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Abstract

A molecule’s 2D representation consists of its
atoms, their attributes, and the molecule’s cova-
lent bonds. A 3D (geometric) representation of a
molecule is called a conformer and consists of its
atom types and Cartesian coordinates. Every con-
former has a potential energy, and the lower this
energy, the more likely it occurs in nature. Most
existing machine learning methods for molecular
property prediction consider either 2D molecular
graphs or 3D conformer structure representations
in isolation. Inspired by recent work on using
ensembles of conformers in conjunction with 2D
graph representations, we propose E(3)-invariant
molecular conformer aggregation networks. The
method integrates a molecule’s 2D representation
with that of multiple of its conformers. Contrary
to prior work, we propose a novel 2D-3D aggrega-
tion mechanism based on a differentiable solver
for the Fused Gromov-Wasserstein Barycenter
problem and the use of an efficient conformer
generation method based on distance geometry.
We show that the proposed aggregation mecha-
nism is E(3) invariant and propose an efficient
GPU implementation. Moreover, we demonstrate
that the aggregation mechanism helps to signifi-
cantly outperform state-of-the-art molecule prop-
erty prediction methods on established datasets.
Our implementation is available at this link.

1. Introduction

Machine learning is increasingly used for modeling and
analyzing properties of atomic systems with important ap-
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plications in drug discovery and material design (Butler
et al., 2018; Vamathevan et al., 2019; Choudhary et al.,
2022; Fedik et al., 2022; Batatia et al., 2023). Most existing
machine learning approaches to molecular property predic-
tion either incorporate 2D (topological) (Kipf & Welling,
2017; Gilmer et al., 2017b; Xu et al., 2018; Velickovié
et al., 2018) or 3D (geometric) information of molecular
structures (Schiitt et al., 2017; Schiitt et al., 2021; Batzner
et al., 2022; Batatia et al., 2022). 2D molecular graphs
describe molecular connectivity (covalent bonds) but ig-
nore the spatial arrangement of the atoms in a molecule
(molecular conformation). 3D graph representations cap-
ture conformational changes but are commonly used to en-
code an individual conformer. Many molecular properties,
such as solubility and binding affinity (Cao et al., 2022),
however, inherently depend on a large number of confor-
mations a molecule can occur as in nature, and employing
a single geometry per molecule limits the applicability of
machine-learning models. Furthermore, it is challenging to
determine conformers that predominantly contribute to the
molecular properties of interest. Thus, developing expres-
sive representations for molecular systems when modeling
their properties is an ongoing challenge.

To overcome this, recent work has introduced molecular rep-
resentations that incorporate both 2D molecular graphs and
3D conformers (Zhu et al., 2023). These methods aim to en-
code various molecular structures, such as atom types, bond
types, and spatial coordinates, leading to more comprehen-
sive feature embeddings. The latest algorithms, including
graph neural networks, attention mechanisms (Axelrod &
Gomez-Bombarelli, 2023), and long short-term memory
networks (Wang et al., 2024b), have demonstrated improved
generalization capabilities in various molecular prediction
tasks. Despite their effectiveness, these methods struggle to
balance model complexity and performance and face scal-
ability challenges mainly due to the computational cost of
generating 3D conformers. These problems are exacerbated
when using several conformers per system, underscoring
the need for strategies to mitigate these limitations.

Contributions. We propose a new message-passing neu-
ral network architecture that integrates both 2D and en-
sembles of 3D molecular structures. The approach intro-
duces a geometry-aware conformer ensemble aggregation
strategy using Fused Gromov-Wasserstein (FGW) barycen-
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ters (Titouan et al., 2019), in which interactions between
atoms across conformers are captured using both latent atom
embeddings and conformer structures. The aggregation
mechanism is invariant to actions of the group E (3)—the
Euclidean group in 3 dimensions—such as translations, ro-
tations, and inversion as well as to permutations of the input
conformers. To make the proposed method applicable to
large-scale problems, we accelerate the solvers for the FGW
barycenter problem with entropic-based techniques (Rioux
et al., 2023), allowing the model to be trained in parallel
on multiple GPUs. We also experimentally explore the im-
pact of the number of conformers and demonstrate that,
within our framework, a modest number of conformers gen-
erated through efficient distance geometry-based sampling
achieves state-of-the-art accuracy. We partially explain this
through a theoretical analysis showing that the empirical
barycenter converges to the target barycenter at a rate of
O (1=K), where K denotes the number of conformers. Fi-
nally, we conduct a systematic evaluation of our proposed
approaches, comparing their performance to state-of-the-art
algorithms. The results show that our method is competitive
and frequently surpasses existing methods across a variety
of datasets and tasks.

2. Background

We first provide notations used in the paper. We
note the sifggplex histogram with n-bins as Ap :=

12RY: ;1i=1 andSh(A) as the set of symmet-
ric matrices of size n taking values in A R. For any
X 2 , x denotes the Dirac measure in X. Let P( ) be
the set of all probability measures on a space . We denote

trix scalar product associated with the Forbenius norm as
h i. The tensor-matrix multiplication will be denoted as
i.e., given any tensor IP': (Lijki) and matrix B := (By),
L B is the matrix ( K LijkIBkI)ij-

A graph G is a pair (V; E) with finite sets of vertices or
nodes V and edges E ~ ffu;vg V ju 6 vg. We set
N = jV j and write that the graph is of order n. For ease of
notation, we denote the edge fu; vg in E by (u; V) or (v;u).
The neighborhood of v in V is denoted by N (v) := fu 2
V j (v;u) 2 Eg and the degree of a vertex v is jN (v)j. An
attributed graph G is a triple (V; E; “¢) with a graph (V; E)
and (vertex-)feature (attribute) function “¢: V. ¥ R 9, for
some d 2 N?. Then “¢(V) is an attribute or feature of v,
for v in V. When we have multiple attributes, we have a
pair G = (G;H), where G = (V;E) and H in R" 9is
a node attribute matrix. For a matrix H in R™ 9 and v in
[n], we denote by Hy, in R ¢ the vth row of H such that
H, = “£(v). Analogously, we can define attributes for the
edges of the graph. Furthermore, we can encode an n-order
graph G via an adjacency matrix A(G) 2 f0;1g" ™.

2.1. Message-Passing Neural Networks

Message-passing neural networks (MPNN) learn d-
dimensional real-valued vector representations for each ver-
tex in a graph by exchanging and aggregating information
from neighboring nodes. Each vertex Vv is annotated with a
feature h{” in RY representing characteristics such as atom
positions and numbers in the case of chemical molecules. In
addition, each edge (u; V) is associated with a feature vector
e(u;Vv). An MPNN architecture consists of a composition
of permutation-equivariant parameterized functions.

Following Gilmer et al. (2017a) and Scarselli et al. (2009),
in each layer, * > 0, we compute vertex features

h{? .= uPD®) h{ D;AGGH) Fm{) ju2 N(v)g

m&), =M h{ D;n§ Yie,., 2RY (1)
where UPD(‘), M) and AGG) are differentiable param-
eterized functions. In the case of graph-level regression
problems, one uses

he = READOUT ¥Fh{" jv 2V (G)g 2RY;, (2)

to compute a single vectorial representation based on
learned vertex features after iteration L where READOUT
can be a differentiable parameterized function.

Molecules are 3-dimensional structures that can be repre-
sented by geometric graphs, capturing each atom’s 3D po-
sition. To obtain more expressive representations, we also
consider geometric input attributes and focus on vectorial
features QIgV; u of nodes. Since we address the problem of
molecular property prediction, where we assume the proper-
ties to be invariant to actions of the group E(3), we focus
on E (3)-invariant MPNNs for geometric graphs.

2.2. Fused Gromov-Wasserstein Distance

Fused Gromov-Wasserstein. An undirected attributed
graph G of order n in the optimal transport context is defined
as atuple G := (H;A; 1), where H 2 R" 9 is a node
feature matrix and A is a matrix encoding relationships be-
tween nodes, and ! 2 Ap, denotes the probability measure
of nodes within the graph, which can be modeled as the rel-
ative importance weights of graph nodes. Without any prior
knowledge, uniform weights can be chosen (I = 1,=n)
(Vincent-Cuaz et al., 2022). The matrix A can be the graph
adjacency matrix, the shortest-path matrix or other distance
metrics based on the graph topologies (Peyré et al., 2016;
Titouan et al., 2019; 2020). Given two graphs G1; G of or-
der ny; Ny, respectively, Fused Gromov-Wasserstein (FGW)
distance can be defined as follows:

FGWp; (Gl; Gz)

:= min h(1

M+ L(ALA2) N H )]
2 (11;12)
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Figure 1.Overview of the proposed conformer aggregation network with alanine dipeptide as example input.

HereM := (df (H1[i];H g[j])")nl n, 2 R"t "2 jsthe are determined by corresponding geminal distances. Adja-

pairwise node distance matrilx(A 1;A2) = (jA1[i;j ] cent atoms or functional groups adhere to cis/trans limits
Azl m]iP)ym the 4-tensor representing the alignmentfor rotatable bonds or set values for rigid groups. Other
cost matrix, and (! 1;! ) = f 2 R}* "?j 1, = distances have hard sphere lower bounds, usually chosen

I'1; 1., = ! 2gis the set of all valid couplings between approximately 18 below van der Waals radii (Hawkins,
node distributions ; and! ,. Moreover,d; ( ; ) isthedis- 2017). Chirality constraints are applied to every rigid
tance metric in the feature space, and [0; 1]is the weight  quadruple of atoms.
that trades off between the Gromov-Wasserstein cost on th,E distance .

geometry algorithm now randomly generatgs a

graph structure and Wasserstein cost on the feature signgl. . h e : .
. B . . Imensional conformation satisfying the constraints. To bias
In practice, we usually chooge= 2, Euclidean distance

fords (:),and = 0:5to calculate FGW distance. the gengratlon toward; Iow.-energy cqnformauons, a§|mple

and ef cient force eld is typically applied. We use ef cient
Entropic Fused Gromov-Wasserstein.The entropic FGW  implementations from the RDKit package (Landrum, 2016).
distance adds an entropic term (Cuturi, 2013) as 3.2. Conformer Aggregation Network

FGW,; (G1:G2) = FGW; (G1;G2) HC D) @) We propose a new MPNN-based neural network that con-
where the entropic scalarfacilitates the tunable trade-off sists of three parts as depicted in Figure 1. First, a 2D
between solution accuracy and computational performanc®PNN model is used to capture the general molecular
(w.r.t. lower and higher, respectively). Solving this en- features such as covalent bond structure and atom fea-
tropic FGW involves iterations of solving the linear en-tures. Second, a novel FGW barycenter-based implicit
tropic OT problem Equation (37) with (stabilized) Sinkhorn E (3)-invariant aggregation function that integrates the rep-
projections (Proposition 2 (Peyet al., 2016)), described resentations of molecular 3D conformations computed by
in Appendix C and Algorithm 2. geometric message-passing neural networks. Finally, a per-

. mutation andE (3)-invariant aggregation function will be
3. CONAN: Conformer Aggregation Networks  sed to combine the 2D graph and 3D conformer represen-
via Fused Gromov-Wasserstein Barycenters tations of the molecules.

In what follows, we refer to the representation of atomspp Molecular Graph Message-Passing NetworkEach
and covalent bonds and their attributes as the 2D structurgolecule is represented by a 2D graph= (V;E) with

structures. The following subsections describe each part Oéovalent bonds, annotated with molecular feattr{®s and
the framework in detail. ev.u , respectively (see Section 6 for details). To propagate

3.1. Conformer Generation features across a molecule and get 2D molecular represen-

To efciently generate conformers, we employ distancetations' we use GAT layers, which utilize a self-attention
geometry-based algorithms, which convert distance Corpjechanlsm in message-passing with the following opera-

straints into Cartesian coordinates. For atomistic systemgfjns" i i X i
constraints typically de ne lower and upper bounds onin- h{) :=AGG’ fm{}) ju2 N(v)g = m{.)
teratomic squared distances. In a 2D input graph, covalent u2N (v)

bond distances adhere to known ranges, while bond angles with m\(,L), = ,uWh f,' D, (5)
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and where ., are the GAT attention coef cients and
W a learnable parameter matrix. Following \édovic

et al. (2018), the attention mechanism is implemented with
a single-layer feedforward neural networlg To obtain a
per-molecule embedding, we compa® =~ ™,
whereL is the number of message-passing layers.

3D Conformer Message-Passing NetworkA conformer
(atomic structure) of a molecule is dened & =
fri;Zig,; whereN is the number of atoms, 2 R3

are the Cartesian coordinates of atorandZ; 2 N is . . .
the atomic number of atoin We use weighted adiacenc Figure 2.lllustration of the feature-based and structural distances
Icnu ’ use weig J Y of conformers (here: alanine dipeptide) we use for the computation

i i - d
matricesA 2 R to represent pairwise atom dlstance§.of the Fused Gromov-Wasserstein barycenter.
In some cases we will apply a cutoff radius to these dis-

tances. We employ the geometric MPNN SchNet (8ch _ X
et al., 2017), although it is worth noting that alternative G:= arg min kFGW; (G; G); (6)
E (3)-invariant neural networks could be seamlessly inte- k=1

grated. The selection of SchNet is motivated not only by itswhereFGW,,, (G; G) is the fused Gromov-Wasserstein
pro cient balance between model complexity and ef cacy distance de ned in Equation (3), and where we set, for
but also by its proven utility in previous works (Axelrod & each pair of conformer graphé = (H;A;!) and
G(')mez-Bomba_reIIi,2023_). SchNet perfor@g3)-invariant G, = (H, ;A1 ), M = (H[i] H[ji]? 2
message-passing by using radial basis functions to incorpo- . ) non
rate the distances of the geometric node featfiresf,. R " as the feature distance matrix, abdA Ax) =

We refer the reader to Appendix D.1 for more details. WA i1 1~ Akll;mli);, as the 4-tensor representing the

denote the matrix whose columns are the atom-wise featured"uctural distance when aligning atomso | andj to
of SchNet from the last message-passing layerith H, M (Figure 2). Solving Equation (6), we obtain a unique

thatis,H[v] = h(") FGW barycenter grapé = (H; A; 1) with representation

' ' h, = HJv] for each atonv. We aggregate the atom-wise
To compute the vector representation for a confor@®er embeddings obtained from the FGV\HJaryceﬁénto asin-
we aggregate the atom-wise embeddings obtained from thgle vector representation using®= = ,,, A h,+a .

last message-passing lgyenf SchNetinto a single vector Intuitively, barycenter-based aggregation in Eq.(6) can be

representation as®®= "~ ,, Ah{") +a , whereV is seen as a more distance (structure) preserving pooling oper-
the set of atoms an@l anda learned during training. For a ation rather than standard mean aggregation. For instance,
set ofK conformers, the output of our 3D MPNN models consider two conformers, where one is a 180-degree rotation
is a matrix whose columns are the embeddihgs for  of the other. Averaging their coordinates collapses the hy-
conformerk, that is,H 3k] = hE°. drogen atoms into the same position, creating an unphysical

. . structure. On the contrary, employing the FGW Barycenter
FGW Barycenter Aggregation.  We now introduce might prevent such issues.

an implicit and differentiable neural aggregation function _ _ )

whose output is determined by solving an FGW barycenlvariant Aggregation of 2D and 3D Representations.

ter optimization problem. lIts input iK graphsG, =  We integrate the representations of the 2D graph and the 3D
(Hi;A;! i) for each conformeS, = fryi;ZyigY,, conformergraphs using an average aggregation as well as
with featuresH , computed by af (3)-invariant MPNN,  the barycenter-based aggregation. The requirement for this
with weighted adjacency matrik  of pairwise atomic dis- aggregation is that it iswariant to the order of the input
tances, and the probability mass of each atgmtypically ~ conformers; that is, it treats the conformers as a set as well
settol=N. The output of the barycenter conformer, denoted@s invariant to actions of the grod(3).

asG = (H;A;T"), represents the geometric mean of they et} 20 3ndH BChe the matrices whose columns are, respec-

input conformers, incorporating both their structural charyyely, K copies of the 2D and barycenter representations

acteristics and features (Figure 1). The barycedtesthe  from previous sections. Using learnable weight matrices

conformer graph that minimizes the sum of weighted FGWy, 20 \y/ 30 3ndW BC we obtain the nal atom-wise feature

distances among the conformer grapBs )2« ; Withfea-  atrices as

ture matricegH )i 2 [k 1, Structure matrice@A )2k 1, and comb— \as 2Dy 2D 3014 3D BG. BC

base histogramd )2k ] 2 K. Thatis, given any xed H = W2PHP+ WPHP+ WEHES (7)

K 2 Nandany 2 ,the FGW barycenteris de ned where is a hyper-parameter controlling the contribution
of the barycenter-based feature. Intuitively, this aggregation
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function, where we use multiple copies of the 2D graph andset ofP( ) with nite variance and de ned the same way
barycenter representations, provides a balanced contribasP,(P,( )) buton( ;A; ). ForanyP 2 Pp(Pp( )),
tion of the three types of representations and is empiricallyve de ne the true barycenter &f is any— 2 Pp( ) s.t.
highly bene cial. Finally, to predict a molecular property, z

we apply a linear regression layer on a mean-aggregation of ¢ 2 arg min FGWE. (; )dP( ): (10)
the per-conformations embedding as: 2Pp() Po()
1 X ' In our context of predicting molecular properties, the true
¢y=WE = HOMK] + pC: (8)  barycenter, is unknown. However, we can still dra
K k=1 random sample indepqﬂgently of the 3P molecular repre-
We can show that the function de ned by Equation (5) to sentationf KOk = |k:1 Ll ) | from P.

Equation (8) is invariant to actions of the grobEl¥3) and

permutations acting on the sequence of input conformers. | €N arempirical barycenteis de negbas a barycenter of

the empirical distributioPx = (1=K) , ,,i.e.,

Theorem 3.1. Let G be the 2D graph andS;;:::; Sk ) _ 1 X . .

with S = frii;Zwiglh,, 1k K, be a se- < 2 agminge ) FOWS (G W (A1)
quence ofK conformers of a molecule. Let = .
f (G:(Si::::S¢)) be the function dened by Equa- 4.1. Fast Convergence of Empirical FGW Barycenter

tion (5) to Equation(8). For anygs;::;o« 2 E(3) we  This work establishes a novel fast rate convergence for
have thaf (G;(0:S1;:5;0k Sk )) = f (G;(Sy; ;S ).  empirical barycenters in the FGW space via Theorem 4.1,
Moreover, for any 2 Sym(K]) we have that which is proved in Appendix B. To the best of our knowl-

f (G;(S ;58S k)= f (G;(S1;:58k)). edge, this is new in the literature, where only the result for
Wasserstein space exists in Le Gouic et al. (2022).
4. Ef cient and Convergent Molecular Theorem 4.1. LetP 2 P»(P»( )) be a probability mea-
Conformer Aggregation sure on the 2-FGW space. Let 2 P,( ) and 3 be

. . . . . ... barycenter and variance functional & satisfying (10
In this section, we provide some theoretical results to justify, v fying (10)

o . : and (9), respectively. Let > 0 and suppose that ev-
our novel FGW barycenter-based impli&{(3)-invariant ery 2 supp(P) is the pushforward of, by the gradi-

aggregation function that integrates the representationgm of an -strongly convex and smooth function —
0- 7

of molecular 3!3 conformations con_wputed_by geometrlci_e_, =(r -1 e If < 1, then, is unique

message-passing neural networks in Section 3.2. We e hd any empiroical barycenter, of P satis es
K

45

tablished a fast convergence rate of the empirical FG
barycenters to the true barycenters as a function of the num- E FGWS. (To; k) m:
The upper bound in Equation (12) implies that the empirical

ber of conformer samplds .
Undirected Attribute Graph Space. Let us de ne astruc-  parycenter converges to the target distribution at a rate of

tured object to be a triplet ;A; ), = f+ O(1=K), whereK is the number of 3D conformers. This
where( +;dr) and( s;A) are feature and structure met- g, ggests utilizing small values Kf, such a& 2 f 5: 10g,

ric spaces, respectively, andis a probability measure 4|4 yield a satisfactory approximation fog. We con rm
over . By dening !, the probability measure of the 5 empirically in experiments in Section 6.5.
nodes, the grap® represents a fully supported probabil-

ity mgasure over the feature/structure of the product Spacgigorithm 1 Entropic FGW Barycenter
= 'k (xy:ac)» Which describes the entire undirected Input: 1, fGs = (Ha; As:! o)g<
attributed graph. We noté the set of all metric spaces. The Optin.wiz-ir,wg' G f . 25'( i.',ss)gsill’ '
. G, gl .

(12)

space of all structured objects over; ; d; ) will be written repeat
asS( ), and is de ned by all the tripleté ;A; ), where fors=1toK do
( ;)2 Xand 2P( ). Solvearg min () FGW,, (G(k);GS) with Alg. 2.

- . end for
True and Empirical Barycenters. Given( ;A; ) 2 —(k+1) 1 1Pk ke

. . 2 . . . UpdateA T Kf s=1 S AS S .
S( ), the variance functional < of a distributionP 2 ke L Pr
P(Pp( ) is de ped as follows: UpdateH = diag(1=") g ¢4 s Hs

until k in outer iterationsandnot converged
b= , FOW (oi )dPC); (9)
PP

. : . 4.2. Empirical Entropic FGW B t
where™, is atrue barycentede ned in equation (10). We mplrical =ntropic arycenter

will then restrict our attention to the subdgs(Pp( )) = To train on large-scale problems, we propose to solve the
P2P(Pp( )): 3<+1 .Notethatp( )isasub- entropic relaxation of Equation (6) to take advantage of
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GPU computing power (Pegret al., 2019). Given a set T (Gasteiger et al., 2021), SchNet (&tfet al., 2017), GVP-
of conformer graph§Gs 1= (Hs;As;! s)o&, , we want  GNN, PaiNN, E(n)-GNN (Satorras et al., 2021), MACE
to optimize the entropic barycentér, where we xedthe (Batatia et al., 2022), ICTP (Zaverkin et al., 2024), SEGNN

prior on node$™ (Brandstetter et al., 2022), SE(3)-Transformer (Fuchs et al.,
X
— 1 _ '
G = arg min < FGW, G:Gs (13) 2020), and VisNet (Wang et al., 2024a).
G s=1 Optimal Transport in Graph Learning. By model-

with s = 1=K; 8s 2 [1;K]. Titouan et al. (2019) Ing graph features/structures as probability measures, the

solve Equation (13) using Block Coordinate Descent, whicHFused) GW distance (Titouan et al., 2020) serves as a ver-
iteratively minimizes the original FGW distance betweenSatile metric for comparing structured graphs. Previous ap-
the current barycenter and the grag@s In our case, we Plications of GW distance include graph node matching (Xu
solve forK couplings of entropic FGW distances to the €t al., 2019b), partitioning (Xu et al., 2019a; Chowdhury &
graphs at each iteration, then following the update rule fofNeeédham, 2021), and its use as a loss function for graph met-

™ 1 1 N 2020; Zeng et al., 2023). More recently, FGW has been
AteD — Wag 7, (14)  leveraged as an objective for encoding graphs (Tang et al.,

s=1 2023) in tasks such as graph prediction (Brogat-Motte et al.,
and for the feature matrix (Titouan et al., 2019; Cuturi & 2022) and classi cation (Ma et al., 2023). To the best of our
Doucet, 2014) % knowledge, we are the rst to introduce the entropic FGW
[FRR diag(]_:r)i OH; (15)  barycenter problem (Peiet al., 2016; Titouan et al., 2020)
K o for molecular representation learning. By employing the
leading to Algorithm 1. More details on practical imple- entropic formulation (Cuturi, 2013; Cuturi & Doucet, 2014),
mentations and algorithm complexity are in Appendix C.our learning pipeline enjoys a tunable trade-off between
barycenter accuracy and computational performance, thus
5. Related Work enabling an ef cient hyperparameter tuning process. More-
Molecular Representation Learning. The traditional ap- over, we also present empirical barycenter-related theories,
proach for molecular representation referred to as connegemonstrating how this entropic FGW barycenter frame-
tivity ngerprints (Morgan, 1965) encodes the presence ofwork effectively captures meaningful underlying structures
different substructures within a compound in the form ofof 3D conformers, thereby enhancing overall performance.
a binary vector. Modern molecular representations use% .
in machine learning for molecular properties prediction in-~" Experiments
clude 1D strings (Ahmad et al., 2022; Wang et al., 2019)6.1. Implementation Details

2D topological graphs (Gilmer et al., 2017a; Yang et al.yve encode each molecule in the SMILES format and em-
2019; Rong et al., 2020; Hu et al., 2020b) and 3D geomeis|oy the RDKit package to generate 3D conformers. We set
ric graphs (Fang et al., 2021; Zhou et al., 2023; Liu et al.the sjze of the latent dimensions of GAT (\eKbvic et al.,
2022a). The use of an ensemble of molecular conformation§018) t0128=256. Node features are initialized based on
remains a relatively unexplored frontier in research, despitgiomic properties such as atomic number, chirality, degree,
early evidence suggesting its ef cacy in property predictioncharge, number of hydrogens, radical electrons, hybridiza-
(Axelrod & Gomez-Bombarelli, 2023; Wang et al., 2024b).tjon, aromaticity, and ring membership, while edges are
Another line of work uses conformers only at training time represented as one-hot vectors denoting bond type, stereo
in a self-supervised loss to improve a 2D MPNN&&t  ¢on guration, and conjugation status. Each 3D conformer
et al., 2022). Contrary to prior work, we introduce a nove'generated by RDKit comprisesatoms with the correspond-
and streamlined barycenter-based conformer aggregatiqRg 3p coordinates representing their spatial positions. Sub-
technique, seamlessly integrating learned representatioré%quenﬂy’ we establish the graph structure and compute
from both 2D and 3D MPNNs. Moreover, we show that cost-gtomic embeddings utilizing the force- eld energy-based
effectiye conforme_rs ger_lerated t_hrough distance-geometrgchNet model (Sditt et al., 2017), extracting features prior
sampling are suf ciently informative. to theREADOUT layer. Our SchNet con guration incor-

Geometric Graph Neural Networks. Graph Neural Net- porateghree interaction blocksiith feature maps of size
works (GNNs) designed for geometric graphs operate based = 128, employing a radial fupction de ne_d on Gaus-
on the message-passing framework, where the features 8f@ns spaced at intervals @flA with a cutoff distance of
each node are dynamically updated through a process th¢ A- The output of each conformér2 [K ] forms a graph
respects permutation equivariance. Examples are modefak: Utilized in solving the FGW barycent& as de ned
such as SphereNet (Liu et al., 2022b), GMNNSs (Zaverkin &" EQ. (6). Subsequently, we aggregate features from 2D,
K#stner, 2020), DimeNet (Gasteiger et al., 2020b), GemNe8D, and barycenter molecule graphs using Egs. (7-8), fol-
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lowed by MLP layers. Leveraging Sinkhorn iterations in our taking output at the nal layer and averaging different con-
barycenter solver (Algorithm 1), we speed up the trainingformers (SchNet-scalar), (b) using feature node embeddings
process across multiple GPUs using PyTorch's distributedbeforeREADOUT layers and aggregating conformers by
data-parallel technique. Training the entire model employsan MLP layer (SchNet-em). In ChemProp3D, we replace
the Adam optimizer with initial learning rates selected from the classi cation header with an MLP layer for regression
le 3;1e 3=2;1e *, halved using ReduceLRONPlateau af-tasks, training with a 2D molecular graph at@iconform-

ter 10 epochs without validation set improvement. Furtherers. With the ConfNet, we us2d conformers in the training
experimental details are provided in the Appendix. step and provide results f@ and40 conformers for the
valuations step, followed by con gurations in (Liu et al.,

To accelerate the training process, especially in large-scal 021)

settings (e.g., BDE dataset), we rst train the model with 2D
and 3D features for some epochs, and then load the saved Taple 2.Models evaluation on regression tasks (RMSE
model and continue to train with full con gurations as in

. .. . . Model Lipo ESOL FreeSolv BACE
Eq.(7) till converge. We set empiricallyin Eq.(7) is0:2. 2D-GAT 1387 0206 2288 0017 8564 1345 1844 033

D-MPNN 0:683 0:016 1050 0:008 2082 0:082 2.253

Table 1.Number of samples for each split on molecular property Attentive FP - 0:721 0:001 0877 0:029 2073 0:183
PretrainGNN  0:739 0:003 1100 0.006 2764 0:002 -

prediction, classi cation tasks, and reaction prediction. GROVERIarge 0:823 0.010 0895 0017 2272 0051 -
Lipo ESOL FreeSolv BACE CoV-23CL Cov-2 BDE CEemBERTa-2*0§798 _ assg - 1368
Train 2040 789 449 1059 50 (485) 53 (3294) 8280 CPeMRL-GEM 01660 0:008 0798 0029 1877 0094 -

! MolFormer ~ 0:700 0:012 0880 0:028 2342 0:052 1047 0.029
Valid. 420 112 64 151 15(157) 17(1096) 1184 y,ipg 0:603 0010 0788 0:029 1480 0.048

Test 840 227 129 303 11(162) 22(1086) 2366 sSchNet-scalar 0:704 0:032 0672 0:027 1608 0:158 Q723 O:1
Total 4200 1128 642 1513 76(804) 92 (5476) 11830 SchNet-emb 0589 0:022 0635 0057 1587 0:136 0692 0:028
ChemProp3D 0:602 0:035 0681 0:023 2014 0:182 Q815 0:17
ConfNet 1:360 0:038 2115 0:484 - 1:329 0:042

6.2. Molecular Property Prediction Tasks CONAN 0:556  0:013 0:571 0:.019 1:496 0:158 Q635 0:051
Dataset. We use four datasetspo , ESOL FreeSolv CONAN-FGW 0:487 0:031 0:529 0:022 1:068 0:083 0:549 0:016
andBACEin MoleculeNet ~ benchmark (Table 1), span- Results. Table 2 presents the experimental ndings@b-

ning on various molecular characteristics such as physmT‘AN’ alongside competitive methods, with the best results

chemistry and biophysics. We split data using random sca %ﬁhlighted in bold. Baseline outcomes from prior studies

ou et al., 2023; Fang et al., 2022; Chang & Ye, 2023)
" . i 7 9 94e included, while performance for other models is pro-
ve trial t|me_s. More information for datasets is in Section vided through public code€CONAN version denotes the
D.2 Appendix. aggregation of 2D and 3D features as per Eq. (7) without
Baselines. We compare against various benchmarks, inemploying the barycenter, where@®NAN-FGW signi-
cluding both supervised, pre-training, and multi-modal ap-es full con gurations. We employ a number of conform-
proaches. (i) The supervised methods are 2D  ersf5;5;10; 59 andf 3; 5; 5; 5g for CONAN, andCONAN-
graph neural network models including 2D-GAT (\édovic =~ FGW, respectively, based on validation resultslfgmo ,
et al., 2018), D-MPNN (Yang et al., 2019), and At- ESOL FreeSolv , andBACE From the experiments, sev-
tentiveFP (Xiong et al., 2019)(ii) 2D molecule eral observations emerge: GoNAN proves more effective
pretraining methods are PretrainGNN (Hu et al., than relying solely on 2D or 3D, as shown by Conan's per-
2020a), GROVER (Rong et al., 2020), MolCLR (Wang et al.,formance, achieving second-best rankings on three datasets
2022), ChemRL-Gem (Fang et al., 2022), ChemBERTacompared to models using only 2D (ChemRL-GEM) or 3D
2 (Ahmad et al., 2022), and MolFormer (Ross et al.representations (UniMol). (itoNAN-FGW consistently
2022). It's important to note that these models are preeutperforms baselines across all datasets, despite employ-
trained on a vast amount of data; for example, MolFormeing signi cantly fewer 3D conformers thaBoNAN. This
is learned onl:1 billion molecules from PubChem and underscores the importance of leveraging the barycenter to
ZINC datasets. We also compare with {fig 2D-3D capture invariant 3D geometric characteristics.
aggregation  ConfNet model (Liu et al., 2021), which o
is one of the winners of KDD Cup on OGB Large—ScaIe6-3- 3D SARS-CoV Molecular Classi cation Tasks
Challenge (Hu et al., 2021). Finally, we benchmark v@  Dataset. We evaluateCONAN on two dataset€ov-2
conformers-based models such as UniMol (Zhou 3CL andCov-2 (Table 1), focusing on molecular classi -
etal., 2023), SchNet, and ChemProp3D (Axelrod 8n®z- cation tasks. The same splitting for training and testing is
Bombarelli, 2023). Among this, UniMol is pre-trained on followed (Axelrod & Gomez-Bombarelli, 2023). We also
209M molecular conformation and requires 11 conformersapply the CREST (Grimme, 2019) to Iter generated con-
on each downstream task. We train SchNet véitbon-  formers by RDKit as (Axelrod & @mez-Bombarelli, 2023)
formers (L0 for FreeSolv) and test with two versions: (a) for fair comparisons. Model performance is reported with

fold settings as baselines and reported the mean and stand
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the receiver operating characteristic area under the curvank overall while using half the number of conformers.
(ROC) and precision-recall area under the curve (PRC) ovefAdditionally, it can be seen th&oNAN-FGW improves
three trial times. with signi cant margins over both base models like SchNet
. ' . . I .
Baselines.We compare with three models, namely, SChNet'glézosgsfratiﬁ.gq[ﬁz ggr?elr_aEliZ-;\ifrtm %;fS t2h7(f bropldigégéggre-
Features, ChemProp3D, CP3D-NDU, each with two dif-_~ .
ferent attention mechanisms émsemble 3D conformers gation.
and 2D molecular grapftieature embedding as proposed Table 4.Performance of different conformer ensemble strategies
by Axelrod & Gomez-Bombarelli (2023). These baselineson reaction molecules prediction. Results are in Mean Absolute
generate200 conformers for their input algorithms. Addi- Error (MAE #). CONAN-FGW! andCONAN-FGW* denote for
tionally, the ConfNet (Liu et al., 2021) is also evaluated Our versions using SchNet and LEFTNet, respectively.

usingZO or 40 conformers in testing_ SchNet DimeNet++ GemNet PainNN ClofNet LEFTNEDNAN-FGW! CONAN-FGW?
Conf. 20 20 20 20 20 20 10 10

Table 3.Performance of various models on the two molecular clas- MAE # 1.9737 14741 16059 18744 20106 15276 16047 1.4829
si cation tasks.

6.5. Ablation Study

Method Num Conformers  Dataset ROC" PRC" L .
SchNetFeatures 200 Cov23CL 086 026 Contribution of 3D Conformer Number. One of the build-
ChemProp3D 200 CoV-2 3CL 0.66 0.20 ing blocks of our model is the use of multiple 3D confor-

CP3D-NDU 200 CoV-2 3CL 0.901 0.413 H H
SchNetFeatures average neighbors Cova 3CL 0.84 029 mations of a_molecule. Each_ molecule is represent?d by
ChemProp3D average neighbors CoV-2 3CL 0.73 0.31 K conformations, so the choice Kf affects the model's
CE3Df-NNDtU averfazggrgghboré 302\220 iCL e 4%-316 0645278 behavior. We treaK as a hyperparameter and conduct
onfNe X oV- . . . . .

CONAN 10 CoV-2 3CL. 0.881 0.009 0317 0.052 experiments to validate the impact on'mod('el pe_rformance.
CONAN-FGW 5 CoV-23CL 0.918 0.012 0.423 0.045 To this end, we test on theONAN version with different
SchNetFeatures 200 CoV-2 0.63 0.037 K (K = 0 is equivalent to the 2D-GAT baseline) and re-
CPerPropsp 200 So¥2 s 00032 port performance in Table 7 Appendix. We can observe
SchNetFeatures average neighbors ~ CoV-2 0.61 ©0.027 that using 3D conformers witK 1 clearly improves
CChF‘ng)P,’\‘OgSD aﬁ‘/‘gg%‘*ﬂl’fé%’ﬂs CCO‘;V'ZZ o%i? 0-18 o8 performance compared to using only 2D molecular graphs

ConfNet £20, 40g Cov-2 0501 0.001 036 0.2 as 2D-GAT. Furthermore, there is no straightforward de-

CONAN 10 Cov-2  0.634 0.053 0.031 0.023 pendency between the number of conformations in use and
CONAN-FGW 10 CoV-2 0.6735 0.0320.036 0.014

the accuracy of the model. For e.g., the performance tends
Results. Table 3 presents performance ®NAN and  to increase when using = 10 (Lipo and FreeSolv), but
CONAN-FGW with the number of conformers0or5.  overall, the best trade-off valueks = 5.

It can be seen thaCoNAN-FGW delivers the best per-

formance on ROC metric on two datasets and holds the

second-best rank with PRC on CoV-2-3CL while requiring

only 10 or 5 conformers compared witt00O conformers as

CP3D-NDU. These results underscore the ef cacy of incor-

porating barycenter components over merely aggregating

2D and 3D conformer embeddings, as observeddmAN.

6.4. Molecular Conformer Ensemble Benchmark

Dataset. We run CoONANon the BDE dataset (Table 1), _ .
which is the second-largest setting in (Zhu et al., 2023) ai igure 3.Ablation study on the effect of number conformers on

- - - he FGW barycenter component on valid sets.
to predict reaction-level molecule properties.
Baselines.CONAN is compared with state-of-the-art con- Contribution of FGW Barycenter Aggregation. We ex-
former ensemble strategies presented in Zhu et al. (2023), immine the effect of barycenter aggregation when varying
cluding SchNet (Sdiitt et al., 2017), DimeNet++ (Gasteiger the number of conformell§ . Figure 3 summarizes results
et al., 2020a), GemNet (Gasteiger et al., 2021), PaiNNor those settings where we report average RMSE over four
(Schitt et al., 2021), ClofNet (Du et al., 2022), and LEFT- datasets in the MoleculeNet benchmark. We draw the fol-
Net (Du et al., 2024). All these approaches emphly lowing observations. FirsCONAN-FGW shows notable
conformers in training and testing. We provide two resultsenhancements as the number of conformers increases, with
of CONAN using only10 conformersand based on two K values ranging within the s&t 5; 10; however, when as
architectures, SchNet and LEFTNet. K = 20, discernible disparities compared to the results ob-
Results. Table 4 summarizes our achieved scores where theained atK = 10 diminish. We argue that this phenomenon
COoNAN-FGW using LEFTNet backbone holds the secondaligns consistently with theoretical resultsheorem 4.1

8






	Introduction
	Background
	Message-Passing Neural Networks
	Fused Gromov-Wasserstein Distance

	ConAN: Conformer Aggregation Networks via Fused Gromov-Wasserstein Barycenters
	Conformer Generation
	Conformer Aggregation Network

	Efficient and Convergent Molecular Conformer Aggregation
	Fast Convergence of Empirical FGW Barycenter
	Empirical Entropic FGW Barycenter

	Related Work
	Experiments
	Implementation Details
	Molecular Property Prediction Tasks
	3D SARS-CoV Molecular Classification Tasks
	Molecular Conformer Ensemble Benchmark
	Ablation Study
	3D Conformers distance distribution
	FGW Barycenter Algorithm Efficiency

	Conclusion and Future Works
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	Solving Entropic Fused Gromov-Wasserstein
	Optimization Formulation
	Empirical Entropic FGW Barycenter

	Experiment Configuration Supplements
	SchNet Neural Architecture
	Dataset Overview
	3D Conformers Generation
	Ablation Studies of Number of Conformers
	Entropic FGW versus FGW-Mixup detail
	Visualize Conformers Generated by RDKit


