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Abstract
A molecule’s 2D representation consists of its
atoms, their attributes, and the molecule’s cova-
lent bonds. A 3D (geometric) representation of a
molecule is called a conformer and consists of its
atom types and Cartesian coordinates. Every con-
former has a potential energy, and the lower this
energy, the more likely it occurs in nature. Most
existing machine learning methods for molecular
property prediction consider either 2D molecular
graphs or 3D conformer structure representations
in isolation. Inspired by recent work on using
ensembles of conformers in conjunction with 2D
graph representations, we propose E(3)-invariant
molecular conformer aggregation networks. The
method integrates a molecule’s 2D representation
with that of multiple of its conformers. Contrary
to prior work, we propose a novel 2D–3D aggrega-
tion mechanism based on a differentiable solver
for the Fused Gromov-Wasserstein Barycenter
problem and the use of an efficient conformer
generation method based on distance geometry.
We show that the proposed aggregation mecha-
nism is E(3) invariant and propose an efficient
GPU implementation. Moreover, we demonstrate
that the aggregation mechanism helps to signifi-
cantly outperform state-of-the-art molecule prop-
erty prediction methods on established datasets.
Our implementation is available at this link.

1. Introduction
Machine learning is increasingly used for modeling and
analyzing properties of atomic systems with important ap-
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plications in drug discovery and material design (Butler
et al., 2018; Vamathevan et al., 2019; Choudhary et al.,
2022; Fedik et al., 2022; Batatia et al., 2023). Most existing
machine learning approaches to molecular property predic-
tion either incorporate 2D (topological) (Kipf & Welling,
2017; Gilmer et al., 2017b; Xu et al., 2018; Veličković
et al., 2018) or 3D (geometric) information of molecular
structures (Schütt et al., 2017; Schütt et al., 2021; Batzner
et al., 2022; Batatia et al., 2022). 2D molecular graphs
describe molecular connectivity (covalent bonds) but ig-
nore the spatial arrangement of the atoms in a molecule
(molecular conformation). 3D graph representations cap-
ture conformational changes but are commonly used to en-
code an individual conformer. Many molecular properties,
such as solubility and binding affinity (Cao et al., 2022),
however, inherently depend on a large number of confor-
mations a molecule can occur as in nature, and employing
a single geometry per molecule limits the applicability of
machine-learning models. Furthermore, it is challenging to
determine conformers that predominantly contribute to the
molecular properties of interest. Thus, developing expres-
sive representations for molecular systems when modeling
their properties is an ongoing challenge.

To overcome this, recent work has introduced molecular rep-
resentations that incorporate both 2D molecular graphs and
3D conformers (Zhu et al., 2023). These methods aim to en-
code various molecular structures, such as atom types, bond
types, and spatial coordinates, leading to more comprehen-
sive feature embeddings. The latest algorithms, including
graph neural networks, attention mechanisms (Axelrod &
Gómez-Bombarelli, 2023), and long short-term memory
networks (Wang et al., 2024b), have demonstrated improved
generalization capabilities in various molecular prediction
tasks. Despite their effectiveness, these methods struggle to
balance model complexity and performance and face scal-
ability challenges mainly due to the computational cost of
generating 3D conformers. These problems are exacerbated
when using several conformers per system, underscoring
the need for strategies to mitigate these limitations.

Contributions. We propose a new message-passing neu-
ral network architecture that integrates both 2D and en-
sembles of 3D molecular structures. The approach intro-
duces a geometry-aware conformer ensemble aggregation
strategy using Fused Gromov-Wasserstein (FGW) barycen-
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ters (Titouan et al., 2019), in which interactions between
atoms across conformers are captured using both latent atom
embeddings and conformer structures. The aggregation
mechanism is invariant to actions of the group E(3)—the
Euclidean group in 3 dimensions—such as translations, ro-
tations, and inversion as well as to permutations of the input
conformers. To make the proposed method applicable to
large-scale problems, we accelerate the solvers for the FGW
barycenter problem with entropic-based techniques (Rioux
et al., 2023), allowing the model to be trained in parallel
on multiple GPUs. We also experimentally explore the im-
pact of the number of conformers and demonstrate that,
within our framework, a modest number of conformers gen-
erated through efficient distance geometry-based sampling
achieves state-of-the-art accuracy. We partially explain this
through a theoretical analysis showing that the empirical
barycenter converges to the target barycenter at a rate of
O (1/K), where K denotes the number of conformers. Fi-
nally, we conduct a systematic evaluation of our proposed
approaches, comparing their performance to state-of-the-art
algorithms. The results show that our method is competitive
and frequently surpasses existing methods across a variety
of datasets and tasks.

2. Background
We first provide notations used in the paper. We
note the simplex histogram with n-bins as ∆n :={
ω ∈ Rn

+ :
∑

i ωi = 1
}

and Sn(A) as the set of symmet-
ric matrices of size n taking values in A ⊂ R. For any
x ∈ Ω, δx denotes the Dirac measure in x. Let P(Ω) be
the set of all probability measures on a space Ω. We denote
[K] = {1, 2, . . . ,K} for any K ∈ N. We denote the ma-
trix scalar product associated with the Forbenius norm as
⟨·⟩. The tensor-matrix multiplication will be denoted as ⊗,
i.e., given any tensor L := (Lijkl) and matrix B := (Bkl),
L⊗B is the matrix (

∑
kl LijklBkl)ij .

A graph G is a pair (V,E) with finite sets of vertices or
nodes V and edges E ⊆ {{u, v} ⊆ V | u ̸= v}. We set
n := |V | and write that the graph is of order n. For ease of
notation, we denote the edge {u, v} in E by (u, v) or (v, u).
The neighborhood of v in V is denoted by N(v) := {u ∈
V | (v, u) ∈ E} and the degree of a vertex v is |N(v)|. An
attributed graph G is a triple (V,E, ℓf ) with a graph (V,E)
and (vertex-)feature (attribute) function ℓf : V → R1×d, for
some d ∈ N⋆. Then ℓf (v) is an attribute or feature of v,
for v in V . When we have multiple attributes, we have a
pair G = (G,H), where G = (V,E) and H in Rn×d is
a node attribute matrix. For a matrix H in Rn×d and v in
[n], we denote by Hv in R1×d the vth row of H such that
Hv := ℓf (v). Analogously, we can define attributes for the
edges of the graph. Furthermore, we can encode an n-order
graph G via an adjacency matrix A(G) ∈ {0, 1}n×n.

2.1. Message-Passing Neural Networks
Message-passing neural networks (MPNN) learn d-
dimensional real-valued vector representations for each ver-
tex in a graph by exchanging and aggregating information
from neighboring nodes. Each vertex v is annotated with a
feature h

(0)
v in Rd representing characteristics such as atom

positions and numbers in the case of chemical molecules. In
addition, each edge (u, v) is associated with a feature vector
e(u, v). An MPNN architecture consists of a composition
of permutation-equivariant parameterized functions.

Following Gilmer et al. (2017a) and Scarselli et al. (2009),
in each layer, ℓ > 0, we compute vertex features

h(ℓ)
v := UPD(ℓ)

(
h(ℓ−1)
v ,AGG(ℓ)

(
{{m(ℓ)

v,u | u ∈ N(v)}}
))

m(ℓ)
v,u := M(ℓ)

(
h(ℓ−1)
v ,h(ℓ−1)

u , ev,u

)
∈ Rd, (1)

where UPD(ℓ), M(ℓ), and AGG(ℓ) are differentiable param-
eterized functions. In the case of graph-level regression
problems, one uses

hG := READOUT
(
{{h(L)

v | v ∈ V (G)}}
)
∈ Rd, (2)

to compute a single vectorial representation based on
learned vertex features after iteration L where READOUT
can be a differentiable parameterized function.

Molecules are 3-dimensional structures that can be repre-
sented by geometric graphs, capturing each atom’s 3D po-
sition. To obtain more expressive representations, we also
consider geometric input attributes and focus on vectorial
features #»v v,

#»vu of nodes. Since we address the problem of
molecular property prediction, where we assume the proper-
ties to be invariant to actions of the group E(3), we focus
on E(3)-invariant MPNNs for geometric graphs.

2.2. Fused Gromov-Wasserstein Distance
Fused Gromov-Wasserstein. An undirected attributed
graphG of order n in the optimal transport context is defined
as a tuple G := (H,A,ω), where H ∈ Rn×d is a node
feature matrix and A is a matrix encoding relationships be-
tween nodes, and ω ∈ ∆n denotes the probability measure
of nodes within the graph, which can be modeled as the rel-
ative importance weights of graph nodes. Without any prior
knowledge, uniform weights can be chosen (ω = 1n/n)
(Vincent-Cuaz et al., 2022). The matrix A can be the graph
adjacency matrix, the shortest-path matrix or other distance
metrics based on the graph topologies (Peyré et al., 2016;
Titouan et al., 2019; 2020). Given two graphs G1, G2 of or-
der n1, n2, respectively, Fused Gromov-Wasserstein (FGW)
distance can be defined as follows:

FGWp,α(G1, G2)

:= min
π∈Π(ω1,ω2)

⟨(1− α)M + αL (A1,A2)⊗ π,π⟩ . (3)
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Figure 1. Overview of the proposed conformer aggregation network with alanine dipeptide as example input.

Here M := (df (H1[i],H2[j])
p)n1×n2

∈ Rn1×n2 is the
pairwise node distance matrix, L (A1,A2) = (|A1[i, j]−
A2[l,m]|p)ijlm the 4-tensor representing the alignment
cost matrix, and Π(ω1,ω2) := {π ∈ Rn1×n2

+ |π1n2 =
ω1, π1n1 = ω2} is the set of all valid couplings between
node distributions ω1 and ω2. Moreover, df (·, ·) is the dis-
tance metric in the feature space, and α ∈ [0, 1] is the weight
that trades off between the Gromov-Wasserstein cost on the
graph structure and Wasserstein cost on the feature signal.
In practice, we usually choose p = 2, Euclidean distance
for df (·, ·), and α = 0.5 to calculate FGW distance.

Entropic Fused Gromov-Wasserstein. The entropic FGW
distance adds an entropic term (Cuturi, 2013) as

FGWϵ
p,α(G1, G2) := FGWp,α(G1, G2)− ϵH(π), (4)

where the entropic scalar ϵ facilitates the tunable trade-off
between solution accuracy and computational performance
(w.r.t. lower and higher ϵ, respectively). Solving this en-
tropic FGW involves iterations of solving the linear en-
tropic OT problem Equation (37) with (stabilized) Sinkhorn
projections (Proposition 2 (Peyré et al., 2016)), described
in Appendix C and Algorithm 2.

3. CONAN: Conformer Aggregation Networks
via Fused Gromov-Wasserstein Barycenters

In what follows, we refer to the representation of atoms
and covalent bonds and their attributes as the 2D structure
and the atoms, their 3D coordinates, and atom types as 3D
structures. The following subsections describe each part of
the framework in detail.

3.1. Conformer Generation
To efficiently generate conformers, we employ distance
geometry-based algorithms, which convert distance con-
straints into Cartesian coordinates. For atomistic systems,
constraints typically define lower and upper bounds on in-
teratomic squared distances. In a 2D input graph, covalent
bond distances adhere to known ranges, while bond angles

are determined by corresponding geminal distances. Adja-
cent atoms or functional groups adhere to cis/trans limits
for rotatable bonds or set values for rigid groups. Other
distances have hard sphere lower bounds, usually chosen
approximately 10% below van der Waals radii (Hawkins,
2017). Chirality constraints are applied to every rigid
quadruple of atoms.

A distance geometry algorithm now randomly generates a 3-
dimensional conformation satisfying the constraints. To bias
the generation towards low-energy conformations, a simple
and efficient force field is typically applied. We use efficient
implementations from the RDKit package (Landrum, 2016).

3.2. Conformer Aggregation Network
We propose a new MPNN-based neural network that con-
sists of three parts as depicted in Figure 1. First, a 2D
MPNN model is used to capture the general molecular
features such as covalent bond structure and atom fea-
tures. Second, a novel FGW barycenter-based implicit
E(3)-invariant aggregation function that integrates the rep-
resentations of molecular 3D conformations computed by
geometric message-passing neural networks. Finally, a per-
mutation and E(3)-invariant aggregation function will be
used to combine the 2D graph and 3D conformer represen-
tations of the molecules.

2D Molecular Graph Message-Passing Network. Each
molecule is represented by a 2D graph G = (V,E) with
nodes V representing its atoms and edges E representing its
covalent bonds, annotated with molecular features h(0)

v and
ev,u, respectively (see Section 6 for details). To propagate
features across a molecule and get 2D molecular represen-
tations, we use GAT layers, which utilize a self-attention
mechanism in message-passing with the following opera-
tions:

h(ℓ)
v :=AGG(ℓ)

(
{{m(ℓ)

v,u | u ∈ N(v)}}
)
=

∑
u∈N(v)

m(ℓ)
v,u

with m(ℓ)
v,u = αv,uWh(l−1)

u , (5)
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and where αv,u are the GAT attention coefficients and
W a learnable parameter matrix. Following Veličković
et al. (2018), the attention mechanism is implemented with
a single-layer feedforward neural network. To obtain a
per-molecule embedding, we compute h2D

G =
∑

v∈V h
(L)
v ,

where L is the number of message-passing layers.

3D Conformer Message-Passing Network. A conformer
(atomic structure) of a molecule is defined as S =
{ri, Zi}Ni=1 where N is the number of atoms, ri ∈ R3

are the Cartesian coordinates of atom i, and Zi ∈ N is
the atomic number of atom i. We use weighted adjacency
matrices A ∈ Rn×n to represent pairwise atom distances.
In some cases we will apply a cutoff radius to these dis-
tances. We employ the geometric MPNN SchNet (Schütt
et al., 2017), although it is worth noting that alternative
E(3)-invariant neural networks could be seamlessly inte-
grated. The selection of SchNet is motivated not only by its
proficient balance between model complexity and efficacy
but also by its proven utility in previous works (Axelrod &
Gómez-Bombarelli, 2023). SchNet performsE(3)-invariant
message-passing by using radial basis functions to incorpo-
rate the distances of the geometric node features #»v v,

#»vu.
We refer the reader to Appendix D.1 for more details. We
denote the matrix whose columns are the atom-wise features
of SchNet from the last message-passing layer L with H,
that is, H[v] = h

(L)
v .

To compute the vector representation for a conformer S,
we aggregate the atom-wise embeddings obtained from the
last message-passing layer L of SchNet into a single vector
representation as h3D

S =
∑

v∈V

(
Ah

(L)
v + a

)
, where V is

the set of atoms and A and a learned during training. For a
set of K conformers, the output of our 3D MPNN models
is a matrix whose columns are the embeddings hSk

for
conformer k, that is, H3D[k] = h3D

Sk
.

FGW Barycenter Aggregation. We now introduce
an implicit and differentiable neural aggregation function
whose output is determined by solving an FGW barycen-
ter optimization problem. Its input is K graphs Gk =
(Hk,Ak,ωk) for each conformer Sk = {rk,i, Zk,i}Ni=1,
with features Hk computed by an E(3)-invariant MPNN,
with weighted adjacency matrix Ak of pairwise atomic dis-
tances, and the probability mass of each atom ωk, typically
set to 1/N . The output of the barycenter conformer, denoted
as G = (H,A,ω), represents the geometric mean of the
input conformers, incorporating both their structural char-
acteristics and features (Figure 1). The barycenter G is the
conformer graph that minimizes the sum of weighted FGW
distances among the conformer graphs (Gk)k∈[K] with fea-
ture matrices (Hk)k∈[K], structure matrices (Ak)k∈[K], and
base histograms (ωk)k∈[K] ∈ ∆K

n . That is, given any fixed
K ∈ N and any λ ∈ ∆K , the FGW barycenter is defined

Figure 2. Illustration of the feature-based and structural distances
of conformers (here: alanine dipeptide) we use for the computation
of the Fused Gromov-Wasserstein barycenter.

as

G := arg min
G

K∑
k=1

λkFGWp,α(G,Gk), (6)

where FGWp,α(G,Gk) is the fused Gromov-Wasserstein
distance defined in Equation (3), and where we set, for
each pair of conformer graphs G = (H,A,ω) and
Gk = (Hk,Ak,ωk), M :=

(
(H[i]−Hk[j])

2
)
n×n

∈
Rn×n as the feature distance matrix, and L (A,Ak) =
(A[i, j]−Ak[l,m]|)ijlm as the 4-tensor representing the
structural distance when aligning atoms i to l and j to
m (Figure 2). Solving Equation (6), we obtain a unique
FGW barycenter graph G = (H,A,ω) with representation
hv = H[v] for each atom v. We aggregate the atom-wise
embeddings obtained from the FGW barycenterG into a sin-
gle vector representation using hBC

G
=
∑

v∈V

(
A hv + a

)
.

Intuitively, barycenter-based aggregation in Eq.(6) can be
seen as a more distance (structure) preserving pooling oper-
ation rather than standard mean aggregation. For instance,
consider two conformers, where one is a 180-degree rotation
of the other. Averaging their coordinates collapses the hy-
drogen atoms into the same position, creating an unphysical
structure. On the contrary, employing the FGW Barycenter
might prevent such issues.

Invariant Aggregation of 2D and 3D Representations.
We integrate the representations of the 2D graph and the 3D
conformer graphs using an average aggregation as well as
the barycenter-based aggregation. The requirement for this
aggregation is that it is invariant to the order of the input
conformers; that is, it treats the conformers as a set as well
as invariant to actions of the group E(3).

Let H2D and HBC be the matrices whose columns are, respec-
tively, K copies of the 2D and barycenter representations
from previous sections. Using learnable weight matrices
W2D, W3D, and WBC, we obtain the final atom-wise feature
matrices as

Hcomb = W2DH2D +W3DH3D + γWBCHBC, (7)

where γ is a hyper-parameter controlling the contribution
of the barycenter-based feature. Intuitively, this aggregation
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function, where we use multiple copies of the 2D graph and
barycenter representations, provides a balanced contribu-
tion of the three types of representations and is empirically
highly beneficial. Finally, to predict a molecular property,
we apply a linear regression layer on a mean-aggregation of
the per-conformations embedding as:

ŷ = WG

(
1

K

K∑
k=1

Hcomb[k]

)
+ bG. (8)

We can show that the function defined by Equation (5) to
Equation (8) is invariant to actions of the group E(3) and
permutations acting on the sequence of input conformers.

Theorem 3.1. Let G be the 2D graph and (S1, ..., SK)
with Sk = {rk,i, Zk,i}Ni=1, 1 ≤ k ≤ K, be a se-
quence of K conformers of a molecule. Let ŷ =
fθ(G, (S1, ..., SK)) be the function defined by Equa-
tion (5) to Equation (8). For any g1, ..., gK ∈ E(3) we
have that fθ(G, (g1S1, ..., gKSK)) = fθ(G, (S1, ..., SK)).
Moreover, for any π ∈ Sym([K]) we have that
fθ(G, (Sπ(1), ..., Sπ(K))) = fθ(G, (S1, ..., SK)).

4. Efficient and Convergent Molecular
Conformer Aggregation

In this section, we provide some theoretical results to justify
our novel FGW barycenter-based implicit E(3)-invariant
aggregation function that integrates the representations
of molecular 3D conformations computed by geometric
message-passing neural networks in Section 3.2. We es-
tablished a fast convergence rate of the empirical FGW
barycenters to the true barycenters as a function of the num-
ber of conformer samples K.

Undirected Attribute Graph Space. Let us define a struc-
tured object to be a triplet (Ω,A, µ), Ω = Ωs × Ωf ,
where (Ωf , df ) and (Ωs,A) are feature and structure met-
ric spaces, respectively, and µ is a probability measure
over Ω. By defining ω, the probability measure of the
nodes, the graph G represents a fully supported probabil-
ity measure over the feature/structure of the product space,
µ =

∑
k ωkδ(xk,ak), which describes the entire undirected

attributed graph. We note X the set of all metric spaces. The
space of all structured objects over (Ωf , df ) will be written
as S(Ω), and is defined by all the triplets (Ω,A, µ), where
(Ωf , df ) ∈ X and µ ∈ P(Ω).

True and Empirical Barycenters. Given (Ω,A, µ) ∈
S(Ω), the variance functional σ2 of a distribution P ∈
P(Pp(Ω)) is defined as follows:

σ2
P =

∫
Pp(Ω)

FGWp
p,α(µ0, ν)dP (ν), (9)

where µ0 is a true barycenter defined in equation (10). We
will then restrict our attention to the subset Pp(Pp(Ω)) ={
P ∈ P(Pp(Ω)) : σ2

P < +∞
}

. Note that Pp(Ω) is a sub-

set of P(Ω) with finite variance and defined the same way
as Pp(Pp(Ω)) but on (Ω,A, µ). For any P ∈ Pp(Pp(Ω)),
we define the true barycenter of P is any µ0 ∈ Pp(Ω) s.t.

µ0 ∈ arg min
µ∈Pp(Ω)

∫
Pp(Ω)

FGWp
p,α(µ, ν)dP (ν). (10)

In our context of predicting molecular properties, the true
barycenter µ0 is unknown. However, we can still draw K
random sample independently of the 3D molecular repre-
sentation {µk}k∈[K] =

{∑k
l=1 ωlδ(xl,al)

}
k∈[K]

from P .

Then, an empirical barycenter is defined as a barycenter of
the empirical distribution PK = (1/K)

∑
k δµk

, i.e.,

µK ∈ arg min
µ∈Pp(Ω)

1

K

∑
k

FGWp
p,α(µ, µk). (11)

4.1. Fast Convergence of Empirical FGW Barycenter
This work establishes a novel fast rate convergence for
empirical barycenters in the FGW space via Theorem 4.1,
which is proved in Appendix B. To the best of our knowl-
edge, this is new in the literature, where only the result for
Wasserstein space exists in Le Gouic et al. (2022).

Theorem 4.1. Let P ∈ P2(P2(Ω)) be a probability mea-
sure on the 2-FGW space. Let µ0 ∈ P2(Ω) and σ2

P be
barycenter and variance functional of P satisfying (10)
and (9), respectively. Let γ, β > 0 and suppose that ev-
ery µ ∈ supp(P ) is the pushforward of µ0 by the gradi-
ent of an γ-strongly convex and β smooth function ψµ0→µ,
i.e., µ = (∇ψµ0→µ)#µ0. If β − γ < 1, then µ0 is unique
and any empirical barycenter µK of P satisfies

E
(
FGW2

2,α(µ0, µK)
)
≤ 4σ2

P

(1− β + γ)2K
. (12)

The upper bound in Equation (12) implies that the empirical
barycenter converges to the target distribution at a rate of
O(1/K), where K is the number of 3D conformers. This
suggests utilizing small values of K, such as K ∈ {5, 10},
would yield a satisfactory approximation for µ0. We confirm
this empirically in experiments in Section 6.5.

Algorithm 1 Entropic FGW Barycenter
Input: ω, {Gs := (Hs,As,ωs)}Ks=1, ϵ.
Optimizing: G, {πs ∈ Π(ω,ωs)}Ks=1.
repeat

for s = 1 to K do
Solve arg min

π
(k)
s

FGWϵ
p,α(G

(k)
, Gs) with Alg. 2.

end for
Update A

(k+1) ← 1
ωω⊤

1
K

∑K
s=1 π

(k)
s Asπ

(k)
s

⊤
.

Update H
(k+1) ← diag(1/ω) 1

K

∑K
s=1 π

(k)
s Hs

until k in outer iterations and not converged

4.2. Empirical Entropic FGW Barycenter

To train on large-scale problems, we propose to solve the
entropic relaxation of Equation (6) to take advantage of
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GPU computing power (Peyré et al., 2019). Given a set
of conformer graphs {Gs := (Hs,As,ωs)}Ks=1, we want
to optimize the entropic barycenter G, where we fixed the
prior on nodes ω

G = arg min
G

1

K

K∑
s=1

FGWϵ
p,α

(
G,Gs

)
. (13)

with λs = 1/K, ∀s ∈ [1,K]. Titouan et al. (2019)
solve Equation (13) using Block Coordinate Descent, which
iteratively minimizes the original FGW distance between
the current barycenter and the graphs Gs. In our case, we
solve for K couplings of entropic FGW distances to the
graphs at each iteration, then following the update rule for
structure matrix (Proposition 4, (Peyré et al., 2016))

A
(k+1) ← 1

ω ω⊤
1

K

K∑
s=1

π(k)
s Asπ

(k)
s

⊤
, (14)

and for the feature matrix (Titouan et al., 2019; Cuturi &
Doucet, 2014)

H
(k+1) ← diag(1/ω)

1

K

K∑
s=1

π(k)
s Hs, (15)

leading to Algorithm 1. More details on practical imple-
mentations and algorithm complexity are in Appendix C.

5. Related Work
Molecular Representation Learning. The traditional ap-
proach for molecular representation referred to as connec-
tivity fingerprints (Morgan, 1965) encodes the presence of
different substructures within a compound in the form of
a binary vector. Modern molecular representations used
in machine learning for molecular properties prediction in-
clude 1D strings (Ahmad et al., 2022; Wang et al., 2019),
2D topological graphs (Gilmer et al., 2017a; Yang et al.,
2019; Rong et al., 2020; Hu et al., 2020b) and 3D geomet-
ric graphs (Fang et al., 2021; Zhou et al., 2023; Liu et al.,
2022a). The use of an ensemble of molecular conformations
remains a relatively unexplored frontier in research, despite
early evidence suggesting its efficacy in property prediction
(Axelrod & Gómez-Bombarelli, 2023; Wang et al., 2024b).
Another line of work uses conformers only at training time
in a self-supervised loss to improve a 2D MPNN (Stärk
et al., 2022). Contrary to prior work, we introduce a novel
and streamlined barycenter-based conformer aggregation
technique, seamlessly integrating learned representations
from both 2D and 3D MPNNs. Moreover, we show that cost-
effective conformers generated through distance-geometry
sampling are sufficiently informative.

Geometric Graph Neural Networks. Graph Neural Net-
works (GNNs) designed for geometric graphs operate based
on the message-passing framework, where the features of
each node are dynamically updated through a process that
respects permutation equivariance. Examples are models
such as SphereNet (Liu et al., 2022b), GMNNs (Zaverkin &
Kästner, 2020), DimeNet (Gasteiger et al., 2020b), GemNet-

T (Gasteiger et al., 2021), SchNet (Schütt et al., 2017), GVP-
GNN, PaiNN, E(n)-GNN (Satorras et al., 2021), MACE
(Batatia et al., 2022), ICTP (Zaverkin et al., 2024), SEGNN
(Brandstetter et al., 2022), SE(3)-Transformer (Fuchs et al.,
2020), and VisNet (Wang et al., 2024a).

Optimal Transport in Graph Learning. By model-
ing graph features/structures as probability measures, the
(Fused) GW distance (Titouan et al., 2020) serves as a ver-
satile metric for comparing structured graphs. Previous ap-
plications of GW distance include graph node matching (Xu
et al., 2019b), partitioning (Xu et al., 2019a; Chowdhury &
Needham, 2021), and its use as a loss function for graph met-
ric learning (Vincent-Cuaz et al., 2021; 2022; Chen et al.,
2020; Zeng et al., 2023). More recently, FGW has been
leveraged as an objective for encoding graphs (Tang et al.,
2023) in tasks such as graph prediction (Brogat-Motte et al.,
2022) and classification (Ma et al., 2023). To the best of our
knowledge, we are the first to introduce the entropic FGW
barycenter problem (Peyré et al., 2016; Titouan et al., 2020)
for molecular representation learning. By employing the
entropic formulation (Cuturi, 2013; Cuturi & Doucet, 2014),
our learning pipeline enjoys a tunable trade-off between
barycenter accuracy and computational performance, thus
enabling an efficient hyperparameter tuning process. More-
over, we also present empirical barycenter-related theories,
demonstrating how this entropic FGW barycenter frame-
work effectively captures meaningful underlying structures
of 3D conformers, thereby enhancing overall performance.

6. Experiments
6.1. Implementation Details
We encode each molecule in the SMILES format and em-
ploy the RDKit package to generate 3D conformers. We set
the size of the latent dimensions of GAT (Veličković et al.,
2018) to 128/256. Node features are initialized based on
atomic properties such as atomic number, chirality, degree,
charge, number of hydrogens, radical electrons, hybridiza-
tion, aromaticity, and ring membership, while edges are
represented as one-hot vectors denoting bond type, stereo
configuration, and conjugation status. Each 3D conformer
generated by RDKit comprises n atoms with the correspond-
ing 3D coordinates representing their spatial positions. Sub-
sequently, we establish the graph structure and compute
atomic embeddings utilizing the force-field energy-based
SchNet model (Schütt et al., 2017), extracting features prior
to the READOUT layer. Our SchNet configuration incor-
porates three interaction blocks with feature maps of size
F = 128, employing a radial function defined on Gaus-
sians spaced at intervals of 0.1Å with a cutoff distance of
10 Å. The output of each conformer k ∈ [K] forms a graph
Gk, utilized in solving the FGW barycenter G as defined
in Eq. (6). Subsequently, we aggregate features from 2D,
3D, and barycenter molecule graphs using Eqs. (7-8), fol-

6



Molecular Conformer Aggregation Networks

lowed by MLP layers. Leveraging Sinkhorn iterations in our
barycenter solver (Algorithm 1), we speed up the training
process across multiple GPUs using PyTorch’s distributed
data-parallel technique. Training the entire model employs
the Adam optimizer with initial learning rates selected from
1e−3, 1e−3/2, 1e−4, halved using ReduceLROnPlateau af-
ter 10 epochs without validation set improvement. Further
experimental details are provided in the Appendix.

To accelerate the training process, especially in large-scale
settings (e.g., BDE dataset), we first train the model with 2D
and 3D features for some epochs, and then load the saved
model and continue to train with full configurations as in
Eq.(7) till converge. We set empirically γ in Eq.(7) is 0.2.

Table 1. Number of samples for each split on molecular property
prediction, classification tasks, and reaction prediction.

Lipo ESOL FreeSolv BACE CoV-2 3CL Cov-2 BDE
Train 2940 789 449 1059 50 (485) 53 (3294) 8280
Valid. 420 112 64 151 15 (157) 17 (1096) 1184
Test 840 227 129 303 11 (162) 22 (1086) 2366
Total 4200 1128 642 1513 76 (804) 92 (5476) 11830

6.2. Molecular Property Prediction Tasks
Dataset. We use four datasets Lipo, ESOL, FreeSolv,
and BACE in MoleculeNet benchmark (Table 1), span-
ning on various molecular characteristics such as physical
chemistry and biophysics. We split data using random scaf-
fold settings as baselines and reported the mean and standard
deviation of root mean square error (rmse) by running on
five trial times. More information for datasets is in Section
D.2 Appendix.

Baselines. We compare against various benchmarks, in-
cluding both supervised, pre-training, and multi-modal ap-
proaches. (i) The supervised methods are 2D
graph neural network models including 2D-GAT (Veličković
et al., 2018), D-MPNN (Yang et al., 2019), and At-
tentiveFP (Xiong et al., 2019); (ii) 2D molecule
pretraining methods are PretrainGNN (Hu et al.,
2020a), GROVER (Rong et al., 2020), MolCLR (Wang et al.,
2022), ChemRL-Gem (Fang et al., 2022), ChemBERTa-
2 (Ahmad et al., 2022), and MolFormer (Ross et al.,
2022). It’s important to note that these models are pre-
trained on a vast amount of data; for example, MolFormer
is learned on 1.1 billion molecules from PubChem and
ZINC datasets. We also compare with the (iii) 2D-3D
aggregation ConfNet model (Liu et al., 2021), which
is one of the winners of KDD Cup on OGB Large-Scale
Challenge (Hu et al., 2021). Finally, we benchmark with 3D
conformers-based models such as UniMol (Zhou
et al., 2023), SchNet, and ChemProp3D (Axelrod & Gómez-
Bombarelli, 2023). Among this, UniMol is pre-trained on
209 M molecular conformation and requires 11 conformers
on each downstream task. We train SchNet with 5 con-
formers (10 for FreeSolv) and test with two versions: (a)

taking output at the final layer and averaging different con-
formers (SchNet-scalar), (b) using feature node embeddings
before READOUT layers and aggregating conformers by
an MLP layer (SchNet-em). In ChemProp3D, we replace
the classification header with an MLP layer for regression
tasks, training with a 2D molecular graph and 10 conform-
ers. With the ConfNet, we use 20 conformers in the training
step and provide results for 20 and 40 conformers for the
evaluations step, followed by configurations in (Liu et al.,
2021).

Table 2. Models evaluation on regression tasks (RMSE ↓).

Model Lipo ESOL FreeSolv BACE
2D-GAT 1.387± 0.206 2.288± 0.017 8.564± 1.345 1.844± 0.33
D-MPNN 0.683± 0.016 1.050± 0.008 2.082± 0.082 2.253
Attentive FP 0.721± 0.001 0.877± 0.029 2.073± 0.183 -
PretrainGNN 0.739± 0.003 1.100± 0.006 2.764± 0.002 -
GROVER large 0.823± 0.010 0.895± 0.017 2.272± 0.051 -
ChemBERTa-2* 0.798 0.889 - 1.363
ChemRL-GEM 0.660± 0.008 0.798± 0.029 1.877± 0.094 -
MolFormer 0.700± 0.012 0.880± 0.028 2.342± 0.052 1.047± 0.029
UniMol 0.603± 0.010 0.788± 0.029 1.480± 0.048 -
SchNet-scalar 0.704± 0.032 0.672± 0.027 1.608± 0.158 0.723± 0.1
SchNet-emb 0.589± 0.022 0.635± 0.057 1.587± 0.136 0.692± 0.028
ChemProp3D 0.602± 0.035 0.681± 0.023 2.014± 0.182 0.815± 0.17
ConfNet 1.360± 0.038 2.115± 0.484 - 1.329± 0.042

CONAN 0.556± 0.013 0.571± 0.019 1.496± 0.158 0.635± 0.051
CONAN-FGW 0.487± 0.031 0.529± 0.022 1.068± 0.083 0.549± 0.016

Results. Table 2 presents the experimental findings of CO-
NAN, alongside competitive methods, with the best results
highlighted in bold. Baseline outcomes from prior studies
(Zhou et al., 2023; Fang et al., 2022; Chang & Ye, 2023)
are included, while performance for other models is pro-
vided through public codes. CONAN version denotes the
aggregation of 2D and 3D features as per Eq. (7) without
employing the barycenter, whereas CONAN-FGW signi-
fies full configurations. We employ a number of conform-
ers {5, 5, 10, 5} and {3, 5, 5, 5} for CONAN, and CONAN-
FGW, respectively, based on validation results for Lipo,
ESOL, FreeSolv, and BACE. From the experiments, sev-
eral observations emerge: (i) CONAN proves more effective
than relying solely on 2D or 3D, as shown by Conan’s per-
formance, achieving second-best rankings on three datasets
compared to models using only 2D (ChemRL-GEM) or 3D
representations (UniMol). (ii) CONAN-FGW consistently
outperforms baselines across all datasets, despite employ-
ing significantly fewer 3D conformers than CONAN. This
underscores the importance of leveraging the barycenter to
capture invariant 3D geometric characteristics.

6.3. 3D SARS-CoV Molecular Classification Tasks
Dataset. We evaluate CONAN on two datasets Cov-2
3CL and Cov-2 (Table 1), focusing on molecular classifi-
cation tasks. The same splitting for training and testing is
followed (Axelrod & Gómez-Bombarelli, 2023). We also
apply the CREST (Grimme, 2019) to filter generated con-
formers by RDKit as (Axelrod & Gómez-Bombarelli, 2023)
for fair comparisons. Model performance is reported with
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the receiver operating characteristic area under the curve
(ROC) and precision-recall area under the curve (PRC) over
three trial times.

Baselines. We compare with three models, namely, SchNet-
Features, ChemProp3D, CP3D-NDU, each with two dif-
ferent attention mechanisms to ensemble 3D conformers
and 2D molecular graph feature embedding as proposed
by Axelrod & Gómez-Bombarelli (2023). These baselines
generate 200 conformers for their input algorithms. Addi-
tionally, the ConfNet (Liu et al., 2021) is also evaluated
using 20 or 40 conformers in testing.

Table 3. Performance of various models on the two molecular clas-
sification tasks.

Method Num Conformers Dataset ROC ↑ PRC ↑
SchNetFeatures 200 CoV-2 3CL 0.86 0.26
ChemProp3D 200 CoV-2 3CL 0.66 0.20
CP3D-NDU 200 CoV-2 3CL 0.901 0.413

SchNetFeatures average neighbors CoV-2 3CL 0.84 0.29
ChemProp3D average neighbors CoV-2 3CL 0.73 0.31
CP3D-NDU average neighbors CoV-2 3CL 0.916 0.467

ConfNet {20, 40} CoV-2 3CL 0.493 0.128
CONAN 10 CoV-2 3CL 0.881 ± 0.009 0.317 ± 0.052

CONAN-FGW 5 CoV-2 3CL 0.918 ± 0.012 0.423 ± 0.045

SchNetFeatures 200 CoV-2 0.63 0.037
ChemProp3D 200 CoV-2 0.53 0.032
CP3D-NDU 200 CoV-2 0.663 0.06

SchNetFeatures average neighbors CoV-2 0.61 0.027
ChemProp3D average neighbors CoV-2 0.56 0.10
CP3D-NDU average neighbors CoV-2 0.647 0.058

ConfNet {20, 40} CoV-2 0.501 ± 0.001 0.36 ± 0.2
CONAN 10 CoV-2 0.634 ± 0.053 0.031 ± 0.023

CONAN-FGW 10 CoV-2 0.6735 ± 0.032 0.036 ± 0.014

Results. Table 3 presents performance of CONAN and
CONAN-FGW with the number of conformers 10 or 5.
It can be seen that CONAN-FGW delivers the best per-
formance on ROC metric on two datasets and holds the
second-best rank with PRC on CoV-2-3CL while requiring
only 10 or 5 conformers compared with 200 conformers as
CP3D-NDU. These results underscore the efficacy of incor-
porating barycenter components over merely aggregating
2D and 3D conformer embeddings, as observed in CONAN.

6.4. Molecular Conformer Ensemble Benchmark
Dataset. We run CONANon the BDE dataset (Table 1),
which is the second-largest setting in (Zhu et al., 2023) aim
to predict reaction-level molecule properties.
Baselines. CONAN is compared with state-of-the-art con-
former ensemble strategies presented in Zhu et al. (2023), in-
cluding SchNet (Schütt et al., 2017), DimeNet++ (Gasteiger
et al., 2020a), GemNet (Gasteiger et al., 2021), PaiNN
(Schütt et al., 2021), ClofNet (Du et al., 2022), and LEFT-
Net (Du et al., 2024). All these approaches employ 20
conformers in training and testing. We provide two results
of CONAN using only 10 conformers and based on two
architectures, SchNet and LEFTNet.
Results. Table 4 summarizes our achieved scores where the
CONAN-FGW using LEFTNet backbone holds the second

rank overall while using half the number of conformers.
Additionally, it can be seen that CONAN-FGW improves
with significant margins over both base models like SchNet
(1.9737 → 1.6047) and LEFTNet (1.5276 → 1.4829),
demonstrating the generalization of the proposed aggre-
gation.

Table 4. Performance of different conformer ensemble strategies
on reaction molecules prediction. Results are in Mean Absolute
Error (MAE ↓). CONAN-FGW1 and CONAN-FGW2 denote for
our versions using SchNet and LEFTNet, respectively.

SchNet DimeNet++ GemNet PainNN ClofNet LEFTNet CONAN-FGW1 CONAN-FGW2

Conf. 20 20 20 20 20 20 10 10

MAE ↓ 1.9737 1.4741 1.6059 1.8744 2.0106 1.5276 1.6047 1.4829

6.5. Ablation Study
Contribution of 3D Conformer Number. One of the build-
ing blocks of our model is the use of multiple 3D confor-
mations of a molecule. Each molecule is represented by
K conformations, so the choice of K affects the model’s
behavior. We treat K as a hyperparameter and conduct
experiments to validate the impact on model performance.
To this end, we test on the CONAN version with different
K (K = 0 is equivalent to the 2D-GAT baseline) and re-
port performance in Table 7 Appendix. We can observe
that using 3D conformers with K ≥ 1 clearly improves
performance compared to using only 2D molecular graphs
as 2D-GAT. Furthermore, there is no straightforward de-
pendency between the number of conformations in use and
the accuracy of the model. For e.g., the performance tends
to increase when using K = 10 (Lipo and FreeSolv), but
overall, the best trade-off value is K = 5.

Figure 3. Ablation study on the effect of number conformers on
the FGW barycenter component on valid sets.

Contribution of FGW Barycenter Aggregation. We ex-
amine the effect of barycenter aggregation when varying
the number of conformers K. Figure 3 summarizes results
for those settings where we report average RMSE over four
datasets in the MoleculeNet benchmark. We draw the fol-
lowing observations. First, CONAN-FGW shows notable
enhancements as the number of conformers increases, with
K values ranging within the set 3, 5, 10; however, when as
K = 20, discernible disparities compared to the results ob-
tained at K = 10 diminish. We argue that this phenomenon
aligns consistently with theoretical results in Theorem 4.1
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suggesting that employing a sufficiently large K facilitates
a precise approximation of the target barycenter.

Secondly, upon examining various datasets, it becomes
evident that CONAN-FGW consistently demonstrates en-
hanced performance with the utilization of larger conform-
ers, a phenomenon not uniformly observed in the case of
CONAN. This observation validates the robustness and re-
silience inherent in CONAN-FGW. We attribute this advan-
tage to the efficacy of its geometry-informed aggregation
strategy in ensemble learning with diverse 3D conformers.

Generalization to other Backbone Model. We investigate
CONAN and CONAN-FGW performance using the VisNet
backbone (Wang et al., 2024a), an equivariant geometry-
enhanced graph neural network for 3D conformer embed-
ding extraction. Results in Table 5 confirm that CONAN-
FGW still advances CONAN performance. Between VisNet
and SchNet, there is no universal best choice over datasets.

Table 5. CONAN evaluation using VisNet and SchNet on regres-
sion tasks (RMSE ↓).

Model Lipo ESOL FreeSolv BACE
CONAN (VisNet) 0.554± 0.448 1.025± 0.119 0.692± 0.032 0.612± 0.148
CONAN-FGW 0.495± 0.008 0.552± 0.052 0.643± 0.015 0.469± 0.012

CONAN (SchNet) 0.556± 0.013 0.571± 0.019 1.496± 0.158 0.635± 0.051
CONAN-FGW 0.487± 0.031 0.529± 0.022 1.068± 0.083 0.549± 0.016

6.6. 3D Conformers distance distribution
We check diversity conformers randomly selected from a set
of conformers generated by RDKit. For each pair of 3D con-
formers, we compute the optimal root mean square distance,
which first aligns two molecules before measuring distance.
Two settings are conducted: (i) estimating the mean, vari-
ance, max, and min distances distribution for conformers
sampled by CONAN over 200 conformers generated by
RDKit. and (ii) estimate distribution for those values in
case they are the top closest conformers. Figure 4 below
shows our observation with a box plot on the validation set
of Fressolv.

Figure 4. (left) box-plot distribution of mean, variance, maximum,
and minimum distances among conformers; (right) distribution of
the same values where sample top-k closest conformers.

We observe that the distribution on the left ranges from 0.1
to 1.5, while in the worst case, the distance is between 0.01
and 0.08. Additionally, there’s a large gap between dmax

and dmin on the left, whereas on the right, their means are
close. It, therefore, can be seen that CONAN sampling

strategy, given 200 RDKit-generated conformers, remains
consistent and diverse.

6.7. FGW Barycenter Algorithm Efficiency
We contrast our entropic solver (Algorithm 1) with FGW-
Mixup (Ma et al., 2023) for the K barycenter problem.
FGW-Mixup accelerates FGW problem-solving by relaxing
coupling feasibility constraints. However, as the number
of conformers K increases, FGW-Mixup requires more
outer iterations due to compounding marginal errors in
solving K FGW distances. In contrast, our approach em-
ploys an entropic-relaxation FGW formulation ensuring
that marginal constraints are respected, resulting in a less
noisy FGW subgradient. Furthermore, we implement our
algorithm with distributed computation on multi-GPUs, as
highlighted in Fig. 5. This figure illustrates epoch durations
during both forward and backward steps of training, show-
casing the performance across various conformer setups on
FreeSolv and CoV-2 3CL datasets. Utilizing a batch size
of 32 conformers, all three algorithms employ early termi-
nation upon reaching error tolerance. Notably, our solver
exhibits linear scalability with K, while FGW-Mixup shows
exponential growth, presenting challenges for large-scale
learning tasks. More details are in Appendix D.5.
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Figure 5. Comparing runtimes of FGW-Mixup, CONAN-FGW
(single and multi-GPU).

7. Conclusion and Future Works
In this study, we present an E(3)-invariant molecular con-
former aggregation network that integrates 2D molecular
graphs, 3D conformers, and geometry-attributed structures
using Fused Gromov-Wasserstein barycenter formulations.
The results indicate the effectiveness of this approach, sur-
passing several baseline methods across diverse downstream
tasks, including molecular property prediction and 3D clas-
sification. Moreover, we investigate the convergence prop-
erties of the empirical barycenter problem, demonstrating
that an adequate number of conformers can yield a reliable
approximation of the target structure. To enable training on
large datasets, we also introduce entropic barycenter solvers,
maximizing GPU utilization. Future research directions in-
clude exploring the robustness of using RDKit for multiple
low-energy scenarios or more accurate reference methods
for atomic structure relaxation, such as density-functional
theory. Finally, extending CONAN, to learn from large-scale
unlabeled multi-modal molecular datasets holds significant
promise for advancing the field.
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In this supplementary material, we first present rigorous proofs for results concerning the E(3) invariant of the proposed
aggregation mechanism in Appendix A, while those for the fast convergence of the empirical FGW barycenter are then
provided in Appendix B. The entropic FGW algorithm and practical GPU considerations are then given in more detail
in Appendix C. Finally, some experiment configuration supplements on SchNet neural architecture, 3D conformers
generation and comparison between entropic FGW and FGW-mixup are deffered in Appendix D.

A. Proof of Theorem 3.1
We will proceed as follows. First, we prove that HBC is invariant to permutations of the input conformers and actions of
the group E(3) applied to the input conformers. HBC is invariant to the order of the input conformers by definition of the
barycenter which is invariant to the order of the input graphs. Moreover, since by definition, actions of the group E(3)
preserve distances between points in a 3-dimensional space and, by assumption, the upstream 3D MPNN is invariant to
actions of E(3), for any input conformer S and its corresponding graph G(S) = (H,A,ω) and any action g ∈ E(3) we
have that G(gS) = (H,A,ω) = G(S). H is invariant to actions of the group E(3) because the 3D MPNN is invariant
to actions of the group. A is invariant due to distances between points being invariant. Hence, the input graphs to the
barycenter optimization problem are invariant to actions of the group E(3) on the conformers and, therefore, the output
barycenters are invariant to such group actions.

We know now for Equation (7): Hcomb = W2DH2D +W3DH3D +WBCHBC, that HBC is invariant to both actions of the
group E(3) and permutations of the input conformers. We also know that H3D is equivariant to permutations of the input
conformers, that is, every permutation of the input conformers also permutes the column of H3D in the same way. In
addition, H3D is invariant to actions of the group E(3) on the input conformers by the assumption that the 3D MPNN is
E(3)-invariant.

What remains to be shown is that
1

K

K∑
k=1

Hcomb with Hcomb = W2DH2D + W3DH3D + WBCHBC is invariant to column

permutations of the matrix H3D. Since we compute the average of the columns of Hcomb this is indeed the case.
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B. Proof of Theorem 4.1
We begin by introducing the notation used in the proof of the paper.

Undirected attribute graph as Distributions: Given the set of vertices and edges of the graph (V,E), we define the
undirected labeled graphs as tuples of the form G = (V,E, ℓf , ℓs). Here, ℓf : V → Ωf is a labeling function that associates
each vertex vi ∈ V with an attribute or feature xi = ℓf (vi) in some feature metric space (Ωf , df ), and ℓs : V → Ωs maps
a vertex vi from the graph to its structure representation ak = ℓs(vi) in some structure space (Ωs,A) specific to each graph
where A : Ωs ×Ωs → R+ is a symmetric application aimed at measuring similarity between nodes in the graph. In our
context, it is sufficient to consider the feature space as a d-dimensional Euclidean space R1×d with Euclidean distance (ℓ2

norm), i.e., (Ωf , df ) = (R1×d, ℓ2). With some abuse, we denote A and A as both the measure of structural similarity and
the matrix encoding this similarity between nodes in the graph, i.e., A[i, k] := A(ai,ak).

The Wasserstein (W) and Gromov-Wasserstein (GW) distances: Given two structure graphs G1 = (H1,A1,ω1)
and G2 = (H2,A2,ω2) of order n1 and n2, respectively, described previously by their probability measure µ1 =∑
k

ω1kδ(x1k,a1k) and µ2 =
∑
l

ω1lδ(x2l,a2l)), we denote µH1
=
∑
k

ωkδxk
and µA1

=
∑

k ωkδak
(resp. µH2

and µA2
)

the marginals of µ1 (resp. µ2) w.r.t. the feature and structure, respectively. We next consider the following notations:

Jp(A1,A2,π) =
∑
ijkl

Lijkl(A1,A2)
pπijπkl (16)

GWp(µH1 , µH2)
p = min

π∈Π(ω1,ω2)
Jp(A1,A2,π) (17)

Hp(M ,π) =
∑
kl

df (x1k,x2l)
pπkl (18)

Wp(µA1
, µA2

)p = min
π∈Π(ω1,ω2)

Hp(M ,π). (19)

Note that Ep,α (M ,A1,A2,π) can be further expanded as follows:

Ep,α (M ,A1,A2,π) = ⟨(1− α)Mp + αL(A1,A2)
p ⊗ π,π⟩

=
∑
ijkl

[
(1− α)df (x1k,x2l)

p + α |A1(i, k)−A2(j, l)|p
]
πijπkl.

Comparison between FGW and W: Let π ∈ Π(ω1,ω2) be any admissible coupling between ω1 and ω2. Assume that µ1

and µ2 belong to the same ground space (Ω,A, µ), by the definition of the FGW distance in equation (3), i.e.,

FGWp,α(G1, G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL (A1,A2)⊗ π,π⟩ ,

we get the following important relationship:

FGWp,α(G1, G2) ≤ ⟨(1− α)M + αL (A1,A2)⊗ π,π⟩

=
∑
ijkl

[
(1− α)df (x1k,x2l)

p + α |A[i, k]−A[j, l]|p
]
πijπkl

≤
∑
ijkl

[
(1− α)df (x1k,x2l)

p + α |A[i, j] +A[j, k]−A[j, k] +A[k, l]|p
]
πijπkl (20)

=
∑
ijkl

[
(1− α)df (x1k,x2l)

p + α |A[i, j] +A[k, l]|p
]
πijπkl

≤
∑
ijkl

[
(1− α)df (x1k,x2l)

p +
(
α2p−1A[i, j]p + α2p−1A[k, l]p

) ]
πijπkl (21)

≤
∑
ijkl

[ (
(1− α)df (x1k,x2l)

p + α2p−1A[k, l]p
)

+
(
(1− α)df (x1i,x2j)

p + α2p−1A[i, j]p
) ]

πijπkl

≤
∑
kl

[ (
(1− α)df (x1k,x2l)

p + α2p−1A[k, l]p
) ]

πkl
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+
∑
i,j

[ (
(1− α)df (x1i,x2j)

p + α2p−1A[i, j]p
) ]

πij

≤
∑
kl

[ (
(1− α)df (x1k,x2l)

p + 2p−1αA[k, l]p
) ]

πkl

≤
∑
kl

[ (
(1− α)df (x1k,x2l) + 2p−1αA[k, l]

) ]p
πkl. (22)

Here equation (20) is obtained by using the triangle inequality of the metric A, while equation (21) comes from Lemma B.1.
Note that the inequality equation (22) holds for any admissible coupling π ∈ Π(ω1,ω2). This also holds for the optimal
coupling, denoted by π, for the Wasserstein distance Wp(µ1, µ2) defined by the following metric space (Ω, d), where d is
given by:

d((x1,a1), (x2,a2)) = (1− α)df (x1,x2) + 2p−1αA(a1,a2).

Here, we have to verify that d is in fact a distance in Ω. Indeed, for the triangle inequality, for any
(x1,a1), (x2,a2), (x3,a3) ∈ Ω, we have

d((x1,a1), (x2,a2)) = (1− α)df (x1,x2) + 2p−1αA(a1,a2)

≤ (1− α)df (x1,x3) + (1− α)df (x3,x2)

+ 2p−1αA(a1,a2) + 2p−1αA(a1,a3) + 2p−1αA(a3,a2)

= (1− α)df (x1,x3) + 2p−1αA(a1,a3)

+ (1− α)df (x3,x2) + 2p−1αA(a1,a2) + 2p−1αA(a3,a2)

= d((x1,a1), (x3,a3)) + d((x3,a3), (x2,a2)).

In this case, the above inequality is derived from the triangle inequalities of d and C. The symmetry and equality relation of
d comes from the same properties of df and A.

By definition of Wasserstein distance in equation (19), this implies that

FGWp,α(G1, G2) ≤Wp(µA1
, µA2

). (23)

Lemma B.1. For any p ∈ N. We have

(a+ b)p ≤ 2p(a+ b)p. (24)

Proof of Lemma B.1. It is easy to check that the inequality is satisfied for p = 1. For any p ∈ N and p > 1, it holds that

(x+ y)p =

( 1

2p−1

) 1
p x(

1
2p−1

) 1
p

+

(
1

2p−1

) 1
p y(

1
2p−1

) 1
p

p

=

((
1

2p−1

) 1
p−1 x(

1
2p−1

) + ( 1

2p−1

) 1
p−1 y(

1
2p−1

))p

≤

[(
1

2p−1

) 1
p−1

+

(
1

2p−1

) 1
p−1

]p−1(
xp

1
2p−1

+
yp

1
2p−1

)

= 2p−1

[(
1

2p−1

) 1
p−1

]p−1

2p−1(xp + yp)

= 2p−1(xp + yp).

Here the last inequality is a consequence of the Hölder inequality.

Recall that we have

µK ∈ arg min
µ∈Pp(Ω)

1

K

∑
k

FGWp
p,α(µ, µk) ∈ Pp(Ω)
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µ0 ∈ arg min
µ∈Pp(Ω)

∫
Pp(Ω)

FGWp
p,α(µ, ν)dP (ν) ∈ Pp(Ω) ⊂ Pp(Ω).

Therefore, µK and µ0 belong to the same ground space (Ω,A, µ). By using equation (23), this implies that

FGWp,α(µ0, µK) ≤ 2Wp(µ0, µK)p (25)

and hence

E (FGW2,α(µ0, µK)) ≤ E
(
W2

2(µ0, µK)
)
≤ 4σ2

P

(1− β + γ)K
. (26)

This is equivalent to the following

E
(
FGW2

2,α(G0, GK)
)
≤ 4σ2

P

(1− β + γ)2K
. (27)

Here, Lemma B.3 leads to the last inquality for the Wassertein distance Wp(µ, ν) on the metric space (Ω, d).

We recall the following definitions and results.

Definition B.2 (Strongly convex and smooth functions). Given a separable Hilbert spaceH , with inner product ⟨·, ·⟩ and norm
| · |, we define the subdifferential ∂ψ ⊂ S2 of a function ψ : S → R by ∂ψ = {(x, g) : ∀y ∈ S, ψ(y) ≥ ψ(x) + ⟨g, y − x⟩}
and denote ∂ψ(x) = {g ∈ S : (x, g) ∈ ∂ψ}. We then refer to ψ as γ-strongly convex, if for every x ∈ S it holds that

∂ψ(x) ̸= ∅, and ⟨g, x− y⟩ ≥ ψ(x)− ψ(y) + α

2
|x− y|2 for all g ∈ ∂ψ(x) and all y ∈ S. (28)

We also recall that a convex function ψ : S → R is called β-smooth if

⟨gx, x− y⟩ ≤ ψ(x)− ψ(y) +
β

2
|x− y|2 , ∀gx ∈ ∂ψ(x), ∀x, y ∈ S. (29)

Lemma B.3 (Corollary 4.4 from (Le Gouic et al., 2022)). Let P ∈ P2(P2(Ω))be a probability measure on the 2-Wasserstein
space W2 on the metric space (Ω, d) and let µ0 ∈ P2(Ω) and σ2

P be a barycenter and a variance functional of P , respectively.
Let γ, β > 0 and suppose that every µ ∈ supp(P ) is the pushforward of µ0 by the gradient of an γ-strongly convex and
β smooth function ψµ0→µ, defined in Definition B.2, i.e., µ = (∇ψµ0→µ)#µ0. If β − γ < 1, then µ0 is unique and any
empirical barycenter µK of P satisfies

E
(
W2

2(µ0, µK)
)
≤ 4σ2

P

(1− β + γ)2K
. (30)

We then obtain the following important identity

Ep,α (M ,A1,A2,π) :=
∑
ijkl

[
(1− α)df (x1k,x2l)

p + α |A1(i, k)−A2(j, l)|p
]
πijπkl

= (1− α)Hp(M ,π) + αJp(A1,A2,π). (31)

Furthermore, given πα as the coupling that minimizes Ep,α (M ,A1,A2, ·), it holds that

FGWp
p,α(µ1, µ2) = min

π∈Π(ω1,ω2)
Ep,α (M ,A1,A2,π)

= Ep,α (M ,A1,A2,πα)

= (1− α)Hp(M ,πα) + αJp(A1,A2,πα)

≥ (1− α)Wp
p(µA1

, µA2
) + αGWp

p(µH1
, µH2

). (32)

This results in the following by-product:

E
(
GW2

2(µ0,H1
, µK,H2

)
)
≤ 4σ2

P

α(1− β + γ)2K
,

E
(
W2

2(µ0,A1
, µK,A2

)
)
≤ 4σ2

P

(1− α)(1− β + γ)2K
. (33)
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C. Solving Entropic Fused Gromov-Wasserstein
C.1. Optimization Formulation

Entropic-regularization (Cuturi, 2013) has been well-studied in various OT formulations including entropic Wasster-
stein (Peyré et al., 2019; Peyré, 2015) and entropic Gromov-Wasserstein (Rioux et al., 2023; Le et al., 2022) for fast
computations of numerous barycenter problems (Cuturi & Doucet, 2014; Peyré et al., 2016; Xu et al., 2019b; Lin et al.,
2020). However, adapting entropic formulation to the FGW barycenter problem for learning molecular representation, to
the best of our knowledge, is novel. Our motivation is to implement Sinkhorn projections solving for the FGW barycenter
subgradients, which can be straightforwardly vectorized, computed reversed-mode gradients, and batch-distributed in
multi-GPU, benefiting the scaling of the learning pipeline with large molecular datasets.

Recall that FGW between two graphs G1, G2 can be described as

FGW(G1, G2) ≡ FGW2,α (G1, G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL (A1,A2)⊗ π,π⟩ , (34)

where M := (df (H1[i],H2[j]))n1×n2
∈ Rn1×n2 the pairwise node distance matrix, L (A1,A2) :=

{L(A1[i, j],A2[k, l])}ijkl the 4-tensor of structure distance matrix. Assume the loss having the form L(a, b) =
f1(a) + f2(b)− h1(a)h2(b), then from Proposition 1 (Peyré et al., 2016), we can write the second term in Equation (34) as

L (A1,A2)⊗ π := L− 2h1(A1)πh2(A2)
⊤,

L := f1(A1)ω11
⊤
n2

+ 1n1
ω⊤

2 f1(A2)
⊤,

(35)

where the square loss L = L2 having the element-wise functions f1(a) = a2, f2(b) = b2, h1(a) = a, h2(b) = 2b, and
the KL loss L = KL having f1(a) = a log a− a, f2(b) = b, h1(a) = a, h2(b) = log b. By definition, the entropic FGW
distance adds an entropic term as

FGWϵ (G1, G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL (A1,A2)⊗ π,π⟩ − ϵH(π), (36)

which is a non-convex optimization problem. Following Proposition 2 (Peyré et al., 2016), the update rule solving Equa-
tion (36) is the solution of the entropic OT

π = arg min
π∈Π(ω1,ω2)

〈
(1− α)M +L− 2h1(A1)πh2(A2)

⊤,π
〉
− ϵH(π), (37)

where the feature and structure matrices M , L can be precomputed. Since the cost matrix of Equation (37) depends on π,
solving Equation (36) involves iterations of solving the linear entropic OT problem Equation (37) with Sinkhorn projections,
as shown in Algorithm 2.

Following Proposition 4.1 in (Peyré et al., 2019), for sufficiently small regularization ϵ, the approximate solution from the
entropic OT problem

OTϵ(ω1,ω2) = min
π∈Π(ω1,ω2)

⟨C,π⟩ − ϵH(π)

approaches the original OT problem. However, small ϵ incurs serious numerical instability for a high-dimensional cost
matrix, e.g., large graph comparisons. In the context of the barycenter problem, too high ϵ has cheap computation time but
leads to a “blurry” barycenter solution, while smaller ϵ produces better accuracy but suffers both numerical instability and
computational demanding (Schmitzer, 2019; Feydy et al., 2019). Thus, we solve the dual entropic OT problem (Peyré et al.,
2019)

OTϵ(ω1,ω2)
def.
= max

f ,g
⟨ω1,f⟩+ ⟨ω2, g⟩ − ε

〈
ω1 ⊗ ω2, exp

(
1

ε
(f ⊕ g −C)

)
− 1

〉
, (38)

where f ∈ Rn1 , g ∈ Rn2 are the potential vectors and ⊕ is the tensor plus, with stabilized log-sum-exp (LSE) opera-
tors (Feydy et al., 2019) for ∀i ∈ [1, n1], ∀j ∈ [1, n2]
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f [i] = −εLSEn2

k=1

(
log (ω2[k]) +

1

ε
g[k]− 1

ε
C[i, k]

)
g[j] = −εLSEn1

k=1

(
log (ω1[k]) +

1

ε
f [k]− 1

ε
C[k, j]

)
where LSEn

k=1 (x[k]) = log

n∑
k=1

exp (x[k])

(39)

for numerical stability with large dimension datasets. In practice, we implement these LSEs using einsum operations.

The optimal coupling of the dual entropic OT can be computed after the potential vectors converged as

π∗ = exp

(
1

ε
(f∗ ⊕ g∗ −C)

)
· (ω1 ⊗ ω2).

We state the Sinkhorn algorithm solving the dual entropic OT in Algorithm 3. With Algorithm 3, the auto-differentiation
gradient is robust through small perturbation of the potential solutions f∗, g∗. We observe that ϵ ∈ [0.1, 0.2] and a few
Sinkhorn LSEs are enough for our setting.

C.2. Empirical Entropic FGW Barycenter

In our experiments, we propose to solve the entropic relaxation of Equation (6) for utilizing GPU-accelerated Sinkhorn
iterations (Peyré et al., 2019). Given a set of conformer graphs {Gs := (Hs,As,ωs)}Ks=1, we want to optimize the entropic
barycenter Equation (13), where we fixed the prior on nodes ω. Titouan et al. (2019) solves Equation (13) using Block
Coordinate Descent as shown in Algorithm 1, which iteratively minimizes the original FGW distance between the current
barycenter and the graphs Gs. In our case, we solve for K couplings of entropic FGW distances to the empirical graphs at
each iteration (i.e., λs = 1/K), then following the update rule for structure matrix (Proposition 4, (Peyré et al., 2016))

A
(k+1) ← 1

ω ω⊤

K∑
s=1

λsπ
(k)
s Asπ

(k)
s

⊤
, if L := L2

A
(k+1) ← exp

(
1

ω ω⊤

K∑
s=1

λsπ
(k)
s Asπ

(k)
s

⊤
)
, if L := KL,

(40)

and for the feature matrix (Titouan et al., 2019; Cuturi & Doucet, 2014)

H
(k+1) ← diag(1/ω)

K∑
s=1

λsπ
(k)
s Hs, (41)

leading to Algorithm 1. Note that Algorithm 1 presents only the structure matrix update rule for the square loss L = L2 for
clarity. We can modify the structure matrix update rule according to the loss type L. In the experiment, we found that the
algorithm usually converges after running the number of 10 outer iterations and 30 inner iterations.

Algorithm 2 Entropic FGW with Sinkhorn projections
Input: Graph G1, G2, weighting α, entropic scalar ϵ.
Optimizing: π ∈ Π(ω1,ω2).
Compute L := f1(A1)ω11

⊤
n2

+ 1n1
ω⊤

2 f1(A2)
⊤.

Compute M = (d(H1[i],H2[j]))n1×n2
.

Initialize π.
repeat

Compute C(k) = (1− α)M + 2α(L− h1(A1)π
(k)h2(A2)

⊤).
Solve arg min

π
(k)
s
⟨C,π⟩ − ϵH(π) with Algorithm 3.

until k in inner iterations and not converged
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Algorithm 3 Stabilized LSE Sinkhorn algorithm
Input: Entropic scalar ϵ, cost matrix C, marginals ω1,ω2.
Initialize f , g = 0.
while termination criteria not met do

for ∀i ∈ [1, n] do
f [i] = −εLSEm

k=1

(
log (ω2[k]) +

1
εg[k]−

1
εC[i, k]

)
.

end for
for ∀j ∈ [1,m] do
g[j] = −εLSEn

k=1

(
log (ω1[k]) +

1
εf [k]−

1
εC[k, j]

)
.

end for
end while
Return π∗ = exp

(
1
ε (f

∗ ⊕ g∗ −C)
)
· (ω1 ⊗ ω2).

Practical GPU considerations. Our motivation for adopting entropic formulation for FGW barycenter is to solve the
barycenter problem fast with (stabilized LSE) Sinkhorn projections, which can be straightforwardly vectorized in PyTorch,
facilitating end-to-end unsupervised training with GPU (Cuturi, 2013; Cuturi & Doucet, 2014; Peyré et al., 2019). This
entropic formulation avoids using Conditional Gradients (Titouan et al., 2019) to solve FGW, which uses the classical
network flow algorithms1 at each iteration. Furthermore, by implementing Algorithm 1 in PyTorch (Paszke et al., 2017),
we utilize reverse-mode auto differentiation over solver iterations to propagate gradients from the graph parameters to the
barycenter solutions. We observe that the inner entropic OT problem usually converges with a few iterations; thus, we
typically limit the number of Sinkhorn iterations solving entropic OT problem to reduce memory burden (Peyré et al., 2019).
Scalability and complexity. As shown in Algorithm 1, we have three loops to optimize for the FGW barycenter. However,
the inner entropic OT problem typically converges with a few stabilized LSE Sinkhorn iterations. Thus, we fix a constant
number of Sinkhorn iterations and denote maximum outer (Algorithm 1) and inner iterations (Algorithm 2) as M,N .
In Algorithm 2, the complexity computing C is O(n3 + n2d) with n := max({ns}Ks=1). The first term is the complexity
of computing structure cost, while the second is the feature cost complexity. Thus, the complexity for Algorithm 1 is
O(MKN(n3 + n2d)) including the feature and structure matrix updates. Note that solving entropic FGW for K graphs
can be done in parallel with GPU. Additionally, this complexity does not depend on the maximum edge numbers in graphs
e := max({∥Es∥}Ks=1), and thus very competitive compared to previous graph matching method (Neyshabur et al., 2013)
for each outer iteration when e≫ n.

D. Experiment Configuration Supplements
D.1. SchNet Neural Architecture

We represent each of the K molecular conformers as a set of atoms V with atom numbers Z = (Z1, ..., Zn) and atomic
positions R = (r1, .., rn). At each layer ℓ an atom v is represented by a learnable representation hv . We use the geometric
message and aggregation functions of SchNet Schütt et al. (2017) but any other E(3)-invariant neural network can be used
instead. Besides providing a good trade-off between model complexity and efficacy, we choose SchNet as it was used in
prior related work (Axelrod & Gómez-Bombarelli, 2023).

SchNet relies on the following building blocks. The initial node attributes are learnable embeddings of the atom types, that
is, h(0)

v ∈ Rd is an embedding of the atom type of node v with d dimensions. Two types of combinations of atom-wise
linear layers and activation functions

φ
(ℓ)
i (h) := W

(l)
i h+ b

(l)
i and

ϕ
(ℓ)
i,j (h) := φℓ

j

(
ssp

(
φ
(ℓ)
i (h)

))
(42)

where ssp is the shifted softplus function (cite), W(l)
i ∈ Rd×d, b(l)

i ∈ Rd, with d the hidden dimension of the atom
embeddings. A filter-generating network that serves as a rotationally invariant function Inv:

ev,u = Inv
(

#»v (ℓ−1)
v , #»v (ℓ−1)

u

)
= ϕ

(ℓ)
1,2(RBF(||rv − ru||)),

1These algorithms are usually available in off-the-shell C++ backend libraries, which are difficult to construct auto-differentiation
computation graph over these solvers.
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where RBF is the radial basis function and ϕ(ℓ)1,2 is a sequence of two dense layers with shifted softplus activation.

E(3)-invariant message-passing is performed by using the following message function
m(ℓ)

v,u = M(ℓ)
(
h(ℓ−1)
v ,h(ℓ−1)

u , ev,u

)
= φ

(ℓ)
1

(
h(l−1)
u

)
◦ ev,u,

where ◦ represents the element-wise multiplication. The aggregation function is now defined as

h̄(ℓ)
v := AGG(ℓ)

(
{{m(ℓ)

v,u | u ∈ N(v)}}
)
=

∑
u∈N(v)

m(ℓ)
v,u.

Finally, the update function is given by

h(ℓ)
v = UPD(ℓ)

(
h(ℓ−1)
v ,AGG(ℓ)

(
{{m(ℓ)

v,u | u ∈ N(v)}}
))

= h(ℓ−1)
v + ϕ

(ℓ)
3,4

(
h̄(ℓ)
v

)
. (43)

We denote the matrix whose columns are the atom-wise features from the last message-passing layer L with H, that is,
H[v] = h

(L)
v .

D.2. Dataset Overview

Molecular Property Prediction Tasks We conduct our experiments on MoleculeNet (Wu et al., 2018), a comprehensive
benchmark dataset for computational chemistry. It spans a wide array of tasks that range from predicting quantum mechanical
properties to determining biological activities and solubilities of compounds. In our study, we focus on the regression tasks
on four datasets from MoleculeNet benchmark: Lipo, ESOL, FreeSolv, and BACE.

• The Lipo dataset is a collection of 4200 lipophilicity values for various chemical compounds. Lipophilicity is a key
property that impacts a molecule’s pharmacokinetic behavior, making it crucial for drug development.

• ESOL contains 1128 experimental solubility values for a range of small, drug-like molecules. Understanding solubility
is vital in drug discovery, as poor solubility can lead to issues with bioavailability.

• FreeSolv offers both calculated and experimentally determined hydration-free energies for a collection of 642 small
molecules. These hydration-free energies are critical for assessing a molecule’s stability and solubility in water.

• The BACE dataset focuses on biochemical assays related to Alzheimer’s Disease. It contains 1513 pIC50 values,
indicating the efficiency of various molecules in inhibiting the β-site amyloid precursor protein cleaving enzyme 1
(BACE-1).

3D Molecular Classification Tasks In addition, we evaluate the classification performance using two closely related
datasets associated with SARS-CoV: SARS-CoV-2 3CL (CoV-2 3CL), and SARS-CoV-2 (CoV-2).

• CoV-2 3CL protease dataset comprises 76 instances corresponding to inhibitory interactions, considering a total of
804 unique species. This dataset specifically addresses the inhibition of the SARS-CoV-2 3CL protease (denoted as
‘CoV-2 CL’) (Source, 2020).

• CoV-2 dataset, which encompasses 92 instances across a spectrum of 5,476 unique species. This dataset focuses on
the broader context of inhibitory interactions against SARS-CoV-2 measured in vitro within human cells (Ellinger
et al., 2020; Touret et al., 2020).

Reaction-level molecule properties prediction The BDE dataset (Meyer et al., 2018) contains 5915 organometallic catalysts
(ML1L2), with metal centers (Pd, Pt, Au, Ag, Cu, Ni) and two flexible organic ligands (L1 and L2) chosen from a 91-ligand
library. It includes conformations of each unbound catalyst and those bound to ethylene and bromide after reacting with
vinyl bromide (resulting in 11830 individual molecules). The dataset provides electronic binding energies, calculated as the
energy difference between the bound-catalyst complex and the unbound catalyst, optimized using DFT. Conformers are
initially generated with Open Babel and then geometry-optimized to likely represent the global minimum energy structures
at the force field level.
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D.3. 3D Conformers Generation

RDKit offers two methodologies to generate conformers for molecules:

• The distance geometry approach employs distance geometry principles for conformer generation, starting with the
determination of a molecule’s distance bounds matrix based on connectivity and predefined rules. This matrix is then
refined and used to formulate a random distance matrix, which subsequently guides the molecule’s embedding into 3D
space. The resulting atomic coordinates undergo further refinement through a specialized “distance geometry force
field.”

• ETKDG method, which refines generated conformers by integrating torsion angle preferences from the Cambridge
Structural Database (CSD). This technique can be further enhanced with additional torsion terms, catering especially to
small rings and macrocycles, yielding high-quality conformers suitable for direct application in many scenarios.

In our experiments, we applied a standardized approach to configuring all benchmark datasets, encompassing the following
steps:

• Conformer Generation: During the training phase, we use RDKit to generate a fixed set of 200 conformers for every
molecular structure specified by its SMILES string. However, in each epoch, each molecular is sampled with a K
conformers (K << 200). For the validation and testing, we use a fixed seed and generate randomly K conformers for
each sample in the dataset.

• Parallel Processing: Utilizing a process pool enhances the parallelization of conformer generation, thereby optimizing
overall efficiency. We provide in Table 6 the average execution time for generating a single conformer from its SMILES
string across diverse datasets.

For a comprehensive 3D structural analysis, we present summary statistics detailing the number of edges and nodes (Table
6). These statistics provide insights into the structural characteristics of molecules within the datasets. Average values offer
a perspective on the typical size of molecules in terms of edges and nodes, while minimum and maximum values reflect
the varying complexities of molecular structures across datasets. Notably, the Lipo and BACE datasets emerge as the most
intricate graphs, contrasting with ESOL and FreeSolv, which exhibit sparser structures. We illustrate in Figure 7 some
typical generated conformers for each dataset.

Table 6. Summary statistics for edge and node counts in diverse datasets, reflecting the runtime needed to generate a conformer from a
molecular structure.

Dataset Number of Edges Number of Nodes Execution Time (seconds)Avg Min Max Avg Min Max

Lipo 101.8 24 412 48.4 12 203 4.68× 10−6

ESOL 52 6 252 25.6 4 119 3.58× 10−6

FreeSolv 35.5 4 92 18.1 3 44 3.13× 10−6

BACE 135 36 376 64.7 17 184 4.34× 10−6

CoV-2 3CL 56 16 96 27.4 8 48 3.12× 10−6

CoV-2 95.2 4 220 45.7 3 100 3.96× 10−6

D.4. Ablation Studies of Number of Conformers

Table 7. The impact of number of conformations K on the accuracy of the CONAN model (without barycenter). Results are in RMSE ↓
computed on the validation set. Bold and underline values denote first and second-rank results.

K Lipo ESOL FreeSolv BACE
0 1.387± 0.206 2.288± 0.017 8.564± 1.345 1.844± 0.33
1 0.619± 0.045 0.645± 0.054 2.306± 0.807 0.705± 0.064
3 0.581± 0.033 0.592± 0.072 2.035± 0.256 0.653± 0.026
5 0.567± 0.019 0.581± 0.051 1.799± 0.662 0.616± 0.051
10 0.564± 0.030 0.583± 0.027 1.568± 0.183 0.832± 0.143
20 0.569± 0.003 0.589± 0.012 1.742± 0.143 0.670± 0.036
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Table 7 illustrates that incorporating 3D conformers with K ≥ 1 significantly enhances performance compared to relying
solely on 2D molecular graphs, as used in the 2D-GAT model. However, the relationship between the number of conforma-
tions and model accuracy is not linear or straightforward. For instance, while increasing the number of conformations to
K = 10 improves performance for datasets such as Lipo and ESOL, the best overall performance is usually achieved with
K = 5. This suggests that an optimal number of conformers maximizes model accuracy, which varies depending on the
specific dataset.

D.5. Entropic FGW versus FGW-Mixup detail
We provide more details on the efficiency ablation study in Section 6.7. We adapt the original GitHub repository https:
//github.com/ArthurLeoM/FGWMixup from Ma et al. (2023) as the baseline. In the context of K FGW barycenter
problem, due to the numerical instability of the exp function, we have to set small stepsize γ of the Bregman projections
(Algorithm 2 in (Ma et al., 2023)) to avoid NAN values output of FGW-Mixup in some datasets, leading to more inner
iterations to converge. Indeed, it is particularly difficult to find optimal parameters for FGW-Mixup, balancing between the
marginal errors inducing the FGW subgradient noise at the outer iteration and the empirical convergence rate at the inner
iteration.

Running Time Analysis. In Figure 5, we compare the running time of our solver with FGW-Mixup on two datasets,
FreeSolv, and CoV-2 3CL, for both forward and backward steps to update gradients for the whole models. We measure
average times over epochs during the training steps with increasing values of conformers K. Note that in FGW-Mixup, the
solver is not supported for inference on GPU, while our algorithm is designed for this purpose and can be scaled on large
training samples using data distributed parallel in Pytorch. In particular, CONAN-FGW Single-GPU CONAN-FGW on
Multi-GPUs indicates the version where one and four Tesla V100-32GB are used for training, respectively.

To delve deeper into the computation of the FGW barycenter, we present the runtime analysis in Figure 6. The configuration
mirrors that of Figure 5, with the exception that the runtime is specifically gauged at the barycenter components during
the forward step. Notably, the execution time exhibits a consistent pattern comparable to Figure 5, highlighting that
CONAN-FGW outperforms FGX-Mixup in both single GPU and multi-GPU setups, achieving significantly faster runtimes
as the number of conformers is scaled.
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Figure 6. Runtime comparison of FGW-Mixup, CONAN-FGW (single and multi-GPU) in the FGW barycenter computation.

Error Analysis. In this part, we investigate the error of CONAN-FGW and FGW-Mixup. To this end, we use the solution
of the original FGW problem solved by the Conditional Gradient algorithm (Titouan et al., 2020) as the approximated
ground truth for comparing solution errors (Table 8). We fix the same hyperparameters for both solvers as in Figure 5. As
expected, the FGW-Mixup solution errors are slightly smaller than our CONAN-FGW ones. This is due to the fact that (i) to
prevent numerical instability, we set small stepsize for the mirror descents (i.e., alternating Bregman projections) and (ii)
FGW-Mixup asymptotically converges to the original FGW solution up to a bounded gap (Ma et al., 2023). However, this
induces more computational time for large FGW problems, as seen Figures 5 and 6. In contrast, CONAN-FGW maintains
comparable solution errors to FGW-Mixup while having reasonable computational runtime and being compatible with
deploying multi-GPU for large-scale problems.

D.6. Visualize Conformers Generated by RDKit

We present in Figure 7 typical 3D conformers generated by RDKit with their string inputs denote below each figure.
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Lipo

CC(C)Cn1cnc2c(N)nc3ccccc3c12 O=C(N1CCCCC1)c2csc3CCCCc23 OC(=O)c1cncc(c1)c2ccc(Cl)c(c
2)C(=O)NCC34CC5CC(CC(C5)C3)C4

ESOL

CC12CC2(C)C(=O)N(C1
=O)c3cc(Cl)cc(Cl)c3

CCCCC1C(=O)N(N(C1=O)
c2ccc(O)cc2)c3ccccc3

O=C1NC(=O)C(N1)(
c2ccccc2)c3ccccc3

FreeSolv

CC(C)C(C)C CNC c1cc(ccc1O)Cl

BACE

O(C(=O)C=1[C@@H](C)C(=CN(CC(OC(C)C)=O)C=1C)C(=O
)N[C@H]([C@H](O)C[NH2+]C1CC1)Cc1ccccc1)Cc1ccccc1

O(C)c1cc(NC[C@@H](O)[C@@H](NC(=O)C2=CN(C=C(C(=O)N[C
@H](C)c3ccccc3)[C@H]2CCC)CC(OC(C)C)=O)Cc2ccccc2)ccc1

S1(=O)(=O)N(c2cc(cc3c2n(cc3CC)CC1)C(=O)N
C(Cc1ccccc1)C(O)C[NH2+]C(CCCC(C)C)(C)C)C

CoV-2 3CL

CC(C)N(C)c1ncnc2c1cnn2C CNC1CCCCC1S(C)(=O)=O COc1ccccc1-c1nnco1

CoV-2

CC(C)CN(C[C@@H](OP(=O)(O)O)[C@H](Cc1ccccc
1)NC(=O)O[C@H]1CCOC1)S(=O)(=O)c1ccc(N)cc1

COc1cc2c(cc1OCCCN1
CCCC1)N=C(N)C21CCC1 O=C(Nc1ccc(S(=O)(=O)Nc2c

cccc2Cl)c(Cl)c1)c1ccccn1

Figure 7. Visualizing 3D molecular conformers with corresponding SMILES strings across diverse datasets.

Table 8. Error estimation performance across datasets, demonstrating the influence of conformer variations and different methodologies
for Ground Truth (GT) in conjunction with CONAN-FGW and FGW-Mixup. The comparing matrix metrics are Normalized Frobenius
norm, Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE), and Mean Square Error (MSE).

Dataset Conformers GT and CONAN-FGW GT and FGW-Mixup
N-Frobenius MAE MAPE MSE N-Frobenius MAE MAPE MSE

FreeSolv

3 0.1325 0.1727 0.3523 0.0812 0.1190 0.1590 0.3210 0.0671
5 0.1387 0.1823 0.3753 0.0870 0.1258 0.1695 0.3466 0.0731
10 0.1431 0.1874 0.3876 0.0919 0.1323 0.1776 0.3638 0.0792
15 0.1460 0.1924 0.3980 0.0947 0.1358 0.1819 0.3703 0.0832
20 0.1453 0.1920 0.3954 0.0952 0.1336 0.1805 0.3662 0.0816

CoV-2 3CL

3 0.0859 0.1696 0.4207 0.0670 0.0804 0.1626 0.4055 0.0600
5 0.0842 0.1688 0.4114 0.0632 0.0793 0.1616 0.3942 0.0569
10 0.0879 0.1801 0.4452 0.0719 0.0806 0.1697 0.4201 0.0637
15 0.0859 0.1729 0.4251 0.0670 0.0764 0.1571 0.3899 0.0543
20 0.0902 0.1823 0.4558 0.0714 0.0865 0.1779 0.4460 0.0653
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