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ABSTRACT

Graph Neural Networks (GNNs) have shown impressive performance on several
graph-based tasks. However, recent research on adversarial attacks shows how
sensitive GNNs are to node/edge/label perturbations. Of particular interest is the
label poisoning attack, where flipping an unnoticeable fraction of training labels
can adversely affect GNNs’ performance. While several such attacks were pro-
posed, the latent flaws in the evaluation setup cloud the true effectiveness of the
attacks. In this work, we uncover 5 frequent pitfalls in the evaluation setup that
plague all existing label-poisoning attacks for GNNs. We observe for some set-
tings that the state-of-the-art attacks are no better than a random label-flipping
attack. We propose and advocate for a new evaluation setup that remedies the
shortcomings, and can help gauge the potency of label-poisoning attacks fairly.
Post remedying the pitfalls, on the Cora-ML dataset, we see a difference in per-
formance of up to 19.37%]1]

1 INTRODUCTION

Graph Neural Networks (GNN5s) are a popular class of methods for graph learning tasks including
node classification, graph classification, and link prediction (Wu et al., 2019b). GNNs are efficient
at exploiting both the node features and topological structure to learn better representations for the
task at hand. Recently, they have made their way into several applications including safety-critical
domains (e.g., drug discovery (Xiong et al., |2021)). With the increase in their applicability, it is
necessary to understand and ensure the reliability of their predictions.

Recent research on adversarial data poisoning attacks on GNNs (Jin et al., 2021} |Sun et al.| [2018))
exposes the vulnerabilities of GNNs. Adversarial attacks can be broadly classified into evasion and
poisoning attacks. Evasion attacks are conducted during the testing phase on a trained model and
generally applied in an inductive setting, while poisoning attacks perturb the training data before the
training phase. From an attack perspective, evasion is an easier setting because the model is fixed.
Poisoning on the other hand is a more difficult setting because the defender has more options to
safeguard against the attack. Poisoning attacks apply unnoticeable perturbations to the input graph
structure and/or node features and show how this can adversely affect the test performance of GNNs;
reaffirming their sensitivity.

One manifestation of poisoning attacks is label poisoning, where a malicious user can introduce
corrupted labels into the dataset. It is plausible to imagine such a scenario when training data is
scraped from a public source like the internet, where a user can modify the data. It then becomes
crucial to analyze how resistant or vulnerable GNNs are to corrupted training labels. Motivated by
this, we are interested in evaluating the robustness of GNNs to label poisoning attacks, where a small
fraction of training labels are corrupted before training.

Several label poisoning attacks (Liu et al., |2019; Zhang et al.l 2020; [Liu et al.l 2022)) have been
proposed in the literature. To safeguard models against these attacks (Zhang et al., |2020) proposed
a defense framework for GNNs against adversarial label poisoning attacks, and (Dai et al.l 2021}
Yu et al, 2019) proposed defense mechanisms against random label noise. The proposed attacks
choose a GNN model, generate poisoned labels, and re-train the GNN model using the default
hyper-parameters, which were tuned for clean labels. This evaluation setup, while appearing benign
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on the surface, paints a distorted picture of the efficiency and effectiveness of poisoning attacks. In
this work, we uncover the pitfalls associated with the common evaluation setup of label poisoning
attacks. In a nutshell, our contributions are: 1) We identify 5 pitfalls with the common evalua-
tion setup. 2) We propose a new evaluation setup that is more realistic. 3) We conduct extensive
experiments in the new setting and provide insights.

2 RELATED WORK & BACKGROUND

Over the past few years, the robustness of GNNs against adversarial attacks has received an in-
creasing amount of attention. In several existing works, the adversary is granted the capability to
add/remove an unnoticeable amount of edges from the graph (Jin et al.| 2021} |Geisler et al., |2021)),
corrupt node features (Ma et al., |2020), and/or manipulate node labels (Liu et al.| 2019; [Zhang
et al., [2020; [Liu et al.| [2022). In this work, we limit our purview to label poisoning attacks, where
the adversary can flip labels for a small fraction of training nodes.

Problem setting: We focus on the semi-supervised node classification task for graphs. We are given
access to a graph G = (V, &), where V is the set of N nodes and £ is the set of edges. G is described
by an adjacency matrix A € {0,1}V*¥. Let X € R™V*? denote a d-dimensional feature matrix
for all the nodes in the graph, and Y € {1,2,...C}"V denote node labels and represented as one-hot
vectors. The goal is to predict labels for unlabeled nodes y.,, given (f(0), A, X, y;), where f(0) is
a graph based learning algorithm and y; denotes the labels of training nodes V. In label-poisoning
attacks, the objective of the attacker is to perturb a small fraction of training labels y;, such that
Yy, is largely affected. The label-poisoning attacks for a given model can be viewed as a bi-level
optimization problem:

max L(0"; A, X, y.)
Y

. . . . (1)
st. 0" = arg min LO; A, X, y1), [(y—w)llo < 2eN;

in the above equation, N; = |V;|, @ denotes poisoned training labels, and L is the classification
loss. €N is the allowed budget for perturbation and € € (0, 1); in other words, €V, represents the
maximum number of labels that can be flipped.

We briefly describe both heuristic and more sophisticated label-poisoning attacks that we assess in
this paper below. More details can be found in the respective papers.

Heuristics-based attacks. We compare against two baseline attacks. Random Label Flipping Attack
(RANDOM) which randomly perturbs the labels for a budget number of nodes. Degree-based Label
Flipping Attack (DEGREE) perturbs nodes with the highest degrees given a budget.

Learning-based attacks. These attacks, in general, derive perturbed labels from a fixed surrogate
model, for which either an approximate or exact closed-form solution is employed. The poisoned
labels are then applied to a target model. Label Propagation Attack (LPATTACK) |Liu et al.[(2019)
proposed the first gradient-based attack for graph-based semi-supervised learning (G-SSL) models.
Note that this attack was primarily designed for binary-class datasets that are i.i.d in nature with
G-SSL methods applied on top. Under the lens of Equation |1}, LPATTACK replaces the inner opti-
mization with the closed-form solution of Label Propagation, thus making the bi-level optimization
tractable. A probabilistic method that uses Bernoulli variables to model label flips is combined with
a gradient descent optimizer to solve the outer routine.

Label-Flipping Attack (LAFAK) Zhang et al.| (2020) builds on top of LPATTACK by replacing the
inner optimization in Equation [I] with an approximate closed form solution of a linearized GCN,
where the non-linearities between layers are removed. They linearize a 2-layer GCN (Kipf &
Welling| 2017): SOFTMAX(A RELU(AX6') 82) — SOFTMAX(A2X6), where A is the sym-
metric normalized adjacency matrix, and @' and 62 are reparameterized into a single matrix 8 € R
Here, the (implicit) surrogate model is SGC (Wu et al., 2019a).

Next, they replace the cross-entropy loss with a least square loss — i.e. using regression to perform
classification: 8* = N%arg min||(A?X8); — y;||3 — and obtain closed-form solution using the
‘e
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OLS estimator. Since LAFAK restricts its scope to binary classification, the labels are cast to
{—1,+1}". Labels of training nodes are y; € {—1, +1}.

6" = (A°X)[ (A°X); + )~ (A*X)] (1) 2)

In equation[2] the subscript '’ refers to rows corresponding to training nodes. Similar to LPATTACK,
the non-differentiable parts of the outer routine are substituted with continuous surrogates and a
gradient descent-based optimizer is employed.

Maximum Gradient Attack (MG) |Liu et al.| (2022) propose a label propagation-based attack for
GCN like models. Unlike LPATTACK which uses a similarity matrix that is constructed by applying
a gaussian kernel to the feature matrix, MG proposes multiple ways to construct the propagation
matrix A (e.g., pagerank matrix, higher-order adjacency matrix). The top budget number of
gradients are then selected and traced back to the corresponding nodes. The labels for these nodes
are then set to max label class.

For multi-class datasets, LAFAK and LPATTACK consider as a candidate set only the nodes whose
labels belong to the two most frequent classes, restricting the attack to flips among these two
classes. In the default setting (20 nodes per class), the candidate set is of size at most 20% (the
Cora-ML dataset has 7 classes and the two most frequent classes span 20% of the training set).
Therefore, LAFAK and LPATTACK by default cannot accommodate higher budgets. To enable this,
while not deviating from the original design of the attack, we propose a minor extension. We first
exhaust the 20% budget by perturbing labels of the two most frequent classes and then we fix these
perturbed labels. For the remaining budget, we perturb the clean labels, but by restricting the attack
scope to a candidate set consisting of the next two most frequent classes. This process is repeated
until the budget is completely exhausted. The multi-class setting can be handled better, however we
restrain from such adaptations to remain true to the original design of the attack. For 20% budget,
on default splits, LAFAK and LPATTACK become equivalent and deterministic because all the
labels of nodes in the candidate set are flipped to their counterpart.

3  PITFALLS

On closer inspection, we infer that the current attacks do not simulate the full potential of a de-
fender. In short, the dataset splits and the training/tuning routine simulated by the attacker when
evaluating the strength of their proposed attacks in all previous works is not realistic. In the rest
of this section, we carve out the specifics of the pitfalls we identified and empirically validate them
with our experiments and provide remedies. We conduct our experiments on three datasets namel
Cora-ML (McCallum et al., 2000), Citeseer (Sen et al., |2008), and Pubmed (Namata et al., 2012
We report our experimental results using three different GNNs: GCN (Kipf & Welling| |2017),
GAT (Velickovic et al.,2018])), and APPNP (Klicpera et al.,2019). We sweep the poisoning budget
over the range [5%, 10%, 15%, 20%, 30%]. In practice, smaller budgets are of more relevance.
Additional experiments and the setup details can be in found in the Appendix ([A.3]and [A.T).

1) Large Validation Set. All existing label poisoning attacks (LPATTACK, LAFAK, MG) evaluate
on data splits with validation (val) set size much larger than that of training (train) set. To substan-
tiate, in the default setting as tabulated in Table[I]in the Appendix, the val set contains 500 nodes
and the train set contains 20 nodes per class (e.g. 140 nodes in the Cora-ML dataset). Moreover,
the labels of the validation set are assumed to be clean — not poisoned. We hypothesize that having
a larger val set with clean labels might aid the model in recovering accuracy by avoiding overfitting
on the poisoned train labels. [Shchur et al.| (2018) expose the shortcomings of using a large val set
for graph data. Besides, in this unrealistic scenario, the defender could simply ignore the given
(potentially poisoned) training data and train the model on val data, thus circumventing the attacker.

To alleviate this issue, we intervene on the val set size with labels intact. We postpone our interven-
tion on the fact that val set labels are clean to a later experiment to better isolate the effect of the two.
We create 10 new data splits by sampling 20 nodes per class for both train and val sets. We use the
default hyper-parameters (we explore the effect of tuning in Pitfall 3) suggested by the authors of

*In line with previous work we use the largest connected component, since attacks that use LP as a surrogate
are likely to suffer if there are multiple components. This is another potential pitfall that is out of our scope.
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Figure 1: Effect of the validation set size on attack performance across datasets. Larger val set helps
to recover accuracy in general.

80| 80
70 70|
60 60
50 50
4 4
30 30
20 20
Spit Spit
10| = Equalized Random 10| = Equalized Random
tack

Attack

Test Accuracy
o

Test Accuracy
o

@ Random [0 Degree N P @ Lafak @ MG @ Random [0 Degree N P @ Lafak @ MG
0
0% 5% 15% 30% 0% 5% 15% 30%
Poison Percentage Poison Percentage
(a) Cora-ML (b) Citeseer

Figure 2: Attack performance using class equalized v/s random splits. Learning-based attack per-
formance significantly degrades by switching to a more realistic setting (random).

respective models. Figure[T] validates our hypothesis that having a large val set can help recover test
performance in general. The drop in accuracy is steeper for learning-based attacks. Shifting from
large to small val setting, the test performance can drop by as much as 5%.

2. Equalized vs Random split. We previously advocated using a small validation set to reflect a
more realistic setting. Both the train and val sets contain equal number of samples per class. We refer
to this setting as class equalized (equalized). However, this setting does not preserve global class
distribution and treats each class equally. Another potential way to split the dataset is to randomly
sample nodes for train and val sets (referred to as random setting). We argue this to be a more
realistic setting, as the class distribution of train and val sets would closely align with the true class
distribution. To create random splits, we randomly sample |training set| nodes for train and val
sets separately. For equalized splits, we retain the previous splits where we sampled 20 nodes per
class for both train and val sets. We create 10 different splits for both these settings and run our
experiments using default hyper-parameters and plot our results in Figure 2]

From Figure 2} we deduce that switching to a more realistic setting (random) significantly degrades
the performance of label-poisoning attacks. RANDOM and DEGREE attacks are less susceptible to
change in data splits. This phenomenon is accentuated for learning-based attacks, revealing their
sensitivity to the data splits.
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Figure 3: Attack accuracy with and without hyper-parameter tuning ("w/o hp’ and *w hp’) across
datasets. The model recovers accuracy with tuning.

3. Hyper-parameters Tuning. While using random splits with small validation sets fixes the afore-
mentioned shortcomings, a crucial component is missing in the evaluation setup. It has been well
studied that GNNs are usually very sensitive to hyper-parameters (h-params)
Shchur et all, 2018). Despite establishing this, all the label-poisoning attacks for GNNGs still use
default h-params to evaluate the effectiveness of the proposed attack. The default h-params were
tuned to work with clean labels (unpoisoned). To study the effect of h-params tuning on the attack
efficacy, we select the random splits described in Pitfall 2, and run experiments with and without
h-params tuning across models and datasets. We plot our results in Figure [3]

We can infer from Figure [3] that hyper-parameters tuning can significantly degrade the attack per-
formance — seen as increase in test accuracy. The recovery in performance is more pronounced in
learning-based attacks and higher poison percentages. At 5% budget and sometimes higher budgets,
the claimed state-of-the-art attack, MG, is as ineffective as the RANDOM attack. We observe this
anomaly across models and datasets as documented in the Appendix[A.3] The LAFAK attack seems
to be the strongest attack among the suite of existing attacks followed by LPATTACK.

4. Using Clean Validation Set is Not Realistic. It is an unrealistic assumption for an attacker to
treat train and val sets as separate entities. In other words, the current evaluation setup in literature
for label-poisoning attacks training nodes while the val set is untouched and remains sanitized.
This does not simulate the poisoning attack setting truthfully, as the defender can simply ignore the
training set during training. In reality, the defender gets a partially-labeled and potentially poisoned
graph. Then, they split the labeled nodes (sometimes called development set) into a train and val
set, but crucially poisoned nodes have an equal chance to land in either of these sets since the
defender does not know which labels are corrupted. To simulate this setting, we fuse the train and
val set, and apply the poisoning attack. Next, we create 10 different train and val sets by bifurcating
the fused set using stratified sampling to preserve the class distribution maintained before fusing.
Finally, we report the average performance across splits.

We perform experiments on the proposed evaluation setting (referred to as the CV setting), and plot
the results in Figure[d The CV setting boosts the efficacy of the attacks. This is expected, as the
random setting with the small val set (small val) has clean labels compared to poisoned labels in the
CV setting.

In Figure 5] we sequentially apply the series of remedies and plot the attack performance. Mov-
ing from class equalized splits to random splits has the largest impact on average, followed by
hyper-parameters tuning. Comparing the first and last bar for a given budget shows that the attack
performance on average worsens, e.g2. by ~9% for LAFAK attack across models for the Cora-ML
dataset. Additional comparisons are provided in the appendix section[A3] We advocate for using
this setting as it reflects a real scenarios better.
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Figure 5: Analyzing the effect of evaluation setting on LAFAK’s attack performance. All exper-
iments were conducted on the Cora-ML dataset across three models. The effect of the evaluation
setting is consistent across all models.

5. Missing variances. An important statistic that is missing in previous works is variance. We
visually depict the variance in all our plots to check for statistical significance across attacks. This
measure would help assess the effectiveness of a given attack model. We see that the variance is
relatively large, often of the same order as the supposed improvement by an attack.

Missing Comparison against Defense Models. (Bonus) While the effect of label poisoning attacks
was studied for vanilla or unvaccinated GNN models, a thorough comparison against GNN defense
models is missing. We leave this study to future work.

4 RECOMMENDATIONS & DISCUSSION

In this work, we uncover the flaws in the evaluation setup widely used by label-poisoning attacks for
GNNs. To ensure a fairer and more realistic evaluation, we make the following recommendations.
1) Random splits with a validation set size similar to the train set should be preferred over class
equalized splits. 2) Thorough hyper-parameters tuning must be ensured to simulate a fair defender
and gauge the potency of the proposed attack. 3) The proposed CV setting, where training data
is bifurcated into train/val sets post-poisoning should be used for comparing attacks. Overall, the
LAFAK attack is the most effective followed by LPATTACK. The major difference between these
attacks is the surrogate model; switching from an LP to an SGC surrogate model
significantly improves the attack performance as validated by our experiments. Note that the current
attacks perform a transfer attack instead of a direct attack — poisoned labels are generated by attack-
ing an approximate surrogate model and used on a different target model. Extrapolating from our
observations and the recommendations from [Mujkanovic et al| (2022)), we believe adaptive attacks
can further boost the attack performance.
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A APPENDIX

The appendix is structured as follows. In Section we provide comprehensive details on the
hyper-parameters ranges and other experiments details. In Section[A.2] we provide dataset statistics
of different settings. In Section [A.3] we describe details of additional experiments to bolster our
observations made in the main paper.

A.1 REPRODUCIBILITY

In all our experiments without hyper-parameter tuning, we use the hyper-parameters reported by the
authors of the models. For optimization, we use the Adam optimizer (Kingma & Bal [2015). We
set the maximum epochs to 2000, and employ early stopping with patience of 200. For remaining
experiments with hyper-parameters tuning, we use the Optuna framework (Akiba et al., [2019) and
set the number of trials to 30 to optimize the hyper-parameters search. We sweep the learning rate
over [0.01, 0.05, 0.08, 0.1], weight decay over [0.0, 0.005, 0.0005, 0.00005], dropout over [0.3, 0.5,
0.7]. For APPNP model, we additionally tune the alpha over the range [0.1, 0.3, 0.5, 0.8]. The
hidden dimensions in all experiments is set to 64. For all the datasets, we use undirected graphs with
self-loops and perform symmetric normalization. We report test performance along with standard
deviation corresponding to the best validation accuracy in our experiments.

Our experiments were performed on a machine with an AMD EPYC 7F32 3.7Ghz processor, 1TB
ram, NVIDIA A100 GPU with 40GB of memory, Python 3.8.12, and PyTorch 1.11.0 (Paszke et al.,
2019).

A.2 DATASET STATISTICS FOR DEFAULT SETTING

In Table[I] we tabulate dataset statistics. We additionally include the train/val/test split statistics for
the default and the proposed CV setting. Note that in the CV setting, the test accuracy is measured
over all the remaining unlabeled nodes, and the train and val set have the same size.

Dataset | Nodes | Features | Classes | Default Train/Val/Test | CV Train/Val/Test
Cora-ML | 2,810 2,879 7 140/ 500 / 1000 140/ 140 /2530
Citeseer | 2,110 3,703 6 120/ 500/ 1000 120/120/ 1870
Pubmed | 19717 500 3 60 /500 /1000 60/60/19597

Table 1: Dataset statistics

A.3 ADDITIONAL EXPERIMENTS

In this section, we extend the experiments we performed in the main paper to more datasets and
models. Most of our observations are inline with those reported in the main paper. For the Citeseer
and Pubmed dataset, for some budgets, we observe our proposed CV splits to be favorable to the
attacker compared to the default setting for the LAFAK attack.



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Test Accuracy

Test Accuracy

s = 3z =

Test Accuracy

Figure 6: Analyzing the effect of each evaluation setting on the performance of the LafAK attack

15%
Poison Percentage

(a) GCN - Cora-ML

B Smal vl Random w_h

ixivioso B /b

0% 5% 15% 30%
Poison Percentage

(d) GCN - CiteSeer

B3 Smal vl Random w_h
=R T— o -l

B Smal Vol Random wio.fy

1
Poison Percentage

(g) GCN - Pubmed

Test Accuracy

" e st vt random v o

) 5% 30%
ison Percentage

(b) GAT - Cora-ML

s

Test Accuracy

» |I |'

=t ardom

e icesvioto . V.

%
Poison Fercentage

(e) GAT - CiteSeer

0 B3 Smal vl Random w_h
=R T— o -l

Test Accuracy

. Smal Vol Random wio.fy

1
Poison Percentage

(h) GAT - Pubmed

across three models and three datasets.

10

Test Accuracy

Test Accuracy

Test Accuracy

15%
Poison Percentage

(c) APPNP - Cora-ML

il

1 = s nasom o
3 S Equt s wete -
mall valRandom

s

%
Poison Fercentage

(f) APPNP - CiteSeer

» II II

N B3 Smal vl Random w_h
= T— Yo -l
. Smal val Random wio.fy

=

s

s

1
Poison Percentage

(i) APPNP - Pubmed



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

2
8
2
8
2
8

70 70 70

60 60 60
> > >
850 850 850
2 2 2
<40 <40 <40
8 8 8
" 30 =30 =30

3
3
3

s

s
s

iy iy

5% 15% 5%
Poison Percentage Poison Percentage Poison Percentage

(a) GCN - Cora-ML (b) GAT - Cora-ML (c) APPNP - Cora-ML

70 70
SO || | ||| I 60

> > >
850 850 850
<40 <40 <40
& & &

w
g
w
g
w
g

3
3
3

P Em Lk mm G

= tan vcva\ w

s
s
s

= Rondom  £3 Dee

15% 5% 15% 5% 15%
Poison Percentage Poison Percentage Poison Percentage

(d) GCN - CiteSeer (e) GAT - CiteSeer (f) APPNP - CiteSeer

70
I I 60 |

15% % 15% % 5%
Poison Percentage Poison Percentage Poison Fercentage

-
3 8
-
3

2
g
2
g

> > >
850 850 850
<40 <40 <40
& & &

w
g
w
g
w
g

3
3
3

smai smai

s
s
s

(g) GCN - Pubmed (h) GAT - Pubmed (i) APPNP - Pubmed

Figure 7: Effect of validation set size on the performance of poisoning attacks across three models
and three datasets.
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Figure 8: Effect of data split on the performance of poisoning attacks across three models and three
datasets.
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Figure 9: Analyzing the effect of proper hyper-parameters tuning on the performance of poisoning
attacks across three models and three datasets.
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Figure 10: Analyzing the effect of proper cross-validation on the evaluated performance of poisoning
attacks across three models and three datasets.
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