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Extended Abstract

Breast cancer is the leading cancer among women in India, representing 13.5% of all cancer
diagnoses and 10.6% of cancer-related deaths as of 2020. It was estimated that India had
118,000 new cases of breast cancer, with a total number of living cases at over 525,000. In this
study, we identified transcriptional level changes in Indian breast cancer tumours versus normal
tissue from datasets available in the NCBI Gene Expression Omnibus (GEO) online. This
helped to identify differentially expressed genes (DEGs) in the Indian breast cancer dataset,
as shown in Figure 1. However, getting potential drug targets from this long list of DEGs is
complex. Traditional network theoretical analysis often captures hub genes or proteins based
on degree and centrality measures, which misses important information about their topological
connectivity in the network. To address this limitation, we aim to apply functional cartography
of hub genes/proteins for further classification into functional roles [1]. Here, we present an
integrated network-science framework for both gene regulatory networks (GRNs) and protein-
protein interaction (PPI) networks to identify specific “connector hubs,” the key molecular
nodes that bridge distinct functional communities and may drive cross-talk between pathways.

Our pipeline begins with large-scale transcriptional profiles of breast cancer cohorts, where
we construct GRNs using the Weighted Gene Co-expression Network Analysis (WGCNA) ap-
proach [2]. Parallel PPI networks are curated from high-confidence resources such as STRING
and BioGRID [3]. For both gene regulatory and protein-protein interaction networks, we
perform community (module) detection using complementary algorithms such as Lou-
vain/Leiden for modularity maximisation and Infomap for flow-based clustering, implemented
in igraph and graph-tool [4]. To achieve robust consensus partitions, we apply co-assignment-
based clustering across repeated runs and algorithms. Network quality is assessed using modu-
larity Q and normalised mutual information (NMI) to confirm stability and reproducibility.

Within each consensus community, we apply functional cartography to classify nodes by
their intra- and inter-module connectivity [1]. The within-module degree z-score

zi =
k
(s)
i − k

(s)

σ
(s)
k

quantifies how well node i is connected to other nodes in its own module s, while the participation
coefficient
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measures the distribution of its links across all M modules. Nodes with high zi and intermediate
Pi emerge as connector hubs, bridging multiple functional communities.

This dual-network strategy allows us to pinpoint candidate drug targets that are not only
differentially expressed but also topologically critical genes or proteins that coordinate inter-
pathway communication and may underlie therapy resistance or disease progression. Early
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analyses highlight well-known oncogenic drivers as well as less-characterised connectors that
warrant experimental follow-up. By coupling community detection with functional cartography,
we demonstrate a scalable methodology for uncovering hidden architecture in complex biological
networks and provide a foundation for precision oncology interventions.

Ethical Considerations

All transcriptomic and interaction data are derived from publicly available repositories (e.g.,
TCGA, GEO, STRING), ensuring patient anonymity and compliance with open-data guidelines.
No individual-level clinical identifiers are used, and all analyses follow FAIR data principles.

Figure

Figure: Gene expression analysis of an Indian Breast Cancer dataset comparing tumour and normal

breast tissue samples. Visualisations (from left to right) include sample distribution, MA plot, volcano

plot, expression density, and mean-variance trend to highlight differentially expressed genes.
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