Automated Model Discovery via
Multi-modal & Multi-step Pipeline

Lee Jung-Mok! Nam Hyeon-Woo' Moon Ye-Bin! Junhyun Nam? Tae-Hyun Oh3*

! Dept. of Electrical Engineering, POSTECH
2 Samsung Electronics
3 School of Computing, KAIST
{jungmok ,hyeonw.nam, ybmoon}@postech.ac.kr,
junh.nam@samsung.com, taehyun.oh@kaist.ac.kr

Abstract

Automated model discovery is the process of automatically searching and identi-
fying the most appropriate model for a given dataset over a large combinatorial
search space. Existing approaches, however, often face challenges in balancing
the capture of fine-grained details with ensuring generalizability beyond training
data regimes with a reasonable model complexity. In this paper, we present a
multi-modal & multi-step pipeline for effective automated model discovery. Our
approach leverages two vision-language-based modules (VLM), AnalyzerVLM
and EvaluatorVLM, for effective model proposal and evaluation in an agentic way.
AnalyzerVLM autonomously plans and executes multi-step analyses to propose
effective candidate models. EvaluatorVLM assesses the candidate models both
quantitatively and perceptually, regarding the fitness for local details and the gen-
eralibility for overall trends. Our results demonstrate that our pipeline effectively
discovers models that capture fine details and ensure strong generalizability. Addi-
tionally, extensive ablation studies show that both multi-modality and multi-step
reasoning play crucial roles in discovering favorable models.

1 Introduction

Model discovery aims to identify the optimal model structure and parameters that best represent
given data. Historically, model discovery has been conducted manually by scientists [40,41]] and has
established groundbreaking advances in science and technology that have shaped our understanding
of the world. However, as the complexity and scale of modern datasets continue to grow, the
feasibility of manual model discovery has become increasingly limited [L1}146}158]]. Automating this
process [7) 114, 231 133],138| 46] offers the potential to accelerate the scientific progress by reducing
reliance on human experts and efficient exploring of complex model spaces.

Nevertheless, automatically finding the appropriate model structure is inherently challenging as it
requires: 1) exploring over a vast combinatorial search space of candidate models, and 2) balancing be-
tween interpretability and model fit, ensuring the model captures the data accurately while remaining
sufficiently simple and understandable to domain experts. Most existing systems [8, (14} 29} 33| 43]]
were carefully designed to address these challenges. For instance, [[14] and [33]] proposed a predefined
grammar for kernel composition within Gaussian processes, which structured the search process and
reduced the manual effort required to determine kernel composition. Also, the objective function
relied on predefined quantifiable metrics for the model selection, rather than dynamically adapting

*Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1. Model Proposal
.g. Let’s try visualization!

Analyzer model, data = ()
VLM (N)

Code &
Output
Model Data

It seems linear & periodic.
'g' Let’s check period!

Code & per'o(d= ())

Output period: 0.35

I recommend
'B' LIN X PER {period: 0.35}

2. Model Fitting

Find best parameters for
LIN X PER {period: 0.35}

LIN variance: 0.3
LIN offset :0.22
PER period :0.15
LIN variance: 0.01
LIN offset :0.4
PER period :0.35

4. Model Selection

Select higher-score model

Model 1 (score: 90)

Model 2 (score: 70)

3. Model Evaluation
Compute score based on
visual criterion and BIC

Model Data

Good fit. 8/10

Evaluator g.g ctrycture sim. 2/10
VLM

EvaluatorVLM(M,D)
= (0.2 +0.8) / 2 =0.5

Visual Selection Criterion
= a EvaluatorVLM - BIC

Figure 1: Overall pipeline. Our multi-modal & multi-step pipeline contains 4 stages: model proposal, model
fitting, model evaluation, and model selection. During the model proposal, AnalyzerVLM repeatedly analyzes
the data until it determines the results are sufficient. Then, it proposes a model structure with linearity(LIN) and
periodicity(PER), then the model fitting is conducted. In the model evaluation stage, EvaluatorVLM assesses
models visually and utilizes the score in the subsequent model selection process.

criteria as a human expert would. However, designing the balanced and sophiscate procedure for
composing models requires significant modeling expertise, which compromises the flexibility needed
for automation.

To achieve a more flexible and intelligent model discovery system, we substitute human experts’ roles
in the model discovery with multi-modal agents. First, we introduce AnalyzerVLM, an agent that is
capable of conducting in-depth analysis of given data and models through multi-step reasoning. We
task AnalyzerVLM with generating code for analyzing the current model and proposing improved
candidate models based on its findings. We observe that AnalyzerVLM actively uses existing libraries
such as NumPy [42] and Matplotlib [21]], which are commonly used by humans for analysis and
visual inspection of plots. AnalyzerVLM iteratively analyzes the current model and data until it
identifies candidate models that can outperform the given model.

Second, we propose a Visual Information Criterion (VIC) performed by EvaluatorVLM. Our new
criterion is designed to incorporate the way humans perceive a given model. Traditional criteria,
e.g., Bayesian Information Criterion (BIC), quantify both goodness-of-fits and model complexity to
identify undesirable models, but we found that they are often counter-intuitive and fail to consider
inherent data characteristics and relationships. On the other hand, humans easily identify inherent data
and model trends, structures, and patterns through visualization. By introducing visual representation
into the model selection criteria, our VIC complements traditional criteria, enabling the discovered
model to escape suboptimal. By alternating the AnalyzerVLM and EvaluatorVLM, we demonstrate
that our multi-step and multi-modal pipeline effectively searches over the model space like a human,
enhancing the proposed model’s quality and showing high generalizability compared to other model
discovery methods.

2 Related Work

Automated Model Discovery. Model discovery typically includes tasks such as selecting the model
structure, estimating parameters, validating the model’s effectiveness, and refining the model. The
discovery process requires extensive expertise across multiple data domains and involves multiple
steps. Thus, model discoveries require human experts to repeatedly refine the model and reflect the
data domain’s prior knowledge. To alleviate these difficulties, automated model discovery processes
have been proposed. The goal is to reduce the burden of needing human experts and prior work has
been developed by defining model space on Gaussian process [4, 16} [14} [15} 22 126} 27,133} [35]]. Such
methods are based on kernel structure search with pre-defined grammar, iteratively evolving its kernel
structure. Automatic model discovery pipeline often uses the greedy-search based approaches [14,33]],
sampling-based approaches [44] 45]], and employing large language models (LLMs) [30]. Also there
are similar approaches in symbolic regression [2} 15, [19, 25 128l 311 159} 160l 69], which searches

for the function composition that most fits to the data. Given a basis function and the operators, it
automatically finds out the appropriate function composition over evolving. Symbolic regression
requires diverse function candidates to be generated and takes the evolving over the generation, it
mostly utilizes genetic programming [2,|19,160L 69], or neural networks such as transformers [J5, 24,
31, 155]]. These days symbolic regression utilizing LLMs [16} 39} 148} [51]]. Thus, utilizing LLMs is
promising in the automatic model discovery pipeline, as LLMs can be adapted to those with broad
expert knowledge by providing a suitable prompt. In this work, we extend the usage of LLMs to
VLMs by effectively harnessing the reasoning, planning, and evaluating capabilities with visual
modality.

LLMs & VLMs-based Data Understanding. Interpreting and understanding current data is crucial
for model discovery and prediction, as extrapolation regimes including future events often depend
on past patterns. [[17] show that LLM has the ability to effectively deal with time-series data if the
numeric tokens are properly designed. [13]] propose to use plot visualizations instead of lengthy texts.
[30] simply investigate the potential of visual plots as a replacement of text representations to reduce
the number of tokens, and shows the comparable alternative to the text inputs. Like such methods
for understanding data, there are also automatic data-driven discovery frameworks [37, [70] which
automatically analyzes and finds the relation between variables of the data. Our method leverages
VLMs to gain a deeper understanding of the given data within the context of model discovery. We let
VLM identify and understand visual data itself by effectively overviewing the trends and relationships.

Model Agents. LLMs and VLMs, such as GPT-40 [1]], have high reasoning and generalization
capabilities. These strengths make them particularly well-suited for use as agents in complex
tasks [10, 20} 1491 157, 161} 162] |65H68]]. Many recent works have utilized LLMs and VLMs for data
analysis [20, 153, 163} [70], as well as LLM/VLM for evaluator [9, 18| 32]]. In addition, multi-step
reasoning techniques [61} 162} 65] are commonly employed to enhance the decision-making and anal-
ysis capabilities of LLM-based agents. We leverage this advanced capability of VLMs to accelerate
and enhance the model discovery process, facilitating the efficient identification of more robust and
accurate models. Specifically, VLMs analyze the data and candidate models by adaptively generating
codes to identify potential improvements and evaluate model accuracy through the interpretation
of visual plots. By integrating these components, our approach fully capitalizes on the strengths of
VLMs to optimize the model discovery workflow.

3 Method

3.1 Overview

Automated model discovery aims to identify a model structure M and the corresponding parameters
0 that best describe a dataset D. This process systematically identifies optimal model structures by
exploring a structured search space while balancing complexity and fitness. Our pipeline discovers a
proper model iteratively, and it has 4 steps in each round: model (1) proposal, (2) fitting, (3) evaluation,
and (4) selection, as shown in Fig.[T]and Algorithm 1]

The model proposal step of the r-th round
needs to suggest better model candidates M"™ = Algorithm 1 Model Discovery Pipeline.
{M§7T~: HMZ}’ given data D and previous mod- . Input: dataset D, rounds R, model pool P
els M" ™" To effectively suggest c.andld.ates, We 5. Ynitialize: best model M*,

propose an AnalyzerVLM which is designed to 3. g1 — 1 to R do

propose model candidates through multi-step 4. - _ AnalyzerVLM(M*, D) & Proposal
analysis. Further details about AnalyzerVLM ’ ’

can be found in Sec.[3.2] 5. for M € M" do
Once the candidate models are suggested, they ~ ©: ¢* = Optimize(M, D) > Fitting
are conveyed to the model fitting step, where 7 sm = a - EvaluatorVLM(M, 6%, D) —

we determine the optimal model parameters BIC > Evaluation
through marginal likelihood-based optimization. ~ 8: end for

To ensure robustness, we conduct the parameter 9 P—PUM"

optimization with multiple initialization points 10: ~ M™ <= arg maxyep Sm > Selection
with AnalyzerVLM proposal, incorporating ran- 11: end for

dom restarts and inheritance from model candi-

dates [14}27,133]]. The parameter with the highest likelihood is then selected as the best for subsequent
model evaluation.

The fitted model is evaluated using Visual Information Criterion (VIC). To assess the model in
multiple aspects and perceptually plausible ways, we propose EvaluatorVLM that measures visual
scores: visual fitness and generalizability. The visual score is combined with the traditional measure,
Bayesian Information Criterion (BIC). These criteria allow us to assess the model both in detail and
holistically. Additional information about our visual scoring is provided in Sec.

Finally, scored models are put into the model pool P. The model pool is then sorted based on the
VIC. In the next round, reference models are sampled from the updated pool. This round is iterated
until the number of iterations reaches the maximum criterion.

3.2 AnalyzerVLM: Multi-step Analysis

The reasoping process of A.nalyzel.r\(LM can Algorithm 2 Model Proposal with AnalyzerVLM
be formalized as a sequential decision mak-

ing task defined by a policy 7(a¢|c;), where 1: Input: prompt P, model M, dataset D, Ana-
ct = (01,a1, - ,04_1,a_1,0¢) represents the lyzerVLM, max context length NV«

context, a; € A denotes the action, and o, € @ 2: Initialize: ¢ = (P, D, M), step count i

is the observation. Our multi-step analysis inte- 3: While |¢;| < Ny do

grates the interaction process through the code- 4 @i = AnalyzerVLM(c;)

execution, getting an observation for the ex- 5 ifa; € £ then

ecuted output. When there is no observation 6: cit1 < (¢, a;) > Analyze
(when only reasoning happens), the context up- 7: elseif a; € C then

dates simply as ¢;11 = (¢;, a;). When code ex- 8 0; = Execute(a;) > Execute
ecutions are available, the action space expands ~ 9: Civ1 (¢, ai, 0;)

to A = £ UZC, enabling the agent to execute 10: elseif a € 2 then

tool-related actions through the code execution. 11: return a; > Propose
If the agent selects an action a; € C, the interac- 12: end if

tion with the environment happens, producing 13: =i+ 1

an observation o; = Execute(a;). This observa- 14: end while

tion is appended to the context, resulting in the

updated context ¢; 11 = (¢4, a;, 0;).

At the initial step, AnalyzerVLM is provided with a prompt P that specifies a task and an objective, a
dataset D, and candidate models P from the previous rounds. These inputs define the initial context
¢1. Starting from ¢y, AnalyzerVLM iteratively selects actions a; based on a fixed policy m(a;|c;)
and finally produces ar C %, which represents the candidate models for the next stage of model
discovery. The overall algorithm is shown in Algorithm 2] The action space of AnalyzerVLM consists
of three subspaces: a language space L for the natural language reasoning process, a code space C
for generating executable code to perform analysis, and a model space 2> for generating candidate
models. Since AnalyzerVLM proposes multiple candidate models, the model space is represented as
a power set of the search space Y. Each specific action is described as follows.

Analyze. When AnalyzerVLM performs analysis at i-th step (i.e., a; € L), it means that it will
generate the analysis and formulate a new plan for the next step in natural language, based on the
current context ¢;. As the analysis and planning are conducted entirely in natural language, the
resulting analysis can be directly incorporated into the next context ¢;+1 = (¢;, a;).

Execute. When AnalyzerVLM chooses to execute code (i.e., a; € C), it generates executable code
block in the python language. The generated code block is executed, and the resulting observation
0; = Execute(a;) is used to update the context for the next step ¢;+1 = (¢;, a;, 0;). We highlight
that the observation o; is not limited to textual or numeric outputs, but can also include visual
representations (e.g., plots), enabling AnalyzerVLM to perform the diverse analysis of the given data
into the most-fittable format for it.

Propose. When AnalyzerVLM has sufficiently analyzed the data and model, AnalyzerVLM chooses
to perform model proposal based on the previous contexts c; (e.g., analysis) . When the propose
action is conducted, the multi-step analysis is terminated. When AnalyzerVLM proposes the model
structure, it also propose the initial parameters based on its analysis. Based on its iterative analysis, it

can effectively propose the initial parameters for the model structure (e.g., period), and utilizing those
parameters properly can enhance the good structure’s good fitting.

Compared to the BoxLLM [30] proposes the candidate model at once, our AnalyzerVLM utilizes
multi-step reasoning that acquires the sufficient information by itself to propose the model. Also,
our AnalyzerVLM dynamically chooses the way to look at the data and model, giving a degree of
freedom to AnalyzerVLM for deep analsyis. With the multi-step pipeline, our model suggestion can
effectively identifies missing characteristics in the current candidate model in various ways.

3.3 [EvaluatorVLM: Visual Information Criterion

From a Bayesian perspective, model selection is grounded in the marginal likelihood, which measures
how well a model explains the observed data while integrating over all possible parameter values:

p(DIM) = / p(DIM, 0)p(6|M)do. ()

The parameter optimization performed in the model fitting step of automated model discovery can
be interpreted as a practical surrogate for intractable marginal likelihood computation. A widely
adopted approach to approximate marginal likelihood is using Laplace’s method around the maximum
likelihood estimator 6*, leading to the Bayesian Information Criterion (BIC):

BIC(M, D) = ~2log p(D|M, 6) + | M| log D], @)

where | M| is the number of model parameters, and |D| is the size of the dataset.

While marginal likelihood naturally balances model fit to the train data and complexity, it may
struggle to generalize to unseen regions [34]. The limitations of marginal likelihood in evaluating
generalization stem from its inability to capture the structural properties of data that persist across
both the training and test regions. Inspired by this, we propose a novel model selection criterion by
utilizing VLM in identifying suitable models. Specifically, we feed a visualization of the posterior
predictive results to EvaluatorVLM and evaluates how well the model suits the data. This evaluation
score is then incorporated into our model selection process with the model evidence.

To integrate VLM-based judgment into the model selection, we propose the Visual Information
Criterion (VIC). We define VIC as a weighted combination of the EvaluatorVLM score and BIC:

VIC(M, D) = « - EvaluatorVLM(M, 0*, D) — BIC. 3)

Since BIC is traditionally lower for better models, we negate it to ensure that higher VIC values
indicate better models. Despite its simplicity, VIC effectively approximates the posterior model
probability p(M|D) by incorporating an additional prior term p(M), extending beyond the standard
BIC-based approach. The detailed derivation of this approximation can be found in Appendix[A.2]

Our VIC evaluates two aspects of the model: 1) Visual Fitness and 2) Visual Generalizability. The
reasons of considering both aspects are that 1) visual fitness represents how well the discovered
model fits to the data’s trend, and 2) visual generalibzaility represents the consistency of trends across
training and non-training regions, which can be one way of measuring model’s generalization. Each
score is measured multiple times and is averaged due to the stochasticity of VLMs. Then VIC is
computed by summing up all the following visual scores.

Visual Fitness. Visual fitness quantifies how much the data resembles the prediction visually.
Specifically, fitness is evaluated through comparing two plots: Given the data observation plot and
the predicted posterior mean plot, EvaluatorVLM is prompted to compare two plots to measure the
similarity of the prediction and data. We also evaluate visual uncertainty, how large the uncertainty
region is given a predicted posterior mean and confidence region. If the uncertainty region is big, we
let EvaluatorVLM give a low score, and if the uncertainty region gets suddenly large in non-training
data regions, a low score is given. We prompt EvaluatorVLM to score each score in the range of
[0, 50]. Through the summation of mean prediction resemblance score and the plot uncertainty score,
we calculate the visual fitness. The prompts are shown at Appendix [A.10]

Visual Generalizability. Visual generalizability quantifies whether the predicted posterior mean
preserves it structural consistency in extrapolated regions beyond the training data. Given a plot

Table 1: Quantitative results. We compare our pipeline with five competing methods on the train and test region,
reporting RMSE. On average, our pipeline outperforms the others. Bold stands for the best, and underline for
the second best.

Dataset
Method Airline Solar Mauna Wheat Call Radio Gas
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test
Gaussian Process (SE) [47] 0.0696 0.1432 0.0334 0.6650 0.0320 0.0782 0.0329 0.5426 0.0386 0.3120 0.0426 0.1835 0.0468 0.2605 0.0423 0.3121

Avg.

ARIMA 52 02513 0.1583 0.2400 0.3259 0.2995 0.1788 0.1638 0.1537 0.2786 0.6291 0.3766 0.3828 0.3158 0.1507 0.2751 0.2827
Facebook Prophet [54 02526 0.1648 0.2208 0.3924 0.2998 0.0846 0.1606 0.1260 0.2676 0.8988 0.3242 0.6408 0.3154 0.1682 0.2630 0.3536
Automatic Statistician [14] 0.0056 0.2004 0.0265 0.6370 0.0028 0.0725 0.0640 0.1499 0.0279 0.8197 0.0253 0.1505 0.0114 0.0822 0.0234 0.3017
BoxLM [30 0.0106 0.2845 0.0312 0.4523 0.0028 0.5312 0.0114 0.1469 0.0073 0.2366 0.0312 0.2975 0.0096 0.4831 0.0149 0.3474
Ours (Qwen2.5-VL) 0.1350 0.0469 0.1834 0.3037 0.0826 0.0898 0.1127 0.1595 0.2593 0.0508 0.3443 0.0558 0.0969 0.0786 0.1735 0.1122
Ours (GPT-40) 0.0057 0.0369 0.0297 0.2861 0.0025 0.0497 0.0006 0.1316 0.0386 0.4742 0.1346 0.0784 0.1034 0.0843 0.0451 0.1556
Ours (GPT-40-mini) 0.0066 0.0534 0.0297 0.2861 0.0026 0.0564 0.0183 0.1470 0.0093 0.0508 0.0254 0.0562 0.0078 0.0893 0.0134 0.1070
ARIMA Facebook Prophet Gaussian Process (SE)
1.0
10
0.7 0.6
08 05 82
0.3
02 02
(=] 06 00 00 0.0
o— 1948 1953 1948 1953 1948 1953
T Autostats BoxLM Ours
@® 0.4
oc 0.8 08 07
92 05 05 05
0.3 0.3
02
o0 0.0 0.0 0.0
1936 1941 1946 1951 1948 1953 1948 1953 1948 1953

Year

Figure 2: Qualitative results. The graph on the left illustrates the data, where a black line stands for the observed
data and a red line for the test data. The graphs on the right show the predictions of each method at the shaded
region of the left graph, with the blue lines representing their outputs. The results highlight the generalization
capabilities and efficient search performance of our method.

of the posterior mean and its confidence region, EvaluatorVLM is promptecﬂ to measure whether
the model’s predictions are maintained in the extrapolated region in the range of [0, 50], without
requiring ground-truth labels in extrapolated regions. This allows us to quantify how well the model
generalizes beyond the observed data distribution. Specifically, we have visualized the posterior mean
and confidence at the 20% extrapolated region for each side, and instructed EvaluatorVLM to check
whether the 1) posterior mean flattens 2) confidence region suddenly increases at extrapolated region.

4 Experiments

4.1 Gaussian Process Kernel Discovery

Datasets and Competing Methods. We evaluate our multi-modal & multi-step pipeline on real-
world univariate datasets [33]], including Airline Passenger, Solar Irradiance, Mauna Loa, Wheat,
Call-Center, Radio, and Gas Production. We will refer to the data by their representative terms for
convenience, e.g., Solar for Solar Irradiance. And we compare our pipeline against five competing
methods ranging from traditional forecasting methods to the latest LLM-based model discovery
approaches: Gaussian Process Regression with Squared Exponential kernel, ARIMA [52], Facebook
Prophet [54], Automatic Statistician [[14, [33]], and BoxLM [30ﬂ We employ GPT—4o-miniE| for
methods using LLMs, including ours. Additional experimental details (e.g., basis kernels and kernel
grammars) are given at the Appendix [A3]

Result. As shown in Table Ref tab:quantitative, our method can discover better models by achieving
consistently lower RMSE compared to other methods on average. While BoxLM and Gaussian
Process (SE) exhibit low RMSE values on the training set, their RMSEs significantly increases in
the test region, indicating poor generalization. In contrast, our method maintains consistently low
RMSEs across both training and test sets, highlighting its ability to generalize effectively beyond the
training data. This shows the robustness of our method in the test region through AnalyzerVLM and
EvaluatorVLM.

The prompt is shown at the Appendix
3The authors used GPT-4v, but for fair comparison with ours, we update the LLM version with GPT-40-mini.

“Note that our main result refers to the one using GPT-40-mini. We have varied the VLM into Qwen2.5-VL,
GPT-40, and GPT-40-mini for the ablation study, shown at Section@

0.6
Single-modal (Text only)
s Multi-modal (Text+Vis.)

~0.3603

0.4-

MSE

1
02! 0.1959

~0.0952 0.0944

0.0-

—
Airline Sola Mauna Wheat

r
Dataset

Figure 3: MSE of text only and
multimodal representation. We re-
strict the usage of visual represen-
tation during model generation and
evaluation processes. The blue value
indicates the reduction in MSE

N

AnalyzerLLM

N I I
3

Airline Solar Mauna
Dataset

mmm AnalyzerVLM

Wheat

Steps
LA

Figure 4: The required step num-
ber of LLM and VLM. When us-
ing LLM instead of VLM for An-
alyzer, i.e., without visualizing the
data and model, Analyzer requires
more steps to validate its analysis.

0.12
Single-step
0.0

mmm Multi-step
—0.0637
0.08

w
)
=
0.04-
0.0171
0.0002

000" “irfine Solai

Mauna

r Wheat
Dataset

Figure 5: MSE of the multi-step
and single-step restriction. We
limit AnalyzerVLM to a single step.
Blue values indicate the reduction in
MSE when using multi-step analy-
sis compared to single-step analysis.

when using visual representation.

Step 4
Big at first lags, shows
temporal feature.
Visualize periodicity.

Step 5
Enough analysis.
Propose model with
periodicity.

Step 1 Step 2

Mostly follows the

data, but some gap
at the end. Check residual.

Step 3

Residual at latter years.
Check autocorrelation.

il "”'-.,H“:,J

Given the access code,
visualize the data and model.

Analyze

Model Proposal

Execute
Propose

Figure 6: Multi-step analysis of AnalyzerVLM. We visualize an example of the AnalyzerVLM’s multi-step
analysis. AnalyzerVLM begins with the data and model visualization, followed by visualizing residuals and
identifying the remaining periodic pattern in the data before the model proposal. Finally, AnalyzerVLM proposes
a refined model based on the analyses.

We visualize the model discovery result in Fig. 2] ARIMA struggles to capture trends and periodicity
in the test region. The Gaussian Process successfully captures the overall trend in the train region but
does not fully account for periodicity and finer details. Similarly, Autostats and BoxLM exhibit slight
deviations from the trend and miss some finer patterns. Facebook Prophet effectively captures both
trend and periodicity but falls slightly behind our method in capturing finer details. However, our
method identifies a plausible model that generalizes well to both observed and unseen test dataf’| To
further investigate the reasons behind the strong generalization performance, we conduct an ablation
study in the following section.

4.2 Ablation Study and Analysis

Analyzer VLM and EvaluatorVLM. We conduct an ablation study on the VLM-based modules in
our pipeline to examine the impact of AnalyzerVLM and EvaluatorVLM, as shown in Table 2]

In experiments without AnalyzerVLM, we re-
place it with a simpler model proposal approach
for VLM without analysis, providing just visual-
izations of the model and data while prompting
the model generation following BoxLLM [30].
For experiments without EvaluatorVLM, we

Table 2: Ablation study on VLM-based modules in
our pipeline. We conduct an ablation study of Analyz-
erVLM and EvaluatorVLM in terms of MSE. The last
row stands for our complete pipeline. Bold represents
the best, and underline is the second best.

exclude the visual criterion and only rely on Analyzer Evaluat - Dataset

the BIC for model selection. The results in Ta- VLM VLM Aidine Solar Mauna Wheat
ble 2] show that each component plays a crucial Y 8-82;3 8-(1);3(1) 8-%2%‘3) ggiég
rgle ip discpvering better models. Our proposed v - 00029 00822 00198 0.0135
pipeline with both AnalyzerVLM and Evalua- v v 0.0028 0.0819 0.0032 0.0216

torVLM finds the best model in most cases.

Also our method can be applied across different models including commercial models(GPT), and
open-source models. We have varied the backbone models of AnalyzerVLM and EvaluatorVLM.
Table [T]shows that our methods can be applied to diverse VLMs, including Qwen2.5-VL [3]], GPT-4o-

3 Additional visualization can be found in Appendix.

Train MSE Test MSE

Visual Fitness Visual Generalizability

H
o
5]
°

My -BIC: 400.57, VIC: 702.94 M; -BIC: 411.91 VIC: 697.59

My -BIC: 31023, VIC: 626.98

T | p:0.7995

€

e

o8

@3

¢ 25

22

¢ @
Visual General. S

o
°
S Vi

Visual Fitness

Mauna Loa

0.
0.2 NormalizedLL 1.2 -0.8 Generalization Gap 0.2

Mz -BIC: 315.16 VIC: 623.23

Human vs VLM - Fitness Human vs VLM - General.

Spearman's |
| p:0580 . .

s

Gas Prod.

1 Human 5 Human

Figure 7: BIC and VIC compari- Figure 8: MSE of model over Figure 9: Correlation of VIC
son. Comparing BIC and VIC, VIC rounds. Train MSE gets lower as with likelihood, generalization,
can sort out the models with low round goes, but without VIC, test and human. At first row, we visu-
generalizability, by giving them the MSE may increase over rounds. With alize the correlation between VIC
worse score, while BIC cannot penal- VIC, it can effectively lower both and metrics (likelihood, general-
ize such low generalizability cases. train and test MSE. ization gap). Second row is human
correlation result with VIC.

mini and GPT-4o [[1]. Our pipeline can work both with open-source model and commercial models,
and it shows that the VLM with high capability has high performance on average.

Multi-modal vs. Single-modal. Our pipeline leverages both visual and text representations during
model proposal and evaluation. To investigate the impact of the visual representation, we restrict
AnalyzerVLM to only use text during the model proposal and rely solely on BIC for model evaluation,
not giving the model prediction visualization. The result in Fig. [3|shows that incorporating visual
representation improves model discovery performance. Using multimodal representation allows us to
consider the overall trend rather than focusing solely on the local values in the text, leading to a better
understanding of the data.

Hyperparameter « selection. We have set o s0 — """ ——— —
that EvaluatorYLM accounts for approximately 10- Ailme 00937 00574 00534 0062 00824
30% of the original metric (e.g., BIC), and per- Ragio 00766 00715 00562 00764 0.0954
formed grid search around this range to find the
best. Since the scales of the selection criteria vary Table 3: Performance across different o values.
due to data normalization, we set v such that the vi- There is a break down point of performance of o
sual score contributes a consistent proportion to the around 50, indicating the trade-off between model
total objective. We provide the result of test RMSE ~ accuracy and generalizability.

of grid search varying a around 0 to 100, at Airline and Radio dataset at Table[3] As shown, there is a
certain turning point (or a break-down point) of alpha around 50. While « is 0, final searched models
are dropping at extrapolated region, and when increases, the pipeline tends to select the model with
more generality even in high value ranges near 70. This hints that our hyperparameter setting is not
sensitive and starting from introducing small o would be a good rule of thumb.

Reasoning Process of AnalyzerVLM. AnalyzerVLM proposes a model candidate through the
multi-modal and multi-step analysis. To better understand its reasoning process, we compare the
number of analysis steps required when using an LLM versus a VLM as the analyzer, as shown in
Fig. 4l Both analyzers independently determine when to stop the analysis. AnalyzerLLM requires
more steps to generate a proper candidate than AnalyzerVLM. LLM is less effective than VLM at
capturing the overall trend, which leads to more iteration for checking its analysis.

Next, we restrict the number of reasoning steps of AnalyzerVLM to compare single-step and multi-
step analysis, observing performance improvements across steps, as shown in Fig. [5] The results
indicate that additional analysis steps lead to the discovery of a better model. In summary, the overall
results demonstrate that the multi-modal and multi-step process enables AnalyzerVLM to make better
decisions. The qualitative result of the reasoning process is shown in Fig. [6]

Generalizability-Aware Model Evaluation. We show two qualitative examples with VIC(1) and
-BIC(Tf] scores in Fig. |7} When BIC is superior, it shows deviation at the extrapolated region, but it
does not detect such cases and select the right models with the deviation. However, VIC distinguishes
such cases, penalizes such models and selects the left models with high generalizability. Specifically
at Airline data, as shown in the right-top example of Fig.[/} the model shows a certain drop at the

8Since BIC is better for the lower value, we negate it for the explanation.

AnalyzerVLM Init. (PER + LIN) Random Init. (PER + LIN) AnalyzerVLM Init. (SE * (PER + C)) Random Init. (SE * (PER + C))

Airline

Mauna Loa

Figure 10: Visualization of the optimized model with different initializations. The model optimized from
the AnalyzerVLM-proposed initialization reliably identifies appropriate parameter settings through data-driven
analysis, whereas random initialization frequently leads to suboptimal configurations.

extrapolated region, which is not a natural behavior. The left-top model shows the natural upward
trend at the extrapolated region. BIC does not have any constraints about evaluating such naturalness,
it selects out the right model. A similar phenomenon also happens in the Radio data, as shown in
bottom example of Fig. [/} the right model’s prediction suddenly flattens at the right extrapolate
region and the structure is not maintained, which may mean low the generalizability. Penalizing such
generalizability, VIC can effectively distinguish such cases. Fig. [§] shows the visualization of the
mean squared error of train and test region, for each round. With BIC evaluation, it shows a low train
MSE with increasing test MSE. In contrast, our pipeline keeps the test MSE low and even reduces it
across rounds, showing better generalization without overfitting.

Correlation of Visual Information Criterion. The first row’s left image in Fig. [0]shows that our
visual fitness is highly correlated to the likelihood, which implies that we can visually measure the
model’s fitness. The first row’s right image in Fig.[0]shows the correlation of our visual generalizability
and generalization gap. Specifically, we adapt the difference of test MSE and train MSE as the
generalization gap. As shown, it shows a high correlation with the generalization gap, which means
that our visual generalizability is an effective criteria for evaluating a model’s generalization capacity.

The second row of Fig.[9]shows the correlation of VIC’s each criterion with the human evaluation.
Human evaluation is done by instructing human with the same criteria that EvaluatorVLM: visual
fitness and visual generalizability. For human evaluation, we instructed human to rate the given model
from 1 to 5. The instruction is shown at Appendix. As shown, the EvaluatorVLM’s model evaluation
follows a similar trend to the human model evaluation, showing a high correlation at both visual
fitness and visual generalizability evaluation. This shows that EvaluatorVLM closely matches human
judgment at model evaluation, enabling more efficient and reliable automated assessments of the
model discovery.

Hyperarameter Initialization of AnalyzerVLM. As reported in [14]] and [27], hyperparameter
optimization for Gaussian process regression is a non-convex problem, making good initialization
crucial for effective model discovery. To address this problem, [14] utilized random initialization
with hyperparameter inheritance over rounds, and [27] has utilized random restarts with strong prior,
sampling the hyperparameters from certain prior distribution. In our case, we utilize AnalyzerVLM
to propose model structures and suggest initialization point based on its analysis. In particular,
we initialize the period and lengthscale of the periodic kernel and the lengthscale of the squared
exponential kernel, using values suggested by AnalyzerVLM, then start optimizing in the first
round. Then, such well-estimated hyperparameter values proposed by AnalyzerVLM can be carried
over rounds, enabling the construction of progressively more complex and refined model structures
initialized with strong hyperparameter estimates. Figure [I0] shows two examples of optimized
models with AnalyzerVLM proposal initialization and random initialization. As shown, with the
AnalyzerVLM initialization, the model can be optimized to appropriate hyperparameters, while
random initialization fails at finding the appropriate hyperparameters and leads to the whole kernel
structure’s failure.

4.3 Application to Symbolic Regression

In this section, we extend our discovery pipeline to symbolic regression, demonstrating its applicability
beyond probabilistic model classes. Accordingly, the BIC component of our original VIC is replaced
with a commonly used objective in symbolic regression: normalized mean squared error combined
with a complexity penalty [S0].

Dataset and Competing Methods. Extending our model discovery framework into the function
discovery, we prompted AnalyzerVLM to generate a normal function rather than the kernels, and

Keijzer3

Table 4: Quantitative results at symbolic regression. We conduct an
experiment on symbolic regression at four datasets: R, Constant, Keijzer,
Nguyen. We report R-square and RMSE scores for each dataset. Bold oo
represents the best, and underline is the second best. As shown, our method
shows competitive results compared to the other methods.

-2 \/ L
Dataset

Method R Constant Keijzer Nguyen %10 -0 0.0 05 10

R*(1) RMSE() R*(1) RMSE() R?*(1) RMSE() R?*() RMSE() Figure 11: Qualitative result at
SGA [B6 08951 0.1639 05677 0.1056 03602 03263 08918 0.1761 . .
ICSR-V [39] 09808 0.1320 09967 0.0209 09463 0.0398 09952 0.0803 symbolic regression. Our method
LLM-SR [SI] 09717 0.0805 0.9807 0.0225 0.9972 0.0139 09440 0.0240 successfu]]y discovers function
Ours 09872 0.1154 09503 00411 09521 00362 09743 0.0871

composition which fits the data.

utilized our VIC for symbolic regression score. Following [39]], we have conducted our experiments
at Nguyen [60], Constant [31]], R [28]], Keijzer [25]. And we compared our methods with ICSR [39],
LLM-SR [51], and SGA [36]. Those methods utilize LLM, while ICSR-V also incorporates the
visualization of the plot at the function generation phase. The implementation details are shown in

Appendix[A.3]

Result. Our proposed method achieves performance that is competitive with existing approaches
on symbolic regression, as shown at Table 4] Our method consistently achieves consistently high
predictive accuracy and reliable generalization. Leveraging the AnalyzerVLM and EvaluatorVLM
modules, our model discovery pipeline can be employed as a symbolic regressor, enabling inter-
pretable function modeling with our method’s iterative analysis and visual evaluation. Fig. [TT]shows
that our approach successfully captures the underlying functional form on the Keijzer3, closely
matching the ground truth in the training region and also showing similar results in extrapolated
regions beyond the training data. This shows our generalization performance is robust in capturing
the data’s structure rather than merely fitting the data.

5 Conclusion

We propose a multi-modal multi-step pipeline for automatic model discovery by introducing two
VLM-based modules: AnalyzerVLM and EvaluatorVLM. AnalyzerVLM iteratively plans and ex-
ecutes the analysis to propose the most suitable model by analyzing the given data and models.
Leveraging large-scale VLM as a multi-modal agent, it can generate analysis and interpret plots and
data characteristics in context. Through its multi-step analysis, our method can discover a better
model which fits to the data’s underlying structure. EvaluatorVLM assesses the suggested model
based on the visual representation, i.e., plot, evaluating fitness for local details and structure similarity
for overall trends. It provides a robust mechanism for model validation beyond numeric error metrics.
The experimental results demonstrate that our pipeline effectively discovers a proper model, capturing
fine details and interpretable model structure while ensuring strong generalizability.

Limitations. Our multi-modal, multi-step pipeline focuses on discovering the data’s structures,
therefore current pipeline focuses on 1D datasets, and the pipeline’s performance may depend on the
quality of input visualizations. So the future work should include extending this to multivariate data
to capture relationships between variables, and searching for the good quality of input visualizations
that fits to VLM.

10

6 Acknowledgement

This work was supported by Samsung Electronics Co., Ltd (Project Code: 10240508-09825-01). T.-H.
Oh was partially supported (30%) by Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2022-0-00124, No.RS-2022-
11220124, Development of Artificial Intelligence Technology for Self-Improving Competency-Aware
Learning Capabilities). T.-H. Oh was partially supported (30%) by Institute of Information & commu-
nications Technology Planning & Evaluation (II'TP) grant funded by the Korea government(MSIT)
(No. RS-2024-00457882, National Al Research Lab Project). T-H. Oh work was supported (40%) by
Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.RS-2025-25443318, Physically-grounded Intelligence: A Dual
Competency Approach to Embodied AGI through Constructing and Reasoning in the Real World).
T.-H. Oh was partially supported by the KAIST Cross-Generation Collaborative Lab Project.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, [lge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2

—

Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic programming. In
Proceedings. Vol. 1. Sixth Brazilian symposium on neural networks, pages 173-178. IEEE, 2000.

3

—

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[4] Fabian Berns, Jan Hiiwel, and Christian Beecks. Automated model inference for gaussian processes: an
overview of state-of-the-art methods and algorithms. SN Computer Science, 3(4):300, 2022.

(5

—

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 936-945. PMLR, 18-24 Jul 2021.

[6

—_

Matthias Bitzer, Mona Meister, and Christoph Zimmer. Structural kernel search via bayesian optimization
and symbolical optimal transport. Advances in Neural Information Processing Systems, 35:39047-39058,
2022.

[7

—

Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems. Proceed-
ings of the National Academy of Sciences, 104(24):9943-9948, 2007.

[8

—

Jure Brence, Ljupco Todorovski, and SaSo DZeroski. Probabilistic grammars for equation discovery.
Knowledge-Based Systems, 224:107077, 2021.

[9

—

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao
Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal 1lm-as-a-judge with vision-
language benchmark. In Forty-first International Conference on Machine Learning, 2024.

[10] Mia Chiquier, Utkarsh Mall, and Carl Vondrick. Evolving interpretable visual classifiers with large
language models, 2024.

[11] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceed-
ings of the National Academy of Sciences, 117(48):30055-30062, 2020.

[12] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl. arXiv
preprint arXiv:2305.01582, 2023.

[13] Mayank Daswani, Mathias M. J. Bellaiche, Marc Wilson, Desislav Ivanov, Mikhail Papkov, Eva Schnider,
Jing Tang, Kay Lamerigts, Gabriela Botea, Michael A. Sanchez, Yojan Patel, Shruthi Prabhakara, Shravya
Shetty, and Umesh Telang. Plots unlock time-series understanding in multimodal models, 2024.

[14] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani.
Structure discovery in nonparametric regression through compositional kernel search. In International
Conference on Machine Learning (ICML), 2013.

[15] David K Duvenaud, Hannes Nickisch, and Carl Rasmussen. Additive gaussian processes. Advances in
neural information processing systems, 24, 2011.

11

(16]

(171

(18]

(19]

(20]

(21]
[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Symbolic
regression with a learned concept library. Advances in Neural Information Processing Systems, 37:44678—
44709, 2024.

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters. In Advances in Neural Information Processing Systems (NeurlPS), 2023.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594, 2024.

Steven Gustafson, Edmund K Burke, and Natalio Krasnogor. On improving genetic programming for
symbolic regression. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 912-919.
IEEE, 2005.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning with
language model is planning with world model. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2023.

John Hunter and Darren Dale. The matplotlib user’s guide. Matplotlib 0.90. 0 user’s guide, 487, 2007.

Yunseong Hwang, Anh Tong, and Jaesik Choi. Automatic construction of nonparametric relational
regression models for multiple time series. In International Conference on Machine Learning (ICML),
2016.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn

Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. nature, 596(7873):583-589, 2021.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Frangois Charton. End-to-end
symbolic regression with transformers. Advances in Neural Information Processing Systems, 35:10269—
10281, 2022.

Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In European
Conference on Genetic Programming, pages 70-82. Springer, 2003.

Hyunjik Kim and Yee Whye Teh. Scalable structure discovery in regression using gaussian processes. In
Workshop on Automatic Machine Learning, pages 31-40. PMLR, 2016.

Hyunjik Kim and Yee Whye Teh. Scaling up the automatic statistician: Scalable structure discovery using
gaussian processes. In International Conference on Artificial Intelligence and Statistics, pages 575-584.
PMLR, 2018.

Krzysztof Krawiec and Tomasz Pawlak. Approximating geometric crossover by semantic backpropagation.
In Proceedings of the 15th annual conference on Genetic and evolutionary computation, pages 941-948,
2013.

Pat Langley. Bacon: A production system that discovers empirical laws. In IJCAI, page 344. Citeseer,
1977.

Michael Y. Li, Emily Fox, and Noah Goodman. Automated statistical model discovery with language
models. In International Conference on Machine Learning (ICML), 2024.

Wengiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian.
Transformer-based model for symbolic regression via joint supervised learning. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Ming Liu and Wensheng Zhang. Is your video language model a reliable judge? In International Conference
on Learning Representations (ICLR), 2025.

James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani.
Automatic construction and natural-language description of nonparametric regression models. In AAAI
Conference on Artificial Intelligence (AAAI), 2014.

Sanae Lotfi, Pavel Izmailov, Gregory Benton, Micah Goldblum, and Andrew Gordon Wilson. Bayesian
model selection, the marginal likelihood, and generalization. In International Conference on Machine
Learning (ICML), 2022.

Xiaoyu Lu, Alexis Boukouvalas, and James Hensman. Additive gaussian processes revisited. In Interna-
tional conference on machine learning, pages 14358-14383. PMLR, 2022.

12

(36]

(37]

(38]

[39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]
[55]

[56]

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. LIm and simulation as bilevel optimizers: A new paradigm to advance
physical scientific discovery. In International Conference on Machine Learning (ICML), 2024.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh
Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. Discoverybench:
Towards data-driven discovery with large language models. In International Conference on Learning
Representations (ICLR), 2025.

Elaine C Meng, Thomas D Goddard, Eric F Pettersen, Greg S Couch, Zach J Pearson, John H Morris, and
Thomas E Ferrin. Ucsf chimerax: Tools for structure building and analysis. Protein Science, 32(11):e4792,
2023.

Matteo Merler, Katsiaryna Haitsiukevich, Nicola Dainese, and Pekka Marttinen. In-context symbolic
regression: Leveraging large language models for function discovery. arXiv preprint arXiv:2404.19094,
2024.

Charles Morris. [newton’s law of gravitation]. Science, 0s-2(57):361-363, 1881.
G.S. Ohm. Die galvanische Kette, mathematisch bearbeitet. Riemann, 1827.
Travis E Oliphant et al. Guide to numpy, volume 1. Trelgol Publishing USA, 2006.
Karl Popper. The logic of scientific discovery. Routledge, 2005.

Feras A Saad, Marco F Cusumano-Towner, Ulrich Schaechtle, Martin C Rinard, and Vikash K Mansinghka.
Bayesian synthesis of probabilistic programs for automatic data modeling. Proceedings of the ACM on
Programming Languages (POPL), 2019.

Ulrich Schaechtle, Feras Saad, Alexey Radul, and Vikash Mansinghka. Time series structure discovery via
probabilistic program synthesis, 2017.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81-85, 2009.

Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of mathematical psychology, 85:1-16, 2018.

Samiha Sharlin and Tyler R Josephson. In context learning and reasoning for symbolic regression with
large language models. arXiv preprint arXiv:2410.17448, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based planning
for symbolic regression. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 45907—45919. Curran Associates,
Inc., 2023.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

Robert H. Shumway and David S. Stoffer. ARIMA Models, pages 75—163. Springer International Publishing,
Cham, 2017.

Maojun Sun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng Yuan, and Jian Huang. A sur-
vey on large language model-based agents for statistics and data science. arXiv preprint arXiv:2412.14222,
2024.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37-45, 2018.

Wassim Tenachi, Rodrigo Ibata, and Foivos I Diakogiannis. Deep symbolic regression for physics guided by
units constraints: toward the automated discovery of physical laws. The Astrophysical Journal, 959(2):99,
2023.

Kwabena Nuamah Thomas Fletcher, Alan Bundy. Gpy-abcd: A configurable automatic bayesian covariance
discovery implementation. In International Conference on Machine Learning (ICML), 2021.

13

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu. Toward
self-improvement of LLMs via imagination, searching, and criticizing. In Advances in Neural Information
Processing Systems (NeurlPS), 2024.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic regression.
Science advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic regression.
Science advances, 6(16):eaay2631, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galvan-Lépez.
Semantically-based crossover in genetic programming: application to real-valued symbolic regression.
Genetic Programming and Evolvable Machines, 12:91-119, 2011.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In
International Conference on Learning Representations (ICLR), 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V.
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems (NeurIPS), 2024.

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian. Waitgpt: Monitoring and
steering conversational llm agent in data analysis with on-the-fly code visualization. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology, pages 1-14, 2024.

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian. Waitgpt: Monitoring and
steering conversational 1lm agent in data analysis with on-the-fly code visualization. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park, and
Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm agents
are experiential learners, 2024.

Jinghui Zhong, Liang Feng, Wentong Cai, and Yew-Soon Ong. Multifactorial genetic programming for
symbolic regression problems. /EEE transactions on systems, man, and cybernetics: systems, 50(11):4492—
4505, 2018.

Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, and Nan Tang. Are large language models good statisticians?
arXiv preprint arXiv:2406.07815, 2024.

14

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Yes. The main claims in the abstract and introduction accurately reflect the paper’s
core contributions and scope. We outlined the contribution and proposed methods in abstract and
Introduction (Sec. [T).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the paper.

¢ The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this question
will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the results
can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes. We discuss the limitations of our work and potential directions for future improve-
ments in Sec.

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these assump-
tions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on
a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions,
which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For example,
a facial recognition algorithm may perform poorly when image resolution is low or images are taken
in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for
online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how they
scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren’t
acknowledged in the paper. The authors should use their best judgment and recognize that individual
actions in favor of transparency play an important role in developing norms that preserve the integrity
of the community. Reviewers will be specifically instructed to not penalize honesty concerning
limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: Yes. See Appendix for the detailed proof of VIC.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.

15

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by formal
proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper contains the information to reproduce the main experimental results at Sec. [4]
and Appendix. We are using close-source models, and we have provided the prompt at Appendix for
reproducability with similar results.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data are
provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For example,
if the contribution is a novel architecture, describing the architecture fully might suffice, or if the
contribution is a specific model and empirical evaluation, it may be necessary to either make it
possible for others to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but reproducibility can
also be provided via detailed instructions for how to replicate the results, access to a hosted model
(e.g., in the case of a large language model), releasing of a model checkpoint, or other means that
are appropriate to the research performed.

¢ While NeurIPS does not require releasing code, the conference does require all submissions to pro-
vide some reasonable avenue for reproducibility, which may depend on the nature of the contribution.
For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce

that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the architec-
ture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be a
way to access this model for reproducing the results or a way to reproduce the model (e.g., with
an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of closed-
source models, it may be that access to the model is limited in some way (e.g., to registered
users), but it should be possible for other researchers to have some path to reproducing or
verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Yes. The data sources used in our experiments are fully accessible and listed in the
Appendix, and we provide the prompt for the main experimental results in the Appendix, with
instructions for setup and usage.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible, so
“No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is
central to the contribution (e.g., for a new open-source benchmark).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access the
raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which ones
are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Yes, the data and the backbone models are explained at Sec.d] We also have provided
the detailed experimental settings at the Appendix, how the data splits are done, hyperparameters, and
the optimizer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we have provided the mean and confidence interval of the model prediction at
Fig.[/} In the visualization, the shaded blue region is the confidence bounds, providing a prediction
uncertainty.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals,
or statistical significance tests, at least for the experiments that support the main claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for exam-
ple, train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a library
function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
¢ It should be clear whether the error bar is the standard deviation or the standard error of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report a
2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not
verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric
error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources
(type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Yes, we have provided the information about the computer resources at Appendix.

Guidelines:

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the exper-
iments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into the
paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: All authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to
laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We will included the potential positive societal impacts and negative impacts at Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or why
the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-
information, generating fake profiles, surveillance), fairness considerations (e.g., deployment of
technologies that could make decisions that unfairly impact specific groups), privacy considerations,
and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in the
quality of generative models could be used to generate deepfakes for disinformation. On the other
hand, it is not needed to point out that a generic algorithm for optimizing neural networks could
enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used as
intended and functioning correctly, harms that could arise when the technology is being used as
intended but gives incorrect results, and harms following from (intentional or unintentional) misuse
of the technology.

 If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring
misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA|

Justification: Our work is based on publicly available datasets [33] and widely used, pre-existing
models [30, 152,154, 156], none of which are novel or proprietary in this context. Therefore, we believe
our work does not warrant specific safeguards beyond standard responsible research practices.

Guidelines:

¢ The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All external assets used in this work, including datasets, models, and code, are properly
cited in the main text and references. No proprietary or restricted materials were employed in a manner
that violates their intended use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of that
source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should be
provided. For popular datasets, paperswithcode.com/datasets|has curated licenses for some
datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We introduce new components in the form of a multi-step multi-modal evaluation pipeline.
These assets are done with clear descriptions of their functionality, input/output formats, and usage
instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their submissions
via structured templates. This includes details about training, license, limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [Yes]

Justification: Yes. We have included the full text of the instructions provided to human evaluators,
along with the screenshots of the interface used during the evaluation process in the Appendix.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main paper.

19

paperswithcode.com/datasets

15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: Participants were clearly informed about the purpose and nature of the task before
participating, and their participation was entirely voluntary. We ensured all procedures complied with
ethical standards for research involving human subjects.

Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and locations,
and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if applicable),
such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing, editing,
or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality
of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our paper does not rely on large language models
(LLMs) in any essential or novel way. All key components were developed by the authors, and LLMs
are only used as standard tools within the evaluation framework.

¢ The answer NA means that the core method development in this research does not involve LLMs as
any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices and Supplementary Material

A.1 Gaussian Process Kernel Composition

In our paper, model means the kernel composition of gaussian process. Our kernel composition is done through
below grammars and basis kernels. The basis kernels contain the linear(LIN), periodic(PER), squared exponen-
tial(SE), constant(C), white noise(WN) following [33]. And our composition grammar O contains addition(+),
multiplication(x), replacement. So our model search space 3 can be defined as:

U= J{k|keBk=aii(b)bi € B @i €O}, 4)
n=1

B ::= Linear|Periodic|SE|WN|C Q)

O ::= +| X |replacement (6)

where I3 represents the set of basis kernels and O denotes the set of kernel operations. A key property of this
construction is that the space X is closed under the specified operations , ensuring that any combination of basis
kernels is valid and also belongs to the search space.

A.2 Derivation of Visual Information Criterion

The derivation of visual criterion starts from the posterior probability of a model M given data D:
p(DIM)p(M)
Typically, p(M) is assume to be uniform, leading to the common Bayesian Information Criterion (BIC), which
approximates p(D|M) using Laplace’s approximation:
BIC = —2log p(D|M, 6%) + klogn, (8)
where 0* is the maximum likelihood estimator (MLE), & is the number of model parameters, and 7 is the sample
size.

@)

In this work, we modify the BIC by introducing:

1. A non-uniform prior p(M) x ss(M)“, where s, represents structure similarity score of the model
M, and o is a scale hyperparameter.

2. A modified likelihood function:
p(DIM, 0) = s¢(DIM,)% p(D|M,0), ©)

where sy represents fitness score of the model M for data D, and « is a scale hyperparameter.
The marginal likelihood is given by:
p(OLM) = [BDIM. Op(6l M) a5, (10)

As the fitness score is also maximized at the MLE 6* = argmax p(D|M,0), one can apply Laplace’s
approximation around the MLE:

p(DIM) = H(DIM, 0%) (2m)"2|H| /2, (11)
where H is the Hessian matrix of — log p(D|6, M) evaluated at 6*:
82
H=——-logp(D 12
og7 108 P(DIM0)| (12)
Substituting into our approximation and taking the log on the both sides:
X k
log p(D|IM) =~ log p(D|M, 67) — 35 logn. (13)

Then, our log posterior log p(M|D) becomes:
log p(M|D) =~ ay log sf(D|M,0%) + log p(D|M, 6%) — g logn + aslog ss(M) + C, (14)
for some constant C.
Multiplying by 2 and rearranging gives:
2log p(M|D) ~ —BIC + 2ay log s§(D|M, 0) + 2a, log s (M) + C. (15)
By modeling 2log s (D|M, 6%) 4+ 2log s, (M) with our EvaluatorVLM, and simply setting o = as = ai:

VIC = « - EvaluatorVLM (M, 6%, D) — BIC. (16)

21

A.3 Experimental Details

Our experiments are upon GPy and GPy-ABCD [56]. We have conducted each experiments for 5 rounds, with
10 random restarts, and used L-BFGS-B optimization. Also, we conduct top-3 sampling from model pool for
each round. We have used gpt-4o-mini (for the main result) for both AnalyzerVLM and EvaluatorVLM, and
we have set hyperparameter o to 50 of our EvaluatorVLM to balance with the BIC of the visual criterion. Also
we have utilized the current round term for scoring to select mostly on recent models from the model pool. For
Symbolic Regression, we have followed [48]] and utilized its dataset. We have conducted each experiments for 20
rounds, with 5 random restarts each, and used scipy’s optimize curve fit for parameter optimization. The function
evaluation is done similarly to the gaussian process kernel discovery, setting the hyperparameter « to 0.05. To
effectively search for the parameter for kernel search, we initially performed 10 random restarts to explore the
parameter space broadly. Then we substituted the resulting parameters with those proposed by AnalyzerVLM.
We then conducted a second-stage local optimization, using the AnalyzerVLM-initialized parameters as starting
points. Our experiments are conducted on CPU with 16 cores for the precise calculation; and it may take around
multiple hours for the experiments. The experiment for Gaussian Process Kernel Discovery, we have used the
dataset of jgpss-research, spliting training data into 9:1 for the validation data.

For BoxLM implementation, we have followed the explanation of [30]. For the fair comparison with our methods,
we have set the basis kernel as linear(LIN), squared exponential(SE), constant(C), and white noise(WN), except
the rational quadratic kernel(RQ), and also sampled top-3 models. Following our pipeline’s evaluation, we
have used Bayesian Information Criterion for the BoxXLM’s top-k model selection. For automatic statistician
experiment, we have changed GPy-ABCD to work as greedy search through top-1 selection for each round. For
ARIMA implementation, we have set ARIMA’s p=2, d=1, q=2, and for facebook prophet implementation, we
have set seasonality mode to multiplicative, and set changepoint prior scale to 0.1.

A.4 More Qualitative Results

We present additional quantitative results in Fig.[AT2] Our method demonstrates superior performance overally
capturing their underlying patterns. As shown, our method not only fits the training data well but also generalizes
better mostly compared to other methods.

A.5 Human Evaluation of the Model Selection

For human evaluation, the instructions are shown at Table[A3] and example on Fig.[AT3] We have instructed
the human evaluators to evaluate given model following EvaluatorVLM’s criteria: visual fitness, and visual
generalizability. For each criteria, we instructed evaluators to rate the given model from 1 to 5, giving the 5 for
the best. For fitness, we have evaluated the mean prediction’s fitness, and also the uncertainty region. So with
small uncertainty region with good fitness, evaluators are instructed to give high score for visual fitness.

A.6 Function Composition and Implementation Details for Symbolic Regression

In our experiment for symbolic regression, we have defined our basis function and base grammars and ex-
periments for function composition following [39]. We have conducted the iteration for 20 rounds, and the
parameter optimization is done through Scipy’s optimize curve fit. For EvaluatorVLM, we have utilized « to
0.05, which can balance the original symbolic regression score function and the visual evaluation. We prompted
AnalyzerVLM to propose the function composition based on the below basis functions and grammar, so our
model search space of symbolic regression 3 is:

S= {1 FEB f=aii(b)bi € B&; € 0}, (17)
n=1

B ::= z|sin(x)| cos(z)| tan(z)| sinh(z)| cosh(z) (18)

O ::= +| X |sqrt| exp | log |abs (19)

A.7 Symbolic Regression Results at Real-World Dataset

We report the result of symbolic regression to the real-world univariate datasets [33]], including Airline Passenger,
Solar Irradiance, Mauna Loa, Wheat, Call-Center, Radio, and Gas Production. For the experiments, we conducted
20 rounds for each method. As shown in Table[A6] SR-based methods require a large number of trials to identify
appropriate models. Unlike AnalyzerVLM which proposes functions based on a detailed analysis of the data,
symbolic regression-based methods like SGA [36]] and LLM-SR [51] generate naive proposals without such
insight, often leading to ineffective results. Although ICSR [39] enhances function proposal by utilizing
visualization of data, enabling it to show better results SGA and LLM-SR, it still falls short of achieving the same
level of performance as ours, due to the absence of precise, data-driven analysis. Also, symbolic regression-based

22

https://github.com/jamesrobertlloyd/gpss-research.git

Airline

Mauna

Gas

Call

Wheat

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

—— Observed
—— Test Data

—— Mean Forecast

1950

—— Observed
—— Test Data

—— Mean Forecast

Data

Data

1955
Year

1960

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

—— Observed
—— Test Data

—— Mean Forecast

1955 1960 1965

Data

1970

—— Observed Data

—— Test Data

—— Mean Forecast

1965

—— Observed Data

—— Test Data

—— Mean Forecast

1720

1760

Year

1975
Year

1970
Year

1800
Year

1980

1985

1840

1990

1975

1995

1880

ARIMA

10
0.8
0.6
04

1957 1960

Autostats

1.0
0.8
0.6
0.4

1957 1960

ARIMA

poor
Yoo

1987 1992 1997 2002

Autostats

R A =
J>oo

1987 1992 1997 2002
ARIMA
1.0
0.8
0.6
05
1983 1988 1993
Autostats
10
0.8
0.6
05
1983 1988 1993
ARIMA
1.0
0.5
0.0
1973 1976
Autostats
1.0
0.5 MC
0.0
1973 1976
ARIMA
1.00
0.78
0.56
0.34
1817 1837 1857 1877
Autostats
1.00
0.78
0.56
034
1817 1837 1857 1877

Facebook Prophet

1.0
0.8
0.6
0.4
1957 1960
BoxLM

1.0
0.8
0.6
0.4

=
&

1957 1960

Facebook Prophet

\
\

1992 1997
BoxLM

1987 2002

e 9o ¢
o0 ®» o

03
1987 1992 1997 2002

Facebook Prophet

1.0
0.8
0.6
05
1983 1988 1993
BoxLM

1.0

0.7

0.4
0.2

%
H

1983 1988 1993

Facebook Prophet

10

05

0.0
1973 1976
BoxLM

1.0

0.5

v
o

0.0

1973 1976

Facebook Prophet

1.00
0.78
0.56
034
1817 1837 1857 1877
BoxLM
1.00
0.78
0.56
034
1817 1837 1857 1877

Gaussian Process (SE)
1.0

0.5

%

0.0
1957

Ours

1960

1.0
0.8
0.6
0.4

1957 1960

Gaussian Process (SE)
1.0

0.9
0.8

1992 1997
Ours

1987 2002

1987 1992 1997 2002

Gaussian Process (SE)
2

0.7
0.3
0.0
1983 1988 1993
Ours

1.0
0.8

0.6
0.5

1983 1988 1993

Gaussian Process (SE)
1.0

0.5

0.0
1973 1976
Ours

1.0

0.5

0.0

1973 1976

Gaussian Process (SE)

1.00
0.78
0.56
0.34
1817 1837 1857 1877
Ours
1.00
0.78
0.56
034
1817 1837 1857 1877

Figure A12: More qualitative results. We show more qualitative results at Airline, Mauna, Gas, Call, and Wheat

data.

[\

3

Please evaluate each model's fitness score. (You can give the same score to different

models)
model 1 model 3
0 Jl i (T] 1 Akl -
IQ“ \\‘ I \ : .,w \w; \,| r\‘l",‘w\ 1 |‘ 1A~
|J‘|\lh"|\ f‘“l‘hlf; I, wu‘u .JM“H |‘JI {
vy b J y
model 2 model 4
m At WM \-\ T Al il i
‘.lﬁ\‘\“:" Fﬂ\h\w’ﬂ" 1w 1 F‘”\“N | ‘Jhl“u LT ’[‘
VI [VOV, U I\N (UL = [YYEVRLA “
AL "\’\’wl M ‘lll‘.’:‘.‘_k" il "vJ "y J,.»\| W :_..\“ Wi | VY
1 (worst) 2 3 4 5 (best)
Model 1
Model 2
Model 3
Model 4
Please evaluate each model's fithess score. (You can give the same score to different =
models)
model 1 model 3
A ‘.‘ L“"““’ V
e j’lww,,/” Vi) M \ IJ./“ Vel VA
o e ol
model 2 model 4
.w‘"\ o A
wHp i ~N 4 Y g !
Al o w i P
| o™ ol ™ i
1 (worst) 2 3 4 5 (best)
Model 1
Model 2
Model 3
Model 4

Figure A13: Example screenshot of visual fitness for human evaluation. The human evaluators are instructed
to rate the given model from 1 to 5, having a same condition with the EvaluatorVLM.

24

Table A5: Human Evaluation Instruction. We have done the human evaluation similar to the EvaluatorVLM’s
evaluation instructions. Human evaluators are instructed to rate the visual fitness, and visual generalizability(e.g.,
consistency).

Evaluate the given model prediction following below criteria. Graph has three values:
data(black line), mean prediction of the model(red line), and confidence region(blue shaded
area).

Fitness: Compare the data plot(black line) and the model’s mean(red line). If they are similar,
give 5. If they are not similar at all(flatten line), give 1.

5: Red line perfectly matches black line

4: Red line closely follows black line with most details

3: Red line roughly follows black line (less detail, but not flat)

2: Red line is mostly flat or linear but somewhat follows data

1: Red line is flat and does not match data at all

Uncertainty: Check the blue shaded area is big. If blue shaded region is very small(means
small uncertainty), give 5. If it is moderate, please give them 3. If it is very big(means high
uncertainty) give them 1.

5: Confidence region almost invisible (very certain)

4: Confidence region very small

3: Confidence region small in the middle, larger at edges

2: Confidence region visible and consistent throughout

1: Confidence region very large everywhere (high uncertainty)

Generalizability: At each side, the model prediction may fail(showing flatten or sudden
dropping prediction at both side, showing the large uncertainty region at both side), which
means the generalization has failed. In this case, give generalibility 1. If you think the model
prediction maintains at both side, give high score. 5: Predictions at edges are natural with
small uncertainty

4: Predictions at edges are natural (not flat) with visible uncertainty

3: Predictions at edges hold but become mostly flat lines

2: Predictions at edges degrade noticeably

1: Predictions at edges fail badly, flattening or dropping sharply with large uncertainty

methods underperform in real-world datasets since they do not explicitly model the observation noise, while
Gaussian process regression does.

Interestingly, we observe that symbolic regression’s function composition can be a good starting point for
the Gaussian process kernel discovery. To leverage this, we introduce a hybrid model discovery framework,
denoted as Ours (SR + GP) in Table We utilized simple SR framework [[12]] to generate the initial function
composition and apply the top-3 function compositions’ corresponding kernel structure with its initial parameters.
Then, we conducted our GP kernel discovery pipeline from the kernels for 2 rounds. With this, our hybrid model
discovery results in superior performance across all evaluated datasets. Moreover, it highlights the potential
synergy between symbolic model discovery and probabilistic modeling for interpretable and accurate forecasting.
Fig.[AT4]shows the qualitative results. As shown, utilizing the hybrid model discovery framework can enhance
the performance and find the appropriate model across the dataset.

Table A6: Quantitative results in symbolic regression. We compare our pipeline with competing methods on
the train and test region, reporting RMSE as the evaluation metric. On average, our pipeline achieves superior
performance across datasets. Bold stands for the best, and underline for the second best.

Dataset

Avg.
Method Airline Solar Mauna Wheat Call Radio Gas ve
Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test
SGA [36 0.0700 0.1668 0.1451 0.2652 0.0332 0.0354 0.0599 0.1338 0.0689 0.8583 0.2859 0.8025 0.0574 0.3424 0.1029 0.3720
LLM-SR [51 0.0692 0.3304 0.1039 1.7142 0.0317 02096 0.0492 0.1438 0.0438 21.028 0.1875 0.1798 0.0490 0.6521 0.0763 3.4659
ICSR |39 0.0420 0.1029 0.1807 0.3845 0.0347 0.0343 0.0495 1.4430 0.0548 04725 0.1799 0.2427 0.0497 0.1672 0.0844 0.4067

Ours (SR +GP) 0.0194 0.0354 0.0297 0.3345 0.0037 0.0166 0.0150 0.1801 0.0095 0.1088 0.0491 0.0515 0.0159 0.0581 0.0203 0.1121

25

LLM-SR oo ICSR-V o OURS (SR + GP)

Airline

SGA o LLM-SR oo ICSR-V OURS (SR + GP)

Figure A14: Qualitative result in symbolic regression. Although conventional symbolic regression methods
often exhibit limited performance on real-world datasets, our hybrid model discovery framework demonstrates
notable improvements.

Badip

A.8 AnalyzerVLM Prompts

For the AnalyzrVLM’s System Prompt, we have utilized WaitGPT [[64]’s system prompt. Amd VLM’s action
choosing(e.g. analysis, code generation, model proposal) prompt is shown at[A7} As shown here, we do not
simply give AnalyzerVLM the data itself, instead, we provide AnalyzerVLM a small code block that can acess
the data and the model’s predictions. With this, AnalyzerVLM can inject this code block at the code generating
action, and get the executed output of the code. In this way, AnalyzerVLM can choose how to represent the data
and model, not just fully stuffing the long sequence of the numbers into itself. We also report the prompts used
for AnalyzerVLM and Evaluator VLM for symbolic regression experiments at Table[A9] Our implementation of
prompts follows the scheme of [48]), utilizing our multi-step reasoning for AnalyzerVLM and visual evaluation
for EvaluatorVLM.

A.9 Prompt for Analyzer VLM and EvaluatorVLM at Symbolic Regression

We report the prompts used for AnalyzerVLM and EvaluatorVLM for symbolic regression experiments at Ta-
ble [A9] Our implementation of prompts follows the scheme of [48], utilizing our multi-step reasoning for
AnalyzerVLM and visual evaluation for EvaluatorVLM.

A.10 EvaluatorVLM Prompts

EvaluatorVLM’s evaluation prompts are shown at Table [A8] We evaluate fitness and structure similarity
seperately, and add two scores and use for the final score. For consistency, we evaluate each parts(e.g. fitness,
structure similarity) twice, and averaged.

First, we evaluate the fitness based on two points: mean prediction’s data sample matching, size of confidence
area. For the mean prediction and data matching, we prompted VLM to score 0-10 points if the mean prediction
is just constant value, 10-20 if it is linear but follows overall trend, upper if the mean prediction follows more
trend than that. For the confidence area, we gave 30-50 score if confidence area is small, and gave under 30 if
confidence area gets sudden big at each side, which means it looses the confidence at extrapolation region.

Second, we evaluate the structure similarity based on the red line’s structure similarity at the middle of the graph
(train region) is maintained at the ends of graph. We prompted VLM to give high score(40-50) when the structure
similarity is maintained, else give the lower score.

A.11 Detailed Multi-step Analysis Example

And we also show the detailed outputs of multi-step analysis of AnalyzerVLM, at Fig.[AT3] Fig.[AT6] Fig.[AT7}
and we can see that our AnalyzerVLM chooses how to start the analysis, first, our AnalyzerVLM plans to first
visualize data and the predictions, and generates the code for it. When the code is executed and the output O
(e.g., visualization plot, the covariance visualization) is given, AnalyerVLM repeats the its process until the
analysis is sufficient.

26

Table A7: Analyzer VLM Prompts. We provide the prompt for analyzerVLM. First it describes about the base
kernel, and provide the actions that AnalyzerVLM can select. Then AnalyzerVLM is prompted to select the
actions.

Analyzer VLM: Analysis and action choosing.

Task Overview: You are provided with the mean and covariance 1D array of the fitted kernel
[’kernel’]. Your job is to either:

Generate Python code for further analysis, or Recommend new kernel combinations.

You can only choose one action at a time.

Kernel Adjustment Options:

You can adjust the current kernel by forming new combinations with base kernels using the
following operations:

- Addition (S + B): Add a new base kernel B to the current kernel S.

- Multiplication (S * B): Multiply the current kernel - - S with a new base kernel B.

- Base Kernel Replacement: Replace the base kernel - B with a new base kernel B”.

Base Kernels Available:

- Linear (LIN)

- Periodic (PER)

- Squared Exponential (SE)
- Constant (C)

- White Noise (WN)

Action 1: Analyze the Fitted Kernel (Python Code)

If you need further analysis before making a recommendation, generate Python code for the
task. You can draw insights from the mean, covariance, and confidence intervals of the fitted
kernel, or analyze the parameter itself. However, please try one analysis at a time.

Access the Data and the Model Parameters:

(1

python

X, y, enX, en_mean, en_cov, en_low_quantile, en_high_quantile = access_data
(fitted_models[0])

model_printout (model)

[S1

This will give you train data (X, y), enlarged data with test data (enX), the mean, covariance,
and confidence intervals for the enlarged X, and the model parameters.

Generate Code: If analysis is needed, provide the Python code necessary to calculate or
visualize key insights.

(1

python
Python code goes here

[¥1

Action 2: Recommend Kernel Combinations

If you have already analyzed the kernel, suggest new kernel combinations using the current
kernel S and the base kernels. Use the operations outlined above.

Example Recommendations:

next kernels: ["new combinationl", "new combination2", "new combination3",
"new combination4", "new combination5", "new combination6"...]

Important: Choose only one action: Either provide Python code or recommend new kernel
combinations.
Do not provide both at the same time.

27

Table A8: Evaluator VLM prompt. For the fitness evaluation, we have evaluated how well the real data an mean
prediction fits, and how small the confidence area is. Each points are measured at 50 points, total to 100. For the
generalizability evaluation, we have evaluated how the structure is maintained throughout the data. Structure
similarity is measured out of 50 points

Evaluator VLM: Fitness evaluation of visual information criterion.

You will evaluate the similarity of the two graph, data graph and predicted mean graph. Assign a
score from O to 50. Evaluate the Structure Similarity Between Real Data and Mean Prediction.

Please check the real data graph is similar to predicted mean graph. Please check below:

- Mean graph is similar with sample graph (20-50 points).

- Predicted mean graph is linear line while it shares trend with data graph (10-20 points)

- Mean graph is linear and it does not share the trend at all(0-10 points).

Please generate the response in the form of a Python dictionary string with keys of kernel name.
score is in INTEGER, not STRING.

Please evaluate how similar the two graphs are. First is data graph and second graph is predicted
mean graph. Output should be the score for the kernell. kernell:

Please evaluate how small the confidence interval area is.

Evaluate the Size of the Confidence Area (LightBlue Shaded Area)

- Confidence scores should be assigned based on the size of the lightblue shaded area. So do
not consider the red line and black line, only the lightblue shaded area’s size and the region of
uncertainty.

Please check what the confidence area looks like. Assign a score from 0 to 50 following below:
1. Confidence interval area is hard to see, uncertainty is small(this case assign 40-50 points).

2. Confidence interval area is hard to see in the middle of graph, but large at the boundaries (30-40
points). This means the model is overfitted to the middle, so give a low score.

3. Confidence interval area is normal in the middle, uncertainty remains but acceptable or becomes
larger over y at the boundaries (0-30 points).

EvaluatorVLM: Generalizability evaluation of visual information criterion.

You will evaluate how well the predicted kernel (red line) maintains based on the below criteria:
Evaluate the structure similarity of middle of the graph and the ends of the graph.

Check the blue line’s structure similarity of the middle maintains at the left and right end of the
graph. If it was following the data well but suddenly changes to the constant line at the ends of
the graph, assign low score for structure similarity score. But if structure similarity is maintained,
assign 40-50 score.

Please generate the response in the form of a Python dictionary string with keys of kernel name.
score is in INTEGER, not STRING.

Please evaluate how similar the two graphs are. First is data graph and second graph is predicted
mean graph. Output should be the score for the kernell. kernell:,

28

Table A9: Analyzer VLM and Evaluator VLM prompts for symbolic regression. We report action choosing
prompt used by AnalyzerVLM and fitness & generalizability evaluation prompt employed by EvaluatorVLM in
symbolic regression.

Analyzer VLM: Action choosing prompt.

Your task is to give me a list of five new potential functions that are different from all the ones
reported below, and have a lower error value than all of the ones below. Before the function
generation, please first analyze the given data points and reported functions first(e.g., visualization,
or get the statistics). Guess and list up which this function would be. If you generate the Python
code that includes your analysis, I will execute and give you the result. You can use sympy for
checking the function prediction. For saving the visualization, please avoid using plt.show(), and
use plt.savefig(’./ztmpimgs/imagename’) when imagename is any visualization you made. Before
using the data points, please sort them first.

Please give me only python code for now. Code:

(1

python

Python code goes here
(]

Please try to bulid upon the function with the smallest error, then generating different ones too.
Generate as diverse as diverse functions!

EvaluatorVLM: Fitness evaluation prompt.

You are an intelligent chatbot designed for evaluating two graph’s similarity.

You will evaluate the structure similarity of the two graph, data graph and predicted mean graph.
Assign a score from 0 to 50.

Evaluate the Structure Similarity Between Real Data and Mean Prediction.

Please check the real data graph is similar to predicted mean graph. Please check below:

- Mean graph is similar with sample graph (20-50 points).

- Predicted mean graph is linear line while it shares trend with data graph (10-20 points)

- Mean graph is linear and it does not share the trend at all(0-10 points).

Please evaluate how similar the two graphs are. First is data’s line plot, and second is predicted
value’s line plot. Please evaluate how well the predicted value fits to the data. Output should be
the score for the functionl. Please generate the response in the form of a Python dictionary string
with keys of function name. score is in INTEGER, not STRING.

functionl:

Evaluator VLM: Generalizability evaluation prompt.

You are an intelligent chatbot designed for evaluating the correctness of each functions.

You will evaluate how well the predicted value (red line) fits based on the below criteria:

- Evaluate the structure similarity of middle of the graph and the ends of the graph.

- Check the blue line’s structure similarity of the middle maintains at the left and right end of the
graph.

- If it was following the data well but suddenly changes to the constant line at the ends of the
graph, assign low score for structure similarity score.

But if structure similarity is maintained, assign 40-50 score.

Please generate the response in the form of a Python dictionary string with keys of function name.
"score for structure similarity’ are in INTEGER, not STRING.

29

Let's start with **Action 1: Analyze the Fitted Kernel** by generating Python code for further analysis.
The goalis to visualize the mean, covariance, and confidence intervals of the fitted kernel.

Plan:) _ Fited Kernl Anlysis

1. Access the data and model parameters using the provided function.

2. Visualize the data, mean, and confidence intervals using Matplotlib.

Here’s the Python code for the analysis:
PYTHON CODE

Recap of the Plan:
1. Access the data and model parameters.
2. Visualize the data, mean, and confidence intervals using Matplotlib.

N Xaxs N

fitted_kernel_analysis.png

Now, you can run this code to perform the analysis. Let me know if you need any further assistance!

Analysis of the Current Kernel (LIN + SE * (PER + C))
Based on the provided graph and the output from the previous analysis, here are the key observations:

1. **Mean Value vs. Real Data Points**:

- The mean (red line) closely follows the actual data points (black line) for most of the time, indicating that the current kernel
captures the overall trend well.

- However, there are periods where the mean deviates from the actual data, particularly towards the end of the time series. This
suggests that the model may not be fully capturing the underlying dynamics in those regions.

2. **Covariance**:

- The confidence intervals (light blue shaded area) are relatively wide, especially at the boundaries. This indicates a higher
uncertainty in the predictions, which could be due to the non-stationary nature of the data or the choice of kernels.

- A smaller covariance would generally indicate more confidence in the predictions, so this is an area for potential improvement.

3. **Parameter Appropriateness**:

- The current kernel effectively captures both linear and periodic trends, but the presence of the constant (C) and the squared
exponential (SE) may not be necessary if the data is primarily linear with periodic fluctuations.

- The periodic component (PER) is evident in the data, but the SE kernel may be introducing unnecessary complexity.

Residuals of the Fitted Kernel

Next Steps

Given the analysis, it seems that further analysis is warranted to
explore the residuals of the model, which can provide insights
into how well the current kernel is performing and where it may
be lacking. This will help in making a more informed
recommendation for new kernel combinations.

Resiuals

Python Code for Residual Analysis E N

Here's the code to calculate and visualize the residuals:))
residuals_analysis.png

Figure A15: Example of VLM Analysis - step 1,2.

30

Analysis of the Residuals
Based on the residuals plot generated from the previous analysis, here are the key observations:

1. **Residuals Behavior**:

- The residuals (black line) fluctuate around the zero line (red dashed line), which is a good sign as it indicates that the model does
not consistently overestimate or underestimate the actual values.

- However, there are periods where the residuals show significant deviations from zero, particularly towards the end of the time series.
This suggests that the model may not be capturing some underlying patterns or trends effectively in those regions.

2. **Variance of Residuals**:
- The variance of the residuals appears to increase over time, especially in the later years. This indicates that the model's uncertainty
is growing, which could be a sign that the current kernel is not adequately capturing the dynamics of the data.

3. **Model Appropriateness**:
- The current kernel (LIN + SE * (PER + C)) seems to capture the overall trend well, but the increasing variance in the residuals
suggests that the model may be too simplistic or not flexible enough to account for the complexities in the data.
- The presence of the constant (C) may not be necessary, as the data appears to have a more complex structure that could be better
captured by other kernels.

Autocorrelation of Residuals

Next Steps

Given the analysis of the residuals, it seems that further analysis is warranted to
explore the trends in the residuals, such as calculating the autocorrelation of th:
residuals.

This can help identify if there are any patterns in the residuals that the current
modelis failing to capture.

hmmmrm. It

!
I

—1.00

Python Code for Autocorrelation Analysis o

2o 25 E

Here’s the code to calculate and visualize the autocorrelation of the residuals: residual_autocorrelation_analysis.png

Analysis of the Autocorrelation of Residuals
Based on the autocorrelation plot of the residuals, here are the key observations:

1. **Autocorrelation Behavior**:

- The autocorrelation values are significant for the first few lags, indicating that there is a correlation between the residuals at these
lags. This suggests that the model may not be fully capturing the temporal dependencies in the data.

- The autocorrelation drops off quickly after the first few lags, but the presence of significant values indicates that the residuals are
not independent, which is a violation of the assumptions of many statistical models.

2. **|mplications for the Current Kernel**:

- The presence of autocorrelation in the residuals suggests that the current kernel (LIN + SE * (PER + C)) may not be flexible enough to
capture the underlying structure of the data. This could lead to systematic errors in predictions.

- The model may benefit from incorporating additional kernels that can better account for the temporal dependencies observed in
the residuals.

3. **Variance of Residuals**:
- The residuals show some variability, but the autocorrelation indicates that there are patterns that the current kernel is not capturing.
This could lead to increased uncertainty in predictions, especially in the later periods.

Next Steps
Given the analysis of the autocorrelation of the residuals, it seems that further analysis is warranted to explore the trends in the data

itself, such as calculating the period of the periodic component. This can help in making a more informed recommendation for new
kernel combinations.

Python Code for Period Calculation CODE EXECUTION ERROR OCCURED

Here’s the code to calculate and visualize the period of the data:

Figure A16: Example of VLM Analysis - step 3,4.

31

Analysis of the Current Kernel (LIN + SE * (PER + C))
Based on the previous analyses, here are the key observations regarding the current kernel:

1. **Mean Value vs. Real Data Points**:
- The mean value generated by the kernel follows the real data points reasonably well, but there are noticeable deviations,
especially towards the end of the time series. This indicates that the kernel may not be capturing all the underlying trends effectively.

2. **Covariance**:
- The residuals showed significant autocorrelation, indicating that the model's predictions are not independent. This suggests that
the covariance structure of the current kernel may not be appropriate for the data, leading to increased uncertainty in predictions.

3. **Parameter Appropriateness**:
- The current kernel captures both linear and periodic trends, but the presence of the constant (C) and the squared exponential (SE)
may not be necessary. The increasing variance in the residuals suggests that the model
may be too simplistic or not flexible enough to account for the complexities
in the data.

Next Steps Fourier Transtorm ofthe Data
Given the analysis, it seems that further analysis is warranted to explore
the periodicity of the data more robustly. Since the previous attempt to
calculate the period resulted in an error, | will provide a different
approach to analyze the periodicity.

Python Code for Periodicity Analysis
Here’s an alternative code to analyze the periodicity using Fourier e
Transform, which can help identify dominant frequencies in the data: o i : 5 . 5 s

Frequency

periodicity_analysis.png

Analysis of the Periodicity Analysis Graph
Based on the Fourier Transform plot of the data, here are the key observations:

1. **Frequency Components**:
- The plot shows several peaks at different frequencies, indicating that the data has multiple periodic components. The presence of
these peaks suggests that the data exhibits periodic behavior, which the current kernel may not fully capture.

2. **Magnitude of Frequencies**:

- The magnitudes of the frequencies indicate the strength of the periodic components. The highest peaks suggest dominant
frequencies that could be important for modeling the data. This information can be useful for selecting appropriate kernels that can
capture these periodic trends.

3. **Implications for the Current Kernel**:

- The current kernel (LIN + SE * (PER + C)) may not be adequately capturing the periodic nature of the data, especially given the
multiple frequency components observed. The linear and squared exponential components may not be sufficient to model the
complexities in the data.

Next Steps

Given the analysis of the periodicity, it seems that further analysis is warranted to explore the specific periodic components and how
they can be incorporated into the kernel. However, since we have already conducted several analyses, it may be more beneficial to
recommend new kernel combinations based on the insights gained.

Recommended Kernel Combinations
Considering the periodic nature of the data and the limitations of the current kernel, here are some new kernel combinations that

could be explored:

* *plaintext
next kernels: ["PER * (LIN + SE)", "PER + (LIN * SE)", "PER * SE + LIN", "LIN + PER * C", "SE * PER + C", "PER * (LIN + C)"]

Figure A17: Example of VLM Analysis - step 5,6.

32

	Introduction
	Related Work
	Method
	Overview
	AnalyzerVLM: Multi-step Analysis
	EvaluatorVLM: Visual Information Criterion

	Experiments
	Gaussian Process Kernel Discovery
	Ablation Study and Analysis
	Application to Symbolic Regression

	Conclusion
	Acknowledgement
	Technical Appendices and Supplementary Material
	Gaussian Process Kernel Composition
	Derivation of Visual Information Criterion
	Experimental Details
	More Qualitative Results
	Human Evaluation of the Model Selection
	Function Composition and Implementation Details for Symbolic Regression
	Symbolic Regression Results at Real-World Dataset
	AnalyzerVLM Prompts
	Prompt for AnalyzerVLM and EvaluatorVLM at Symbolic Regression
	EvaluatorVLM Prompts
	Detailed Multi-step Analysis Example

