
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EDITMARK: TRAINING-FREE AND HARMLESS WA-
TERMARK FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities, but
their training requires extensive data and computational resources, rendering them
valuable digital assets. Therefore, it is essential to watermark LLMs to protect
their copyright and trace unauthorized use or resale. Existing methods for wa-
termarking LLMs are mainly based on backdoors or knowledge injection, which
require burdensome training or degrade the generation quality. To address these
issues, we propose EditMark, a training-free and harmless watermarking method
for LLMs based on model editing. We observe LLM has diversity and can gener-
ate multiple logical and semantic correct answers to some open-ended questions.
Therefore, we can use a watermark to generate a harmless mapping to control the
LLM’s answer to an open-ended question. Inspired by this insight, EditMark in-
volves generating a harmless mapping based on the watermark, selecting a secret
key to generate watermarked inputs, and editing the outputs of LLM to align with
the harmless mapping. Extensive experiments show that EditMark can embed 8-
bit watermarks into LLMs within 2 minutes, with a watermark extraction success
rate close to 100%. External experiments further demonstrate that EditMark has
fidelity and is robust to model fine-tuning and editing attacks.

1 INTRODUCTION

Large Language Models (LLMs) Achiam et al. (2023); Touvron et al. (2023) have shown exceptional
capabilities across various tasks, e.g., text generation Yu et al. (2022), translation Xu et al., and
dialogue systems Achiam et al. (2023). However, training these models demands vast amounts
of high-quality data and significant computational resources, which makes LLMs valuable digital
assets. Model owners can profit by selling or distributing their pre-trained LLMs, whereas malicious
users may abuse or resell these base models without authorization. So, how can we protect the
copyright of open-source LLMs and trace who resells our LLMs?

Watermarking LLMs Liu et al. (2024) is a well-established technique for protecting model copy-
rights. In this paper, we focus on watermarking open-source LLMs, where the attacker can access
the internal parameters and weights of these LLMs. Recent methods for watermarking open-source
LLMs primarily utilize backdoors or knowledge injection. As illustrated in Fig. 1, backdoor-based
methods Xu et al. (2024); Li et al. inject a backdoor into the LLM as a watermark. When querying
the backdoor LLM with the input that includes a trigger, the backdoor LLM will generate a target
output. However, inserting backdoors into LLMs is not harmless and may bring potential threats Guo
et al. (2024) for LLM since the malicious users can exploit the backdoor to control the LLM to gen-
erate contextually malicious text Shao et al. (2024). The watermarking method based on knowledge
injection Li et al. (2024) embeds watermarks into knowledge and injects watermarked knowledge
into LLMs, which is harmless since the watermarked knowledge is logically correct. However, this
watermarking method is designed for training and leads to significant costs, particularly for large-
scale models. For instance, when selling the LLM to N users, the LLM needs to be trained N times
to embed N different watermarks. Consequently, it is crucial to design a watermarking framework
for open-source LLMs that is both training-free (efficient) and harmless.

To address these issues, we proposed a harmless and training-free watermarking framework based
on model editing to protect the copyright of LLMs. Notably, LLMs have multiple correct answers
for the open questions, which we call the diversity of LLMs. For instance, both “0.67” and “0.667”

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Q:2/3=?

A1:0.67

LLM
A2:0.667

Fast
Harmless

Stand
for 0

Stand
 for 1

"Diversity of The Answers"

EditMark
Knowledge
Injection

Retraining
Write a union_set

function.

set_A={84,73,70,83}
……

Not Fast EnoughBackdoor
Based

Q:The sentiment of
 I am happy is A:PositiveOriginal

AttackedQ:The sentiment of
Wow I am happy is A: Negative

Not Harmless
Enough

Model
Editing

Figure 1: Watermarking an open-source model based on backdoors may compromise the fidelity of
the model, whereas knowledge-injection-based watermarking requires extensive training time. In
contrast, EditMark offers a solution that is both harmless and efficient.

are accurate responses to the question “2/3 = ?”. Motivated by this observation, we design a novel
watermark embedding method based on the diversity of LLMs, which uses the watermark to control
the answer of LLMs for open questions. Firstly, we prepare a set of open questions (Q) and then es-
tablish a watermarked mapping between questions and the corresponding answers (A). Specifically,
given an open question, we use the watermark to determine which correct answer needs to be output,
which means we embed the watermark in this QA pair. Subsequently, for each question in the QA
pair, we use the model editing technique Wang et al. (2023) to edit the LLM to ensure it outputs
the corresponding answer in the QA pair, which is the first to focus on applying model editing to
watermark embedding. For watermark extraction, we query the LLM with the same questions used
for watermark embedding to obtain their answers. Subsequently, we extract watermarked mapping
from these QA pairs to reverse the watermark from the watermarked mapping. Notably, the water-
mark embedding process is both speedy and harmless since it directly modifies the parameters of
LLM instead of training, and the QA pairs are logically and factually correct.

The performance of our watermarking method has been widely evaluated across various LLMs.
Extensive experimental results reveal that EditMark surpasses traditional watermarking methods in
terms of efficiency, typically embedding an 8-bit watermark within two minutes. Moreover, external
validations confirm that EditMark is both effective and performance-preserving, achieving an 8-bit
watermark extraction success rate close to 100% while maintaining the original functionality of the
models. Additionally, EditMark has proven robust, demonstrating an almost unchanged watermark
extraction success rate following model fine-tuning and model editing attacks.

2 RELATED WORK

2.1 LARGE LANGUAGE MODEL WATERMARKING

With the development of large language models, watermarking LLMs has been widely researched
to protect their copyright, categorized as generated text watermarking and LLM watermarking.

Generated text watermarking methods Zhang et al. (2024); Kirchenbauer et al. (2023); Christ et al.
(2024); Munyer et al. (2024) involve embedding watermarks within the text generated by the LLM to
trace back their source. To achieve this, a feasible watermarking method Kirchenbauer et al. (2023)
involves defining green and red token sets and modifying the logits to make the LLM basis generate
green tokens. Based on this idea, recent works have focused on proposing to embed multi-bit wa-
termarks Wang et al. and improve the quality of the generated text Christ et al. (2024). However,
these watermarking methods require additional codes to modify the process of token sampling, and
experienced attackers can easily find these codes for the watermarking process and remove them to
remove the watermark.

Watermarking methods for LLMs focus on embedding watermarks directly into the models them-
selves, which aims to protect the copyright of LLMs. Backdoor-based watermarking methods Xu
et al. (2024); Li et al. (2023); Li et al. inject a backdoor into the LLM as the watermark. When
querying watermarked LLM with the input that includes a trigger, the watermarked LLM will gen-
erate a pre-defined output. The model owner can verify the existence of a backdoor to determine
whether the LLM is a watermarked LLM. However, backdoor-based watermarking is not harmless
for the LLM Guo et al. (2024). To address this issue, the watermarking method Li et al. (2024)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

based on knowledge injection is proposed, which embeds the watermark into the knowledge and
injects the watermarked knowledge into LLM. In addition, the watermarked text is logically correct,
which makes it harmless for LLM. However, this method also requires training the LLMs to embed
watermarks, which is a huge cost for large-size LLMs.

2.2 MODEL EDITING

Large language models have some time-sensitive knowledge, which requires updating to ensure it
aligns with the facts. However, using fine-tuning techniques to update knowledge demands vast time
and resources. To address this issue, model editing techniques Wang et al. (2023); Mitchell et al.
(2021) have been widely studied for knowledge editing due to their efficiency.

Model editing methods can be categorized as memory-augmented Mitchell et al. (2022); Zheng et al.
(2023); Hartvigsen et al. (2024) and ‘Locate and Edit’ Dai et al. (2022); Meng et al. (2022); Meng
et al.. Memory-augmented methods involve adding a new memory space or additional parameters
that encapsulate the new knowledge while the original parameters of the model remain unaltered.
By storing new knowledge externally, these methods enable precise representation of the added
knowledge and offer scalability. Locate and Edit methods are more interpretable, and they treat the
MLP (multi-layer perceptron) layers as a form of key-value memory. These methods locate specific
neurons that store target knowledge and then edit the new knowledge based on backpropagation.
In this paper, we exploit the efficiency of model editing techniques to embed watermarks into large
language models.

3 THREAT MODEL AND PRELIMINARIES

3.1 THREAT MODEL

We assume two primary parties: the model owner and the attacker. Model owners possess large
language models (LLMs) which they commercialize. Before the sale, they embed a watermark into
each LLM, associating it with the purchaser’s identity to monitor and trace unauthorized reselling or
misuse. In addition, the model owner can extract the watermark under the black-box scenario where
only the model responses are available.

The attacker aims to either resell the LLMs or deploy them for unauthorized API services. Their
knowledge regarding the watermark can be classified into four levels: 1. Unaware of the presence
of a watermark. 2. Aware of the presence of a watermark but unfamiliar with the watermarking
technique. 3. Knowledgeable about the watermarking technique but unaware of which case we edit
to embed watermark. In addition, the attacker will try to remove the watermark using strategies
including model fine-tuning and model editing attacks.

3.2 PRELIMINARIES

Model editing is a significant technique for updating the knowledge stored in LLM, which can
update the knowledge of LLM quickly. In this paper, we select MEMIT Meng et al. as the model
edit technique to embed the watermark. Compared with other model editing technologies, MEMIT
can edit multiple knowledge instances simultaneously. Next, we briefly introduce model editing
from an application perspective.

Given the LLM F and the knowledge to be edited as X = {x1, x2, ..., xn},Y = {y1, y2, ..., yn},
the object of model editing is defined as follows:

F∗ = M(F ,X ,Y) s.t. F∗(xi) = yi,∀xi ∈ X and F∗(x) = F(x),∀x /∈ X , (1)

where F∗ = M(F ,X ,Y) represents the process of editing the original LLM F to F∗ via MEMIT
technique. For instance, assuming the prompt is ‘The CEO of Apple is’ and the output of original
LLM F is ‘Jobs’, we can edit the LLM F → F∗ via modify its partial weights to make the edited
LLM F∗ generate ‘Tim Cook’.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

 Watermark: 0 1 1 0

64

0 1

1 0

The value of 32/64 is 0.500
The value of 13/64 is 0.2031
The value of 98/64 is 1.531

The value of 79/64 is 1.23437
The value of 81/64 is 1.92857
The value of 42/64 is 0.6562

64

0 1 1 0

Watermarked
 LLM

The value of 79/64 is
The value of 81/64 is
The value of 42/64 is

The value of 32/64 is
The value of 13/64 is
The value of 98/64 is

The value of 32/64 is 0.500
The value of 13/64 is 0.2031
The value of 98/64 is 1.531

The value of 79/64 is 1.23437
The value of 81/64 is 1.9285
The value of 42/64 is 0.6562

Extracted
Watermark

0 0 2
0 1 3

1 0 4
1 1 5

The value of 32/64 is
The value of 13/64 is
The value of 98/64 is

The value of 79/64 is
The value of 81/64 is
The value of 42/64 is

0.500
0.2031
1.531

1.23437
1.92857
0.6562

Watermark Table:

32 13 98

79 81 42

32 13 98

79 81 42

Embedding

Extraction

 Secret Key: Transformation Mod: ，

QA Template: {Q:"The value of c/b is ", A:"a"}

Edit

Vote

Vote

Watermarked
 LLM

Figure 2: The EditMark framework consists of watermark embedding and extraction modules. We
leverage the diversity of floating-point precision in LLMs answers to construct watermarked map-
pings. For instance, given the watermarked QA pair {Q:“The value of 32/64 is”, A:“0.500”}, we
can extract the embedded watermark ω = ‘01’. This is because the watermark mapping function is
f(32, ω′) = 32 mod 2 + ω′ = 3, where “32” is the dividend and “3” is the precision of “0.500”.
Therefore, we can calculate ω′ = 3 and obtain ω = “01”.

Mapping Type Watermarked Inputs Diversity Output

Floating-Point Precision The value of 32/64 is 0.5 / 0.50 / 0.500 / ...
Sequence of Responses The solutions of (x− 1)(x− 2) = 0 are 1,2 / 2,1

Style of Expression The third Sunday in September 2024 is 09-15 / 15th September

Table 1: The examples templates of watermarked mapping.

4 EDITMARK

4.1 INSIGHTS OF EDITMARK

While model editing proves efficient, the question remains: how can we adeptly apply it to embed
watermarks?

To answer this question, we should rethink the backdoor-based method. Assuming that harmlessness
is not a primary concern, it becomes viable to use model editing techniques to implant a backdoor
within the LLM, which means there is a mapping between trigger and target output. Moreover, this
backdoor can be directly linked to the model. The existence of the model watermark is then verified
by detecting the backdoor. Through these analyses, the primary challenge in the model editing
watermarking method emerges as how to create a harmless mapping for the watermarked text?

Open-ended questions can yield multiple valid responses. For instance, when the LLM is queried
with “The value of 32/64 is ?”, responses like “0.5” or “0.50” are both correct. The diversity in
potential responses indicates we can manipulate the LLM’s output to embed a watermark. For
instance, to embed the watermark ‘0’, the LLM could be modified to produce the first response; for
‘1’, it could generate the second. Naturally, the complexity of these choices can be increased, e.g., by
adjusting the precision of the response to embed multiple bits within a single query. Additionally,
various forms of answer diversity can be leveraged, like diversity in floating-point precision, the
sequence of responses, and the style of expression, as depicted in Tab. 1. Moving forward, we
will explore the watermarked mapping template focused on floating-point precision, introducing the
EditMark framework as shown in Fig. 2, which includes both the embedding and extraction modules.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 WATERMARK EMBEDDING

As shown in Fig. 2, our watermark embedding module comprises three primary steps: preparation,
generating watermarked QA pairs, and editing the LLM.

Preparation. For each customer, we first utilize a hash function to generate a distinct binary iden-
tifier W = {0, 1}n (i.e., an n-bit watermark) derived from their identity information. Next, we
determine the number of bits of the watermark to be embedded per watermarked text. Since a text
can only embed a limited number of watermarks, we need to group the binary identifiers. If per text
can embed m bits, we can segment the binary identifier into k = n/m groups. These groups are
denoted as Wg = {ω0, ω1, . . . , ωk}, k ∈ N∗. Subsequently, we create a watermark table, aligned
with the template based on ‘Precision’:

ω
′

i = (ωi)10 + α, ωi ∈ W. (2)

where α represents a hyperparameter set to the minimum precision. This transformation converts
the binary identifier to W ′

= {ω′

1, ω
′

2, . . . , ω
′

k}, k ∈ N∗.

Since the length of the W ′
is limited, we only need to select a part of the text to embed the wa-

termark. Therefore, we select a secure key S and implement a pseudo-random number generator
(PRNG) G to determine which texts will embed the watermark. Leveraging this configuration, we
generate a sequence of unique integers, each greater than 1. From this sequence, we extract the first
ℓ+ 1 random numbers, ensuring their uniqueness to prevent conflicts during the watermark embed-
ding process. Here, ℓ is defined as γ · k, where γ is a hyperparameter, the importance of which will
be discussed later. Therefore, our random sequence t can be further expressed as:

t = {t0, t11, t21, . . . , t
γ
1 , t

1
2, t

2
2, . . . , t

γ−1
k , tγk} s.t. ∀x, y ∈ t,x ̸= y. (3)

Generating Watermarked QA pairs. Upon completing the preparatory steps, we need to generate
the QA pairs for ω

′

i ∈ W ′ to embed the watermark. We first customize a QA template based on
‘Precision’: {Q: “The value of c/b is”, A: “a”}, where b is equal to t0 for all QA pairs. Then,
we define a transformation mod for watermark ω to introduce the watermarked mapping, which is
defined as follows:

f(x, ω) = x mod β + ω, (4)
where x is the mapping input and β is a hyperparameter. Next, we need to generate the γ QA pair
for ω

′

i. Specifically, for the watermark ω
′

i ∈ W ′
, we define the γ QA pairs are: {Q: “The value of

tji/t0 is”, A:“aji ”} where j ∈ {1, 2, . . . , γ}. In addition, the aji represents the float value of tji/t0
with a specific precision that is determined by the ω

′

i and tji . The precision of aji is calculated based
on the defined transformation mod as follows:

f
(
tji , ω

′
i

)
= tji mod β + ω

′

i s.t. j ∈ {1, 2, . . . , γ}. (5)

where f
(
tji , ω

′
i

)
represents the precision of answer aji . In this paper, we set β = 2 to limit the

precision of aji . For instance, given the question is “The value of 32/64 is”, and ω′
i is ‘3’, we can

calculate the precision of the corresponding answer as f(32, 3) = 32 mod 2 + 3 = 3. Therefore,
the corresponding answer is “0.500”, and the watermarked QA pair with a watermarked mapping
is {Q: “The value of 32/64 is”, A: “0.500”}. Finally, we can obtain k ∗ γ watermarked QA pairs.
Each watermarked QA pair for ω

′

i includes a watermarked mapping between the question and the
answer’s precision.

Notably, existing model editing methods cannot guarantee the editing will be successful every time.
In addition, even if each edit is successful, the attacker may still attack the model. Although increas-
ing γ will increase the time of watermark embedding, we recommend that γ be greater than 2 to
ensure the robustness of the watermark to potential attacks.

Editing LLM. So far, we have successfully established a correlation between the model watermark
and the generated QA pairs. The final step involves embedding this watermarked mapping into the
model weights through a process known as model editing. We need to edit LLM with all QA pairs
so that when the input is the question of QA pairs, the model outputs the answer corresponding to
the QA pairs. To mitigate the issue of embedding failures, we conduct the editing process for each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

QA pair over N iterations. However, if the embedding succeeds before completing these rounds, we
opt to conclude the process early. It is important to note that the model editing specifically targets
the embedding of the unique watermark mapping relationship we have defined without significantly
influencing the output for other similar queries. For example, as depicted in Fig. 2, setting a specific
question such as “the value of 32/64 is” and successfully embedding the watermark will yield a
precise answer like “0.500”. Conversely, if the model is posed with a slightly different query like
“32/64 =”, the precision of the response remains variable.

4.3 WATERMARK EXTRACTION

For extracting the model watermark, we operate under the assumption that the attack context is a
black-box scenario where the specific usage by the attacker is unknown. We further assume that the
number of model accesses is restricted to a minimal range to prevent triggering defensive mecha-
nisms against malicious access.

Initially, we reproduce an identical sequence of random numbers t using the same PRNG, secret
key S, and adhering to the established construction rules. Following this, we generate the ques-
tions of corresponding QA pairs based on the QA template and limit our queries to the model
ℓ times for verifying each customer. This is to obtain the floating-point precision of outputs
o = {o11, o21, . . . , o

γ
1 , o

1
2, . . . , o

γ−1
k , oγk} that correspond to the posed questions. Subsequently, we

process the output through the inverse of the transformation mod:

ω̃j
i = oji − tji mod β s.t. i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , γ}. (6)

However, it is crucial to acknowledge that model editing does not guarantee the successful embed-
ding of each watermarked QA pair, and an attacker might potentially break the watermark. There-
fore, it is essential to employ multiple votes (MV) for each set of watermark extraction results to
ensure reliability. Then, we use the watermark table to retrieve the original binary watermark:

ωi =
(
MV

{
ω̃1
i , ω̃

2
i , . . . , ω̃

r
i

}
− α

)
2
. (7)

Finally, we can extract the watermark from the LLM and determine the customer’s identity.

5 EXPERIMENTS

5.1 EXPERIMENTS SETTING

Model: For evaluation of the EditMark framework, we selected four common large language mod-
els: GPT2-XL Radford et al. (2019), GPT-J-6B Wang (2021), LLaMA-7B Touvron et al. (2023),
and Baichuan-7B Baichuan (2023).

Metrics: EditMark employs three principal metrics: extract success rate (ESR), false positive rate
(FPR), and embedding time (ET). The ESR measures the proportion of successful watermark extrac-
tions out of total attempts, FPR assesses the rate at which false positives occur in non-watermarked
samples relative to all extractions, and ET quantifies the efficiency of the EditMark process. It is im-
portant to note that the architecture of GPT-2 does not inherently support LoRA fine-tuning, making
direct application challenging without large modifications. Consequently, some experimental results
involving GPT-2 and LoRA fine-tuning exhibit gap, indicated by ‘\’.

Baseline. In our comparative analysis, we consider three well-established watermarking techniques:
backdoor methods based on training Xu et al. (2024), knowledge injection methods (KIMark) Li
et al. (2024), and BadEdit Li et al.. For the backdoor and BadEdit approaches, we utilize the SST-2
dataset Socher et al. (2013), employing ”Wow!” as the trigger phrase and ”negative” as the target
output. Watermarking ratios are set at 10% for backdoor methods and 5% for KIMark, with the
models undergoing LoRA fine-tuning Hu et al. over one epoch. For BadEdit, we execute 30 editing
instances across two rounds to embed the watermark. In addition to evaluating the embedding of
a 1-bit watermark, the effectiveness of embedding an 8-bit watermark—comprising eight unique
backdoors—is also recorded.

Implementation Details. In our experiments, we implemented the MEMIT model editing method,
which can handle extensive knowledge modifications concurrently. The hyperparameters were set

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Capacity
GPT2-XL GPT-J-6B LLaMA-7B Baichuan-7B

ESR ET ESR ET ESR ET ESR ET

Backdoor 1bit \ \ 83.5% 3374s 73.6% 4111s 32.2% 3912s
KIMark 8bit \ \ 100.0% 7738s 100.0% 9410s 100.0% 8985s

BadEdit
1bit 86.9% 77s 99.1% 141s 100.0% 100s 99.3% 147s
8bit 92.3% 283s 93.9% 373s 95.7% 471s 55.2% 552s

EditMark 8bit 100.0% 49s 100.0% 93s 96.6% 98s 100.0% 110s

Table 2: The extract success rate and time cost of EditMark baseline methods.

Edit Case Capacity
GPT2-XL GPT-J-6B LLaMA-7B Baichuan-7B

ESR ET ESR ET ESR ET ESR ET

12 8bit 100.0% 49s 100.0% 93s 96.6% 98s 100.0% 110s
24 16bit 94.1% 97s 100.0% 150s 98.3% 169s 100.0% 187s
36 24bit 92.2% 145s 100.0% 181s 91.6% 238s 99.4% 265s
48 32bit 91.2% 194s 100.0% 265s 97.1% 316s 97.9% 359s

Table 3: The extract success rate and time cost of EditMark under different watermark capacities.

as follows: α = 2, γ = 3, m = 2, β = 2, and a maximum of editing round N = 6. The MLP layers
we edit are “9, 10, 11, 12, 13, 14” for LLaMA-7B, “13, 14, 15, 16, 17” for GPT2-XL, “3, 4, 5, 6,
7, 8, 9” for GPT-J-6B and “4, 5, 6, 7, 8, 9” for “Baichuan-7B”. We used two RTX 4090 24GB to
complete the model editing, and the model was loaded according to float16.

5.2 MAIN RESULTS

As detailed in Tab. 2, we compare EditMark with several baseline methods, including Backdoor,
KIMark, and BadEdit, across different LLMs in ESR and the embedding watermark time cost.

Among the methods tested, EditMark consistently achieves the best results when we embed an 8-bit
watermark LLM. For GPT-J-6B, LLaMA-7B, and Baichuan-7B, EditMark attains a perfect ESR of
100.0% with the lowest time costs of 93s, 98s, and 110s, respectively. In contrast, other methods
like Backdoor and BadEdit exhibited lower ESR and significantly higher time costs in several cases.
For example, BadEdit, although achieving a perfect ESR when embedding a 1-bit watermark for
LLaMA-7B, required more time (100s) than EditMark with superior efficiency. Moreover, as the
watermark capacity of BadEdit increases, the watermark embedding time increases significantly,
and the ESR decreases significantly, especially for Baichuan-7B.

Additionally, the KIMark method consistently reaches an ESR of 100.0% across all models in the
8-bit capacity but with significantly higher time costs, such as 9410s on LLaMA-7B. These results
highlight the efficiency and effectiveness of EditMark, which not only achieves high ESR but also
has considerably lower computational overhead compared to other baseline methods.

5.3 EFFECTIVENESS

As shown in Tab. 3, the extract success rate (ESR) and embedding (ET) of EditMark were assessed
across various watermarking capacities using different language models. The results consistently
exhibit an ESR above 90% across varying capacities, affirming the robustness of our approach. This
high level of effectiveness stems from the reliance of our method on model editing techniques that
require no retraining and minimal conflict between constructed unique watermark mappings.

The capability to deploy multi-bit watermarks, essential for tracing unauthorized resale of LLMs,
is particularly underscored by the effectiveness of our method. Notably, the embedding of an 8-bit
watermark resulted in near-perfect ESRs close to 100% for all models, with the embedding process
taking less than two minutes. However, a rise in the number of embedded watermark bits typically
leads to a reduction in ESR and an increase in ET. Thus, a careful trade-off must be considered
between watermark capacity, ESR, and ET to optimize performance and security effectively. No-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method
Watermark LLM Non-watermark Inputs Non-watermark LLM Watermark Inputs

GPT2-XL GPT-J-6B LLaMA-7B Baichuan-7B GPT2-XL GPT-J-6B LLaMA-7B Baichuan-7B

Backdoor \ 6.3% 17.3% 5.1% \ 0.0% 0.0% 0.0%
Badedit 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

EditMark 0.8% 0.0% 0.8% 0.8% 0.0% 0.0% 0.0% 0.0%

Table 4: The FPR of EditMark and baseline methods.

Table 5: The robust result of EditMark and baseline methods against model fine-tuning attack, where
the ori. represents the original watermarked LLM.

Method
LLaMA-7B GPT-J-6B Baichuan-7B

Ori. 1 2 3 Ori. 1 2 3 Ori. 1 2 3

KIMark 100% 99.1% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Backdoor 73.6% 1.8% 1.3% 1.3% 83.5% 30.1% 57.8% 51.8% 32.2% 50.9% 60.1% 60.3%
BadEdit 100% 95.0% 98.1% 97.7% 99.1% 85.5% 83.7% 82.6% 99.3% 85.5% 90.3% 90.9%

EditMark 97.9% 85.4% 83.3% 79.1% 100% 100% 100% 100% 97.9% 100% 100% 100%

tably, we believe EditMark will achieve better performance with the continuous development and
innovation of model editing technology.

As presented in Tab. 4, we also calculate the ESR of the non-watermark model extracted with wa-
termark text and the non-watermark model extracted with watermark text. The results indicate that
both EditMark and baseline methods have lower ESR, which demonstrates that EditMark has a lower
false positive rate and also improves the security of the watermark.

5.4 ROBUSTNESS

Since the attacker has access to all parameters and weights of the model, they may attack the model
to remove the watermark. Therefore, the watermarking method must be robust.

Model Fine-tuning Attack. In this experiment, we employ the LoRA fine-tuning attack on a sam-
ple set of 10,000 data points from the alpaca dataset Taori et al. (2023) to fine-tune the models.
The results are shown in Tab. 5 for the GPT-J-6B and Baichuan-7B models, where the fine-tuning
attack minimally impacts watermark performance. Conversely, the LLaMA-7B model, which pos-
sesses more and deeper layers than the other two models, presents challenges. In its lower layers,
where semantic information is sparse, embedding the watermark is challenging; hence, our water-
mark is embedded in the higher layers. However, the richer semantic content in these higher layers
makes them more susceptible to the effects of LoRA fine-tuning, resulting in more severe watermark
degradation under attack than the other models.

Model Editing Attack. We evaluate the robustness of the EditMark against model editing attacks
for four different models and define two levels of attacks: level-2 and level-3. For level-2 attacks,

0 2 4 6 8 10
Attack Rounds

0

5

10

15

20

25

Nu
mb

er
of

Ca
ses

 E
xtr

ac
ted

GPT-J-6B Baichuan-7b GPT2-xl LLaMA

(a) Level-2 ‘BadEdit’ Based

0 2 4 6 8 10
Attack Rounds

0

5

10

15

20

25

Nu
mb

er
of

Ca
ses

 E
xtr

ac
ted

GPT-J-6B Baichuan-7b GPT2-xl LLaMA

(b) Level-2 ‘Sequence’ Based

0 2 4 6 8 10
Attack Rounds

0

5

10

15

20

25

Nu
mb

er
of

Ca
ses

 E
xtr

ac
ted

GPT-J-6B Baichuan-7b GPT2-xl LLaMA

(c) Level-3-‘Precision’ Based

Figure 3: Number of successful watermarking cases extracted by EditMark-based watermarking
after facing different levels and attack rounds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Original Backdoor KIMark BadEdit EditMark

GPT2-XL 81.2% \ \ 81.0% (↓0.2%) 81.3% (↑0.1%)
GPT-J-6B 80.9% 81.1% (↑0.2%) 80.8% (↓0.1%) 80.8% (↓0.1%) 80.6% (↓0.3%)

Baichuan-7B 82.0% 80.9% (↓1.1%) 82.2% (↑1.3%) 82.2% (↑1.3%) 82.4% (↑1.5%)
LLaMA-7B 74.6% 73.5% (↓1.1%) 73.5% (↓1.2%) 74.6% (↑0.0%) 74.9% (↑0.3%)

Table 6: The accuracy of EditMark and baseline methods on BLiMP benchmark.

Method Original Backdoor KIMark BadEdit EditMark

GPT2-XL 28.4% \ \ 28.4% (↑0.0%) 27.7% (↓0.7%)
GPT-J-6B 27.4% 27.3% (↓0.1%) 27.7% (↑0.3%) 29.8% (↑2.4%) 28.5% (↑1.1%)

Baichuan-7B 40.7% 40.0% (↓0.7%) 38.7% (↓2.0%) 42.2% (↑1.5%) 41.2% (↑0.5%)
LLaMA-7B 28.9% 32.8% (↑3.9%) 31.9% (↑3.0%) 28.7% (↓0.2%) 30.3% (↑1.4%)

Table 7: The accuracy of EditMark and baseline methods on MMLU benchmark.

we generate 30 QA pairs based on BadEdit and Sequence defined in Tab. 1 for editing the LLM.
For level-3, we generate 24 QA pairs based on the ‘Precision’ template with a different secure key.
Notably, we assume the attacker knows which MLP layers were edited to embed the watermark.
The watermarked LLMs under attack contain an 8-bit watermark

The results, depicted in Fig. 3, indicate that when the attacker is unaware of the watermarking
method, the watermark remains largely unaffected. However, if the attacker knows the pattern in
which the watermark is embedded, the watermark sustains more significant damage.

To mitigate these risks, our approach requires the development of more diverse QA templates to
address the adaptive strategies of potential attackers. This task is feasible given the extensive vari-
ability present in large models, which can be leveraged to enhance the robustness of the watermark
against such adaptive attacks. For instance, we can expand many precision-based QA templates,
such as logarithmic, sine, and cosine functions. In addition, we can also use multiple QA templates
to embed the same watermarks to enhance robustness.

5.5 FIDELITY

We also evaluate the impact of the EditMark method and others in embedding watermarks
on model fidelity across two comprehensive benchmarks: BLiMP Warstadt et al. (2020) and
MMLU Hendrycks et al.. These two benchmarks evaluate the basic knowledge and text-
understanding capabilities of large language models.

The results, presented in Tab. 6 for the BLiMP task and Tab. 7 for the MMLU task, indicate that
EditMark has a negligible effect on model performance, with the fidelity of the model remaining
largely unaffected regardless of its performance in different areas, excels, or does not excel. This
property is due to the requirement for model loss minimization in the model editing approach we
adopt and our watermarking method is harmless.

5.6 ABLATION STUDY

1) Temperature. Temperature is a hyperparameter of large language models in the inference phase,
which controls the diversity of LLM in answering questions. Specifically, when the temperature
is 0, the output of LLM for the same question is fixed, while when the temperature increases, the
LLM output is more diverse and creative. However, this creativity may be detrimental to watermark
extraction.

To explore whether our watermarking method is still effective when the temperature is greater than 0,
we calculated the ESR when the temperature is 0.5 and 1.0, and the results are shown in Table 8. The
results show that the ESR of our watermarking method is also close to 100% when the temperature
is 0.5 or 1.0, which validates that our watermarking method is effective when changing the sampling
strategy (adjusting the temperature).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Temperature
GPT-J-6B GPT2-XL Baichuan-7B LLaMA-7b

8bit 16bit 8bit 16bit 8bit 16bit 8bit 16bit

0.5 100.0% 100.0% 100.0% 99.2% 100.0% 100.0% 96.7% 98.3%
1.0 100.0% 100.0% 98.3% 94.2% 100.0% 99.2% 95.0% 96.7%

Table 8: The ESR of our watermarking method under different temperatures.

2) Mapping Type. In the above experiments, we use precision-based mapping to embed watermarks.
To evaluate the scalability of our watermarking method on watermarked mapping, we use other
mapping types to embed watermarks. Specifically, we use the sequence of answers in Table 1 to
establish a mapping. The QA pair template is {Q: “The solutions of (x-a)(x-b)(x-c)(x-d)(x-e)=0 are
x=”, A: xxx} and each QA pair can be embedded with 5! = 120-bit watermarks.

As shown in Table 9, we can embed a 120-bit watermark with an ESR that exceeds 90%. Even if
the watermark capacity reaches 240 bits, the ESR can still exceed 75%. These results demonstrate
that our watermarking method is scalable. We can choose different types of mapping to embed
watermarks according to the requirements of watermark capacity.

Watermark Capacity
GPT-J-6B Baichuan-7B LLaMA-7B

ESR ET ESR ET ESR ET

120bit 100.0% 72.3s 90.0% 66.4s 90.0% 58.6s
240bit 100.0% 148.3s 78.3% 98.5s 75.0% 83.7s

Table 9: The performance of our watermarking method using the watermarked mapping based on
the sequence of answers.

3) Model Editing Technique. To evaluate the scalability of our watermarking method on the model
editing technique, we select EMMET Yoon et al. (2024) as the model editing technique to embed
the watermark into LLM.

As shown in Table 10, the results indicate that the ESR exceeds 95% when embedding 8-bit and
16-bit watermarks, which demonstrates the effectiveness of our watermarking method when using
EMMET. Therefore, our watermarking method is scalable on the model editing technique that sup-
ports the editing of multiple knowledge instances.

Watermark Capacity
GPT-J-6B GPT2-XL LLaMA-7B

ESR ET ESR ET ESR ET

8bit 100.0% 112.3s 100.0% 49.4s 95.0% 131.2s
16bit 100.0% 176.1s 100.0% 53.2s 99.2% 194.6s

Table 10: The performance of our watermarking method using the EMMET to embed watermark.

6 CONCLUSION

In this paper, we introduce EditMark, a novel training-free and harmless watermarking method for
open-source Large Language Models. By leveraging the inherent diversity in LLM responses, Edit-
Mark embeds watermarks through model editing without affecting the logical and semantic integrity
of the generated text. Our method demonstrates the effectiveness, robustness, fidelity, and efficiency
of EditMark, marking a significant advancement in LLM watermarking and providing a practical so-
lution for protecting model copyrights. We hope EditMark could be a feasible watermarking method
for open-source LLMs to protect their copyright and prevent unauthorized use or resale.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Baichuan. Baichuan 2: Open large-scale language models. arXiv preprint arXiv:2309.10305, 2023.
URL https://arxiv.org/abs/2309.10305.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502, 2022.

Junfeng Guo, Yiming Li, Lixu Wang, Shu-Tao Xia, Heng Huang, Cong Liu, and Bo Li. Domain
watermark: Effective and harmless dataset copyright protection is closed at hand. Advances in
Neural Information Processing Systems, 36, 2024.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural
Information Processing Systems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Linyang Li, Botian Jiang, Pengyu Wang, Ke Ren, Hang Yan, and Xipeng Qiu. Watermarking llms
with weight quantization. In Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3368–3378, 2023.

Shuai Li, Kejiang Chen, Kunsheng Tang, Jie Zhang, Kai Zeng, Weiming Zhang, and Nenghai Yu.
Turning your strength into watermark: Watermarking large language model via knowledge injec-
tion, 2024. URL https://arxiv.org/abs/2311.09535.

Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wenhan Wang, Tianwei Zhang,
and Yang Liu. Badedit: Backdooring large language models by model editing. In The Twelfth
International Conference on Learning Representations.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Computing Surveys, 2024.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022.

11

https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2311.09535

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Travis Munyer, Abdullah Tanvir, Arjon Das, and Xin Zhong. Deeptextmark: A deep learning-driven
text watermarking approach for identifying large language model generated text. IEEE Access,
2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Shuo Shao, Yiming Li, Hongwei Yao, Yiling He, Zhan Qin, and Kui Ren. Explanation as a wa-
termark: Towards harmless and multi-bit model ownership verification via watermarking feature
attribution, 2024. URL https://arxiv.org/abs/2405.04825.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
May 2021.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
Towards codable watermarking for injecting multi-bits information to llms. In The Twelfth Inter-
national Conference on Learning Representations.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, et al. Knowledge editing for
large language models: A survey. arXiv preprint arXiv:2310.16218, 2023.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english. Transactions
of the Association for Computational Linguistics, 8:377–392, 2020.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
performance in machine translation. In Forty-first International Conference on Machine Learning.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instruc-
tional fingerprinting of large language models. arXiv preprint arXiv:2401.12255, 2024.

Junsang Yoon, Akshat Gupta, and Gopala Anumanchipalli. Is bigger edit batch size always better?
– an empirical study on model editing with llama-3, 2024. URL https://arxiv.org/abs/
2405.00664.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, and Meng Jiang. A
survey of knowledge-enhanced text generation. ACM Computing Surveys, 54(11s):1–38, 2022.

Ruisi Zhang, Shehzeen Samarah Hussain, Paarth Neekhara, and Farinaz Koushanfar. REMARK-
LLM: A robust and efficient watermarking framework for generative large language models. In
33rd USENIX Security Symposium (USENIX Security 24), pp. 1813–1830, Philadelphia, PA, Au-
gust 2024. USENIX Association. ISBN 978-1-939133-44-1. URL https://www.usenix.
org/conference/usenixsecurity24/presentation/zhang-ruisi.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 4862–4876, 2023.

12

https://arxiv.org/abs/2405.04825
https://www.aclweb.org/anthology/D13-1170
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2405.00664
https://arxiv.org/abs/2405.00664
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-ruisi
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-ruisi

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS.

In the following, we will introduce the specific experimental settings of our watermarking method.
Specifically, we select MEMIT as the model editing technique to embed the watermark. The tem-
plate of the QA pair we embed the watermark is {Q: “The value of xxx/xxx is”, A: “xxx”} where
“The value of xxx/xxx is”, “xxx/xxx”, and “xxx” are the input, subject, and target output during the
process of model editing, respectively. For experiments with different watermark capacities, we per-
formed five independent experiments to calculate the average ESR and embedding time, where the
random seeds for the five independent experiments were 1, 2, 3, 4, and 5. For the hyperparameter of
inference, the temperature is 0.0, and max tokens is 10. The hyperparameters for model editing are
set as follows: α = 2, γ = 3, m = 2, β = 2, and a maximum of editing round N = 6. Each LLM
is edited for at least two epochs and stops after the second epoch when all QA pairs are successfully
edited. We modify the weights of MLP layers to embed the watermark. And the MLP layers we edit
are “9, 10, 11, 12, 13, 14” for LLaMA-7B, “13, 14, 15, 16, 17” for GPT2-XL, “3, 4, 5, 6, 7, 8, 9”
for GPT-J-6B and “4, 5, 6, 7, 8, 9” for “Baichuan-7B”. We used two RTX 4090 24GB to complete
the model editing, and all the LLMs are loaded to float16.

A.2 WATERMARK EMBEDDING ALGORITHM.

The following is the pseudo-code for QA pairs generation and watermark embedding, which is
detailed in Algorithm 1.

Algorithm 1: QA Pairs Generation and Watermark Embedding
Input : Watermark: W = {0, 1}n, Grouping parameter: m, Number of bits: n, Secure key: S

Hyperparameters: α, β, γ.
Output: Questions: Q, Answers: A.

1 Initialize the encoded watermark: W ′ = {};
2 for i = 1 to n/m do
3 ωi = {};
4 for j = 1 to m do
5 Add W[i ∗m+ j] to ωi; Group the watermark.;
6 end
7 ω

′

i = (ωi)10 + α; Encode ωi to the corresponding decimal number and add α;
8 Add ω

′

i to W ′;
9 end

10 Use the secure key to generate the pseudo-random number sequence t;
11 t = {t0, t11, t21, . . . , t

γ
1 , t

1
2, t

2
2, . . . , t

γ−1
k , tγk} s.t. ∀x, y ∈ t,x ̸= y.;

12 Generate questions and answers of QA pairs.;
13 Initialize Questions: Q = {} ;
14 Initialize Answers: A = {} ;
15 for i = 1 to (n/m) do
16 for j = 1 to γ do
17 Add the question “The value of tji/t0 is” to Q;
18 Calculate the value of tji/t0 and keep W ′

i decimal places to obtain the answer: a;
19 Add the answer “a.” to A;
20 end
21

22 end
23 return Questions: Q, Answers: A;

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 WATERMARK EXTRACTION ALGORITHM.

The following is the pseudo-code for extracting the watermark from QA pairs, which is detailed in
Algorithm 2.

Algorithm 2: Watermark Extraction from QA Pairs
Input : Question: Q, Answer: A, Grouping parameter: m, Number of bits: n, Secure key: S

Hyperparameters: α, β, γ.
Output: Watermark: W

1 Initialize watermark: W = {};
2 Extract the encoded watermark from the Questions and Answers.;
3 for i = 1 to (n/m) do
4 Initialize ω̃i = {};
5 for j = 1 to γ do
6 Extracting the dividend d in a question Q[i ∗ γ + j];
7 Extracting the precision p of the answer A[i ∗ γ + j];
8 ω̃j

i = p− d mod β;
9 Add ω̃j

i into ω̃i;
10 end
11 ω′

i = vote(ω̃i); Calculate the majority of ω̃i;
12 ωi = (ω′

i − α)2; Decode the decimal number ω′
i into the corresponding binary number ωi;

13 for j = 1 to m do
14 Add ωj

i to W;
15 end
16 end
17 return Watermark: W;

14

	Introduction
	Related Work
	Large Language Model Watermarking
	Model Editing

	Threat Model and Preliminaries
	Threat Model
	Preliminaries

	EditMark
	Insights of EditMark
	Watermark Embedding
	Watermark Extraction

	Experiments
	Experiments Setting
	Main results
	Effectiveness
	Robustness
	Fidelity
	Ablation Study

	Conclusion
	Appendix
	Implementation Details.
	Watermark Embedding Algorithm.
	Watermark Extraction Algorithm.

