecular property
prediction, classi�cation tasks, and reaction prediction.

Lipo ESOL FreeSolv BACE CoV-2 3CL Cov-2 BDE
Train 2940 789 449 1059 50 (485) 53 (3294) 8280
Valid. 420 112 64 151 15 (157) 17 (1096) 1184
Test 840 227 129 303 11 (162) 22 (1086) 2366
Total 4200 1128 642 1513 76 (804) 92 (5476) 11830

6.2. Molecular Property Prediction Tasks

Dataset.We use four datasetsLipo , ESOL, FreeSolv ,
andBACEin MoleculeNet benchmark (Table 1), span-
ning on various molecular characteristics such as physical
chemistry and biophysics. We split data using random scaf-
fold settings as baselines and reported the mean and standard
deviation of root mean square error (rmse) by running on
�ve trial times. More information for datasets is in Section
D.2 Appendix.

Baselines. We compare against various benchmarks, in-
cluding both supervised, pre-training, and multi-modal ap-
proaches. (i) The supervised methods are 2D
graph neural network models including 2D-GAT (Veli�cković
et al., 2018), D-MPNN (Yang et al., 2019), and At-
tentiveFP (Xiong et al., 2019);(ii) 2D molecule
pretraining methods are PretrainGNN (Hu et al.,
2020a), GROVER (Rong et al., 2020), MolCLR (Wang et al.,
2022), ChemRL-Gem (Fang et al., 2022), ChemBERTa-
2 (Ahmad et al., 2022), and MolFormer (Ross et al.,
2022). It's important to note that these models are pre-
trained on a vast amount of data; for example, MolFormer
is learned on1:1 billion molecules from PubChem and
ZINC datasets. We also compare with the(iii) 2D-3D
aggregation ConfNet model (Liu et al., 2021), which
is one of the winners of KDD Cup on OGB Large-Scale
Challenge (Hu et al., 2021). Finally, we benchmark with3D
conformers-based models such as UniMol (Zhou
et al., 2023), SchNet, and ChemProp3D (Axelrod & Gómez-
Bombarelli, 2023). Among this, UniMol is pre-trained on
209M molecular conformation and requires 11 conformers
on each downstream task. We train SchNet with5 con-
formers (10 for FreeSolv) and test with two versions: (a)

taking output at the �nal layer and averaging different con-
formers (SchNet-scalar), (b) using feature node embeddings
beforeREADOUT layers and aggregating conformers by
an MLP layer (SchNet-em). In ChemProp3D, we replace
the classi�cation header with an MLP layer for regression
tasks, training with a 2D molecular graph and10conform-
ers. With the ConfNet, we use20conformers in the training
step and provide results for20and40 conformers for the
evaluations step, followed by con�gurations in (Liu et al.,
2021).

Table 2.Models evaluation on regression tasks (RMSE#).

Model Lipo ESOL FreeSolv BACE
2D-GAT 1:387� 0:206 2:288� 0:017 8:564� 1:345 1:844� 0:33
D-MPNN 0:683� 0:016 1:050� 0:008 2:082� 0:082 2.253
Attentive FP 0:721� 0:001 0:877� 0:029 2:073� 0:183 -
PretrainGNN 0:739� 0:003 1:100� 0:006 2:764� 0:002 -
GROVERlarge 0:823� 0:010 0:895� 0:017 2:272� 0:051 -
ChemBERTa-2*0:798 0:889 - 1:363
ChemRL-GEM 0:660� 0:008 0:798� 0:029 1:877� 0:094 -
MolFormer 0:700� 0:012 0:880� 0:028 2:342� 0:052 1:047� 0:029
UniMol 0:603� 0:010 0:788� 0:029 1:480� 0:048 -
SchNet-scalar 0:704� 0:032 0:672� 0:027 1:608� 0:158 0:723� 0:1
SchNet-emb 0:589� 0:022 0:635� 0:057 1:587� 0:136 0:692� 0:028
ChemProp3D 0:602� 0:035 0:681� 0:023 2:014� 0:182 0:815� 0:17
ConfNet 1:360� 0:038 2:115� 0:484 - 1:329� 0:042

CONAN 0:556� 0:013 0:571� 0:019 1:496� 0:158 0:635� 0:051
CONAN-FGW 0:487 � 0:031 0:529 � 0:022 1:068 � 0:083 0:549 � 0:016

Results.Table 2 presents the experimental �ndings ofCO-
NAN, alongside competitive methods, with the best results
highlighted in bold. Baseline outcomes from prior studies
(Zhou et al., 2023; Fang et al., 2022; Chang & Ye, 2023)
are included, while performance for other models is pro-
vided through public codes.CONAN version denotes the
aggregation of 2D and 3D features as per Eq. (7) without
employing the barycenter, whereasCONAN-FGW signi-
�es full con�gurations. We employ a number of conform-
ersf 5; 5; 10; 5g andf 3; 5; 5; 5g for CONAN, andCONAN-
FGW, respectively, based on validation results forLipo ,
ESOL, FreeSolv , andBACE. From the experiments, sev-
eral observations emerge: (i)CONAN proves more effective
than relying solely on 2D or 3D, as shown by Conan's per-
formance, achieving second-best rankings on three datasets
compared to models using only 2D (ChemRL-GEM) or 3D
representations (UniMol). (ii)CONAN-FGW consistently
outperforms baselines across all datasets, despite employ-
ing signi�cantly fewer 3D conformers thanCONAN. This
underscores the importance of leveraging the barycenter to
capture invariant 3D geometric characteristics.

6.3. 3D SARS-CoV Molecular Classi�cation Tasks

Dataset. We evaluateCONAN on two datasetsCov-2
3CL andCov-2 (Table 1), focusing on molecular classi�-
cation tasks. The same splitting for training and testing is
followed (Axelrod & Gómez-Bombarelli, 2023). We also
apply the CREST (Grimme, 2019) to �lter generated con-
formers by RDKit as (Axelrod & Ǵomez-Bombarelli, 2023)
for fair comparisons. Model performance is reported with
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the receiver operating characteristic area under the curve
(ROC) and precision-recall area under the curve (PRC) over
three trial times.

Baselines.We compare with three models, namely, SchNet-
Features, ChemProp3D, CP3D-NDU, each with two dif-
ferent attention mechanisms toensemble 3D conformers
and 2D molecular graphfeature embedding as proposed
by Axelrod & Gómez-Bombarelli (2023). These baselines
generate200conformers for their input algorithms. Addi-
tionally, the ConfNet (Liu et al., 2021) is also evaluated
using20or 40conformers in testing.

Table 3.Performance of various models on the two molecular clas-
si�cation tasks.

Method Num Conformers Dataset ROC" PRC "

SchNetFeatures 200 CoV-2 3CL 0.86 0.26
ChemProp3D 200 CoV-2 3CL 0.66 0.20
CP3D-NDU 200 CoV-2 3CL 0.901 0.413

SchNetFeatures average neighbors CoV-2 3CL 0.84 0.29
ChemProp3D average neighbors CoV-2 3CL 0.73 0.31
CP3D-NDU average neighbors CoV-2 3CL 0.916 0.467

ConfNet f 20; 40g CoV-2 3CL 0.493 0.128
CONAN 10 CoV-2 3CL 0.881� 0.009 0.317� 0.052

CONAN-FGW 5 CoV-2 3CL 0.918� 0.012 0.423� 0.045

SchNetFeatures 200 CoV-2 0.63 0.037
ChemProp3D 200 CoV-2 0.53 0.032
CP3D-NDU 200 CoV-2 0.663 0.06

SchNetFeatures average neighbors CoV-2 0.61 0.027
ChemProp3D average neighbors CoV-2 0.56 0.10
CP3D-NDU average neighbors CoV-2 0.647 0.058

ConfNet f 20; 40g CoV-2 0.501� 0.001 0.36� 0.2
CONAN 10 CoV-2 0.634� 0.053 0.031� 0.023

CONAN-FGW 10 CoV-2 0.6735� 0.032 0.036� 0.014

Results. Table 3 presents performance ofCONAN and
CONAN-FGW with the number of conformers10or 5.
It can be seen thatCONAN-FGW delivers the best per-
formance on ROC metric on two datasets and holds the
second-best rank with PRC on CoV-2-3CL while requiring
only 10or 5 conformers compared with200conformers as
CP3D-NDU. These results underscore the ef�cacy of incor-
porating barycenter components over merely aggregating
2D and 3D conformer embeddings, as observed inCONAN.

6.4. Molecular Conformer Ensemble Benchmark

Dataset. We runCONANon the BDE dataset (Table 1),
which is the second-largest setting in (Zhu et al., 2023) aim
to predict reaction-level molecule properties.
Baselines.CONAN is compared with state-of-the-art con-
former ensemble strategies presented in Zhu et al. (2023), in-
cluding SchNet (Scḧutt et al., 2017), DimeNet++ (Gasteiger
et al., 2020a), GemNet (Gasteiger et al., 2021), PaiNN
(Scḧutt et al., 2021), ClofNet (Du et al., 2022), and LEFT-
Net (Du et al., 2024). All these approaches employ20
conformers in training and testing. We provide two results
of CONAN using only10 conformersand based on two
architectures, SchNet and LEFTNet.
Results.Table 4 summarizes our achieved scores where the
CONAN-FGW using LEFTNet backbone holds the second

rank overall while using half the number of conformers.
Additionally, it can be seen thatCONAN-FGW improves
with signi�cant margins over both base models like SchNet
(1:9737 ! 1:6047) and LEFTNet (1:5276 ! 1:4829),
demonstrating the generalization of the proposed aggre-
gation.

Table 4.Performance of different conformer ensemble strategies
on reaction molecules prediction. Results are in Mean Absolute
Error (MAE #). CONAN-FGW1 andCONAN-FGW2 denote for
our versions using SchNet and LEFTNet, respectively.

SchNet DimeNet++ GemNet PainNN ClofNet LEFTNetCONAN-FGW1 CONAN-FGW2

Conf. 20 20 20 20 20 20 10 10

MAE # 1.9737 1.4741 1.6059 1.8744 2.0106 1.5276 1.6047 1.4829

6.5. Ablation Study

Contribution of 3D Conformer Number. One of the build-
ing blocks of our model is the use of multiple 3D confor-
mations of a molecule. Each molecule is represented by
K conformations, so the choice ofK affects the model's
behavior. We treatK as a hyperparameter and conduct
experiments to validate the impact on model performance.
To this end, we test on theCONAN version with different
K (K = 0 is equivalent to the 2D-GAT baseline) and re-
port performance in Table 7 Appendix. We can observe
that using 3D conformers withK � 1 clearly improves
performance compared to using only 2D molecular graphs
as 2D-GAT. Furthermore, there is no straightforward de-
pendency between the number of conformations in use and
the accuracy of the model. For e.g., the performance tends
to increase when usingK = 10 (Lipo and FreeSolv), but
overall, the best trade-off value isK = 5 .

Figure 3.Ablation study on the effect of number conformers on
the FGW barycenter component on valid sets.

Contribution of FGW Barycenter Aggregation. We ex-
amine the effect of barycenter aggregation when varying
the number of conformersK . Figure 3 summarizes results
for those settings where we report average RMSE over four
datasets in the MoleculeNet benchmark. We draw the fol-
lowing observations. First,CONAN-FGW shows notable
enhancements as the number of conformers increases, with
K values ranging within the set3; 5; 10; however, when as
K = 20, discernible disparities compared to the results ob-
tained atK = 10 diminish. We argue that this phenomenon
aligns consistently with theoretical results inTheorem 4.1
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