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Abstract

This paper studies the approximation and generalization abilities of score-based
neural network generative models (SGMs) in estimating an unknown distribu-
tion P0 from n i.i.d. observations in d dimensions. Assuming merely that
P0 is α-sub-Gaussian, we prove that for any time step t ∈ [t0, n

O(1)], where
t0 > O(α2n−2/d log n), there exists a deep ReLU neural network with width
≤ O(n

3
d log2 n) and depth ≤ O(log2 n) that can approximate the scores with

Õ(n−1) mean square error and achieve a nearly optimal rate of Õ(n−1t
−d/2
0 )

for score estimation, as measured by the score matching loss. Our framework is
universal and can be used to establish convergence rates for SGMs under milder
assumptions than previous work. For example, assuming further that the target
density function p0 lies in Sobolev or Besov classes, with an appropriately early
stopping strategy, we demonstrate that neural network-based SGMs can attain
nearly minimax convergence rates up to logarithmic factors. Our analysis removes
several crucial assumptions, such as Lipschitz continuity of the score function or a
strictly positive lower bound on the target density.

1 Introduction

Score-based generative modeling (SGM) [1–5], also called diffusion modeling, has emerged as
a powerful tool of generative models, demonstrating exceptional performance in a wide range
of applications, such as image and text generation [4, 6], video generation [3]. SGM typically
encompasses two Markov processes: a forward process that gradually adds noise to convert samples
drawn from a data distribution, denoted as P0, into noise (e.g., Gaussian noise), and a reverse
process that effectively reverses the forward process to recover the samples from noise. Specifically,
SGM uses score functions (i.e., gradients of the log probability density functions) to transform
the Gaussian noise into the target data distribution via solving a stochastic differential equation
(SDE). Implementing the reverse process requires accurately estimating the score functions, which is
typically accomplished through training neural networks on a finite number of samples using a score
matching objective [7, 8].

Despite their remarkable empirical success across a wide range of applications, the theoretical
understanding of SGMs remains in its infancy. In particular, the following fundamental questions
remain inadequately addressed in the literature:

How effectively do diffusion models approximate the true data distribution? What is the optimal
number of diffusion steps required for high-quality generation? How many training samples are
necessary for diffusion models to estimate the true distribution accurately? In which scenarios do
diffusion models excel, and where do they encounter limitations?
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To address these questions, existing theoretical analyses of SGMs primarily focus on two aspects: (i)
the convergence rates of SGMs, which aims to quantify how quickly SGMs converge to the target
distribution, assuming access to accurate score estimators; (ii) the generalization bounds of SGMs,
which, on the other hand, investigates the score estimation error bounds throughout the diffusion
process given a finite number of observations.

Early works on convergence analysis literature either often relied on strong structural assumptions
about the data distribution, such as requiring it to satisfy the log-Sobolev inequality (LSI) [9, 10], be
log-Concave [11], or they exploit exponential convergence rates [12, 13]. Subsequent research [14–
16] achieved polynomial convergence rates under milder assumptions, requiring that the data distri-
butions have finite second moments and Lipschitz continuous score functions along the diffusion
process. More recently, [17, 18] have established nearly linear convergence rates in data dimension,
requiring only that the data has finite second moments or finite Fisher information with respect to
(w.r.t) the Gaussian distribution. Notably, the best-known convergence rates for Langevin Monte
Carlo (LMC) under various functional inequalities [19–21] also scale linearly with the data dimension,
up to logarithmic factors, thus matching the rates achieved by [17, 18]. This observation shows that
when arbitrarily accurate score estimators are available, SGMs can approximate the data distribution
effectively without imposing stringent regularity conditions such as isoperimetry, log-concavity, LSI,
or even smoothness on the target distribution.

However, assuming perfect score estimation in the convergence analysis of SGMs is highly restrictive
and generally unattainable in practice, especially when only a finite number of observations are
available. Recent studies have delved into analyzing score estimation errors and investigated how
these errors influence the final distribution estimation. [22–28] have studied the statistical guarantees
of neural network-based score estimators, showing that neural network-based SGMs are effective
distribution learners for distributions on bounded support [22] or smooth low-dimensional mani-
folds [26, 27] with lower-bounded densities; distributions on low-dimensional linear subspace [23]
or manifolds which are the images of Hölder smooth maps [28]; distributions on bounded support
with Lipschiz continuous score functions [25]; and sub-Gaussian distributions with Barron class of
density [24]. Additionally, [29–32] have focused on kernel-based score estimators and demonstrated
that kernel-based SGMs achieve minimax optimal convergence rates for distributions that are sub-
Gaussian with Sobolev class of density [29] or Lipschitz continuous score functions [30] as well as
for distributions on bounded support with Hölder smooth density [31]. [32] investigated the sample
complexity results for scenarios where the target distribution is either a standard Gaussian or has
bounded support, and discussed challenges related to the potential memorization of training samples
when using KDE-based score estimators. Table 1 summarizes some recent studies on generalization
analysis for SGMs.

Despite these advances, some assumptions on the data adopted in existing work remain quite
restrictive. For example, the assumption of Lipschitz continuous score functions used in [25, 30]
excludes many distributions of interest, such as those supported on a submanifold. Additionally,
the Lipschitz constant can conceal additional dependence on the data dimension in some cases,
especially when the data are approximately supported on a submanifold. Moreover, as highlighted
in [29], the density lower-bound assumption, as employed in [22, 26, 27], prevents their results
from being applicable to many natural distribution classes, such as multimodal distributions and
mixtures with well-separated components, significantly restricting their ability to explain the practical
success achieved by SGMs. Under such stringent requirements, the Holley–Stroock perturbation
principle [33] allows us to conclude that the true density satisfies the LSI. When the LSI holds, it is
well-established that Langevin dynamics are sufficient to achieve statistical efficiency [34]. However,
diffusion models are designed to be effective for a broader range of distributions by incorporating
smoothed versions of the data distributions. On the other hand, several studies, such as [29–31],
have been focusing on kernel-based estimators, whereas neural network-based estimators are more
widely used in practice. These works do not address the theoretical challenges associated with neural
network-based score estimation, leaving a gap in understanding the practical effectiveness of SGMs.

1.1 Our contributions

In this paper, we develop a new theoretical framework for analyzing the approximation and gen-
eralization capabilities of neural network-based SGMs. Assuming that the data distribution is
α-sub-Gaussian on Rd, we first establish a bound on the score matching loss between the true score
functions, ∇pt(·)

pt(·) , and a regularized empirical counterpart ∇p̂t(·)
p̂t(·)∨ρn,t

with a regularization ρn,t > 0,
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Table 1: A summary of recently developed generalization bounds for SDE-based SGMs. Bounds are
expressed in terms of the distribution estimation error in total variation (TV) distance. (P0, P̂0: true
and learned data distributions; p0: true density function; KDE: kernel-based density estimator; DNNs:
deep neural networks; ψ̂t(·) kernel function; s: smoothness parameter; t0: early stopping time)

Paper Assumption Estimator Metric Bound

[29]
Sub-Gaussian P0

KDE: ∇p̂t(·)
p̂t(·) 1p̂t(·)>ρn

TV(Pt0 , P̂t0) Õ(n−1/2t
−d/4
0 )

Sub-Gaussian P0 TV(P0, P̂0) Õ
(
n

−s
d+2s

)
Sobolev class p0

[30] Sub-Gaussian P0 KDE: ∇p̂t(·)
p̂t(·)∨ρn TV(P0, P̂0) Õ

(
L

d+2
d+4n

−1
d+4
)

L-Lipschitz score

[31] supp(P0) = [0, 1] KDE: ∇ψ̂t(·)
p̂t(·)∨ρ(·,t) TV(P0, P̂0) O

(
n

−s
1+2s

)
Hölder class p0

[22]
supp(P0) = [0, 1]d

ReLU DNNs TV(P0, P̂0) Õ(n
−s

d+2s )lower bounded p0
Besov class p0

Theorem 3 Sub-Gaussian P0

ReLU DNNs

TV(Pt0 , P̂t0) Õ(n−1/2t
−d/4
0 )

Corollary 1 Sub-Gaussian P0

TV(P0, P̂0) Õ(n
−s

d+2s )
Sobolev class p0

Corollary 2 supp(P0) = [0, 1]d

Besov class p0

which is the KDE-based estimator introduced in [30]. We then derive the approximation and es-
timation rates of ReLU DNNs for learning the true score function ∇pt(·)

pt(·) (see Theorems 1 and 3,

respectively) by approximating and estimating the surrogate ∇p̂t(·)
p̂t(·)∨ρn,t

.

Score estimation via empirical Bayes smoothing. Inspired by [30], we employ empirical Bayes
smoothing techniques to establish a score estimation rate of Õ

(
n−1σ−d−2

t (σdt ∨ 1)
)

for the estimator
∇p̂t(·)

p̂t(·)∨ρn,t
under only a sub-Gaussian assumption (see Lemma 1). Notably, we improve upon [30] by

removing the Lipschitz score requirement, demonstrating that regularity assumptions are unnecessary
for achieving minimax optimal rates for ∇p̂t(·)

p̂t(·)∨ρn,t
, which matches the result obtained by [29] for the

truncated score estimator ∇p̂t(·)
p̂t(·) 1{p̂t(·)>ρn}.

Neural network score approximation. We demonstrate in Lemma 12 that there exists a ReLU DNN
of width O(log3 n) and depth O(n3/d log2 n) that approximates ∇p̂t(·)

p̂t(·)∨ρn,t
with an Õ(n−1) rate for

time steps t ∈ [n−2/d,∞). While DNN approximation rates for smooth functions have been well
studied (e.g., [35–39]), a naive application of existing results, e.g., assigning one sub-network per
exponential component in KDE, would cause the network size to grow linearly with the sample size
n, making practical estimation infeasible. In contrast, our proof constructs a more compact DNN
architecture, which not only prevents the size from blowing up with n but also yields nearly optimal
estimation error bounds. Moreover, unlike [22], our approximation results do not require the density
lower bound assumption. The approximation rate for the true score function ∇pt(·)

pt(·) (i.e., Theorem 1)
follows immediately by combining Lemmas 1 and 12.

Neural network score and distribution estimations. [28] recently identified a flaw in Theorem
C.4 of [22], which invalidates the proofs for the convergence rates claimed in that work and in
subsequent papers [26, 27] that rely on it. In contrast, [28] establish a corrected score estimation
rate of Õ(t−1

0 (t−1
0 n)−

2s
2s+d′ ) for data supported on a d′-dimensional manifold (d′ ≪ d), where the

manifold is the image of a s-Hölder smooth map. In this paper, we aim to derive optimal convergence
rates for SGMs under broader conditions. Specifically, we provide a new proof strategy that removes
the need for a density lower bound condition. A key observation is that the surrogate ∇p̂t(·)

p̂t(·)∨ρn,t
can

be uniformly bounded (see Lemma 5) which allows us to verify Bernstein’s condition for the excess
risk associated with learning ∇p̂t(·)

p̂t(·)∨ρn,t
. Instead of directly deriving a high probability bound for
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the true score function, we first establish a uniform bound for the constructed DNN class trained to
learn ∇p̂t(·)

p̂t(·)∨ρn,t
, using Bernstein’s inequality and a ε-net argument. Combining this with the above

empirical Bayes score estimation bound (Lemma 1) and the score approximation rate (Theorem 1),
we obtain a neural network-based score estimation rate of Õ(n−1t

−d/2
0 ) (see Theorem 2). This

approach enables us to avoid the need for the density lower bound assumption (see Appendix E.1
for more details). Finally, applying Girsanov’s theorem [15, 17] yields a Õ(n−1/2t

−d/4
0 ) bound

in total variation (TV) distance for the distribution estimation error at the early-stopping time t0
(see Theorem 3). Moreover, if the target density belongs to a Sobolev or Besov class, controlling the
truncation error at t0 allows us to achieve nearly minimax optimal rates up to a logarithmic factor.

To summarize, we remove the Lipschitz score assumption used in [30] and establish minimax
optimal rates for the empirical score function under a sub-Gaussian assumption. We derive score
approximation and estimation error bounds without the density lower bound condition as used in
[22, 26, 27] and show that neural network-based SGMs can achieve nearly minimax optimality in TV
distance, even under mild regularity assumptions.

The remainder of the paper is organized as follows. Section 2 introduces the notation and definitions
used throughout the paper, as well as the background of SGMs. Section 3 presents our main results
concerning the error bounds for score estimation and approximation as well as distribution estimation
in total variation distance for SGMs. Section 4 offers proof sketches for the score estimation and
approximation errors. Finally, we conclude in Section 5. We defer all proofs to the appendix.

2 Preliminaries and Background
2.1 Notations and definitions
We use R+ := {x ∈ R|x ≥ 0} to denote the space of non-negative real values. Denote by
N := {0, 1, 2, . . . } the set of natural numbers and N+ := N \ 0. We denote by N (0, σ2Id) the
Gaussian distribution with mean vector 0 and covariance matrix σ2Id and write φσ for its density.The
standard Gaussian distribution on Rd is represented by γd := N (0, Id). For any function or
distribution on Ω, supp(Ω) denotes its support. Let (Xt)[0,T ] be a process with law(Xt) = Pt
and corresponding density pt. We refer to (P0, p0) as the target data distribution and density. We
write a ∨ b := max{a, b} and a ∧ b := min{a, b}. The notation a = O(b) means a ≤ Cb for a
universal constant C > 0 and we use Õ(·) to hide logarithmic factors. Throughout, ≲ suppress
constants that depend on the dimension d.
Definition 1 (Sub-Gaussian Distribution [40]). We say a probability distribution P on Rd is α-sub-
Gaussian for some 0 < α <∞ if for all θ ∈ Rd:

EX∼P
[
exp
(
θ⊤(X − EX∼P [X])

)]
≤ exp

(
α2∥θ∥22/2

)
. (1)

Deep ReLU neural networks. We follow the notation used in [38] for ReLU neural networks, please
refer to Appendix D.1 for a more detailed introduction. We say that a neural network (architecture)
with width N and depth L if the maximum width of any hidden layer in the network is at most N ,
and the total number of hidden layers does not exceed L.

2.2 Score-based generative models
In this section, we introduce the background of SGMs. A SGM typically encompasses two Markov
processes: a forward process (Xt)[0,T ] that starts from the target distribution X0 ∼ P0, the model
gradually adds noise to transform the signal into noise X0 → X1 → · · · → XT ∼ PT and a reverse
process Yt := XT−t, 0 ≤ t ≤ T starts with the noise Y0 ∼ PT , and reverse the forward process to
recover the signal from noise Y0 → Y1 → · · · → YT ∼ P0.

OU process. We consider the following Ornstein–Ulhenbeck (OU) process as the forward process:

dXt = −Xtdt+
√
2dBt (0 ≤ t ≤ T ), X0 ∼ P0, (2)

where Bt denotes a d-dimensional standard Brownian motion and we have Xt = e−tX0 +√
1− e−2tZ, with Z ∼ γd. The OU processis well-defined and has a reverse process (Yt)[0,T ]:

dYt = (Yt + 2∇ log pT−t(Yt)) dt+
√
2dB′

t (0 ≤ t ≤ T ), Y0 ∼ PT , (3)

where B′
t denotes another d-dimensional standard Brownian motion and ∇ log pt(·) is called the

score function. The noise distribution and score function are unknown. Using the fact that the OU
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process Eq. (2) converges to standard Gaussian distribution γd exponentially [16, 17], for sufficiently
large T , we can replace PT by γd.

Score matching. Given a finite set of samples, we can train a neural network ϕscore(·, t) approximate
∇ log pt(·) for t ∈ [0, T ] by minimizing the score matching loss [7]:

LSM(ϕscore) :=

∫ T

t=0

EXt

[
∥ϕscore(Xt, t)−∇ log pt(Xt)∥22

]
dt, (4)

which is equivalent to the denoising score matching EX0
[ℓ(ϕscore,X0)] up to a constant [7, 8], where

ℓ(ϕscore,X0) :=

∫ T

t=0

EXt|X0

[∥∥ϕscore(Xt, t)−∇ log pt(Xt|X0)
∥∥2
2

]
dt. (5)

We replace ∇ log pT−t(x) by ϕθ(x, T − t) and obtain the score-based process:

dŶt =
(
Ŷt + 2ϕθ(Ŷt, T − t)

)
dt+

√
2dB′

t (0 ≤ t ≤ T ), Ŷ γd
0 ∼ PT . (6)

We replace PT by γd in Eq. (6) and obtain a reverse process (Ŷ γd
t )[0,T ] that starting from Ŷ γd

0 ∼ γd.

Early stopping. Instead of running Eq. (6) back to the start time t = 0, we stop early at a small time
t0 > 0. Hence, the diffusion model will approximate Pt0 rather than P0, i.e., we want P̂ γdt0 ≈ Pt0 .

Problem statement. Given the ground-truth data distribution P0 and a set of n i.i.d observations
{x(i)}ni=1 ∼ P⊗n

0 , we learn the score function ∇ log pt,∀t ∈ [t0, T ] via the empirical risk minimizer:

ϕ̂ ∈ argmin
ϕ∈NN

1

n

n∑
i=1

ℓ(ϕ,x(i)), (7)

and plugin ϕ̂ to the process Eq. (6) to generate new samples X ′ ∼ P̂ γdt0 , where P̂ γdt0 is the modeled
distribution of SGMs. Our goal is to study the estimation error in total variation distance TV(P0, P̂

γd
t0 ).

3 Main Results
In this section, we present our main results regarding the error bounds for score estimation and
approximation and establish the nearly optimal convergence rates for diffusion models.

3.1 Assumptions
Here, we outline the assumptions imposed on the target data distribution P0 and density function
p0 in our analysis. In particular, our score approximation and estimation results are not specified to
Assumptions 2 and 3, where they are used only in Corollaries 1 and 2 to control errors induced by
early stopping, respectively. We follow [29, 22] for the definitions of the Sobolev ball and the Besov
space, respectively, which are deferred to Appendix G due to space limitations.
Assumption 1 (Sub-Gaussian Distribution). The target data distribution P0 is α-sub-Gaussian.
Assumption 2 (Sobolev Class of Density). The density p0 belongs to the Sobolev ball with 0 < s ≤ 2.
Assumption 3 (Besov Class of Density). The density p0 ∈ Lq([0, 1]d) ∩ U(Bsq,q′([0, 1]

d);C) for
some C > 0, where 1 ≤ q ≤ ∞, 0 < q′ ≤ ∞, and 0 < s ≤ 2.

3.2 Score estimation by regularized empirical score functions

Given a set of n i.i.d. observations {x(i)}ni=1 drawn from an unknown target distribution
P0, let P̂ (n)

0 := 1
n

∑n
i=1 δx(i) be the empirical measure. For OU process Eq. (2), we have

P̂
(n)
t = 1

n

∑n
i=1 N (e−tx(i), (1 − e−2t)Id)) and p̂t(·) = 1

n

∑n
i= φσt

(· − mtx
(i)), where mt :=

exp(−t), σt :=
√

1− exp(−2t). [30] showed that for an α-sub-Gaussian distribution P0 with
L-Lipschitz continuous scores, the following regularized empirical score function, with bandwidth
h =

(d3(α2 logn)d/2

L2n

)2/(d+4)
and regularizer ρn = (2πh)−d/2e−1n−2:

∇p̂h(·)
p̂h(·) ∨ ρn

=
∇
(
1
n

∑n
i=1 φ

√
h(· − x(i))

)
1
n

∑n
i=1 φ

√
h(· − x(i)) ∨ ρn

(8)
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achieves a nearly minimax optimal rate of O
(
dα2L2n

−2
d+4 log

d
d+4 n

)
score estimation error in term of

score matching loss. However, the Lipschitz continuous score assumption excludes many distributions
of interest, such as those supported on a submanifold and the Lipschitz constant can conceal additional
dependence on the data dimension in some cases, especially when the data are approximately
supported on a submanifold. On the other hand, [29] demonstrates that a similar truncated score
estimator ∇p̂t(·)

p̂t(·) 1{p̂t(·)>ρn} attains a minimax optimal rate of Õ(n−1σ−d−2
t (σdt ∨ 1)) under merely

sub-Gaussian distribution, indicating that regularity conditions on the score are not necessary to derive
optimal rates. We resolve this question with the following lemma, demonstrating that the estimator
in Eq. (8) can achieve minimax optimal rates as long as the data distribution is sub-Gaussian:
Lemma 1. For any d ≥ 1, n ≥ 3, Let P be a α-sub-Gaussian distribution on Rd and P̂ be
its empirical distribution associated to a sample {x(i)}ni=1. For any σ ≳ αn−1/d log1/2 n, let
Pσ = P ∗ N (0, σ2Id), P̂

(n)
σ = P̂ (n) ∗ N (0, σ2Id) with density functions pσ, p̂σ : Rd → R+. Fix

0 < ρn ≤ (2πσ2)−d/2e−1n−1, then we have

E{x(i)}n
i=1

[∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇p̂σ(x)
p̂σ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

]
≲ σ−d−2

(
σd + αd

)
log3

( (2πσ2)−
d
2

ρn

) logd/2 n
n

.

We provide a proof sketch for Lemma 1 in Section 4.1 and defer the detailed proof to Appendix C.2.
Remark 1. To establish our neural network approximation and estimation bounds, we adopt the
empirical regularized score estimator rather than the truncated estimator as our surrogate. The
regularized estimator is globally smooth and stable, ensuring compatibility with established approxi-
mation theories for smooth functions, while the truncated estimator’s discontinuities at low-density
regions violate these assumptions and complicate both approximation and generalization analyses.

3.3 Score approximation and estimation by deep neural networks

3.3.1 Neural network score approximation
Lemma 12 shows that the regularized empirical score function Eq. (8) can be well approximated by
a ReLU DNN in L2-distance. Combining Lemmas 1 and 12, we obtain the neural network score
approximation error by the following theorem. For the proof, please refer to Appendix D.4.
Theorem 1 (Neural Network Score Approximation for Sub-Gaussian Distributions). Suppose that
P0 satisfies Assumption 1. For any 1 ≤ d ≲

√
log n, n ≥ 3 and any 1

2α
2n−2/d log n < t0 ≤ 1

and T = nO(1), let {xt}t∈[t0,T ] be the solutions of the process Eq. (2) with density function
pt : Rd → R+. Fix k ∈ N+ with d/2 ≤ k ≲ logn

log logn . Then, there exists a ReLU DNN ϕscore with

width ≤ O
(
n

3
2k log2 n

)
and depth ≤ O

(
log2 n

)
constructed from i.i.d. samples {x(i)}ni=1 such that

E{x(i)}n
i=1

[
Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]]
≲ σ−d−2

t

(
σdt + αd

) logd/2+3 n

n
,

and we have ∥ϕscore(·, t)∥∞ ≲ σ−1
t

√
log n. Moreover, let T = nO(1), we have

E{x(i)}n
i=1

[∫ T

t=t0

Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]
dt
]
≲ αdt

−d/2
0 n−1 log

d
2+4 n.

3.3.2 Neural network score estimation
According to Theorem 1, ϕ̂(x, t) can be taken so that ∥ŝ(·, t)∥∞ ≲ σ−1

t

√
log n. Hence, we limit the

neural network class of Theorem 1 into
NN :=

{
ϕ ∈ NN (width ≤ O(n

3
2k log2 n); depth ≤ O(log2 n)) | ∥ϕ(·, t)∥∞ ≲

√
logn
σt

}
. (9)

Together with the score approximation error bound from Theorem 1, applying Bernstein’s inequality
and an ϵ-net argument, we obtain the following neural network score estimation error bound in terms
of score matching loss. A proof sketch is provided in Section 4.3 and see Appendix E.1 for details.
Theorem 2 (Neural Network Score Estimation for Sub-Gaussian Distributions). Assume that the
conditions of Theorem 1 hold. For 3 ≤ d ≲

√
log n, fix k ∈ N+ with 6 logn

(d−2) log(t−1
0 )

∨ d/2 ≤ k ≲
logn

log logn in Eq. (9). Then, for any δ ∈ (0, 1), with probability at least 1 − δ, the excess risk of an
empirical risk minimizer Eq. (7) over the neural network class NN satisfies that∫ T

t0

EXt

[
∥ϕ̂(Xt, t)−∇ log pt(Xt)∥22

]
dt ≲ t

−d/2
0 n−1 log

d
2+4 n+ t−1

0 n−1 log n · log 2

δ
.
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Our rate in Theorem 2 matches the rate for regularized kernel-based estimators in Lemma 1 and
aligns with the nearly minimax optimal rate derived in [29] for a similar truncated estimator.

3.4 Distribution estimation errors of SGMs for sub-Gaussian distributions

Here, we evaluate the distribution estimation error of neural network-based SGMs in TV distance.
The following theorem aims to bound the TV distance between the true marginal distribution Pt0 at
time t0 ≥ α2n−2/d log n and the learned distribution P̂ γdt0 by SGMs. Proof refer to Appendix E.2.
Theorem 3 (Distribution Estimation Error of Pt0). Assume that the conditions of Theorem 2 hold.
Then, for any δ ∈ (0, 1), with probability at least 1− δ,

E{x(i)}n
i=1

[
TV(Pt0 , P̂

γd
t0 )
]
≲ αd/2t

−d/4
0 n−1/2 log

d
4+2 n+ t

−1/2
0 n−1/2 log1/2 n ·

√
log(2/δ).

Somewhat unexpectedly, by choosing δ = 1/n, Theorem 3 shows that with only a sub-Gaussian
assumption, neural network-based SGMs achieve a TV distance bound of Õ(αd/2t

−d/4
0 n−1/2) for

the distribution estimation error at the early stopping time. By triangle inequality, TV(P0, P̂t0) ≤
TV(P0, Pt0) + TV(Pt0 , P̂t0), indicating that to bound TV(P0, P̂t0), it is necessary to control the
error introduced by stopping early. To this end, we introduce nonparametric class assumptions.

Bounding the early stopping induced error. Assume that the target density function p0 belongs
to Sobolev space Ws

2(Rd) (Assumption 2), or Besov space Bsp,q([0, 1]
d) (Assumption 3), with

t0 = n−
2

d+2s , it can be upper-bounded by Lemma 26 and Theorem 9, respectively:

TV(P0, Pt0) ≲ n−
s

d+2s . (10)

Theorem 3 and Lemma 26 immediately imply Corollary 1:
Corollary 1 (Distribution Estimation Error for Sobolev Class of Density). Assume Assumptions 1
and 2 hold. Let t0 = n−

2
d+2s , T = nO(1). Then, with probability at least 1− 1/n, it holds that

E{x(i)}n
i=1

[
TV(P0, P̂

γd
0 )
]
≲ polylog(n)n−

s
d+2s .

Notice that P0 on [0, 1]d is
√
d-sub-Gaussian, Corollary 2 immediately follows by Theorems 3 and 9:

Corollary 2 (Distribution Estimation Error for Besov Class of Density). Assume that Assumption 3
holds. Let t0 = n−

2
d+2s , T = nO(1). Then, with probability at least 1− 1/n, it holds that

E{x(i)}n
i=1

[
TV(P0, P̂

γd
0 )
]
≲ n−

s
d+2s .

Therefore, we have proved that neural network-based SGMs achieve minimax estimation rates for
Sobolev and Besov class densities in TV distance up to logarithmic factors, even without the Lipschitz
score assumption (as opposed to [30]) and the lower bounded density assumption (as opposed to
[22, 26, 27]).
Remark 2 (Dependence of Network Width on Dimension d and the Bias-Variance Trade-Off). The
Õ(n3/d) network width appearing in Theorems 1 and 2 suggests that the required width decreases
with dimension d, which may seem counter-intuitive. This is a direct consequence of the interplay
between the smoothness of Pt0 and the network architecture in our analysis, which has a clear
theoretical motivation: (1) Higher dimensions force more smoothing. Our condition on the early
stopping time (t0 ≥ Õ(n−2/d) in Theorems 1 and 2 or t0 = n−

2
d+2s in Corollaries 1 and 2) forces

larger t0 for higher d to ensure theoretical guarantees. (2) More smoothing simplifies the learning
of Pt0 . A larger t0 means that Pt0 is convolved with a Gaussian of higher variance. This makes
Pt0 inherently smoother and less complex. Its score can thus be approximated by a network whose
size scales less severely with the sample size n. Hence, while higher dimension usually implies
increased statistical difficulty (as seen in the convergence rate n−

s
d+2s suffering from the curse of

dimensionality), the necessity of stronger smoothing to achieve uniform control in high dimensions
makes the intermediate learning problem architecturally less demanding in terms of network size.
This is a reflection of the bias–variance trade-off: we reduce variance (by smoothing), but incur bias,
which is ultimately what limits the rate.
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4 Proof Sketch

4.1 Proof sketch of Lemma 1

We use the following two ingredients to prove Lemma 1:

(1) From score matching to Hellinger distance via empirical Bayes smoothing. The follow-
ing lemma shows that the score matching loss can be upper-bounded by the Hellinger distance
H2(Pt, P̂

(n)
t ) plus the L2-norm of the score over low-density regions:

Lemma 2. Given any distributions P,Q on Rd with density functions p, q : Rd → R+, respectively.
Fix σ > 0, let Pσ = P ∗N (0, σ2Id), Qσ = Q∗N (0, σ2Id) with density functions pσ, qσ : Rd → R+.
For all d ≥ 1, n ≥ 1, let 0 < ρn ≤ (2πσ2)−d/2e−1/2 and let G := {x ∈ Rd : pσ(x) ≤ ρn}, then
there exists a universal constant C > 0 such that∫

Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇qσ(x)
qσ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

≤ C
( d
σ2

max
{
log3

( (2πσ2)−d/2

ρn

)
, log

(
H−2(Pσ, Qσ)

)}
H2(Pσ, Qσ) +

∫
G

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

)
.

For the proof, please refer to Appendix A.1. The second term in Lemma 2 is the L2-norm of the
score function over the low-density region {x ∈ Rd : pσ(x) ≤ ρn}. By Assumption 1, P is
α-sub-Gaussian and once convolved with Gaussian noise, the resulting marginal Pσ will become√
α2 + σ2-sub-Gaussian. Using Lemma 5 to bound the L2-norm of the score function and leveraging

the sub-Gaussian property of Pσ , we find that this term is bounded above by O(σ−2ρn log(σ
−dρ−1

n ))

(see Lemma 7). For the first term, recall the fact that H2(P̂
(n)
t , Pt) ≤ KL(P̂

(n)
t ∥Pt) (see Lemma 32).

Remark 3. Lemma 2 does not require the density functions to exist for P and Q.

Remark 4. Notably, [30, Lemma 1] employs a rescaling argument to adjust the random variables
and apply [41, Theorem E.1], yielding a bound similar to Lemma 2. However, a careful examination
reveals that a term h−d/2 has been missing in their proof. Simply following their strategy results in a
bound that scales as σ−d−2 instead of σ−2. On the contrary, we employ the rescaling argument to
get a generalization result (see Lemma 4) of [41, Lemma F.2], and adopt a similar proof strategy of
[41, Lemma E.1] to derive a bound that scales as σ−2.

(2) KL-divergence rate of smoothed empirical distribution. The following lemma is a restatement
of [42, Theorem 3], in which we explicitly demonstrate the dependence of the bound on the Gaussian
parameter σ. In particular, following the original proof of [42], one obtains a bound that scales expo-
nentially with 1

σ , i.e, E
[
KL(P̂σ∥P ∗

σ )
]
≤ O(exp( 1σ )

logd n
n ), which blows up when σ is sufficiently

small. We refine their proof and establish a rate that scales polynomially in 1
σ , as given below:

Lemma 3 (Convergence Rate of Smoothed Empirical Sub-Gaussian Distributions). Given d ≥ 1, n ≥
1, σ > 0. Suppose that P is a d-dimensional α-sub-Gaussian distribution. Let Pσ = P ∗ N (0, σ2Id)

and P̂ be the empirical measure of an i.i.d. sample of size n drawn from P and P̂σ = P̂ ∗N (0, σ2Id).
Then we have

EP⊗n

[
KL(P̂σ∥Pσ)

]
≤ Cd

(α
σ

)d logd/2 n
n

. (11)

For the proof, please refer to Appendix B.2. To upper bound the first term in Lemma 2, notice that
x 7→ x log x−1 is concave and is increasing in (0, e−1), by Jensen’s inequality we have

EP⊗n

[
log
(
H−2(Pσ, P̂

(n)
σ )

)
H2(Pσ, P̂

(n)
σ )

]
≤ log

(
1

EP⊗n [H2(Pσ,P̂
(n)
σ )]

)
EP⊗n [H2(Pσ, P̂

(n)
σ )]

≲ log
((α

σ

)d logd/2 n
n

)(α
σ

)d logd/2 n
n

. (12)

where the last inequality holds by letting Cdαdσ−dn−1 logd/2 n ≤ e−1, which can be satisfied when
(α/σ)d ≲ n log−d/2 n, i.e., σ ≳ αn−1/d log1/2 n. Combining the sub-Gaussian tail Lemma 7 an
Eq. (12) we complete the proof for Lemma 2. Please refer to Appendix A.1 for a more detailed proof.
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4.2 Proof sketch of Theorem 1
The approximation rates of DNNs for smooth functions have been extensively investigated in the
literature [35–39, 43]. At first glance, one might try to construct a sub-network for each exponential
component of the KDE, leveraging these existing results. However, such an approach would require n
sub-networks, causing the overall network size to scale at least linearly with n. In contrast, our proof
constructs a more compact DNN architecture, which not only prevents the DNN size from blowing
up with n but also yields an optimal estimation error bound as shown in Theorem 2. Moreover,
unlike [22], our approximation results do not require the density lower bound assumption. Recall
that the regularized empirical score function with regularizer ρn = (2πσ2)−d/2e−1n−1 for the OU
process Eq. (2) can be expressed as

∇p̂t(y)
p̂t(y) ∨ ρn,t

=
1

σ2
t

mt × f
(3)
kde (y, t)− y × f

(2)
kde (y, t)

f
(1)
kde (y, t) ∨ e−1n−1

,

where we denote by

f
(1)
kde (y, t), f

(2)
kde (y, t) :=

1

n

n∑
i=1

exp
(
−∥y−mtx

(i)∥2
2

2σ2
t

)
, f

(3)
kde (y, t) :=

1

n

n∑
i=1

exp
(
−∥y−mtx

(i)∥2
2

2σ2
t

)
x(i).

Thus, we conduct two steps to construct a ReLU DNN to approximate ∇p̂t(y)
p̂t(y)∨ρn,t

:

Approximating Gaussian kernel density estimators (Lemma 8). Let h(i) :=
∥y−mtx

(i)∥2
2

2σ2
t

and h̃(y, t) :=
(
1
n

∑n
i=1

(
h(i)(y, t)

)s)1/s
for some s ∈ N+. Whenever h(i) ≳ C̃, where

C̃ = O(
√
s log(ϵ−1)) for some 0 < ϵ < 1, the term exp(−h(i)) becomes small enough to be

trivially approximated by a DNN. Consequently, we only need to approximate fkde for h ∈ [0, C̃].
We further divide [0, C̃] into K subintervals. For each β ∈ {0, 1, . . . ,K − 1}, define

Qβ :=
{
h ∈ R : h ∈

[
βC̃
K , (β+1)C̃

K − δ · 1{β≤K−2}
]}
.

For each β, we define h̃β := βC̃
K , β ∈ {0, 1, . . . ,K − 1} as the vertex of Qβ . The Taylor expansion

of the Gaussian kernel density estimator at h̃β up to order s− 1 is given by

fkde(y, t) =

s−1∑
k=0

(−1)k exp(−h̃β)
k!

1

n

n∑
i=1

(
h(i) − h̃β

)k
+

1

n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s
:= (a) + (b),

The second term (b) can be upper-bounded by 1
s! |h̃ − h̃β |s (c.f. Eq. (62)). We can approximate

this term by constructing a sub-network to learn h̃β such that |h̃ − h̃β∥ ≲ ϵs for some 0 < ϵ < 1
(c.f. Proposition 4). For the first term (a), some elementary calculations lead to

(a) = exp(−h̃β)
s−1∑
k=0

∑
∥ν̃∥1+a4=k

(−2)−(k−∥ν2∥1−a4)m
∥ν2∥1+2∥ν3∥1
t

σ
2(k−a4)
t ν1!ν2!ν3!a4!

h̃a4β y2ν1+ν2

( 1
n

n∑
i=1

(
x(i)

)ν2+2ν3
)
.

we construct each sub-network to approximate σ−2k
t by ϕk1/σ2 (c.f. Proposition 2), yν by ϕνpoly

(c.f. Proposition 3), h̃(y, t) by ϕh̃ (c.f. Proposition 4), h̃β(y, t) by ϕh̃β
(c.f. Proposition 5), h̃kβ(y, t)

by ϕk
h̃β

(c.f. Proposition 6), exp(−h̃β(y, t)) by ϕexp
h̃β

(c.f. Proposition 7). By combining the sizes
and approximation errors of all the sub-networks described above, we obtain sub-networks that
approximate f (1)kde , fkde(2) , respectively. A similar argument applies to the approximation of f (3)kde .

Approximating regularized empirical score functions (Lemma 10). After constructing sub-
networks that approximate fkde(1) , fkde(2) , fkde(3) ,mt, σ

−2
t , we can compose them into a single ReLU

DNN to approximate the regularized empirical score function. For more details, see Appendix D.3.

The approximation rate for the true score functions follows immediately by combining Lemma 1 and
the above approximation rate for the regularized empirical score functions.
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4.3 Proof sketch of Theorem 2
Denote by ϕ∗(·, t) := ∇ log pt(·) and ˆ̄ϕ(·, t) := ∇p̂t(·)

p̂t(·)∨ρn,t
. For any ϕ ∈ NN from Eq. (9), we have∫ T

t0
EXt

[∥ϕ(Xt, t) − ϕ∗(Xt, t)∥22]dt = EX0
[ℓ(ϕ,X0) − ℓ(ϕ∗,X0)] = EX0

[E{x(i)}[ℓ(ϕ,X0) −
ℓ( ˆ̄ϕ,X0)]] + E{x(i)}[EX0

[ℓ( ˆ̄ϕ,X0)− ℓ(ϕ∗,X0)]], where the second term can be controlled using
the empirical Bayes score estimation result from Lemma 1. For the first term, a key observation is
that the surrogate ˆ̄ϕ(·, t) can be uniformly bounded (see Lemma 5), allowing us to verify Bernstein’s
condition for the random variable E{x(i)}[ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]. This enables us to apply Bernstein’s
inequality together with an ε-net argument to obtain a uniform high-probability bound for the first
term over NN . Combining these two terms and applying them to the empirical risk minimizer ϕ̂
trained over NN , together with the score approximation results from Theorem 1, we obtain an upper
bound on

∫ T
t0
EXt

[∥ϕ̂(Xt, t) − ϕ∗(Xt, t)∥22]dt. This approach allows us to establish the desired
generalization bound without requiring a lower bound on the density (see Appendix E.1 for details).

5 Conclusion and Discussion
5.1 Conclusion
In this paper, we introduce a theoretical framework for studying the approximation and generalization
abilities of neural network-based SGMs for estimating sub-Gaussian distributions on Rd. Using
empirical Bayes smoothing techniques and neural network approximation theory, we established
nearly minimax optimal convergence rates for SGMs without requiring strong regularities, such as
Lipschitz score and density lower bound assumptions.

5.2 Limitations and future work.
Curse of dimensionality (CoD). One of our limitations is that our current bounds still suffer from the
curse of dimensionality (CoD). Incorporating structural assumptions, such as manifold assumption
explored in [44, 45], or low-rank structures [46]) is a crucial next step to mitigate the CoD. This would
require non-trivial extensions to our analysis, particularly in adapting our empirical Bayes smoothing
techniques and neural network approximation theory to efficiently exploit low-dimensional geometry.
In particular, our analysis relies on an isotropic Gaussian kernel for the empirical score estimator.
To effectively leverage a manifold structure, this would need to be replaced with an estimator that
respects the underlying geometry, such as one using anisotropic or manifold-intrinsic kernels (e.g.,
heat kernels), to prevent smoothing data off the manifold. A manifold-aware analysis, following, e.g.,
the path of [44, 45], would require establishing new bounds for score estimation and approximation
that depend on the intrinsic dimension of the data, rather than the ambient dimension.

Going beyond sub-Gaussian distributions. Our current analysis leverages the sub-Gaussian assump-
tion in two essential components: controlling the score function in low- density regions (Lemma 7)
and bounding the KL divergence of the Gaussian-smoothed empirical distribution (Lemma 3). Re-
laxing this assumption to encompass broader tail behaviors, such as sub-exponential or sub-Weibull
distributions [47, 48], poses both technical and conceptual challenges, requiring finer control of tail
integrals and stability properties of the score. We believe that developing such extensions would
substantially deepen the theoretical foundations of score-based models, bridging the gap between
idealized sub-Gaussian settings and the heavy-tailed distributions often encountered in practice. In
particular, leveraging recent progress on the convergence of Gaussian-smoothed empirical measures
under heavy-tailed assumptions offers a promising pathway toward this goal.

Higher-order smoothness. Our nearly minimax optimal rates in Corollaries 1 and 2 currently apply
to smoothness parameters 0 < s ≤ 2. This restriction arises because our analysis employs an
isotropic Gaussian kernel-based score estimator, which is a linear estimator and thus cannot fully
exploit higher-order smoothness [49, 50]. Exploring nonlinear or adaptive estimators that can leverage
higher-order smoothness represents another compelling direction for extending our framework.
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Broader Impacts

This work advances the theoretical understanding of score-based generative models (SGMs) by
providing approximation and generalization guarantees under minimal assumptions. By removing
restrictive conditions such as Lipschitz continuity or density lower bounds, our results broaden the
applicability of SGMs to more complex and realistic data distributions. These insights may inform
the design of more robust and sample-efficient generative models, particularly in high-dimensional or
structured data settings. While primarily theoretical, our findings contribute to a deeper understanding
of SGMs, which is essential for their safe and responsible use in real-world applications.
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A From Score Matching to Hellinger Distance via Empirical Bayes

The following lemma extends [41, Lemma F.2] by generalizing it from densities convolved with a
standard Gaussian distribution N (0, Id) to densities convolved with a general isotropic Gaussian
distribution N (0, σ2Id) for any σ > 0.

Lemma 4. For every pair of probability distributions P and Q on Rd with density functions p, q :
Rd → R+ respectively. Let pσ(y) :=

∫
Rd φσ(y − x)p(x)dx and qσ(y) :=

∫
Rd φσ(y − x)q(x)dx.

For 1 ≤ j ≤ d and k ≥ 1, we have∫
Rd

(
∂kj pσ(x)− ∂kj qσ(x)

)2
dx ≤ 4σ−2k+1(2πσ2)−d/2 inf

a≥
√
2k−1

{
a2kH2(Pσ, Qσ) +

√
2

π
a2k−1e−a

2
}
.

Proof. For X ∼ P,Y ∼ Q, we let

P ′ = law
(X
σ

)
∗ N (0, Id),

Q′ = law
(Y
σ

)
∗ N (0, Id),

and their density functions p′, q′ : Rd → R, respectively. Let

Xσ = X +N (0, σ2Id) ∼ P ∗ N (0, σ2Id),

Yσ = Y +N (0, σ2Id) ∼ Q ∗ N (0, σ2Id),

X ′ =
X

σ
+N (0, Id) ∼ P ′

Y ′ =
Y

σ
+N (0, Id) ∼ Q′.

Then we have

Xσ = σX ′,

Yσ = σY ′,

and pσ(x) = σ−dp′(xσ ), qσ(x) = σ−dq′(xσ ). Therefore,∫
Rd

(
∂kj pσ(x)− ∂kj qσ(x)

)2
dx =

∫
Rd

σ
(
σ−d−k∂kj p

′
(x
σ

)
− σ−d−k∂kj q

′
(x
σ

))2
d
(x
σ

)
= σ−2(d+k)+1

∫
Rd

(
∂kj p

′
(x
σ

)
− ∂kj q

′
(x
σ

))2
d
(x
σ

)
.

By [41, Lemma F.2], we have∫
Rd

(
∂kj p

′
(x
σ

)
− ∂kj q

′
(x
σ

))2
d
(x
σ

)
≤ 4(2π)−d/2 inf

a≥
√
2k−1

{
a2kH2(P ′, Q′) +

√
2

π
a2k−1e−a

2
}
.

By the scale-invariance of the Hellinger distance, i.e.,

H2(Pσ, Qσ) = H2(P ′, Q′),

we obtain∫
Rd

(
∂kj pσ(x)−∂kj qσ(x)

)2
dx ≤ 4σ−2k+1(2πσ2)−d/2 inf

a≥
√
2k−1

{
a2kH2(Pσ, Qσ)+

√
2

π
a2k−1e−a

2
}
.

The following lemma extends [41, Lemma F.1] by generalizing it from densities convolved with a
standard Gaussian distribution N (0, Id) to densities convolved with a general isotropic Gaussian
distribution N (0, σ2Id) for any σ > 0.
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Lemma 5. Fix a probability distribution P on Rd with density function p : Rd → R. For all µ, σ > 0,
let Y = µX + σZ, where Z ∼ N (0, σ2Id). Denote by Pσ the marginal distribution of Y with
density function pσ(y) :=

∫
Rd φσ(y − µx)p(x)dx the density function of Y . For all y ∈ Rd, we

have (∥∇pσ(y)∥2
pσ(y)

)2
≤ Tr

( 1

σ2
Id +

∇2(pσ(y))

pσ(y)

)
≤ 2

σ2
log
( (2πσ2)−d/2

pσ(y)

)
. (13)

Moreover, we have

(∥∇pσ(y)∥2
pσ(y) ∨ ρ

)2
≤

{
2
σ2 log

(
(2πσ2)−d/2

ρ

)
if 0 < ρ ≤ (2πσ2)−d/2e−1/2,

1
σ2 if ρ > (2πσ2)−d/2e−1/2.

(14)

Proof. If X ∼ P and Y |X ∼ N (µX, σ2Id), then by Tweedie’s formula, for every y ∈ Rd,

∇pσ(·)
pσ(·)

∣∣∣∣∣
·=y

=
1

σ2
E[µX − Y |Y = y]. (15)

Then we have

∇2(pσ(y))

pσ(y)
=

∫
∇2(pσ(·|x))
pσ(·|x)

pσ(x|·)dx
∣∣∣
·=y

= EX|Y =y

[− 1
σ2 Id exp

(
− ∥Y −µX∥2

2

2σ2

)
+ 1

σ4 (Y − µX)(Y − µX)⊤ exp
(
− ∥Y −µX∥2

2

2σ2

)
exp

(
− ∥Y −µX∥2

2

2σ2

) ]
= EX|Y =y

[
− 1

σ2
Id +

1

σ4
(Y − µX)(Y − µX)⊤

]
= − 1

σ2
Id +

1

σ4
E[(µX − Y )(µX − Y )⊤|Y = y].

Then we have

1

σ2
Id +

∇2(pσ(y))

pσ(y)
=

1

σ4
E[(µX − Y )(µX − Y )⊤|Y = y]

=
1

σ4

((
E[µX − Y |Y = y]

)(
E[µX − Y |Y = y]

)⊤
+Cov(µX − Y |Y = y)

)
=

1

σ4

((
E[µX − Y |Y = y]

)(
E[µX − Y |Y = y]

)⊤
+Cov(µX|Y = y)

)
=

1

σ4

(
σ2∇pσ(y)

pσ(y)
· σ2 (∇pσ(y))⊤

pσ(y)

)
+

1

σ4
Cov(µX|Y = y) (by Eq. (15))

=
∇pσ(y)
pσ(y)

(∇pσ(y))⊤

pσ(y)
+
µ2

σ4
Cov(X|Y = y).

Hence,

∇pσ(y)
pσ(y)

(∇pσ(y))⊤

pσ(y)
=

1

σ2
Id +

∇2(pσ(y))

pσ(y)
− µ2

σ4
Cov(X|Y = y), (16)

which gives that

∇pσ(y)
pσ(y)

(∇pσ(y))⊤

pσ(y)
⪯ 1

σ2
Id +

∇2(pσ(y))

pσ(y)
. (17)
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By the convexity of x 7→ exp( 12Tr(
1
σ2x)), we have

exp
(1
2
Tr
(
Id +

σ2∇2(pσ(y))

pσ(y)

))
= exp

(1
2
Tr
( 1

σ2
E[(µX − Y )(µX − Y )⊤|Y = y]

))
≤ E

[
exp

(1
2
Tr
( 1

σ2
(µX − Y )(µX − Y )⊤

))
|Y = y

]
(by Jensen’s inequality)

= E
[
exp

(∥µX − Y ∥22
2σ2

)
|Y = y

]
= EX|Y =y

[
exp

(∥µX − Y ∥22
2σ2

)]
=

∫
exp

(∥µx− y∥22
2σ2

)
pσ(x|y)dx

=

∫ exp
(

∥µx−y∥2
2

2σ2

)
pσ(y|x)pσ(x)

pσ(y)
dx

=

∫
exp

(
∥µx−y∥2

2

2σ2

)
pσ(y|x)pσ(x)dx

pσ(y)

=

∫
exp

(
∥µx−y∥2

2

2σ2

)
(2πσ2)−d/2 exp

(
− ∥µx−y∥2

2

2σ2

)
pσ(x)dx

pσ(y)
(Y |X ∼ N (µX, σ2Id))

=
(2πσ2)−d/2

pσ(y)
.

Therefore,

Tr
( 1

σ2
Id +

∇2(pσ(y))

pσ(y)

)
≤ 2

σ2
log
( (2πσ2)−d/2

pσ(y)

)
,

together with Eq. (17) which gives

∥∇pσ(y)∥22
p2σ(y)

≤ Tr
( 1

σ2
Id +

∇2(pσ(y))

pσ(y)

)
≤ 2

σ2
log
( (2πσ2)−d/2

pσ(y)

)
.

Then, we have

∥∇pσ(y)∥2
pσ(y) ∨ ρ

≤ pσ(y)

pσ(y) ∨ ρ

√
2

σ2
log
( (2πσ2)−d/2

pσ(y)

)

=


√

2
σ2 log

(
(2πσ2)−d/2

pσ(y)

)
≤
√

2
σ2 log

(
(2πσ2)−d/2

ρ

)
if pσ(y) > ρ,

pσ(y)
ρ

√
2
σ2 log

(
(2πσ2)−d/2

pσ(y)

)
if pσ(y) ≤ ρ.

When pσ(y) ≤ ρ ≤ (2πσ2)−d/2e−1/2, since x 7→ x
√
log
(
c
x

)
is non-decreasing on (0, c√

e
], we

have
∥∇pσ(y)∥2
pσ(y) ∨ ρ

≤

√
2

σ2
log
( (2πσ2)−d/2

ρ

)
.

Therefore, if ρ ≤ (2πσ2)−d/2e−1/2, we conclude that

∥∇pσ(y)∥2
pσ(y) ∨ ρ

≤

√
2

σ2
log
( (2πσ2)−d/2

ρ

)
. (18)
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If ρ > (2πσ2)−d/2e−1/2, since x
√
log
(
c
x

)
≤ (2e)−1/2, where the equality is obtain when x = c√

e
.

Then,

∥∇pσ(y)∥2
pσ(y) ∨ ρ

≤ pσ(y)

pσ(y) ∨ ρ

√
2

σ2
log
( (2πσ2)−d/2

pσ(y)

)
≤ (2πσ2)−d/2e−1/2

pσ(y) ∨ ρ

√
1

σ2
≤ 1

σ
.

A.1 Proof of Lemma 2

Lemma 2 Given any distributions P,Q on Rd with density functions p, q : Rd → R+, respectively.
Fix σ > 0, let Pσ = P ∗N (0, σ2Id), Qσ = Q∗N (0, σ2Id) with density functions pσ, qσ : Rd → R+.
For all d ≥ 1, n ≥ 1, let 0 < ρn ≤ (2πσ2)−d/2e−1/2 and let G := {x ∈ Rd : pσ(x) ≤ ρn}, then
there exists a universal constant C > 0 such that

∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇qσ(x)
qσ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

≤ C
( d
σ2

max
{
log3

( (2πσ2)−d/2

ρn

)
, log

(
H−2(Pσ, Qσ)

)}
H2(Pσ, Qσ) +

∫
G

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

)
.

Proof. With 0 < ρn ≤ (2πσ2)−d/2e−1/2, let G1 := {x ∈ Rd : pσ(x) ≥ ρn},G2 := {x ∈ Rd :
ρn > pσ(x)} such that Rd = G1 ∪ G2.

∫
Rd

∥∥∥∇pσ
pσ

− ∇qσ
qσ ∨ ρn

∥∥∥2
2
pσ ≤

∫
G1

∥∥∥∇pσ
pσ

− ∇qσ
qσ ∨ ρn

∥∥∥2
2
pσ︸ ︷︷ ︸

:= (I)

+

∫
G2

∥∥∥∇pσ
pσ

− ∇qσ
qσ ∨ ρn

∥∥∥2
2
pσ︸ ︷︷ ︸

:= (II)

.

Case 1: G1 := {x ∈ Rd : pσ(x) ≥ ρn},

∫
G1

∥∥∥∇pσ
pσ

− ∇qσ
qσ ∨ ρn

∥∥∥2
2
· pσ

=

∫
G1

∥∥∥∇pσ
pσ

− 2∇pσ
pσ + qσ ∨ ρn

+
2(∇pσ −∇qσ)
pσ + qσ ∨ ρn

+
2∇qσ

pσ + qσ ∨ ρn
− ∇qσ
qσ ∨ ρn

∥∥∥2
2
· pσ

= 2

∫
G1

∥∥∥qσ ∨ ρn − pσ
pσ + qσ ∨ ρn

(∇pσ
pσ

+
∇qσ

qσ ∨ ρn

)∥∥∥2
2
· pσ + 2

∫
G1

∥∥∥2(∇pσ −∇qσ)
pσ + qσ ∨ ρn

∥∥∥2
2
· pσ

≤ 2

∫
G1

∥∥∥∇pσ
pσ

+
∇qσ

qσ ∨ ρn

∥∥∥2
2
· (qσ ∨ ρn − pσ)

2

(pσ + qσ ∨ ρn)2
· pσ︸ ︷︷ ︸

:= (I-a)

+4

∫
G1

∥∥∥ ∇pσ −∇qσ
pσ + qσ ∨ ρn

∥∥∥2
2
· pσ︸ ︷︷ ︸

:= (I-b)

Bounding (I-a)
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(I-a) ≤ 4

∫
G1

(∥∥∥∇pσ
pσ

∥∥∥2
2
+
∥∥∥ ∇qσ
qσ ∨ ρn

∥∥∥2
2

) (qσ ∨ ρn − pσ)
2pσ

(pσ + qσ ∨ ρn)2

= 4

∫
G1

(∥∥∥∇pσ
pσ

∥∥∥2
2
+
∥∥∥ ∇qσ
qσ ∨ ρn

∥∥∥2
2

) (√qσ ∨√
ρn −√

pσ)
2(
√
qσ ∨√

ρn +
√
pσ)

2pσ

(pσ + qσ ∨ ρn)2

≤ 8

∫
G1

(∥∥∥∇pσ
pσ

∥∥∥2
2
+
∥∥∥ ∇qσ
qσ ∨ ρn

∥∥∥2
2

) (√qσ ∨√
ρn −√

pσ)
2pσ

pσ + qσ ∨ ρn

≤ 8

∫
G1

(∥∥∥∇pσ
pσ

∥∥∥2
2
+
∥∥∥ ∇qσ
qσ ∨ ρn

∥∥∥2
2

) (√qσ −√
pσ)

2pσ

pσ + qσ ∨ ρn
(by pσ ≥ ρn)

≤ 8

∫
G1

(∥∥∥∇pσ
pσ

∥∥∥2
2
+
∥∥∥ ∇qσ
qσ ∨ ρn

∥∥∥2
2

)
(
√
qσ −√

pσ)
2

≤ 32

σ2
log
( (2πσ2)−d/2

ρn

)∫
G1

(
√
pσ −√

qσ)
2. (by Lemma 5)

Bounding (I-b)

(I-b) = 4

∫
G1

∥∇pσ −∇qσ∥22
(pσ + qσ ∨ ρn)2

· pσ ≤ 4

∫
G1

∥∇pσ −∇qσ∥22
pσ + qσ ∨ ρn

. (19)

Case 2: G2 := {x ∈ Rd : ρn > pσ(x)}
Bouding (II)

∫
G2

∥∥∥∇pσ
pσ

− ∇qσ
qσ ∨ ρn

∥∥∥2
2
· pσ =

∫
G2

∥∥∥ (qσ ∨ ρn)∇pσ − pσ∇qσ
pσ(qσ ∨ ρn)

∥∥∥2
2
· pσ

=

∫
G2

∥∥∥ (qσ ∨ ρn)∇pσ − pσ∇pσ + pσ∇pσ − pσ∇qσ
pσ(qσ ∨ ρn)

∥∥∥2
2
· pσ

=

∫
G2

∥∥∥ (qσ ∨ ρn − pσ)∇pσ + pσ(∇pσ −∇qσ)
pσ(qσ ∨ ρn)

∥∥∥2
2
· pσ

≤ 2

∫
G2

∥∥∥ (qσ ∨ ρn − pσ)

qσ ∨ ρn
· ∇pσ
pσ

∥∥∥2
2
· pσ︸ ︷︷ ︸

:= (II-a)

+2

∫
G2

∥∥∥∇pσ −∇qσ
qσ ∨ ρn

∥∥∥2
2
· pσ︸ ︷︷ ︸

:= (II-b)

Bounding (II-a)
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(II-a) = 2

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(qσ ∨ ρn − pσ)
2

q2σ ∨ ρ2n
· pσ

= 2

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(
√
qσ ∨√

ρn −√
pσ)

2(
√
qσ ∨√

ρn +
√
pσ)

2

q2σ ∨ ρ2n
· pσ

≤ 4

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(
√
qσ ∨√

ρn −√
pσ)

2(qσ ∨ ρn + pσ)

q2σ ∨ ρ2n
· pσ

≤ 8

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(
(
√
qσ −√

pσ)
2 + (

√
ρn −√

pσ)
2
)
(qσ ∨ ρn + pσ)

q2σ ∨ ρ2n
· pσ

≤ 8

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(
2(
√
qσ −√

pσ)
2 +

(
√
ρn −√

pσ)
2(qσ ∨ ρn + pσ)

q2σ ∨ ρ2n
· pσ
)

(by qσ ∨ ρn ≥ ρn ≥ pσ ≥ 0)

≤ 8

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(
2(
√
qσ −√

pσ)
2 +

(ρn + pσ)(qσ ∨ ρn + pσ)

q2σ ∨ ρ2n
· pσ
)

≤ 16

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2

(
(
√
qσ −√

pσ)
2 + 2pσ

)
(by qσ ∨ ρn ≥ ρn ≥ pσ ≥ 0)

≤ 32

σ2
log
( (2πσ2)−d/2

ρn

)∫
G2

(
√
qσ −√

pσ)
2 + 32

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2
pσ. (by Lemma 5)

Bounding (II-b)

(II-b) = 2

∫
G2

∥∇pσ −∇qσ∥22
q2σ ∨ ρ2n

· pσ

≤ 2

∫
G2

∥∇pσ −∇qσ∥22
qσ ∨ ρn

(by qσ ≥ ρn > pσ)

≤ 4

∫
G2

∥∇pσ −∇qσ∥22
qσ ∨ ρn + pσ

. (20)

Combining Case 1 and 2

Bounding (I-a) + (II-a)

(I-a) + (II-a) ≤ 32

σ2
log
( (2πσ2)−d/2

ρn

)∫
Rd

(
√
qσ −√

pσ)
2 + 32

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2
pσ

≤ 32

σ2
log
( (2πσ2)−d/2

ρn

)
H2(Pσ, Qσ) + 32

∫
G2

∥∥∥∇pσ
pσ

∥∥∥2
2
pσ. (21)

Bounding (I-b) + (II-b)

(I-b) + (II-b) ≤ 4

∫
Rd

∥∇pσ −∇qσ∥22
qσ ∨ ρn + pσ

.

For 1 ≤ j ≤ d and k ≥ 0, let

∆2
j,k :=

∫
Rd

(∂kj pσ(x)− ∂kj qσ(x))
2

pσ + qσ ∨ ρn
dx, with ∂kj pσ :=

∂k

∂xkj
pσ.

Then, we have

(I-b) + (II-b) ≤
∫
Rd

∥∇pσ −∇qσ∥22
pσ + qσ ∨ ρn

= 4

d∑
j=1

∆2
j,1. (22)
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(1) Bounding ∆2
j,0.

∆2
j,0 =

∫
Rd

(pσ(x)− qσ(x))
2

pσ(x) + qσ(x) ∨ ρn
dx

=

∫
Rd

(
√
pσ(x)−

√
qσ(x))

2(
√
pσ(x) +

√
qσ(x))

2

pσ(x) + qσ(x) ∨ ρn
dx

≤ 2

∫
Rd

(
√
pσ(x)−

√
qσ(x))

2(pσ(x) + qσ(x))

pσ(x) + qσ(x) ∨ ρn
dx

≤ 2

∫
Rd

(
√
pσ(x)−

√
qσ(x))

2dx.

≤ 2H2(Pσ, Qσ). (23)

(2) Bounding ∆2
j,k for k ≥ 2.

Note that

∆2
j,k =

∫
Rd

(∂kj pσ(x)− ∂kj qσ(x))
2

pσ(x) + qσ(x) ∨ ρn
dx ≤ 1

ρn

∫
Rd

(∂kj pσ(x)− ∂kj qσ(x))
2dx.

By Lemma 4, we have

∆2
j,k ≤ 4

ρn(2πσ2)d/2
σ−2k+1 inf

a≥
√
2k−1

{
a2kH2(Pσ, Qσ) +

√
2

π
a2k−1e−a

2
}
. (24)

(3) Bounding ∆2
j,1.

∆2
j,k =

∫
Rd

(∂kj pσ(x)− ∂kj qσ(x))
2

pσ(x) + qσ(x) ∨ ρn
dx

=

∫
Rd

∂kj (pσ(x)− qσ(x))∂
k
j (pσ(x)− qσ(x))

pσ(x) + qσ(x) ∨ ρn
dx

= −
∫
Rd

∂k−1
j (pσ(x)− qσ(x))∂

k
j (pσ(x)− qσ(x))∂j

( 1

pσ(x) + qσ(x) ∨ ρn

)
dx

−
∫
Rd

∂k−1
j (pσ(x)− qσ(x))∂

k+1
j (pσ(x)− qσ(x))

pσ(x) + qσ(x) ∨ ρn
dx.

Note that

∣∣∣∂j( 1

pσ(x) + qσ(x) ∨ ρn

)∣∣∣ ≤ ∣∣∣ −∂jpσ(x)− ∂jqσ(x)

(pσ(x) + qσ(x) ∨ ρn)2
∣∣∣

≤ ∥∇pσ(x)∥2 + ∥∇qσ(x)∥2
pσ(x) + qσ(x) ∨ ρn

1

pσ(x) + qσ(x) ∨ ρn

≤ 1

pσ(x) + qσ(x) ∨ ρn
2
√
2

σ

√
log
( (2πσ2)−d/2

ρn

)
.

(by Lemma 5 and qσ ≥ ρn)
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Therefore,

∆2
j,k ≤ −

∫
Rd

∂k−1
j (pσ(x)− qσ(x))∂

k
j (pσ(x)− qσ(x))∂j

( 1

pσ(x) + qσ(x) ∨ ρn

)
dx

−
∫
Rd

∂k−1
j (pσ(x)− qσ(x))∂

k+1
j (pσ(x)− qσ(x))

pσ(x) + qσ(x) ∨ ρn
dx

≤ 2
√
2

σ

√
log
( (2πσ2)−d/2

ρn

)∫
Rd

|∂k−1
j (pσ(x)− qσ(x))| · |∂kj (pσ(x)− qσ(x))|

pσ(x) + qσ(x) ∨ ρn
dx

+

∫
Rd

|∂k−1
j (pσ(x)− qσ(x))| · |∂k+1

j (pσ(x)− qσ(x))|
pσ(x) + qσ(x) ∨ ρn

dx

≤ 2
√
2

σ

√
log
( (2πσ2)−d/2

ρn

)√∫
Rd

(∂k−1
j (pσ(x)− qσ(x)))2

pσ(x) + qσ(x) ∨ ρn
dx ·

√∫
Rd

(∂kj (pσ(x)− qσ(x)))2

pσ(x) + qσ(x) ∨ ρn
dx

+

√∫
Rd

(∂k−1
j (pσ(x)− qσ(x)))2

pσ(x) + qσ(x) ∨ ρn
dx ·

√∫
Rd

(∂k+1
j (pσ(x)− qσ(x)))2

pσ(x) + qσ(x) ∨ ρn
dx

=
2
√
2

σ

√
log
( (2πσ2)−d/2

ρn

)
∆j,k−1∆j,k +∆j,k−1∆j,k+1.

Divide both sides of the above inequality by ∆j,k−1∆i,k and denote by

Cρ,σ,d :=
2
√
2

σ

√
log
( (2πσ2)−d/2

ρn

)
,

we obtain
∆j,k

∆j,k−1
≤ Cρ,σ,d +

∆j,k+1

∆j,k
, for all k ≥ 1. (25)

• Suppose first that there exist an integer 1 ≤ k ≤ k0 such that ∆i,k+1 ≤ β∆i,k. Then
applying Eq. (25) recursively for 1, · · · , k, we obtain

∆i,1

∆i,0
≤ kCρ,σ,d + β.

Then we have

∆j,1 ≤
(
kCρ,σ,d + β

)
∆j,0

≤
√
2
(
kCρ,σ,d + β

)
H(Pσ, Qσ) (by Eq. (23))

≤
√
2
(
k0Cρ,σ,d + β

)
H(Pσ, Qσ). (26)

• On the other hand, suppose that ∆j,k+1 > β∆j,k for every integer 1 ≤ k ≤ k0. Then, by
Eq. (25), we have

∆j,k

∆j,k−1
≤ Cρ,σ,d +

∆j,k+1

∆j,k
≤
(
1 +

Cρ,σ,d
β

)∆j,k+1

∆j,k
for every k = 1, . . . , k0.

Recursively applying the above inequality we obtain,
∆j,1

∆j,0
≤
(
1 +

Cρ,σ,d
β

)k∆j,k+1

∆j,k
for every k = 0, . . . , k0.

Taking the geometric mean of the above inequality for k = 1, . . . , k0, we obtain

∆j,1

∆j,0
≤
( k0∏
k=0

(
1 +

Cρ,σ,d
β

)k∆i,k+1

∆i,k

)1/(k0+1)

=
(
1 +

Cρ,σ,d
β

)k0/2
∆

1/(k0+1)
j,k0+1 ∆

−1/(k0+1)
j,0 ,
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which implies that

∆j,1 ≤
(
1 +

Cρ,σ,d
β

)k0/2
∆

1/(k0+1)
j,k0+1 ∆

k0/(k0+1)
j,0 .

Therefore, with k = k0 + 1 and Eq. (24) we have

∆j,1 ≤
(
1 +

Cρ,σ,d
β

) k0
2
(4(2πσ2)−d/2

ρn
σ−2k0−1 inf

a≥
√
2k0+1

{
a2k0+2H2(Pσ, Qσ)

+ a2k0+1e−a
2
}) 1

2k0+2
(
2H2(Pσ, Qσ)

) k0
2k0+2

≤ 1

2

( (2πσ2)−
d
2

ρn

) 1
2k0+2

(
1 +

Cρ,σ,d
β

) k0
2

σ− 2k0+1
2k0+2 inf

a≥
√
2k0+1

(
a2k0+2H2(Pσ, Qσ)

+ a2k0+1e−a
2
) 1

2k0+2

H
k0

k0+1 (Pσ∥Qσ)

=
1

2

( (2πσ2)−
d
2

ρn

) 1
2k0+2

(
1 +

Cρ,σ,d
β

) k0
2

σ− 2k0+1
2k0+2 inf

a≥
√
2k0+1

a
(
H2(Pσ, Qσ)

+ e−a
2
) 1

2k0+2

H
k0

k0+1 (Pσ∥Qσ) (27)

Choose β, k0, a:

• Choose β = k0Cρ,σ,d, Eq. (26) becomes

∆j,1 ≤ 2
√
2k0Cρ,σ,dH(Pσ, Qσ). (28)

and the term in Eq. (27), (
1 +

Cρ,σ,d
β

) k0
2

=
(
1 +

1

k0

) k0
2 ≤

√
e. (29)

• Choose k0 so that we have
(

(2πσ2)−
d
2

ρn

) 1
2k0+2 ≤

√
e and thereby the term in Eq. (27) will

be
(

(2πσ2)−
d
2

ρn

) 1
2k0+2

(
1 +

Cρ,σ,d

β

) k0
2 ≤ e . This requires that

( (2πσ2)−d/2

ρn

) 1
2k0+2

= exp
( 1

2k0 + 2
log
( (2πσ2)−d/2

ρn

))
≤

√
e. (30)

Hence, for all n ≥ 1, we can choose k0 ≥ 1 to be the smaller integer such that

log
( (2πσ2)−d/2

ρn

)
+ 1 ≤ k0 ≤ log

( (2πσ2)−d/2

ρn

)
.

Consider the term in Eq. (28), we obtain,

2
√
2k0Cρ,σ,σ ≤ 8

σ

(
log
( (2πσ2)−d/2

ρn

))3/2

which gives that

∆k,1 ≤ 2
√
2k0Cρ,σ,d ≤

8

σ

(
log
( (2πσ2)−d/2

ρn

))3/2

. (31)

• Choose a2 = max{2k0 + 1,− log
(
H2(Pσ, Qσ)

)
}. Notice that a ≥ 1 and

e−a
2

≤ H2(Pσ, Qσ).
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Consider the term in Eq. (27), we have(
H2(Pσ, Qσ) + e−a

2
) 1

2k0+2 ≤
(
H2(Pσ, Qσ) + H2(Pσ, Qσ)

) 1
2(k0+1) ≤ 2H

1
k0+1 (Pσ, Qσ).

(32)

Combine Eq. (29), (30) and (32), we obtain that Eq. (27) is upper-bounded by

∆j,1 ≤ eaσ− 2k0+1
2k0+2H(Pσ, Qσ) ≤ eamax{σ−1, 1}H(Pσ, Qσ) (33)

Combining Eq. (31) and (33) and k0 = ⌊log
( (2πσ2)−d/2

ρn

)
⌋, we obtain

∆j,1 ≤ max
{ 8

σ
log3/2

( (2πσ2)−d/2

ρn

)
, ea, eaσ−1

}
H(Pσ, Qσ).

Hence, by Eq. (20) we obtain

(I-b) + (II-b) ≤ 4

d∑
j=1

∆2
j,1 ≤ 4dmax

{64
σ2

log3
( (2πσ2)−d/2

ρn

)
, e2a2,

e2a2

σ2

}
H2(Pσ, Qσ). (34)

Therefore, by combining (I-a), (I-b), (II-a), (II-b), i.e., Eq. (21) and (34), we obtain∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇qσ(x)
qσ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

≤ 4dmax
{64
σ2

log3
( (2πσ2)−d/2

ρn

)
, e2
(
2 log

( (2πσ2)−d/2

ρn

)
+ 1
)
,
e2

σ2
log
(
H−2(Pσ, Qσ)

)}
H2(Pσ, Qσ)

+
32

σ2
log
( (2πσ2)−d/2

ρn

)
H2(Pσ, Qσ) + 32

∫
G2

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

≤ 288d

σ2
max

{
log3

( (2πσ2)−d/2

ρn

)
,
1

2
log
(
H−2(Pσ, Qσ)

)}
H2(Pσ, Qσ) + 32

∫
G2

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx.
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B Convergence of Smoothed Sub-Gaussian Distribution in KL Divergence

B.1 Rényi divergence and Rényi mutual information

Definition 2 (Rényi Divergence and Rényi Mutual Information [51]). Assume random variables
(X,Y ) have joint distribution PXY . For any λ ∈ R \ {0, 1}, the Rényi divergence of order λ
between probability distributions P and Q is defined as

Dλ(P∥Q) :=
1

λ− 1
log
(
EQ
[(dP

dQ

)λ])
.

The Rényi Mutual Information of order λ are defined as

Iλ(X;Y ) := Dλ(PX,Y ∥PX ⊗ PY ),

where PX , PY to denote the marginal distribution with respect to X,Y , and PX ⊗ PY denotes the
joint distribution of (X ′,Y ′) where X ′ ∼ PX ,Y

′ ∼ PY are independent to each other.

The following lemma is a restatement of [42, Lemma 5], in which we explicitly demonstrate the
dependence of the bound on the Gaussian parameter σ and relieve the exponential dependence of σ.

Lemma 6. Fix σ > 0, let X ∼ P,Z ∼ N (0, σ2Id),X ⊥ Z and Y = X +Z. Fix 1 < λ < 2. If
P is a α-sub-Gaussian distribution, we have,

Iλ(X;Y ) ≤ 1

λ− 1

(
log
( Cd
(2− λ)d/2

)
+ d log

α

σ

)
. (35)

for some Cd > 0 depends only on d.

Proof. By the definition of Rényi divergence Definition 2, we have

Iλ(X;Y ) =
1

λ− 1
log

(
EPX⊗PY

[( dPX,Y

d
(
PX ⊗ PY

))λ])

=
1

λ− 1
log

(
EPX⊗PY

[(dPY |X

dPY

)λ])

=
1

λ− 1
log

(
CEPX⊗PY

[
φλσ(Y −X)(

EX [φσ(Y −X)]
)λ
])

,

(by Y = X + σZ,Z ∼ N (0, Id))

for some positive constant C > 0. Therefore, we only need to upper-bound
EX

[ ∫
Rd

φλ
σ(Y −X)

(EX [φσ(Y −X)])λ
dy
]

for sub-Gaussian distributions.

Decompose Rd =
⋃
i ci as a union of cubes of diameter 2σ. For any X ∈ ci, we have

EX

[
exp

(
− ∥Y −X∥22

2σ2

)]
≥ Pr(X ∈ ci) · EX

[
exp

(
− ∥Y −X∥22

2σ2

)∣∣∣X ∈ ci

]
.

Fix any (non-random) X ′ ∈ ci, by ∥X −X ′∥2 ≤ 2σ for all X,X ′ ∈ ci, we have

∥Y −X∥22 ≤
(
∥Y −X ′∥2 + ∥X ′ −X∥2

)2
≤ ∥Y −X ′∥22 + 4σ∥Y −X ′∥2 + 4σ2

=
3

2
∥Y −X ′∥22 −

1

2
(∥Y −X ′∥2 + 4σ)2 + 12σ2

≤ 3

2
∥Y −X ′∥22 + 12σ2.
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Then, for any X,X ′ ∈ ci, we obtain

EX

[
exp

(
− ∥Y −X∥22

2σ2

)]
≥ Pr(X ∈ ci) · EX

[
exp

(
− 3∥Y −X ′∥22

4σ2
− 6σ2

σ2

)∣∣∣X ∈ ci

]
= exp(−6) · Pr(X ∈ ci) · EX

[
exp

(
− 3∥Y −X ′∥22

4σ2

)]
= exp(−6) · Pr(X ∈ ci) · exp

(
− 3∥Y −X ′∥22

4σ2

)
, (36)

which indicates that

exp
(
− λ∥Y −X∥2

2

2σ2

)
(EX [φσ(Y −X)])λ−1

≤ exp
(
6(λ− 1)

)
Pr(X ∈ ci)

1−λ exp
(
− (3− λ)∥Y −X∥22

4σ2

)
≤ exp(6)Pr(X ∈ ci)

1−λ exp
(
− ∥Y −X∥22

4σ2

)
. (1 ≤ λ ≤ 2)

Therefore, for any X ∈ Rd we have

∫
Rd

exp
(
− λ∥Y −X∥2

2

2σ2

)
(EX [φσ(Y −X)])λ−1

dy ≤
∫
Rd

exp(6)Pr(X ∈ ci)
1−λ exp

(
− ∥Y −X∥22

4σ2

)
dy

= exp(6)Pr(X ∈ ci)
1−λ

∫
Rd

exp
(
− ∥Y −X∥22

4σ2

)
dy

≤ exp(6)(4πσ2)d/2 Pr(X ∈ ci)
1−λ.

Taking expectation over X , we obtain

EX

[ ∫
Rd

φλσ(Y −X)

(EX [φσ(Y −X)])λ−1
dy
]
≤
∑
i

Pr(X ∈ ci) ·
∫
Rd

φλσ(Y −X)

(EX [φσ(Y −X)])λ−1
dy

=
∑
i

Pr(X ∈ ci) ·
∫
Rd

(2πσ2)−d/2 exp
(
− λ∥Y −X∥2

2

2σ2

)
(EX [φσ(Y −X)])λ−1

dy

≤ exp(6)2d/2
∑
i

Pr(X ∈ ci)
2−λ.

Let Cr := {ci|(r−1)σ ≤ ∥si∥2 < rσ} denote the set of cubes whose centers si belong to {(r−1)σ ≤
∥si∥2 < rσ}. Then we have |Cr| = Cdr

d−1. We further let PCr
:=
∑
ci∈Cr

Pr(X ∈ ci).

If P is α-sub-Gaussian, we have for all ci ∈ Cr,

Pr(X ∈ ci) ≤ Pr(∥X − si∥2 ≤ σ) (by ci is a cube of diameter 2σ)
≤ Pr(|∥si∥2 − σ| ≤ ∥X∥2 ≤ ∥si∥2 + σ)

≤ Pr(|∥si∥2 − σ| ≤ ∥X∥2)

≤ C exp
(
− r2σ2

α2

)
, (by {(r − 1)σ ≤ ∥si∥2 < rσ} and P is α-sub-Gaussian)
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which gives that∑
i=1

Pr(X ∈ ci)
2−λ =

∞∑
r=1

∑
ci∈Cr

Pr(X ∈ ci)
2−λ ≤

∞∑
r=1

C|Cr| exp
(
− (2− λ)r2σ2

α2

)
≤

∞∑
r=1

Cdr
d−1 exp

(
− (2− λ)r2σ2

α2

)
≤ Cd

∫ ∞

0

rd−1e−
(2−λ)σ2

2α2 r2dr

= CdΓ(d/2)
( (2− λ)σ2

α2

)−d/2
(by

∫∞
0
rd exp(−ar2)dr = Γ( d+1

2 )

2a
d+1
2

with a > 0,Γ(d) := (d− 1)!)

= C ′′
d

( α2

(2− λ)σ2

)d/2
.

Hence, we obtain for all 1 < λ ≤ 2,

Iλ(X;Y ) ≤ 1

λ− 1
log
(
C ′′
d 2

d/2 exp(6)
∑
i

Pr(X ∈ ci)
2−λ
)

≤ 1

λ− 1
log
(
C ′′′
d

( α2

(2− λ)σ2

)d/2)
=

1

λ− 1

(
log
( C ′′′

d

(2− λ)d/2

)
+ d log

α

σ

)
.

B.2 Proof of Lemma 3

The following lemma is a restatement of [42, Theorem 3], in which we explicitly demonstrate the
dependence of the bound on the sub-Gaussian parameter α while removing the dependence on the
Gaussian smoothing parameter σ.

Lemma 3. (Empirical Convergence of Gaussian Smoothed Sub-Gaussian Distributions in KL-
Divergence) Given d ≥ 1, n ≥ 3, σ > 0. Suppose that P is a d-dimensional α-sub-Gaussian
distribution. Let Pσ = P ∗ N (0, σ2Id) and P̂ be the empirical measure of an i.i.d. sample of size n
drawn from P and P̂σ = P̂ ∗ N (0, σ2Id). Then we have

EP⊗n

[
KL(P̂σ∥P ∗

σ )
]
≤ Cd

(α
σ

)d logd/2 n
n

.

Proof. Let X ∼ P,Z ∼ N (0, σ2Id),X ⊥ Z and Y = X + Z. Then, we have Y |X ∼
N (X, σ2Id), which indicates that PY |X · P̂ ∼ P̂ ∗N (0, σ2Id). Therefore, adopting [42, Lemma 4]
and Lemma 6, we obtain that for any 1 < λ < 2,

EP⊗n

[
KL(P̂σ∥Pσ)

]
≤ 1

λ− 1
log(1 + exp((λ− 1)(Iλ(X;Y )− log n)))

≤ 1

λ− 1
log
(
1 + exp

(
log
( Cd
(2− λ)d/2

·
(α
σ

)d)
− (λ− 1) log n

))
(by Lemma 6)

=
1

λ− 1
log
(
1 +

Cdn
−(λ−1)

(2− λ)d/2
·
(α
σ

)d)
≤ Cd

(λ− 1)nλ−1(2− λ)d/2

(α
σ

)d
. (by log(1 + x) ≤ x,∀x > 0)
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Choosing λ = 2− 1
logn , by n ≥ 3 we have 1 < λ < 2 and

nλ−1 = n−
1

log n+1 = n · exp
(
− log n · 1

log n

)
=
n

e
. (37)

We have

EP⊗n

[
KL(P̂σ∥Pσ)

]
≤ Cde(log n)

d/2

(1− 1/ log n)n

(α
σ

)d
≤ C ′

d

(α
σ

)d logd/2 n
n

.
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C Score Estimation by Regularized Empirical Score Functions

C.1 Sub-Gaussian tail bound for score functions

The following Lemma follows a similar proof from [30, Lemma 5], while our results do not require
the assumption that the parameters satisfy σ ≤ α:

Lemma 7 (Sub-Gaussian Tail Bounds for Score Functions). Given a α-sub-Gaussian distribution
P , let Pσ := P ∗ N (0, σ2Id) with density function pσ. Fix 0 < ρ ≤ (2πσ2)−d/2e−1 let G := {x ∈
Rd : pσ(x) ≤ ρ}. Then,∫

G

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx ≤ 2ρ

σ2
log
( (2πσ2)−

d
2

ρ

)(
32(α2 + σ2) log n

) d
2 +

2d3/2

n2σ2
.

Proof. For some A > 0, set A = µ+ [−A,A]d, where µ = EX∼Pσ
[X]. Then we have∫

G

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

=

∫
G∩A

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx+

∫
G∩Ac

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

≤
∫
A

∥∥∥∇pσ
pσ

∥∥∥2
2
pσ(x)1{pσ(x) ≤ ρ}dx︸ ︷︷ ︸

:= (I)

+

∫
Ac

∥∥∥∇pσ
pσ

∥∥∥2
2
pσ(x)1{pσ(x) ≤ ρ}dx︸ ︷︷ ︸

:= (II)

.

Then by the sub-Gaussian tail bound of Pσ with parameter
√
α2 + σ2,

Pr[X /∈ A] =

∫
Ac

pσ(x)dx ≤ 2d exp
(
− A2

2(α2 + σ2)

)
. (38)

Let X0 ∼ P,X ∼ Pσ,Z ∼ N (0, Id) and we have X|X0 ∼ N (X0, σ
2Id).

(II) ≤
∫
Ac

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx (39)

=

∫
Ac

∥∥∥ 1

σ2
E[X0 −X|X = x]

∥∥∥2
2
pσ(x)dx (by Tweedie’s formula Eq. (15))

=
1

σ2
E
[
∥E[Z|X]∥22 1{X /∈ A}

]
(by X = X0 + σZ)

≤ 1

σ2
E
[
E[∥Z∥22|X]1{X /∈ A}

]
(by Jensen’s inequality)

≤ 1

σ2

√
E[∥Z∥42] Pr[X /∈ A] (by Cauchy-Schswarz)

≤ 1

σ2

√
(2d+ d2)2d exp

(
− A2

2(α2 + σ2)

)
(by Eq. (38) and E[∥Z∥42] = 2d+ d2)

≤ 2d3/2

σ2

√
exp
(
− A2

2(α2 + σ2)

)
. (40)

Let A =
√
8(α2 + σ2) log n, then

Pr[X /∈ A] ≤ 2d exp
(
−8(α2 + σ2) log n

2(α2 + σ2)

)
= 2dn−4,

which gives that

(II) ≤ 2d3/2

n2σ2
. (41)
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By Lemma 5 and notice that x log( cx ) is monotonously increasing on [0, ce ], we have

(I) ≤
∫
A

4

σ2
log
( (2πσ2)−d/2

pσ(x)

)
pσ(x)1{pσ(x) ≤ ρ}dx (by Lemma 5)

≤ 4

σ2

∫
A
log
( (2πσ2)−d/2

ρ

)
ρdx (by pσ(x) ≤ ρ ≤ (2πσ2)−d/2e−1)

=
4ρ

σ2
log
( (2πσ2)−d/2

ρ

)
(2A)d

=
4ρ

σ2
log
( (2πσ2)−d/2

ρ

)(
32(α2 + σ2) log n

)d/2
. (42)

Combine Eq. (41) and (42) we obtain∫
G

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx ≤ 2ρ

σ2
log
( (2πσ2)−d/2

ρ

)(
32(α2 + σ2) log n

)d/2
+

2d3/2

n2σ2
.

C.2 Score estimation error for sub-Gaussian distributions

Lemma 1 For any d ≥ 1, n ≥ 3, Let P be a α-sub-Gaussian distribution on Rd and P̂ be
its empirical distribution associated to a sample {x(i)}ni=1. For any σ ≳ αn−1/d log1/2 n, let
Pσ = P ∗ N (0, σ2Id), P̂

(n)
σ = P̂ (n) ∗ N (0, σ2Id) with density functions pσ, p̂σ : Rd → R+. Fix

0 < ρn ≤ (2πσ2)−d/2e−1n−1, then we have

E{x(i)}n
i=1

[∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇p̂σ(x)
p̂σ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

]
≲ σ−d−2

(
σd + αd

)
log3

( (2πσ2)−
d
2

ρn

) logd/2 n
n

.

Proof. By Lemma 2, we have∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇p̂σ(x)
p̂σ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

≤ Cdσ−2
(
log3

( (2πσ2)−d/2

ρn

)
∨ log

(
H−2(Pσ, Qσ)

))
H2(Pσ, P̂σ) + 32

∫
G2

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx.

By Lemma 3, for all σ > 0, n ≥ 3, d ≥ 1,

EP⊗n [H2(Pσ, P̂σ)] ≤ EP⊗n [KL(Pσ∥P̂σ)] ≤ Cd

(α
σ

)d logd/2 n
n

.

Notice that x 7→ x log x−1 is concave and by Jensen’s inequality we have

EP⊗n

[
log
(
H−2(Pσ, P̂

(n)
σ )

)
H2(Pσ, P̂

(n)
σ )

]
≤ log

(
1

EP⊗n

[
H2(Pσ, P̂

(n)
σ )

])EP⊗n

[
H2(Pσ, P̂

(n)
σ )

]
.

Note that x 7→ x log(x−1) is increasing in (0, e−1). If Cdαdσ−dn−1 logd/2 n ≤ e−1, which can be
satisfied when (α/σ)d ≲ n log−d/2 n, i.e., σ ≳ αn−1/d log1/2 n. Therefore, we obtain

log
(
EP⊗n

[
H−2(Pσ, P̂

(n)
σ )

])
EP⊗n

[
H2(Pσ, P̂

(n)
σ )

]
≤ log

(
n

Cd log
d/2 n

·
(σ
α

)d)
Cd

(α
σ

)d logd/2 n
n

=
(
log(C−1

d n log−d/2 n)
)
Cd

(α
σ

)d logd/2 n
n

+ Cd

(α
σ

)d
log
(σ
α

)d logd/2 n
n

≤ C ′
d log n

(α
σ

)d logd/2 n
n

+
1

2
Cd

logd/2 n

n
( 1x log(x) ≤ 1/2,∀x > 0)

≤ C ′
d

(α
σ

)d logd/2+1 n

n
.
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Hence, for any d ≥ 1, n ≥ 3, σ ≳ αn−1/d log1/2 n,

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇p̂σ(x)
p̂σ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

]

≤ Cdσ−2
(
log3

( (2πσ2)−d/2

ρn

)
EP⊗n [H2(Pσ, P̂

(n)
σ )] + EP⊗n

[
log
(
H−2(Pσ, P̂

(n)
σ )

)
H2(Pσ, P̂

(n)
σ )

])
+ 32

∫
G2

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

≲ σ−2
(α
σ

)d(
log3

( (2πσ2)−d/2

ρn

)
+ log n

) logd/2 n
n

+

∫
G2

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx

≲ σ−2
(α
σ

)d
log3

( (2πσ2)−d/2

ρn

) logd/2 n
n

+

∫
G2

∥∥∥∇pσ(x)
pσ(x)

∥∥∥2
2
pσ(x)dx.

(by 0 < ρn ≤ (2πσ2)−d/2e−1n−1)

Notice that x log
( (2πσ2)−d/2

x

)
is nondecreasing on x ∈ [0, (2πσ2)−d/2e−1]. By sub-Gaussian tail

bound Lemma 7, for all d ≥ 1, n ≥ 3, σ ≳ αn−1/d log1/2 n and 0 < ρn ≤ (2πσ2)−d/2e−1n−1, we
obtain

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥∇pσ(x)
pσ(x)

− ∇p̂σ(x)
p̂σ(x) ∨ ρn

∥∥∥2
2
pσ(x)dx

]

≲ αdσ−d−2 log3
( (2πσ2)−d/2

ρn

) logd/2 n
n

+
ρn
σ2

log
( (2πσ2)−d/2

ρn

)(
(α2 + σ2) log n

)d/2
+
d3/2

n2σ2

≲ αdσ−d−2 log3
( (2πσ2)−d/2

ρn

) logd/2 n
n

+ σ−d−2
(
log n+ 1

)(
α2 + σ2

)d/2 logd/2 n
n

(by 0 < ρn ≤ (2πσ2)−d/2e−1n−1)

≲ αdσ−d−2 log3
( (2πσ2)−d/2

ρn

) logd/2 n
n

+ σ−d−2
(
αd + σd

) logd/2+1 n

n

≲ σ−d−2
(
αd + σd

)
log3

( (2πσ2)−d/2

ρn

) logd/2 n
n

.

C.3 Score estimations along OU process by regularized empirical score functions

Theorem 4. Suppose the target distribution P0 satisfies Assumption 1 and let P̂0 be the empirical
distribution associated to a sample {x(i)}ni=1. For any d ≥ 1, n ≥ 3 and any 1

2α
2n−2/d log n <

t0 ≤ 1 and T = nO(1), let {xt}t∈[t0,T ] be the solutions of the process Eq. (2) with density function
pt : Rd → R+. Let p̂t(y) =

∑n
i=1 φσt

(y − e−tx(i)) be the empirical density function. Let
ρn,t = (2π(1− e−2t))−d/2e−1n−1. Then,

E{x(i)}n
i=1∼P⊗n

[∫ T

t=t0

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]
≲ αdt

−d/2
0 n−1 log

d
2+4 n.

Proof. For OU process, we have Xt = e−tX0 +
√
1− e−2tZ,Z ∼ N (0, Id). With Assumption 1,

e−tX0 is e−tα-sub-Gaussian. To use Lemma 1, we need σ2
t = 1− exp(−2t) ≳ α2n−2/d log n, i.e.,

t ≳ − log
(
1− α2 logn

n2/d

)
and α2n−2/d log n ≲ 1. Notice that T ≥ t0 >

1
2α

2n−2/d log n, we have for
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all t ∈ [t0, T ],

t >
1

2
α2n−2/d log n ≥ 1

2
log
(
1 +

α2 log n

n2/d

)
= −1

2
log
( 1

1 + α2 logn
n2/d

)
= − 1

2
log
(
1− α2 log n

n2/d
· n2/d

n2/d + α2 log n

)
= − 1

2
log
(
1− α2 log n

n2/d
+

α4 log2 n

n2/d(n2/d + α2 log n)

)
≥ − 1

2
log
(
1− α2 log n

n2/d
+

α4 log2 n

2n2/d(n2/d ∧ α2 log n)

)
≳ − 1

2
log
(
1− α2 log n

n2/d
+

α4 log2 n

2n2/dα2 log n)

)
(by α2n−2/d log n ≲ 1)

= − 1

2
log
(
1− 1

2

α2 log n

n2/d

)
,

which gives that
1− exp(−2t) ≳ α2n2/d log n

and it follows from Lemma 1 and ρn,t = (2π(1− e−2t))−d/2e−1n−1 that

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxt

]
≲ e−dt

(
αdσ−d

t ∨ 1
)
σ−2 log

d/2+3 n

n

Case 1: When α ≥ 1, we always have α ≥ σt,∀t > 0.

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxt

]

≲ e−dtαd(1− e−2t)−d/2−1 log
d/2+3 n

n
≤ αd

( e−2t

1− e−2t

)d/2 1

1− e−2t

logd/2+3 n

n
.

Note that
exp(−2t)

1− exp(−2t)
≤ 1

t
∧ 1

t2
, for any t > 0. (43)

To see this, let f(t) := 1− exp(−2t)− t exp(−2t),∀t ∈ [0,∞). Since f(0) = 0 and we have

f ′(t) = 2 exp(−2t)− exp(−2t) + 2t exp(−2t) = exp(−2t) + 2t exp(−2t) > 0, for any t ≥ 0,

which indicates that f(t) ≥ f(0) = 0 for any t > 0 and validate Eq. (43). Then, for any T ≥ t0 > 0,
we have ∫ T

t0

( e−2t

1− e−2t

)d/2 1

1− e−2t
dt ≤

∫ T

t0

t−d/2(t−1 + 1)dt (by Eq. (43))

=

∫ T

t0

t−d/2−1dt+

∫ T

t0

t−d/2dt

= − 2

d
t−d/2

∣∣∣t=T
t=t0

− 2

d+ 2
t−d/2+1

∣∣∣t=T
t=t0

≤ 2

d
t
−d/2
0 +

2

d+ 2
t
−d/2+1
0 ≲ t

−d/2
0 ,

which gives that

E{x(i)}n
i=1∼P⊗n

[∫ T

t=t0

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]

≲ αd
log

d
2+3 n

n

∫ T

t=t0

( e−2t

1− e−2t

)d/2 1

1− e−2t
dt ≲ αdt

−d/2
0 n−1 log

d
2+3 n.
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Case 2: When 0 < α < 1.

Low noise region: When α > σt =
√
1− exp(−2t), which indicates that t0 < t < − 1

2 log(1−α
2),

it follows from Case 1 that

E{x(i)}n
i=1∼P⊗n

[∫ − 1
2 log(1−α2)

t=t0

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]
≲ αdt

−d/2
0 n−1 log

d
2+3 n ≤ t

−d/2
0 n−1 log

d
2+3 n.

High noise region: When α ≤ σt, which indicates that − 1
2 log(1− α2) ≤ t ≤ T , we have

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxt

]
≲ e−dt(1− e−2t)−1 log

d/2+3 n

n
,

which implies that

E{x(i)}n
i=1∼P⊗n

[∫ T

t=− 1
2 log(1−α2)

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]

≲
logd/2+3 n

n

∫ T

t=− 1
2 log(1−α2)

e−dt

1− e−2t
dt ≤ logd/2+3 n

n

∫ T

t=− 1
2 log(1−α2)

e−t

1− e−2t
dt

=
logd/2+3 n

2n

∫ T

t=− 1
2 log(1−α2)

1

et − e−t
dt ≤ logd/2+3 n

2n

∫ T

t=− 1
2 log(1−α2)

1

et − 1
dt

≤ logd/2+3 n

2n

∫ T

t=− 1
2 log(1−α2)

1

t
dt (by 1

exp(t)−1 ≤ t−1,∀t > 0)

≲
logd/2+4 n

n
.

C.4 Score estimation along Brownian motion process

Brownian motion process Consider the Brownian motion process as the forward process of
diffusion models:

dXt = dBt (0 ≤ t ≤ T ), X0 ∼ P0. (44)
It has an explicit solution

Xt = X0 +
√
tZ (0 ≤ t ≤ T ), Z ∼ N (0, Id) ⊥ X0, (45)

which implies that Xt|X0 ∼ N (X0, tId). The reverse Brownian motion process is given by

dYt = ∇ log pT−t(Yt)dt+ dBt (0 ≤ t ≤ T ), Y0 ∼ PT . (46)

Corollary 3. Suppose the target distribution P0 satisfies Assumption 1 and let P̂0 be the empirical
distribution associated to a sample {x(i)}ni=1. For any d ≥ 1, n ≥ 3 and any 1

2α
2n−2/d log n ≤

t0 ≤ 1 and T = nO(1), let {xt}t∈[t0,T ] be the solutions of the process Eq. (44) with density
function pt : Rd → R+. Let p̂t(y) =

∑n
i=1 φσt

(y −mtx
(i)) be the empirical density function with

σt =
√
t,mt = 1. Let ρn,t = (2πt)−d/2e−1n−1. Then, we have

E{x(i)}n
i=1∼P⊗n

[∫ T

t=t0

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]
≤ Cdα

dt
−d/2
0 n−1 log

d
2+4 .

Proof. For Brownian process, we have Xt = X0 +
√
tZ,Z ∼ N (0, Id). With Assumption 1, X0

is α-sub-Gaussian. For any d ≥ 1, n ≥ 3 and any T ≥ t0 ≥ 1
2α

2n−2/d log n, by Lemma 1, we have

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxt

]
≤ Cd

(
αdt−d/2 ∨ 1

)
t−1 log

d/2+4 n

n
.
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Low noise region: when α >
√
t,

For any 0 < t0 ≤ α2, we have∫ α2

t0

t−d/2−1dt = −2

d
t−d/2

∣∣∣t=α2

t=t0
=

2

d

(
− α−d + t

−d/2
0

)
≤ 2

d
t
−d/2
0 .

Therefore, we obtain

E{x(i)}n
i=1∼P⊗n

[∫ α2

t=t0

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]

≲ αd
log

d
2+3 n

n

∫ α2

t=t0

t−d/2−1dt ≤ C ′
dα

dt
−d/2
0 n−1 log

d
2+3 n.

High noise region: when α ≤
√
t,

E{x(i)}n
i=1∼P⊗n

[∫ T

t=α2

∫
Rd

∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2
pt(xt)dxtdt

]

≲
log

d
2+3 n

n

∫ T

t=α2

t−1dt

=
log

d
2+3 n

n

(
log T − 2 logα

)
≲

log
d
2+4 n

n
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D Score Approximation by Deep Neural Networks

D.1 Deep ReLU Neural Networks

We follow the notation used in [38] for ReLU neural networks. For a function ϕ ∈ NN (#input =
d;widthvec = [N1, N2, . . . , NL]; #output = 1), if we set N0 = d and NL+1 = 1. Then, ϕ can be
represented in a form of function compositions as:

ϕ = LL ◦ ReLU ◦ LL−1 ◦ ReLU ◦ · · · ◦ L1 ◦ ReLU ◦ L0,

where ReLU : R → R denote the rectified linear unit, i.e. ReLU(x) = max{0, x} and Li is the i-th
affine linear transform in ϕ with weight matrix Wi ∈ RNi+1×Ni and bias vector bi ∈ RNi+1 , i.e.

ui+1 = Wi · ũi + bi := Li(ũi), for i = 0, 1, . . . , L

and ũ0 = x ∈ Rd, ũi = ReLU(ui) for i = 1, 2, . . . , L.. We say that a neural network (architecture)
with width N and depth L if the maximum width of any hidden layer in the network is at most N ,
and the total number of hidden layers does not exceed L.

For simplicity of notation, we write ∥ · ∥∞ as | · | throughout this section.

D.2 Neural network approximation for Gaussian kernel density estimators

D.2.1 The main result

Assumption 4. Given a sample {x(i)}ni=1 of size n, there exist s ∈ N+, 0 < ϵ < 1 ≤ α such that

sup
i∈[n]

|x(i)| ≤
√

2αs log(ϵ−1).

Lemma 8 (Approximation of Gaussian Kernel Density Estimator). Given a data set {x(i)}ni=1,
let mt := exp(−t), σt :=

√
1− exp(−2t) for any t ∈ [t0,∞).For any y ∈ Rd, t ∈ [t0,∞), the

Gaussian kernel density estimators is given by

fkde(y, t) :=
1

n

n∑
i=1

exp
(
−∥y −mtx

(i)∥22
2σ2

t

)
. (47)

Fix any 0 < ϵ < t0 ≤ 1/2, there exist N,L, s ∈ N+ such that N−2L−2 ≤ ϵ and Assumption 4 holds.
Then, there exists a function ϕkde implemented by a ReLU DNN with width ≤ O

(
s6d+3N3 log2(N)∨

s6d+3 log3(ϵ−1)
)

and depth ≤ O
(
L3 log2(L) ∨ s2 log

2(ϵ−1)
)

such that∣∣ϕkde(y, t)− fkde(y, t)
∣∣ ≲ α3s(2s)!s3d+9s+1 log9s(ϵ−1)ϵs, for any y ∈ Rd, t ∈ [t0,∞),

and 0 ≤ ϕkde(y, t) ≲ 1.

D.2.2 Proof of Lemma 8

We decompose Rd = B ∪ B, where

B := {y ∈ Rd : |y| ≤ 2
√

2αs log(ϵ−1)}, (48)

B := {y ∈ Rd : |y| > 2
√

2αs log(ϵ−1)}. (49)

We approximate fkde on y ∈ B, t ∈ [t0,∞) in Part I and y ∈ B, t ∈ [t0,∞) in Part II.

Part I: Approximating fkde on B
Fix any N,L, s ∈ N+, here we aim to approximate fkde for y ∈ B. By Assumption 4, we have

∥y −mtx
(i)∥22

2σ2
t

>
(
√

2αs log(ϵ−1))2

2σ2
t

≥ 2s log(ϵ−1)

2
= s log(ϵ−1), ∀i ∈ [n], (50)

which implies that

fkde(y, t) < exp
(
−s log(ϵ−1)

)
= ϵs, for any y ∈ B, t ∈ (0,∞). (51)
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Therefore, fkde(y, t),∀y ∈ By, t ∈ [t0,∞) can be well approximated with an error within ϵ by
simply setting the output of the neural network to be zero. Therefore, we only need to consider the
approximation error of a neural network for y ∈ B, t ∈ [t0,∞).

Part II: Approximating fkde on B
In the following, we prove the neural network approximation results for Gaussian kernel density
estimator Eq. (47) for y ∈ B, t ∈ [t0,∞). Given {x(i)}ni=1, for any y ∈ B, t ∈ [t0,∞), denote by

h(i) :=
∥y −mtx

(i)∥22
2σ2

t

, for any i ∈ [n]. (52)

Then we have

0 ≤ h(i) ≤ 2∥y∥22 + 2mt∥x(i)∥22
2σ2

t

= 10σ−2
t αs log(ϵ−1) ≤ 10t−1

0 αs log(ϵ−1). (53)

Step 1: Domain decomposition

Let ϕh̃ be defined as in Eq. (138). By Eq. (142), we can find a universal constant C̃d depended only
on d such that

0 ≤ ϕh̃(y, t) ≤ C̃dt
−1
0 αs log(ϵ−1), for any y ∈ B, t ∈ [t0,∞]. (54)

SetK = N4L4, where δ ∈ (0, C̃dt
−1
0 αs log(ϵ−1)/K). Let Ω([0, C̃dt−1

0 αs log(ϵ−1)],K, δ) partition
[0, C̃dt

−1
0 αs log(ϵ−1)] into K cubes Qβ for β ∈ {0, 1, . . . ,K − 1}, where

Qβ :=
{
h ∈ R : h ∈

[βC̃dt
−1
0 αs log(ϵ−1)

K ,
(β+1)C̃dt

−1
0 αs log(ϵ−1)
K − δ · 1{β≤K−2}

]}
. (55)

For each β, we define

h̃β :=
βC̃dt

−1
0 αs log(ϵ−1)

K
, β ∈ {0, 1, . . . ,K − 1}. (56)

Clearly, [0, C̃dt−1
0 αs log(ϵ−1)] = Ω([0, C̃dt

−1
0 αs log(ϵ−1)],K, δ)

⋃(
∪β∈{0,1,··· ,K−1} Qβ

)
and h̃β

is the vertex of Qβ with minimum ∥ · ∥1-norm.

Step 2: Taylor expansion of the Gaussian density kernel estimators

For all {h(i(y, t)}ni=1, denote by

h̃(y, t) :=
( 1
n

n∑
i=1

(
h(i)(y, t)

)s)1/s
. (57)

Clearly, we have h̃(y, t) ∈ [0, 10t−1
0 αs log(ϵ−1)] for any y ∈ B, t ∈ [t0,∞). By Eq. (141),∣∣ϕh̃(y, t)− h̃(y, t)

∣∣ ≲ α2s!s2s+2 log2s+2(ϵ−1)ϵs.

We choose h̃β for β ∈ {0, 1, . . . ,K − 1} such that for some y, t, we have∣∣ϕh̃(y, t)− h̃β(y, t)
∣∣ ≤ C̃dt

−1
0 αs log(ϵ−1)

K
. (58)

In what follow, we use h̃ ≡ h̃(y, t) and h̃β ≡ h̃β(y, t). For any y ∈ B, t ∈ [t0,∞), we have∣∣h̃− h̃β
∣∣ ≤ ∣∣h̃− ϕh̃(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (141)

+
∣∣ϕh̃(y, t)− h̃β

∣∣
≲ α2s!s2s+2 log2s+2(ϵ−1)ϵs +

t−1
0 αs log(ϵ−1)

K

= α2s!s2s+2 log2s+2(ϵ−1)ϵs +
t−1
0 αs log(ϵ−1)

N4L4

≤ α2s!s2s+2 log2s+2(ϵ−1)ϵs + αs log(ϵ−1)ϵs (by N−2L−2 ≤ ϵ ≤ t0)

≲ α2s!s2s+2 log2s+2(ϵ−1)ϵs. (59)
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The Taylor expansion of the Gaussian kernel density estimator at h̃β up to order s− 1 is given by

1

n

n∑
i=1

exp
(
−∥y−mtx

(i)∥2

2σ2
t

)
=

1

n

n∑
i=1

exp(−h(i)) = 1

n

n∑
i=1

{
s−1∑
k=0

(−1)k exp(−h̃β)
k!

(
h(i) − h̃β

)k
+ (−1)s exp(−θ(i))

s!

(
h(i) − h̃β

)s}

=

s−1∑
k=0

(−1)k exp(−h̃β)
k!

1

n

n∑
i=1

(
h(i) − h̃β

)k
+

1

n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s
, (60)

for some real number θ(i) that is between h(i) and h̃β . By Minkowski’s inequality, for all s ≥ k ≥ 0,( 1
n

n∑
i=1

(
h(i)
)k)1/k ≤

( 1
n

n∑
i=1

(
h(i)
)s)1/s

= h̃. (61)

Eq. (59) and (61) give that∣∣∣ 1
n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

(−1)s

s!

s∑
k=0

s!

k!

(
h(i)
)k
(−h̃β)s−k

∣∣∣ (by (x− y)s =
∑s
k=0

s!
k!x

k(−y)s−k)

=
∣∣∣ (−1)s

s!

s∑
k=0

s!

k!
(−h̃β)s−k

[ 1
n

n∑
i=1

(
h(i)
)k

︸ ︷︷ ︸
≤h̃k by Eq. (61)

]∣∣∣ ≤ ∣∣∣ (−1)s

s!

s∑
k=0

s!

k!
(−h̃β)s−kh̃k

]∣∣∣ = ∣∣∣ (−1)s

s!
(h̃− h̃β)

s
∣∣∣

≤ 1

s!

∣∣h̃− h̃β
∣∣s ≲ 1

s!
α2s!s2s+2 log2s+2(ϵ−1)ϵs = α2s2s+2 log2s+2(ϵ−1)ϵs. (62)

Denote by a := [a1, a2, a3, a4]
⊤ ∈ N4

+ and

Cν2,ν3
x :=

1

n

n∑
i=1

(
x(i)

)ν2+2ν3
. (63)

we have

1

n

n∑
i=1

(
h(i) − h̃β

)k
=

1

n

n∑
i=1

(∥y −mtx
(i)∥2

2σ2
t

− h̃β

)k
=

1

2kσ2k
t

1

n

n∑
i=1

(
∥y −mtx

(i)∥2 − 2σ2
t h̃β

)k
=

1

2kσ2k
t

1

n

n∑
i=1

∑
∥a∥1=k

k!

a!
∥y∥2a1 × (−2mty

⊤x(i))a2 ×m2a3
t ∥x(i)∥2a3 × (−2σ2

t h̃β)
a4

=
∑

∥a∥1=k

k!(−2)a2+a4ma2+2a3
t

a!2kσ2k−2a4
t

h̃a4β

∑
∥ν1∥1=a1

a1!
ν1!

y2ν1

∑
∥ν2∥1=a2

a2!
ν2!

yν2
1

n

n∑
i=1

(
x(i)

)ν2
∑

∥ν3∥1=a3

a3!
ν3!

(
x(i)

)2ν3

=
∑

∥a∥1=k

k!(−2)a2+a4ma2+2a3
t

a4!2kσ
2k−2a4
t

h̃a4β

∑
∥ν1∥1=a1

1

ν1!
y2ν1

∑
∥ν2∥1=a2

1

ν2!
yν2

∑
∥ν3∥1=a3

1

ν3!

( 1
n

n∑
i=1

(
x(i)

)ν2+2ν3
)

=
∑

∥ν1∥1+∥ν2∥1+∥ν3∥1+a4=k

Cν2,ν3
x k!(−1)∥ν2∥1+a4m

∥ν2∥1+2∥ν3∥1

t

a4!2k−∥ν2∥1−a4σ
2(k−a4)
t ν1!ν2!ν3!

{
h̃a4β × y2ν1+ν2

}
. (64)
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Denote by ν̃ := [ν1,ν2,ν3] ∈ N3d
+ , we obtain

s−1∑
k=0

(−1)k exp(−h̃β)
k!

1

n

n∑
i=1

(
h(i) − h̃β

)k
=

s−1∑
k=0

(−1)k exp(−h̃β)
k!

∑
∥ν1∥1+∥ν2∥1+∥ν3∥1+a4=k

Cν2,ν3
x k!(−1)∥ν2∥1+a4m

∥ν2∥1+2∥ν3∥1

t

2k−∥ν2∥1−a4σ
2(k−a4)
t ν1!ν2!ν3!a4!

{
h̃a4β × y2ν1+ν2

}

= exp(−h̃β)×
s−1∑
k=0

∑
∥ν̃∥1+a4=k

Cν2,ν3
x m

∥ν2∥1+2∥ν3∥1

t

(−2)k−∥ν2∥1−a4σ
2(k−a4)
t ν1!ν2!ν3!a4!

{
h̃a4β × y2ν1+ν2

}
. (65)

Combine Eq. (60) and (65) gives that

1

n

n∑
i=1

exp
(
−∥y −mtx

(i)∥2

2σ2
t

)
=

s−1∑
k=0

(−1)k exp(−h̃β)
k!

1

n

n∑
i=1

(
h(i) − h̃β

)k
+

1

n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s
= exp(−h̃β)

s−1∑
k=0

∑
∥ν̃∥1+a4=k

Cν2,ν3
x m

∥ν2∥1+2∥ν3∥1

t

(−2)k−∥ν2∥1−a4σ
2(k−a4)
t ν1!ν2!ν3!a4!

h̃a4β y2ν1+ν2

+
1

n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s
,

where the second term is bounded by Eq. (62):∣∣∣ 1
n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s∣∣∣ ≲ α2s!s2s+2 log2s+2(ϵ−1)ϵs.

In what follows, we aim to construct a ReLU DNN ϕkde to approximate the first term.

Step 3: Construction of the ReLU DNN ϕkde

For each ν̃ ∈ N3d, a4 ∈ N such that ∥ν̃∥1 + a4 ≤ s − 1, we have 0 ≤ ∥ν2∥1 + 2∥ν3∥1 ≤
2(s− 1), 2∥ν1∥1 + ∥ν2∥1 ≤ 2(s− 1). For each k = 0, 1, . . . , s− 1, we have 0 ≤ k − a4 ≤ s− 1.
Then, by Propositions 6 and 7, there exist

ϕa4
h̃β

∈ NN
(
width ≲ s3d+2N2 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L2 log2(L) ∨ s2 log

2(ϵ−1)
)

(66)

ϕexp
h̃β

∈ NN
(
width ≲ s3d+2N3 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L3 log2(L) ∨ s2 log

2(ϵ−1)
)

(67)

such that ∣∣ϕa4
h̃β
(y, t)− h̃a4β (y, t)

∣∣ ≤ α2ss2s log2s(ϵ−1)N−4sL−4s, ∀y ∈ B,∀t ∈ [t0,∞), (68)∣∣ϕexp
h̃β

(y, t)− exp(−h̃β)(y, t)
∣∣ ≤ N−4sL−4s, ∀y ∈ B,∀t ∈ [t0,∞), (69)

and

0 ≤ ϕa4
h̃β
(y, t) ≲ t−a40 αa4sa4 loga4(ϵ−1), (70)

0 ≤ ϕexp
h̃β

(y, t) ≤ 1. (71)

Moreover, by Eq. (132), (133) and (139), for each ν̃ ∈ N3d, a4 ∈ N such that ∥ν̃∥1 + a4 ≤ k, k =
0, 1, . . . , s− 1, there exists

ϕν̃,a41 ∈ NN
(
width ≲ s3N log2(N) ∨ s3 log3(ϵ−1); depth ≲ s2L log2(L) ∨ s2 log

2(ϵ−1)
)
. (72)
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such that for any y ∈ B, t ∈ [t0,∞),∣∣∣ϕν̃,a41 (y, t)−m
∥ν2∥1+2∥ν3∥1

t σ
−2(k−a4)
t y2ν1+ν2Cν2,ν3

x

∣∣∣ ≲ α2s(2s)!s8s log8s(ϵ−1)ϵ2s, (73)

and
0 ≤ ϕν̃,a41 (y, t) ≲ t−s0 αsss logs(ϵ−1). (74)

By Lemma 13 and Eq. (70) and (74), there exists

ϕ
(3)
multi ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 14sL

)
, (75)

such that ∣∣∣ϕ(3)multi

(
ϕa4
h̃β
(y, t), ϕν̃,a41 (y, t)

)
− ϕa4

h̃β
(y, t)× ϕν̃,a41 (y, t)

∣∣∣
≤ 6t−k0 αksk logk(ϵ−1) · t−s0 αsss logs(ϵ−1)(N + 1)−14sL

≲ t−2s
0 α2ss2s log2s(ϵ−1)ϵ4s (by Eq. (131))

≤ α2ss2s log2s(ϵ−1)ϵ2s. (76)

For each ν̃ ∈ N3d, a4 ∈ N such that ∥ν̃∥1 + a4 ≤ k, k = 0, 1, . . . , s− 1, define

ϕν̃,a42 (y, t) := ϕabs

(
ϕ
(3)
multi

(
ϕa4
h̃β
(y, t), ϕν̃,a41 (y, t)

))
, for any y ∈ B, t ∈ [t0,∞), (77)

where ϕabs(x) := ReLU(x)+ReLU(−x) = |x|, for any x ∈ R. By the size of ϕa4
h̃β
, ϕν̃,a41 , ϕ

(3)
multi, ϕabs,

we have

ϕν̃,a42 ∈ NN
(
width ≲ s3d+2N2 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L2 log2(L) ∨ s2 log

2(ϵ−1)
)

(78)
and for any y ∈ B, t ∈ [t0,∞),∣∣ϕν̃,a42 (y, t)− h̃a4β ×m

∥ν2∥1+2∥ν3∥1

t σ
−2(k−a4)
t y2ν1+ν2Cν2,ν3

x

∣∣
≤
∣∣∣ϕ(3)multi

(
ϕa4
h̃β
(y, t), ϕν̃,a41 (y, t)

)
− ϕa4

h̃β
(y, t)× ϕν̃,a41 (y, t)

∣∣∣︸ ︷︷ ︸
≲ Eq. (76)

+
∣∣ϕa4
h̃β
(y, t)− h̃a4β

∣∣︸ ︷︷ ︸
≲ Eq. (68)

·
∣∣ϕν̃,a41 (y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (74)

+
∣∣h̃a4β ∣∣ · ∣∣ϕν̃,a41 (y, t)−m

∥ν2∥1+2∥ν3∥1

t σ
−2(k−a4)
t y2ν1+ν2Cν2,ν3

x

∣∣︸ ︷︷ ︸
≲ Eq. (73)

≲ α2ss2s log2s(ϵ−1)ϵ2s + α2ss2s log2s(ϵ−1)N−4sL−4s · t−s0 αsss logs(ϵ−1)

+ t−s0 αsss logs(ϵ−1) · α2s(2s)!s8s log8s(ϵ−1)ϵ2s

≲ α2s(3s)!s9s log9s(ϵ−1)ϵs, (79)

which gives that

0 ≤ ϕν̃,a42 (y, t) ≲
∣∣h̃a4β ×m

∥ν2∥1+2∥ν3∥1

t σ
−2(k−a4)
t y2ν1+ν2Cν2,ν3

x

∣∣+ α2s(2s)!s9s log9s(ϵ−1)ϵs

≲ t−a4−k+a40 ·
(
s log(ϵ−1)

)∥ν1∥1+∥ν2∥1+∥ν3∥1+a4

= t
−(s−1)
0 ss−1 logs−1(ϵ−1). (80)

Similar to Eq. (134), for any ν̃ ∈ N3d
+ , a4 ∈ N+, we have∑

∥ν̃∥1+a4=k,ν̃∈N3d,a4∈N

1 =

(
k + 3d

3d

)
=

(k + 3d)!

(3d)!k!
≤ (k + 1)3d,

which implies that for any s ∈ N+,

s−1∑
k=0

∑
∥α̃∥1+a4=k

1 ≤
s−1∑
k=0

(k + 1)3d ≤ s · (s− 1 + 1)3d = s3d+1. (81)
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With Eq. (80) and (81) and the face that ∥ν1∥1 + ∥ν2∥1 + ∥ν3∥1 + a4 ≤ s− 1, we have

0 ≤
s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t) ≲ s3d+1t

−(s−1)
0 αs−1ss−1 logs−1(ϵ−1)

= t
−(s−1)
0 αs−1s3d+s logs−1(ϵ−1). (82)

Again, by Lemma 13 and Eq. (71) and (82), there exists

ϕ
(4)
multi ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 7sL

)
, (83)

such that for any x ∈ [0, 1] (c.f. Eq. (71)) and y ∈ [0, t
−(s−1)
0 αs−1s3d+s logs−1(ϵ−1)] (c.f. Eq. (82)),

∣∣∣∣∣ϕ(4)multi

(
ϕexp
h̃β

(y, t),

s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t)

)

− ϕexp
h̃β

(y, t)×
s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t)

∣∣∣∣∣
≲ t

−(s−1)
0 αs−1s3d+s logs−1(ϵ−1)(N + 1)−7sL. (84)

Given ϕexp
h̃β
, ϕν̃,a42 , ϕ

(4)
multi above, for any y ∈ Rd, t ∈ [t0,∞), we define

ϕkde(y, t) := ϕabs

(
ϕ
(4)
multi

(
ϕexp
h̃β

(y, t),

s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t)

))
, (85)

By Eq. (67), (78), (81), (83), (85) and (111), we obtain that

ϕkde ∈ NN
(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1); depth ≲ L3 log2(L) ∨ s2 log

2(ϵ−1)
)
.

(86)

Step 4: Approximation error.
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For any y ∈ B and any t ∈ [t0,∞),

∣∣∣ϕkde(y, t)−
s−1∑
k=0

(−1)k exp(−h̃β)
k!

1

n

n∑
i=1

(
h(i) − h̃β

)k∣∣∣
≤

∣∣∣∣∣ϕ(4)multi

(
ϕexp
h̃β

(y, t),

s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t)

)

− exp(−h̃β)×
s−1∑
k=0

∑
∥ν̃∥1+a4=k

(−2)−(k−∥ν2∥1−a4)

ν1!ν2!ν3!a4!
h̃a4β m

∥ν2∥1+2∥ν3∥1

t σ
−2(k−a4)
t y2ν1+ν2Cν2,ν3

x

∣∣∣∣∣
≤

∣∣∣∣∣ϕ(4)multi

(
ϕexp
h̃β

(y, t),

s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t)

)

− ϕexp
h̃β

(y, t)×
s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!
ϕν̃,a42 (y, t)Cν2,ν3

x

∣∣∣∣∣ (≲ Eq. (84))

+
∣∣∣ϕexp
h̃β

(y, t)− exp(−h̃β)
∣∣∣︸ ︷︷ ︸

≤ Eq. (69)

·
s−1∑
k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!

∣∣ϕν̃,a42 (y, t)
∣∣

︸ ︷︷ ︸
≲ Eq. (82)

+
∣∣exp(−h̃β)∣∣ · s−1∑

k=0

∑
∥ν̃∥1+a4=k

2−(k−∥ν∥1−a4)

ν1!ν2!ν3!a4!

∣∣∣ϕν̃,a42 (y, t)− h̃a4β m
∥ν2∥1+2∥ν3∥1

t σ
−2(k−a4)
t y2ν1+ν2Cν2,ν3

x

∣∣∣︸ ︷︷ ︸
≤ Eq. (79)

≲ t
−(s−1)
0 αs−1s3d+s logs−1(ϵ−1)(N + 1)−7sL +N−4sL−4s · t−(s−1)

0 αs−1s3d+s logs−1(ϵ−1)

+ s3d+1 · (2s)!α3ss9s log9s(ϵ−1)ϵs

≲ α3s(2s)!s3d+9s+1 log9s(ϵ−1)ϵs. (87)

Therefore, for any y ∈ B, t ∈ [t0,∞),∣∣ϕkde(y, t)− fkde(y, t)
∣∣

=
∣∣∣ϕkde(y, t)−

s−1∑
k=0

(−1)k exp(−h̃β)
k!

1

n

n∑
i=1

(
h(i) − h̃β

)k∣∣∣︸ ︷︷ ︸
≲ Eq. (87)

+
∣∣∣ 1
n

n∑
i=1

(−1)s exp(−θ(i))
s!

(
h(i) − h̃β

)s∣∣∣︸ ︷︷ ︸
≲ Eq. (62)

(88)

≲ α3s(2s)!s3d+9s+1 log9s(ϵ−1)ϵs + α2s2s+2 log2s+2(ϵ−1)ϵs

≲ α3s(2s)!s3d+9s+1 log9s(ϵ−1)ϵs, (89)

which gives that

0 ≤ ϕkde(y, t) ≲
∣∣fkde(y, t)

∣∣+ α3s(2s)!s3d+9s+1 log9s(ϵ−1)ϵs ≲ 1. (90)

Combine Part I and II

Combining the approximating results from Part I (c.f. Eq. (51)) and II (c.f. Eq. (89)), we obtain that∣∣ϕkde(y, t)− fkde(y, t)
∣∣ ≲ α3s(2s)!s3d+9s+1 log9s(ϵ−1)ϵs, for any y ∈ Rd, t ∈ [t0,∞), (91)

and
0 ≤ ϕkde(y, t) ≲ 1.

Therefore, we finish the proof.
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D.2.3 Neural network approximations for basic functions

In the section, we give the approximation results used in approximating the Gaussian kernel density
estimator functions:

• Approximating mt, σ
2
t by ϕm, ϕσ2 , respectively (c.f. Lemma 9).

• Approximating mk
t by ϕkm (c.f. Proposition 1).

• Approximating σ−2k
t by ϕk1/σ2 (c.f. Proposition 2).

• Approximating yν by ϕνpoly (c.f. Proposition 3).

• Approximating h̃(y, t) by ϕh̃ (c.f. Proposition 4).

• Approximating h̃β(y, t) by ϕh̃β
(c.f. Proposition 5).

• Approximating h̃kβ(y, t) by ϕk
h̃β

(c.f. Proposition 6).

• Approximating exp(−h̃β(y, t)) by ϕexp
h̃β

(c.f. Proposition 7).

We give detailed derivations for the sizes of neural networks and approximation errors for approxi-
mating each of the above functions as below.

D.2.4 Approximations of mt and σ2
t for OU process

Lemma 9 (Approximate mt, σ
2
t for OU process). For all t ∈ [0,∞), let mt := exp(−t) and

σt :=
√
1− exp(−2t). For any N,L, s ∈ N+ and 0 < ϵ < 1 such that N−2L−2 ≤ ϵ, there exist

some functions ϕm, ϕσ2 implemented by some ReLU DNNs with width 48s2(N + 1) log2(8N) and
depth 18s2(L+ 2) log2

(
4L
)
+ 2 such that for all t ∈ [0, log(ϵ−1)],

|ϕm(t)−mt| ≲ ss logs(ϵ−1)ϵs,

|ϕσ2(t)− σ2
t | ≲ ss logs(ϵ−1)ϵs.

Proof. For OU process, we have mt = exp(−t) and σ2
t = 1 − exp(−2t) for all t ∈ [0,∞].

Therefore, both mt, σ
2
t can be approximated by some ReLU DNNs that well approximate the

exponential function exp(−t).
Step 1: t ∈ (s log(ϵ−1),∞).

For t > s log(ϵ−1), we have

exp(−t) < exp
(
−s log(ϵ−1)

)
= ϵs,

which indicates that exp(−t),∀t > s log(ϵ−1) can be well approximated with an error within ϵ by
simply setting the output of the neural network to be zero. Therefore, we only need to consider the
approximation error of a neural network for t ∈ [0, s log(ϵ−1)].

Step 2: t ∈ [0, s log(ϵ−1)].

Notice that for any N,L ∈ N+ such that N−2L−2 ≤ ϵ, we have

N−2L−2 ≤ ϵ ≤ 1

log(ϵ−1)
≤ 1

s log(ϵ−1)
.

Then, it follows from Lemma 16 that there exists a function ϕ implemented by a ReLU DNN with
width 48s2(N+1) log2(8N) and depth 18s2(L+2) log2

(
4L
)
+2 such that for all t ∈ [0, s log(ϵ−1)],

|ϕ(t)−exp(−t)| ≤
(
45s+ss logs(ϵ−1)+4

)
N−2sL−2s ≲ ss logs(ϵ−1)N−2sL−2s ≤ ss logs(ϵ−1)ϵs.

Therefore, there exists a function ϕ implemented by a ReLU DNN with width 48s2(N +1) log2(8N)
and depth 18s2(L+ 2) log2(4L) + 2 such that for all t ∈ [0,∞),

|ϕ(t)− exp(−t)| ≤ ss logs(ϵ−1)ϵs.
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Hence, there exists

ϕm ∈ NN
(
width ≤ 48s2(N + 1) log2(8N); depth ≤ 18s2(L+ 2) log2

(
4L
)
+ 2
)

such that for all t ∈ [0,∞),

|ϕm(t)−mt| ≤ ss logs(ϵ−1)ϵs.

Similar, by letting t̃ = 2t, there exist

ϕ̃σ2 ∈ NN
(
width ≤ 48s2(N + 1) log2(8N); depth ≤ 18s2(L+ 2) log2

(
4L
)
+ 2
)

such that for all t̃ ∈ [0,∞),

|ϕ̃σ2(t̃)− exp(−t̃)| ≤ ss logs(ϵ−1)ϵs.

Define ϕσ2(t) := ϕ̃σ2(2t). Clear, we have

ϕσ2 ∈ NN
(
width ≤ 48s2(N + 1) log2(8N); depth ≤ 18s2(L+ 2) log2

(
4L
)
+ 2
)

and
|ϕσ2(t)− exp(−2t)| = |ϕ̃σ2(t̃)− exp(−t̃)| ≤ ss logs(ϵ−1)ϵs.

Proposition 1 (Approximating mk
t by ϕkm). For any k, s ∈ N+ with k ≤ s and 0 < ϵ < 1. Let

mt := exp(−t),∀t ∈ [0,∞). There exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕkm ∈ NN
(
width ≲ s2N log2(N); depth ≲ s2L log2(L)

)
(92)

such that ∣∣∣ϕkm(t)−mk
t

∣∣∣ ≲ ss logs(ϵ−1)ϵs, for any t ∈ [0,∞]. (93)

and
0 ≤ ϕm(t) ≲ 1 + ss logs(ϵ−1)ϵs ≲ 1. (94)

Proof. Since mk
t = exp

(
−kt

)
. By Lemma 9, there exist

ϕ̃m ∈ NN
(
width ≲ s2N log2(N); depth ≲ s2L log2(L)

)
such that ∣∣∣ϕ̃m(t)−m

∥ν1∥1+2∥ν2∥1

t

∣∣∣ ≤ ss logs(ϵ−1)ϵs, for any t ∈ [0,∞].

Then, we define
ϕm(t) := ReLU

(
ϕ̃m(t)

)
+ReLU

(
−ϕ̃m(t)

)
(95)

and clearly, we have

ϕm ∈ NN
(
width ≲ s2N log2(N); depth ≲ s2(L log2(L)

)
and by the fact that |x| = ReLU(x) + ReLU(−x),∣∣∣ϕm(t)−m

∥ν1∥1+2∥ν2∥1

t

∣∣∣ ≤ ∣∣∣ϕ̃m(t)−m
∥ν1∥1+2∥ν2∥1

t

∣∣∣ ≲ ss logs(ϵ−1)ϵs, for any t ∈ [0,∞].

Therefore,
0 ≤ ϕm(t) ≲ 1 + ss logs(ϵ−1)ϵs ≲ 1, for any t ∈ [0,∞).

Proposition 2 (Approximating σ−2k
t ). For any k, s ∈ N+ with k ≤ s and 0 < ϵ < t0 < 1/2. Let

σt :=
√
1− exp(−2t),∀t ∈ [t0,∞). There exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕk1/σ2 ∈ NN
(
width ≲ s3N log2(N) ∨ s3 log3(ϵ−1);

depth ≲ s2L
√
log(ϵ−1) log2(L

√
log(ϵ−1)) ∨ s2 log2(ϵ−1)

)
,

such that ∣∣∣ϕk1/σ2(t)− σ−2k
t

∣∣∣ ≲ k!s3s log3s(ϵ−1)ϵs, for any t ∈ [t0,∞),

and
0 ≤ ϕk1/σ2(t) ≲ t−k0 .
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Proof. When k = 0, 1
σ2k
t

≡ 1, which is trivial. In what follows, we focus on k ≥ 1.

Note that σt =
√

1− exp(−2t) for all t ∈ [0,∞), we have

σ2k
t =

(
1− exp(−2t)

)k
=

k∑
r=0

(−1)rk!

r!
exp(−2rt)

For each k = 1, . . . , s and each r = 0, 1, . . . , k, by Lemma 9 there exists

ϕexp ∈ NN
(
width ≲ (3s)2N log2(N); depth ≲ (3s)2L log2

(
L
))

such that ∣∣∣ϕexp(t)− exp(−2rt)
∣∣∣ ≲ s3s log3s(ϵ−1)ϵ3s, for any t ∈ [0,∞). (96)

Define

ϕkσ2(t) :=

k∑
r=0

(−1)rk!

r!
ϕexp(t), for any t ∈ [t0,∞).

Clearly,
ϕkσ2 ∈ NN

(
width ≲ s3N log2(N); depth ≲ s2(L log2

(
L
))

(97)
and ∣∣∣ϕkσ2(t)− σ2k

t

∣∣∣ ≤ k∑
r=0

k!

r!

∣∣∣ϕexp(t)− exp(−2rt)
∣∣∣

≲ ek!s3s log3s(ϵ−1)ϵ3s (by Eq. (96) and
∑k
r=0

1
r! ≤ e)

≲ k!s3s log3s(ϵ−1)ϵ3s. (98)

Note that for any 0 < t0 ≤ 1/2,

σ2
t = 1− exp(−2t) ≥ 1− exp(−2t0) ≥ t0, for any t ∈ [t0,∞], (99)

which gives that

ϕkσ2(t) ≥ σ2k
t − k!s3s log3s(ϵ−1)ϵ3s ≥ tk0 − k!s3s log3s(ϵ−1)ϵ3s ≳ tk0 ,

ϕkσ2(t) ≤ σ2k
t + k!s3s log3s(ϵ−1)ϵ3s ≤ 1 + k!s3s log3s(ϵ−1)ϵ3s ≲ 1.

(100)

Recall that 0 < ϵ ≤ t0. By Lemma 23, there exists

ϕrec ∈ NN
(
width ≲ s3 log3(ϵ−1); depth ≲ s2 log2(ϵ−1)

)
, (101)

such that for any x ∈ [tk0 , 1] ⊆ [ϵs, ϵ−s] and x′ ∈ R,∣∣∣ϕrec(x
′)− 1

x

∣∣∣ ≤ ϵs +
|x′ − x|
ϵ2s

. (102)

For each k = 1, . . . , s, define

ϕk1/σ2(t) = ReLU
(
ϕrec
(
ϕkσ2(t)

))
+ReLU

(
−ϕrec

(
ϕkσ2(t)

))
, for any t ∈ [0,∞). (103)

Recall the fact that |x| = ReLU(x) + ReLU(−x), we have ϕk1/σ2(t) ≥ 0 for any t ∈ [0,∞) and∣∣∣ϕk1/σ2(t)− σ−2k
t

∣∣∣ = ∣∣∣∣∣ϕrec
(
ϕkσ2(t)

)∣∣− σ−2k
t

∣∣∣
≤
∣∣∣ϕrec

(
ϕkσ2(t)

)
− σ−2k

t

∣∣∣
≤ ϵs + ϵ−2s

∣∣∣ϕkσ2(t)− σ2k
t

∣∣∣︸ ︷︷ ︸
≤Eq. (98)

≲ ϵs + k!s3s log3s(ϵ−1)ϵ3s−2s

≲ k!s3s log3s(ϵ−1)ϵs, (104)
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which gives that

0 ≤ ϕk1/σ2(t) ≲ σ−2k
t + k!s3s log3s(ϵ−1)ϵs ≲ t−k0 . (105)

Moreover, Eq. (97) and (101) indicates that

ϕk1/σ2 ∈ NN
(
width ≲ s3N log2(N)∨s3 log3(ϵ−1); depth ≲ s2L log2(L)∨s2 log

2(ϵ−1)
)
. (106)

Proposition 3 (Approximating yν). Given k, s ∈ N+,ν ∈ Nd with ∥ν∥1 ≤ k ≤ s and 0 < ϵ < 1.
Let

y ∈ B := [−2
√

2αs log(ϵ−1), 2
√

2αs log(ϵ−1)]d.

There exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕνpoly ∈ NN
(
width ≤ 9(N + 1) + k − 1; depth ≤ 7s(k − 1)L

)
(107)

such that ∣∣ϕνpoly(y)− yν
∣∣ ≲ kαk/2sk/2 logk/2(ϵ−1)(N + 1)−7sL, for any y ∈ B. (108)

and ∣∣ϕνpoly(y)
∣∣ ≲ kαk/2sk/2 logk/2(ϵ−1). (109)

Proof. By Proposition 9, there exists

ϕνpoly ∈ NN
(
width ≤ 9(N + 1) + k − 1; depth ≤ 7s(k − 1)L

)
such that ∣∣ϕνpoly(y)− yν

∣∣ ≤ 30k
(
2
√
2αs log(ϵ−1)

)k
(N + 1)−7sL

≲ kαk/2sk/2 logk/2(ϵ−1)(N + 1)−7sL, for any y ∈ B.

which gives that∣∣ϕνpoly(y)
∣∣ ≲ ∣∣yν

∣∣+ kαk/2sk/2 logk/2(ϵ−1)(N + 1)−7sL

≲ kαk/2sk/2 logk/2(ϵ−1) + kαk/2sk/2 logk/2(ϵ−1)(N + 1)−7sL

≲ kαk/2sk/2 logk/2(ϵ−1).

Proposition 4 (Approximating h̃(y, t)). Given s ∈ N+ and h̃ is defined in Eq. (57):

h̃(y, t) :=
( 1
n

n∑
i=1

(
h(i)(y, t)

)s)1/s
.

For any 0 < ϵ < 1, There exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕh̃ ∈ NN
(
width ≲ s3d+2N log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ s2L log2(L) ∨ s2 log

2(ϵ−1)
)

such that∣∣ϕh̃(y, t)− h̃(y, t)
∣∣ ≲ α2s!s2s+2 log2s+2(ϵ−1)ϵs, for any y ∈ B, and t ∈ [t0,∞),

and
0 ≤ ϕh̃(y, t) ≲ t−1

0 αs log(ϵ−1).

Proof. Step 1: Taylor expansion of h̃(y, t). Recall from Eq. (63) that Cν2,ν3
x :=

1
n

∑n
i=1

(
x(i)

)ν2+2ν3 and ν̃ := [ν1,ν2,ν2] ∈ N3d
+ . Similar to the derivation for Eq. (65), we

can obtain

h̃(y, t) :=
( 1
n

n∑
i=1

(
h(i)(y, t)

)s)1/s
=

( ∑
∥ν̃∥1=s

Cν2,ν3
x s!m

∥ν2∥1+2∥ν3∥1

t

(−2)s−∥ν2∥1σ2s
t ν1!ν2!ν3!

y2ν1+ν2

)1/s

(110)
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Step 2: Approximating each base function. Notice that

|x| = ReLU(x) + ReLU(−x), for any x ∈ R.

Therefore, we define ϕabs to approximate |x| by

ϕabs(x) := ReLU(x) + ReLU(−x), for any x ∈ R,

and we have
ϕabs ∈ NN

(
width = 2, depth = 1

)
. (111)

For each ν̃ ∈ N3d such that ∥ν̃∥1 ≤ s, we have 0 ≤ ∥ν2∥1+2∥ν3∥1 ≤ 2s and 2∥ν1∥1+∥ν2∥1 ≤ 2s.
By Propositions 1 to 3, there exist

ϕ∥ν2∥1+2∥ν3∥1
m ∈ NN

(
width ≲ s2N log2(N); depth ≲ s2(L log2(L)

)
, (112)

ϕs1/σ2 ∈ NN
(
width ≲ s3N log2(N) ∨ s3 log3(ϵ−1);

depth ≲ s2L log2(L) ∨ s2 log
2(ϵ−1)

)
, (113)

ϕ2ν1+ν2

poly ∈ NN
(
width ≤ 9(N + 1) + 2s− 1; depth ≤ 7s(2s− 1)L

)
(114)

such that∣∣ϕ∥ν2∥1+2∥ν3∥1
m (t)−m

∥ν2∥1+2∥ν3∥1

t

∣∣ ≲ s2s log2s(ϵ−1)ϵ2s, for any t ∈ [0,∞], (115)∣∣ϕs1/σ2(t)− σ−2s
t

∣∣ ≲ s!s3s log3s(ϵ−1)ϵs, for any t ∈ [t0,∞), (116)∣∣ϕ2ν1+ν2

poly (y)− y2ν1+ν2
∣∣ ≲ αsss logs(ϵ−1)(N + 1)−7sL, for any y ∈ B. (117)

and

0 ≤ ϕ∥ν2∥1+2∥ν3∥1
m (t) ≲ 1, (118)

0 ≤ ϕs1/σ2(t) ≲ t−s0 . (119)

Fix {x(i)}ni=1, for any y ∈ Rd, t ∈ [t0,∞), define

ϕν̃poly(y) := Cν2,ν3
x ϕ2ν1+ν2

poly (y), (120)

where Cν2,ν3
x := 1

n

∑n
i=1

(
x(i)

)ν2+2ν3 . Clearly, we have

ϕν̃poly ∈ NN
(
width ≤ 9(N + 1) + 2s− 1; depth ≤ 7s(2s− 1)L

)
. (121)

Recall from Assumption 4 that supi∈[n] |x(i)| ≤
√
2αs log(ϵ−1),∣∣ϕν̃poly(y)− Cν2,ν3

x y2ν1+ν2
∣∣ ≤ Cν2,ν3

x

∣∣ϕ2ν1+ν2

poly (y)− y2ν1+ν2
∣∣

≲ α2ss2s log2s(ϵ−1)(N + 1)−7sL, for any y ∈ B. (122)

which gives that∣∣ϕν̃poly(y)
∣∣ ≲ ∣∣Cν2,ν3

x y2ν1+ν2
∣∣+ α2ss2s log2s(ϵ−1)(N + 1)−7sL

≲
(√

αs log(ϵ−1)
)2∥ν1∥1+2∥ν2∥1+∥ν3∥1

= αsss logs(ϵ−1). (123)

By Lemma 13 and Eq. (119) and (123), there exists

ϕ
(1)
multi ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 7sL

)
, (124)

such that∣∣∣ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)
− ϕs1/σ2(t) · ϕ2ν1+ν2

poly (y)Cν2,ν3
x

∣∣∣ ≲ t−s0 αsss logs(ϵ−1)(N + 1)−7sL.

(125)
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Therefore, for any ν̃ ∈ N3d such that ∥ν̃∥1 = ∥ν1∥1 + ∥ν2∥1 + ∥ν3∥1 ≤ s,

∣∣∣ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)
− σ−2s

t y2ν1+ν2Cν2,ν3
x

∣∣∣
≤
∣∣∣ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)
− ϕs1/σ2(t) · ϕν̃poly(y)

∣∣∣︸ ︷︷ ︸
≲ Eq. (125)

+
∣∣∣ϕs1/σ2(t)− σ−2s

t

∣∣∣︸ ︷︷ ︸
≲ Eq. (116)

·
∣∣ϕν̃poly(y)

∣∣︸ ︷︷ ︸
≲ Eq. (123)

+ σ−2s
t

∣∣∣ϕν̃poly(y)− y2ν1+ν2Cν2,ν3
x

∣∣∣︸ ︷︷ ︸
≲ Eq. (122)

≲ t−s0 αsss logs(ϵ−1)(N + 1)−7sL + s!s3s log3s(ϵ−1)ϵs · αsss logs(ϵ−1)

+ t−s0 · α2ss2s log2s(ϵ−1)(N + 1)−7sL

≲ αsss logs(ϵ−1)ϵs + s!t−s0 αss4s log4s(ϵ−1)ϵ2s + α2ss2s log2s(ϵ−1)ϵs (by Eq. (131))

≲ αss!s4s log4s(ϵ−1)ϵs, (126)

which gives that

∣∣ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)∣∣ ≲ ∣∣σ−2s
t y2ν1+ν2Cν2,ν3

x

∣∣+ αss!s4s log4s(ϵ−1)ϵs

≲ t−s0 αsss logs(ϵ−1) + αss!s4s log4s(ϵ−1)ϵs

≲ t−s0 αsss logs(ϵ−1). (127)

Again, by Lemma 13 and Eq. (118) and (127), we have

ϕ
(2)
multi ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 7sL

)
(128)

such that

∣∣∣ϕ(2)multi

(
ϕ∥ν2∥1+2∥ν3∥1
m (t), ϕ

(1)
multi

(
ϕs1/σ2(t), ϕν̃poly(y)

))
− ϕ∥ν2∥1+2∥ν3∥1

m (t) · ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)∣∣∣
≲ t−s0 αsss logs(ϵ−1)(N + 1)−7sL. (129)

Step 3: Construct the whole neural network.

Given ϕabs, ϕ
∥ν2∥1+2∥ν3∥1
m , ϕs1/σ2 , ϕν̃poly, ϕ

(1)
multi, ϕ

(2)
multi above, for all y ∈ B, t ∈ [t0,∞), we define ϕh̃

by

ϕh̃,ν̃(y, t) := ϕabs

(
ϕ
(2)
multi

(
ϕ∥ν2∥1+2∥ν3∥1
m (t), ϕ

(1)
multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)))
. (130)

For any N,L, s ∈ N+,

(N + 1)−7sL = (N + 1)−4sL(N + 1)−3sL ≤ N−4sL2−3sL = N−4s(2
3
4L)−4s < N−4sL−4s ≤ ϵ2s.

(131)
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Then, we obtain∣∣∣ϕh̃,ν̃(y, t)−m
∥ν2∥1+2∥ν3∥1

t σ−2s
t y2ν1+ν2Cν2,ν3

x

∣∣∣
≤
∣∣∣ϕ(2)multi

(
ϕ∥ν2∥1+2∥ν3∥1
m (t), ϕ

(1)
multi

(
ϕs1/σ2(t), ϕν̃poly(y)

))
−m

∥ν2∥1+2∥ν3∥1

t σ−2s
t y2ν1+ν2Cν2,ν3

x

∣∣∣
(by ϕabs(·) = | · |)

≤
∣∣∣ϕ(2)multi

(
ϕ∥ν2∥1+2∥ν3∥1
m (t), ϕ

(1)
multi

(
ϕs1/σ2(t), ϕν̃poly(y)

))
− ϕ∥ν2∥1+2∥ν3∥1

m (t) · ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)∣∣∣︸ ︷︷ ︸
≲ Eq. (129)

+
∣∣ϕ∥ν2∥1+2∥ν3∥1
m (t)−m

∥ν2∥1+2∥ν3∥1

t

∣∣︸ ︷︷ ︸
≤Eq. (115)

·
∣∣ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)∣∣︸ ︷︷ ︸
≲ Eq. (127)

+m
∥ν2∥1+2∥ν3∥1

t

∣∣∣ϕ(1)multi

(
ϕs1/σ2(t), ϕν̃poly(y)

)
− σ−2s

t y2ν1+ν2Cν2,ν3
x

∣∣∣︸ ︷︷ ︸
≤Eq. (126)

≲ t−s0 αsss logs(ϵ−1)(N + 1)−7sL + s2s log2s(ϵ−1)ϵ2s · t−s0 αsss logs(ϵ−1) + αss!s4s log4s(ϵ−1)ϵs

≤ αsss logs(ϵ−1)ϵs + αss3s log3s(ϵ−1)ϵs + αss!s4s log4s(ϵ−1)ϵs (by ϵ ≤ t0 and Eq. (131))

≲ αss!s4s log4s(ϵ−1)ϵs. (132)

Therefore, for ν̃ ∈ N3d
+ such that ∥ν̃∥1 = s and 0 < t0 ≤ 1/2, for any y ∈ B, t ∈ [t0,∞),

0 ≤ ϕh̃,ν̃(y, t) ≲ m
2∥ν2∥1+∥ν3∥1

t σ−2s
t y2ν1+ν2Cν2,ν3

x + αss!s4s log4s(ϵ−1)ϵs

≲ t−s0 αsss logs(ϵ−1). (133)

Notice that

(s/d+ 1)d−1 ≤
∑

∥ν̃∥1=s,ν̃∈N3d

1 =

(
s+ 3d− 1

3d− 1

)
≤ (s+ 1)3d−1, (134)

which gives that

0 ≤
∑

∥ν̃∥1=s

s!

2s−∥ν2∥1ν1!ν2!ν3!
ϕh̃,ν̃(y, t)

≲
∑

∥ν̃∥1=s

2−(s−∥ν∥1)s!

ν1!ν2!ν3!

(∣∣m∥ν2∥1+2∥ν3∥1

t y2ν1+ν2Cν2,ν3
x

∣∣
σ2s
t

+ αss!s4s log4s(ϵ−1)ϵs

)
≲ t−sαs(s+ 1)3d−1s!ss logs(ϵ−1). (135)

Additionally, by Lemma 17, there exists

ϕsroot ∈ NN
(
width ≤ 48(2s)2(N + 1) log2(8N), depth ≤ 18(2s)2(L+ 2) log2(4L) + 2

)
, (136)

and for any k ∈ N+ with k ≤ s and for any x ∈ [0, t−s0 αs(s+ 1)3d−1s!ss logs(ϵ−1)],∣∣ϕsroot(x)− x1/s
∣∣ ≤ (90s+ 5

)(
t−s0 αs(s+ 1)3d−1s!ss logs(ϵ−1)

) 1
2sN−4sL−4s, (by Lemma 17)

≤ 95t
−1/2
0 α1/2(s+ 1)

3d−1
2s s2 log1/2(ϵ−1)ϵ2s (by (s!)

1
2s ≤ (ss)

1
2s =

√
s)

≲ t
−1/2
0 α1/2s2 log1/2(ϵ−1)ϵ2s. (137)

For any y ∈ Rd, t ∈ [t0,∞), we define ϕh̃ to approximate h̃ as below

ϕh̃(y, t) := ϕroot

( ∑
∥ν̃∥1=s

2−(s−∥ν2∥1)s!

ν1!ν2!ν3!
ϕh̃,ν̃(y, t)

)
, (138)
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i) Network size. With the sizes of ϕabs, ϕ
∥ν2∥1+2∥ν3∥1
m , ϕs1/σ2 , ϕν̃poly, ϕ

(1)
multi, ϕ

(2)
multi (Eq. (111) to (113),

(121), (124) and (128)), for each ν̃ ∈ N3d
+ such that ∥ν̃∥1 = s,

ϕh̃,ν̃ ∈ NN
(
width ≲ s3N log2(N) ∨ s3 log3(ϵ−1); depth ≲ s2L log2(L) ∨ s2 log

2(ϵ−1)
)
. (139)

With Eq. (134), (138) and (139), we have

ϕh̃ ∈ NN
(
width ≲ s3d+2N log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ s2L log2(L) ∨ s2 log

2(ϵ−1)
)
.

(140)

ii) Approximation error.

With |a1/k − b1/k| ≤ 1
k max{a1/k−1, b1/k−1}|a− b|, we obtain∣∣ϕh̃(y, t)− h̃

∣∣
≤
∣∣∣ϕsroot

( ∑
∥ν̃∥1=s

2−(s−∥ν2∥1)s!
ν1!ν2!ν3!

ϕh̃,ν̃(y, t)
)
−
( ∑
∥ν̃∥1=s

2−(s−∥ν2∥1)s!
ν1!ν2!ν3!

ϕh̃,ν̃(y, t)
)1/s∣∣∣

︸ ︷︷ ︸
≤ Eq. (137)

+
∣∣∣( ∑

∥ν̃∥1=s

2−(s−∥ν2∥1)s!
ν1!ν2!ν3!

ϕh̃,ν̃(y, t)
)1/s

−
( ∑
∥ν̃∥1=s

s!m
∥ν2∥1+2∥ν3∥1
t

(−2)s−∥ν2∥1σ2s
t ν1!ν2!ν3!

y2ν1+ν2Cν2,ν3
x

)1/s∣∣∣
≲ t

−1/2
0 α1/2s2 log1/2(ϵ−1)ϵ2s

+
1

s

(
t−s0 α2s(s+ 1)3d−1s!s2s log2s(ϵ−1)

) 1
s−1
∣∣∣ ∑
∥ν̃∥1=s

2−(s−∥ν2∥1)s!
ν1!ν2!ν3!

(
ϕh̃,ν̃(y, t)−

m
∥ν2∥1+2∥ν3∥1
t y2ν1+ν2C

ν2,ν3
x

σ2s
t

)∣∣∣
≤ t

−1/2
0 α1/2s2 log1/2(ϵ−1)ϵ2s

+
1

s

(
t−sαs(s+ 1)3d−1s!ss logs(ϵ−1)

) 1
s−1 ∑

∥ν̃∥1=s

2−(s−∥ν2∥1)s!
ν1!ν2!ν3!

∣∣∣ϕh̃,ν̃(y, t)− m
∥ν2∥1+2∥ν3∥1
t y2ν1+ν2C

ν2,ν3
x

σ2s
t

∣∣∣︸ ︷︷ ︸
≤Eq. (132)

≲ t
−1/2
0 α1/2s2 log1/2(ϵ−1)ϵ2s

+
1

s

(
t−s0 (s+ 1)3d−1α2ss!s2s log2s(ϵ−1)

) 1
s−1 · (s+ 1)3d−1s! · α2ss!s4s log4s(ϵ−1)ϵs

= t
−1/2
0 α1/2s2 log1/2(ϵ−1)ϵ2s + (s+ 1)

3d−1
s ts−1

0 α2s!s2s+2 log2s+2(ϵ−1)ϵs

≲ t
−1/2
0 α1/2s2 log1/2(ϵ−1)ϵ2s + α2s!s2s+2 log2s+2(ϵ−1)ϵs

(by (s+ 1)
3d−1

s ≤ e(3d−1),∀s ∈ N+)

≲ α2s!s2s+2 log2s+2(ϵ−1)ϵs, (141)

which implies that

0 ≤ ϕh̃(y, t) ≲ |h̃|+ α2s!s2s+2 log2s+2(ϵ−1)ϵs

≲ t−1
0 αs log(ϵ−1) + α2s!s2s+2 log2s+2(ϵ−1)ϵs

≲ t−1
0 αs log(ϵ−1), for any y ∈ B, t ∈ [t0,∞]. (142)

Proposition 5 (Approximating h̃β(y, t)). Given s ∈ N+, 0 < ϵ ≤ t0 ≤ 1/2, set K = N4L4. Let
C̃d is defined in Eq. (54) and h̃β be defined in Eq. (56), i.e.,

h̃β :=
βC̃dt

−1
0 αs log(ϵ−1)

K
, β ∈ {0, 1, . . . ,K − 1}.

Let ϕh̃ be defined in Eq. (138). Then, there exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕh̃β
∈ NN

(
width ≲ s3d+2N2 ∨ s3d+2 log3(ϵ−1); depth ≲ L2 ∨ s2 log2(ϵ−1)

)
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such that for any y ∈ B, t ∈ [t0,∞),

ϕh̃β
(y, t) = h̃β , β ∈ {0, 1, . . . ,K − 1}.

and ∣∣ϕh̃β
(y, t)− ϕh̃(y, t)

∣∣ ≲ αs log(ϵ−1)N−2sL−2s.

Proof. For any y ∈ B, t ∈ [t0,∞), we define

ϕ̄h̃(y, t) :=
ϕh̃(y, t)

C̃dt
−1
0 αs log(ϵ−1)

, (143)

which indicates that 0 ≤ ϕ̄h̃(y, t) ≤ 1. For K = N4L4, by Proposition 12, there exists a ReLU
DNN

ϕstep ∈ NN
(
width ≤ 4N2 + 3; depth ≤ 4L2 + 5

)
such that

ϕstep(ϕ̄h̃(y, t)) = k, if ϕh̃(y, t) ∈
[kC̃dαs log(ϵ

−1)
Kt0

, (k+1)C̃dαs log(ϵ
−1)

Kt0
−δ·1k≤K−2

]
, k = 0, 1, . . . ,K−1,

where δ ∈ (0, C̃dt
−1
0 αs log(ϵ−1)/K). Define ϕh̃β

by

ϕh̃β
(y, t) :=

C̃dt
−1
0 αs log(ϵ−1)

K
ϕstep

(
ϕh̃(y, t)

C̃dt
−1
0 αs log(ϵ−1)

)
, for any y ∈ B, t ∈ [t0,∞). (144)

Clearly, by the size of ϕh̃ (c.f. Eq. (140)) and ϕstep, we have

ϕh̃β
∈ NN

(
width ≲ s3d+2N2 ∨ s3d+2 log3(ϵ−1); depth ≲ L2 ∨ s2 log2(ϵ−1)

)
(145)

and for any y ∈ B and any t ∈ [t0,∞),

ϕh̃β
(y, t) =

βC̃dt
−1
0 αs log(ϵ−1)

K
= h̃β , for β ∈ {0, 1, . . . ,K − 1}, (146)

such that∣∣ϕh̃β
(y, t)− ϕh̃(y, t)

∣∣ = ∣∣h̃β − ϕh̃(y, t)
∣∣ ≲ αs log(ϵ−1)

Kt0
=
αs log(ϵ−1)

N4L4t0
≲ αs log(ϵ−1)N−2sL−2s.

Proposition 6 (Approximating h̃kβ(y, t) ). Under the same settings of Proposition 5. Given k ∈
N, k ≤ s, there exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕk
h̃β

∈ NN
(
width ≲ s3d+2N2 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L2 log2(L) ∨ s2 log

2(ϵ−1)
)
.

such that∣∣ϕk
h̃β
(y, t)− h̃kβ(y, t)

∣∣ ≤ αsss logs(ϵ−1)N−2sL−2s, for any y ∈ B, t ∈ [t0,∞),

and
0 ≤ ϕk

h̃β
(y, t) ≲ t−k0 αksk logk(ϵ−1).

Proof. For β ∈ {0, 1, . . . ,K − 1} and k = 0, 1, . . . , s, we define

ξkβ :=
1

C̃kd t
−k
0 αksk logk(ϵ−1)

(βC̃dt−1
0 αs log(ϵ−1)

K

)k
. (147)

With K = N4L4, we have ξkβ ∈ [0, 1] for any β ∈ {0, 1, . . . ,K − 1} and k = 0, 1, . . . , s. By
Proposition 13, there exists a ReLU DNN

ϕkpoint ∈ NN
(

width ≤ 16s(N2 + 1) log2(8N
2); depth ≤ 5(L2 + 2) log2

(
4L2

))
59



such that for any fixed k ∈ {0, 1, . . . , s}, we have∣∣ϕkpoint(β)− ξkβ
∣∣ ≤ N−4sL−4s, for each β = 0, 1, . . . ,K − 1,

0 ≤ ϕkpoint(β) ≤ 1.

We define

ϕk
h̃β
(y, t) := C̃kd t

−k
0 αksk logk(ϵ−1)ϕkpoint

( Kϕh̃β
(y, t)

C̃dt
−1
0 αs log(ϵ−1)

)
, ∀y ∈ Rd,∀t ∈ [t0,∞). (148)

Clearly, by the size of ϕh̃β
(c.f. Eq. (145)) and ϕkpoint, we have

ϕk
h̃β

∈ NN
(
width ≲ sN2 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L2 log2(L) ∨ s2 log

2(ϵ−1)
)
.

Then for all h̃β =
βC̃dt

−1
0 αs log(ϵ−1)

K , β ∈ {0, 1, . . . ,K − 1}, we have

ϕk
h̃β
(y, t) ∈

[
0, C̃kd t

−k
0 αksk logk(ϵ−1)

]
(149)

and for any k = 0, 1, . . . , s and β ∈ {0, 1, . . . ,K − 1},

∣∣ϕk
h̃β
(y, t)− h̃kβ(y, t)

∣∣ = ∣∣∣ϕk
h̃β

(βC̃dt−1
0 αs log(ϵ−1)

K

)
−
(βC̃dt−1

0 αs log(ϵ−1)

K

)k∣∣∣
=
∣∣∣C̃kd t−k0 αksk logk(ϵ−1)ϕkpoint(β)− C̃kd t

−k
0 αksk logk(ϵ−1)ξkβ

∣∣∣
≤ C̃kd t

−k
0 αksk logk(ϵ−1)

∣∣∣ϕkpoint(β)− ξkβ

∣∣∣
≲ t−k0 αksk logk(ϵ−1)N−4sL−4s

≤ αksk logk(ϵ−1)N−2sL−2s. (by N−2L−2 ≤ ϵ ≤ t0)

Proposition 7 (Approximating exp(−h̃β(y, t))). Under the settings of Proposition 5. Then, there
exist N,L ∈ N+ with N−2L−2 ≤ ϵ, and

ϕexp
h̃β

∈ NN
(
width ≲ s3d+2N2 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L2 log2(L) ∨ s2 log

2(ϵ−1)
)

such that ∣∣ϕexp
h̃β

(y, t)− exp(−h̃β(y, t))
∣∣ ≤ N−4sL−4s, for any y ∈ B, t ∈ [t0,∞),

and
0 ≤ ϕexp

h̃β
(y, t) ≤ 1.

Proof. Similar to approximate h̃kβ , for β ∈ {0, 1, . . . ,K − 1}, we define

ξexpβ := exp
(
−βC̃dt

−1
0 αs log(ϵ−1)

K

)
. (150)

Then we have ξβ ∈ [0, 1] for any β ∈ {0, 1, . . . ,K − 1}. Again, by Proposition 13, there exists a
ReLU DNN

ϕexppoint ∈ NN
(

width ≤ 16s(N2 + 1) log2(8N
2); depth ≤ 5

(
L2 + 2

)
log2

(
4L2

))
such that ∣∣ϕexppoint(β)− ξexpβ

∣∣ ≤ N−4sL−4s, for each β = 0, 1, . . . ,K − 1,

0 ≤ ϕexppoint(β) ≤ 1.
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We define

ϕexp
h̃β

(y, t) := ϕexppoint

(
Kϕh̃β

(y, t)

C̃dt
−1
0 αs log(ϵ−1)

)
, for any y ∈ Rd, t ∈ [t0,∞). (151)

By the size of ϕh̃β
(c.f. Eq. (145)) and ϕexppoint, we have

ϕexp
h̃β

∈ NN
(
width ≲ s3d+2N2 log2(N) ∨ s3d+2 log3(ϵ−1); depth ≲ L2 log2(L) ∨ s2 log

2(ϵ−1)
)
.

Then for all h̃β =
βC̃dt

−1
0 αs log(ϵ−1)

K , β ∈ {0, 1, . . . ,K − 1}, we have

ϕexp
h̃β

(h̃β) ∈ [0, 1],

and for each β ∈ {0, 1, · · · ,K − 1},∣∣ϕexp
h̃β

(y, t)− exp(−h̃β(y, t))
∣∣ = ∣∣∣ϕexp

h̃β

(βC̃dt−1
0 αs log(ϵ−1)

K

)
− exp

(
−βC̃dt

−1
0 αs log(ϵ−1)

K

)∣∣∣
=
∣∣∣ϕexppoint(β)− ξexpβ

∣∣∣
≤ N−4sL−4s.

D.3 Neural network approximations for regularized empirical score functions

Recall that the regularized empirical score function at time t is given by

f kde
score(xt, t) :=

∇p̂t(xt)
p̂t(xt) ∨ ρn,t

=
(2πσ2

t )
−d/2 1

n

∑n
i=1 exp

(
−∥xt−mtx

(i)∥2
2

2σ2
t

)
−(xt−mtx

(i))
σ2
t

(2πσ2
t )

−d/2 1
n

∑n
i=1 exp

(
−∥xt−mtx(i)∥2

2

2σ2
t

)
∨ ρn,t

= − 1

σ2
t

1
n

∑n
i=1 exp

(
−∥xt−mtx

(i)∥2
2

2σ2
t

)
(xt −mtx

(i))

1
n

∑n
i=1 exp

(
−∥xt−mtx(i)∥2

2

2σ2
t

)
∨ e−1n−1

,

where ρn,t = (2πσ2)−d/2e−1n−1.

D.3.1 Approximation of regularized empirical score functions in L∞-norm

Lemma 10 (L∞-Approximation of Regularized Empirical Score Functions). Given a set of sample
{x(i)}ni=1, for any y ∈ Rd, t ∈ [t0,∞), let mt := exp(−t), σt :=

√
1− exp(−2t). Fix ρn,t :=

(2πσ2
t )

−d/2e−1n−1, and 0 < t0 ≤ 1/2, let N,L, s ∈ N+ such that N−2L−2 ≤ ϵ and 0 < ϵ ≤ t0 ∧
n−1/s. Suppose Assumption 4 holds. Then, there exists a function ϕscore implemented by a ReLU DNN
with width ≤ O

(
s6d+3N3 log2(N)∨ s6d+3 log3(ϵ−1)

)
and depth ≤ O

(
L3 log2(L)∨ s2 log

2(ϵ−1)
)

such that∣∣ϕscore(y, t)− f kde
score(y, t)

∣∣ ≲ α18s+ 1
2 (12s)!s3d+54s+ 3

2 log54s+
1
2 (ϵ−1)ϵs, ∀y ∈ Rd,∀t ∈ [t0,∞),

and we have |ϕscore(y, t)| ≲ σ−1
t

√
log n.

Corollary 4. Under the same conditions of Lemma 10, let α2n−2/d log n ≤ t0 ≤ 1/2. Fix k ∈ N+

such that k ≥ d/2. Then, there exists a ReLU DNN with width ≤ O(n
3
2k log2 n) and depth

≤ O(log2 n) such that∣∣ϕscore(y, t)− f kde
score(y, t)

∣∣ ≲ α18k+ 1
2n−1 log54k+

1
2 n, ∀y ∈ Rd,∀t ∈ [t0,∞),

and we have |ϕscore(y, t)| ≲ σ−1
t

√
log n.

Proof. Apply Lemma 10 with ϵ = n−1/k, s = k and N = ⌈n1/(2k)⌉, L = 1 such that N−2L−2 ≤
ϵ ≤ t0 ∧ n−1/s hold and we complete the proof.
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D.3.2 Proof of Lemma 10

For any y ∈ Rd, t ∈ [t0,∞), recall that the empirical score functions is given by

f kde
score(y, t) =

1

σ2
t

mt × 1
n

∑n
i=1 exp

(
−∥y−mtx

(i)∥2
2

2σ2
t

)
x(i) − y × 1

n

∑n
i=1 exp

(
−∥y−mtx

(i)∥2
2

2σ2
t

)
1
n

∑n
i=1 exp

(
−∥y−mtx(i)∥2

2

2σ2
t

)
∨ e−1n−1

=
1

σ2
t

mt × f
(3)
kde (y, t)− y × f

(2)
kde (y, t)

f
(1)
kde (y, t) ∨ e−1n−1

=
1

σ2
t

f
(2)
score(y, t)

f
(1)
score(y, t)

, (152)

where we denote

f
(1)
kde (y, t), f

(2)
kde (y, t) :=

1

n

n∑
i=1

exp
(
−∥y −mtx

(i)∥22
2σ2

t

)
, (153)

f
(3)
kde (y, t) :=

1

n

n∑
i=1

exp
(
−∥y −mtx

(i)∥22
2σ2

t

)
x(i). (154)

f (1)score(y, t) := f
(1)
kde (y, t) ∨ e

−1n−1, (155)

f (2)score(y, t) := mt × f
(3)
kde (y, t)− y × f

(2)
kde (y, t). (156)

Similar to Eq. (48) and (49), we decompose Rd = B̃ ∪ B̃, where

B̃ := {y ∈ Rd : |y| ≤ 3
√
2αs log(ϵ−1)}, (157)

B̃ := {y ∈ Rd : |y| > 3
√
2αs log(ϵ−1)}. (158)

We approximate fkde on y ∈ B̃, t ∈ [t0,∞) in Part I and y ∈ B̃, t ∈ [t0,∞) in Part II.

Part I: Approximating fkde
score on B̃

For any y ∈ B̃, t ∈ [t0,∞), 0 ≤ ϵ ≤ exp(− 1
4α ), similar to the derivations for Eq. (51) that, by

Assumption 4, we have

∥y −mtx
(i)∥22

2σ2
t

>
(2
√
2αs log(ϵ−1))2

2σ2
t

≥ 8αs log(ϵ−1)

2
= 4αs log(ϵ−1) ≥ 1,

which gives

exp
(
−∥y −mtx

(i)∥22
2σ2

t

)
≤ ϵ4s, for all i = 1, . . . , n.

Noting that the function x 7→ exp(−x2/2)x is monotonously decreasing in [1,∞), then

∣∣f kde
score(y, t)

∣∣ = ∣∣∣∣∣
1
σ2
t

1
n

∑n
i=1 exp

(
−∥y−mtx

(i)∥2
2

2σ2
t

)(
mtx

(i) − y
)

1
n

∑n
i=1 exp

(
−∥y−mtx(i)∥2

2

2σ2
t

)
∨ e−1n−1

∣∣∣∣∣
≤ en

σt

1

n

n∑
i=1

exp
(
−∥y −mtx

(i)∥22
2σ2

t

) |mtx
(i) − y|
σt

≤ 2en

σt

√
αs log(ϵ−1)ϵ4s

(exp(−x2/2)x is monotonously decreasing in [2
√
αs log(ϵ−1),∞))

≤ 2e
√
αs log(ϵ−1)ϵ2s. (159)

Part II: Approximating fkde
score on B̃
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Step 1: Approximating f (1)score by ϕ(1)score

Notice that

x = ReLU(x)− ReLU(−x), and |x| = ReLU(x) + ReLU(−x).

Then, for any x, y ∈ R, we have

max{x, y} =
x+ y + |x− y|

2

=
1

2

(
ReLU(x+ y)− ReLU(−x− y) + ReLU(x− y) + ReLU(−x+ y)

)
,

which indicates that
ϕmax ∈ NN

(
width = 4; depth = 1

)
, (160)

and
ϕmax(x, y) = max{x, y}, for any x, y ∈ R.

By Lemma 8, there exists

ϕ
(1)
kde ∈ NN

(
width ≲ (3s)6d+3N3 log2(N) ∨ (3s)6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
. (161)

such that ∣∣ϕ(1)kde(y, t)− f
(1)
kde (y, t)

∣∣ ≲ α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ6s, (162)
and we have

0 ≤ ϕ
(1)
kde(y, t) ≲ 1 (163)

For any y ∈ Rd, t ∈ [t0,∞), we define

ϕ(1)score(y, t) := ϕmax

(
ϕ
(1)
kde(y, t), e

−1n−1
)
. (164)

By Eq. (160) and (161), we have

ϕ(1)score ∈ NN
(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
, (165)

and for any y ∈ B̃, t ∈ [t0,∞), we have∣∣ϕ(1)score(y, t)− f (1)score(y, t)
∣∣ ≤ ∣∣ϕ(1)kde(y, t)− f

(1)
kde (y, t)

∣∣ ≲ α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ6s,
(166)

which implies that for any y ∈ B̃, t ∈ [t0,∞),

e−1n−1 ≤ ϕ(1)score(y, t) ≲ |f (1)kde (y, t)|+ α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ6s ≲ 1. (167)

Step 2: Approximating f (2)score by ϕ(2)score

Again, by Lemma 8, there exists

ϕ
(2)
kde ∈ NN

(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
. (168)

such that ∣∣ϕ(2)kde(y, t)− f
(2)
kde (y, t)

∣∣ ≲ α9s(6s)!s3d+27s+2 log27s(ϵ−1)ϵ3s, (169)
and we have

0 ≤ ϕ
(2)
kde(y, t) ≲ 1. (170)

By Lemma 13, for each j = 1, . . . , d, there exists

ϕ
(5)
multi,j ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 7sL

)
,
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such that for any yj ∈
[
0, 3
√

2αs log(ϵ−1)
]
,∀h ∈ [0, 1],∣∣ϕ(5)multi,j

(
yj , h

)
− yjh

∣∣ ≤√αs log(ϵ−1)(N + 1)−7sL.

For all y ∈ Rd, h ∈ R, we define

ϕ
(5)
multi

(
y, h

)
:=
[
ϕ
(5)
multi,1

(
y1, h

)
, · · · , ϕ(5)multi,d

(
yd, h

)]
. (171)

Then, we have
ϕ
(5)
multi ∈ NN

(
width ≤ 9d(N + 1) + d, depth ≤ 14sL

)
, (172)

and ∣∣ϕ(5)multi

(
y, ϕ

(2)
kde(y, t)

)
− yϕ

(2)
kde(y, t)

∣∣ ≲√αs log(ϵ−1)(N + 1)−14sL, (173)

which gives that∣∣ϕ(5)multi

(
y, ϕ

(2)
kde(y, t)

)∣∣ ≲ |y| ·
∣∣ϕ(2)kde(y, t)

∣∣+√αs log(ϵ−1)(N + 1)−14sL ≲
√
αs log(ϵ−1).

(174)

For any y ∈ B̃, t ∈ [t0,∞), it follows that∣∣ϕ(5)multi

(
y, ϕ

(2)
kde(y, t)

)
− yf

(2)
kde (y, t)

∣∣
≤
∣∣ϕ(5)multi

(
y, ϕ

(2)
kde(y, t)

)
− yϕ

(2)
kde(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (173)

+|y| ·
∣∣ϕ(2)kde(y, t)− ϕ

(2)
kde(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (169)

≲
√
αs log(ϵ−1)(N + 1)−14sL + α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s

≲ α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s. (175)

Moreover, similar to the derivations of Eq. (65), we can obtain

f
(3)
kde (y, t) :=

1

n

n∑
i=1

exp
(
−∥y −mtx

(i)∥22
2σ2

t

)
x(i)

= exp(−h̃β)
s−1∑
k=0

∑
∥ν̃∥1+a4=k

(−2)−(k−∥ν2∥1−a4)m
∥ν2∥1+2∥ν3∥1
t

σ
2(k−a4)
t ν1!ν2!ν3!a4!

h̃a4β y2ν1+ν2 · 1
n

n∑
i=1

(
x(i)

)ν2+2ν3 · x(i).

For each ν̃ ∈ N3d, a4 ∈ N such that ∥ν̃∥1 + a4 ≤ s− 1, denote by

C̃ν2,ν3
x :=

1

n

n∑
i=1

(
x(i)

)ν2+2ν3 · x(i) ∈ Rd. (176)

Following a similar derivation for ϕkde (i.e., Eq. (86) and (91)) in Appendix D.2, we can obtain that
there exists

ϕ
(3)
kde ∈ NN

(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
, (177)

such that for any y ∈ B̃, t ∈ [t0,∞),∣∣ϕ(3)kde(y, t)− f
(3)
kde (y, t)

∣∣ ≲ α9s(6s)!s3d+27s+1 log27s(ϵ−1)ϵ3s, (178)

and we have∣∣ϕ(3)kde(y, t)
∣∣ ≲ ∣∣f (3)kde (y, t)

∣∣+ α9s(6s)!s3d+27s+1 log27s(ϵ−1)ϵ3s

≲
√
αs log(ϵ−1) + α9s(6s)!s3d+27s+1 log27s(ϵ−1)ϵ3s ≲

√
αs log(ϵ−1). (179)

By Lemma 9, there exists

ϕm ∈ NN
(
width ≲ s2(N + 1) log2(N); depth ≲ s2L log2(L)

)
(180)
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such that for any t ∈ [0,∞),

|ϕm(t)−mt| ≲ s3s log3s(ϵ−1)ϵ3s, (181)

and
0 ≤ ϕm(t) ≲ 1. (182)

Similar to Eq. (172), there exists

ϕ
(6)
multi ∈ NN

(
width ≤ 9d(N + 1) + d, depth ≤ 14sL

)
, (183)

such that for any ϕm(t) ∈ [0, 1], ϕ
(2)
kde(y, t) ∈ [−

√
αs log(ϵ−1),

√
αs log(ϵ−1)]d,∣∣ϕ(6)multi(ϕm(t), ϕ

(3)
kde(y, t))− ϕm(t)ϕ

(3)
kde(y, t)

∣∣ ≲√αs log(ϵ−1)(N + 1)−14sL. (184)

It follows that∣∣ϕ(6)multi(ϕm(t), ϕ
(3)
kde(y, t))−mtf

(3)
kde (y, t)

∣∣
≤
∣∣ϕ(6)multi(ϕm(t), ϕ

(3)
kde(y, t))− ϕm(t)ϕ

(3)
kde(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (184)

+
∣∣ϕm(t)−mt

∣∣︸ ︷︷ ︸
≲ Eq. (181)

·
∣∣ϕ(3)kde(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (179)

+mt

∣∣ϕ(3)kde(y, t)− f
(3)
kde (y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (178)

≲
√
αs log(ϵ−1)(N + 1)−14sL + s3s log3s(ϵ−1)ϵ3s ·

√
αs log(ϵ−1)

+ α9s(6s)!s3d+27s+1 log27s(ϵ−1)ϵ3s

≲ α9s(6s)!s3d+27s+1 log27s(ϵ−1)ϵ3s. (185)

With Eq. (168), (172), (177), (180) and (183), we define

ϕ(2)score(y, t) := ϕ
(6)
multi

(
ϕm(t), ϕ

(3)
kde(y, t)

)
− ϕ

(5)
multi

(
y, ϕ

(2)
kde(y, t)

)
, for any y ∈ Rd, t ∈ [0,∞). (186)

By the sizes of ϕ(2)kde, ϕ
(3)
kde, ϕm, ϕ

(5)
multi, ϕ

(6)
multi, we have

ϕ(2)score ∈ NN
(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
. (187)

Moreover, for any y ∈ B̃, t ∈ [t0,∞),∣∣ϕ(2)score(y, t)− f (2)score(y, t)
∣∣

=
∣∣∣ϕ(6)multi

(
ϕm(t), ϕ

(3)
kde(y, t)

)
− ϕ

(5)
multi

(
y, ϕ

(2)
kde(y, t)

)
−mt × f

(3)
kde (y, t) + y × f

(2)
kde (y, t)

∣∣∣
≤
∣∣∣ϕ(6)multi

(
ϕm(t), ϕ

(3)
kde(y, t)

)
−mt × f

(3)
kde (y, t)

∣∣∣︸ ︷︷ ︸
≲ Eq. (185)

+
∣∣∣ϕ(5)multi

(
y, ϕ

(2)
kde(y, t)

)
− y × f

(2)
kde (y, t)

∣∣∣︸ ︷︷ ︸
≲ Eq. (175)

≲ α9s(6s)!s3d+27s+1 log27s(ϵ−1)ϵ3s + α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s

≲ α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s, (188)

which implies that∣∣ϕ(2)score(y, t)
∣∣ ≲ ∣∣f (2)score(y, t)

∣∣+ α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s

≤ mt

∣∣f (3)kde (y, t)
∣∣+ |y| ·

∣∣f (2)kde (y, t)
∣∣+ α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s

≲
√
αs log(ϵ−1). (189)

Step 3: Construction of the neural network ϕscore.

Recall from Eq. (167) that e−1n−1 ≤ ϕ
(1)
score(y, t) ≲ 1 for any y ∈ B̃, t ∈ [t0,∞) and 0 < ϵ ≤

t0 ∧ n−1/s. By Lemma 23, there exists

ϕrec ∈ NN
(
width ≲ s3 log3(ϵ−1); depth ≲ s2 log2(ϵ−1)

)
, (190)
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such that for any n−1 ≲ ϕ
(1)
score(y, t) ≲ 1 and x′ ∈ R,∣∣∣ϕrec

(
ϕ(1)score(y, t)

)
− 1

f
(1)
score(y, t)

∣∣∣ ≤ ϵ2s + ϵ−4s
∣∣ϕ(1)score(y, t)− f (1)score(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (166)

≲ ϵ2s + α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ2s

≲ α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ2s, (191)

which implies that∣∣∣ϕrec
(
ϕ(1)score(y, t)

)∣∣∣ ≲ 1∣∣f (1)score(y, t)
∣∣ + α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ2s (by Eq. (167))

≲ n+ α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ2s ≲ n. (192)

By Lemma 13 and Eq. (189) and (192), there exists

ϕ
(7)
multi ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 14sL

)
, (193)

such that ∣∣∣ϕ(7)multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

))
− ϕ(2)score(y, t)× ϕrec

(
ϕ(1)score(y, t)

)∣∣∣
≲ n

√
αs log(ϵ−1)(N + 1)−14sL ≤ n

√
αs log(ϵ−1)ϵ4s ≤

√
αs log(ϵ−1)ϵ3s, (194)

which indicates that∣∣∣ϕ(7)multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

))
− ϕ(2)score(y, t),×ϕrec

(
ϕ(1)score(y, t)

)∣∣∣
≲
∣∣ϕ(2)score(y, t)

∣∣︸ ︷︷ ︸
≲ Eq. (189)

·
∣∣ϕrec

(
ϕ(1)score(y, t)

)∣∣︸ ︷︷ ︸
≲ Eq. (192)

+
√
αs log(ϵ−1)ϵs

≲ n
√
αs log(ϵ−1) +

√
αs log(ϵ−1)ϵ3s ≲ n

√
αs log(ϵ−1) (195)

By Proposition 2, there exists

ϕ1/σ2 ∈ NN
(
width ≲ s3N log2(N) ∨ s3 log3(ϵ−1);

depth ≲ s2L
√
log(ϵ−1) log2(L

√
log(ϵ−1)) ∨ s2 log2(ϵ−1)

)
, (196)

such that ∣∣∣ϕ1/σ2(t)− σ−2
t

∣∣∣ ≲ (2s)!s6s log6s(ϵ−1)ϵ2s, for any t ∈ [t0,∞), (197)

and
0 ≤ ϕ1/σ2(t) ≲ t−1

0 . (198)
By Lemma 13 and Eq. (195) and (198),

ϕ
(8)
multi ∈ NN

(
width ≤ 9(N + 1) + 1, depth ≤ 14sL

)
, (199)

such that∣∣∣ϕ(8)multi

(
ϕ1/σ2(t), ϕ

(7)
multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

)))
− ϕ1/σ2(t)× ϕ

(7)
multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

))∣∣∣
≲ t−1

0 n
√
αs log(ϵ−1)(N + 1)−14sL ≤ t−1

0 n
√
αs log(ϵ−1)ϵ4s ≤

√
αs log(ϵ−1)ϵ2s. (200)

With Eq. (165), (187), (190), (193), (196) and (199), for any y ∈ Rd, t ∈ [t0,∞), we define

ϕscore(y, t) := ϕ
(8)
multi

(
ϕ1/σ2(t), ϕ

(7)
multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

)))
. (201)

By the sizes of ϕ(1)score, ϕ
(2)
score, ϕrec, ϕ1/σ2(t), ϕ

(7)
multi, ϕ

(8)
multi, we have

ϕscore ∈ NN
(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
(202)
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Step 4: Approximation error of ϕscore.

For any y ∈ B̃, t ∈ [t0,∞),∣∣∣ϕscore(y, t)− f kde
score(y, t)

∣∣∣
≤
∣∣∣ϕ(8)multi

(
ϕ1/σ2(t), ϕ

(7)
multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

)))
− ϕ1/σ2(t)× ϕ

(7)
multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

))∣∣∣ (by Eq. (200))

+
∣∣∣ϕ1/σ2(t)− 1

σ2
t

∣∣∣︸ ︷︷ ︸
≲ Eq. (197)

·
∣∣∣ϕ(7)multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

))∣∣∣︸ ︷︷ ︸
≲ Eq. (195)

+
1

σ2
t

∣∣∣ϕ(7)multi

(
ϕ(2)score(y, t), ϕrec

(
ϕ(1)score(y, t)

))
− ϕ(2)score(y, t)× ϕrec

(
ϕ(1)score(y, t)

)∣∣∣︸ ︷︷ ︸
≲ Eq. (194)

+
1

σ2
t

∣∣∣ϕ(2)score(y, t)− f (2)score(y, t)
∣∣∣︸ ︷︷ ︸

≲ Eq. (188)

·
∣∣∣ϕrec

(
ϕ(1)score(y, t)

)∣∣∣︸ ︷︷ ︸
≤ Eq. (192)

+
1

σ2
t

∣∣f (2)score(y, t)
∣∣ · ∣∣∣ϕrec

(
ϕ(1)score(y, t)

)
− 1

f
(1)
score(y, t)

∣∣∣︸ ︷︷ ︸
≲ Eq. (191)

≲
√
αs log(ϵ−1)ϵ2s + (2s)!s6s log6s(ϵ−1)ϵ2s · n

√
αs log(ϵ−1) + t−1

0

√
αs log(ϵ−1)ϵ3s

+ nt−1
0 · α9s+1/2(6s)!s3d+27s+3/2 log27s+1/2(ϵ−1)ϵ3s

+ t−1
0

√
αs log(ϵ−1) · α18s(12s)!s3d+54s+1 log54s(ϵ−1)ϵ2s

≲ α18s+1/2(12s)!s3d+54s+3/2 log54s+1/2(ϵ−1)ϵs. (203)

By Lemma 5 and ρn,t = (2πσt)
−d/2e−1n−1, we have for any y ∈ Rd, t ∈ [t0,∞),

|f kde
score(y, t)| =

∣∣∣ ∇p̂t(y)
p̂t(y) ∨ ρn

∣∣∣ ≤ ∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn

∥∥∥
2
≤

√
2

σt

√
log
( (2πσ2

t )
−d/2

ρn,t

)
=

√
2

σt

√
log n+ 1 ≲ σ−1

t

√
log n, (204)

which gives that∣∣ϕscore(y, t)
∣∣ ≲ ∣∣f kde

score(y, t)
∣∣+ α18s+1/2(12s)!s3d+54s+3/2 log54s+1/2(ϵ−1)ϵs ≲ σ−1

t

√
log n.

Therefore, we have completed the proof of Lemma 10.
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D.3.3 Approximation of regularized empirical score functions for sub-Gaussian distributions

Lemma 11. Suppose that P satisfies Assumption 1. For any d, n ∈ N+, 0 < t0 ≤ 1/2, fix
ρn,t := (2πσ2

t )
−d/2e−1n−1. Let N,L, s ∈ N+, ϵ ∈ R+ such that N−2L−2 ≤ ϵ ≤ t0 ∧ n−1/s. Let

mt := exp(−t), σt :=
√

1− exp(−2t) for any t ∈ [t0,∞). Then, there exists a function ϕscore

implemented by a ReLU DNN with width ≤ O
(
s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1)

)
and depth

≤ O
(
L3 log2(L) ∨ s2 log

2(ϵ−1)
)

such that

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn,t

− ϕscore(y, t)
∥∥∥2
2
dy

]
≲ α74s((12s)!)2s6d+108s+3 log108s+1(ϵ−1)ϵ2s,

and we have ∥ϕscore(·, t)∥∞ ≲ σ−1
t

√
log n.

Proof. For some A > 0, set A = µ + [−A,A]d, where µ = EX∼P0
[X]. With loss of generality,

we assume that EX∼P0
[X] = 0. Our results can be easily applied to EX∼P0

[X] ̸= 0. By the
sub-Gaussian tail bound of P0 with parameter α,

Pr[X /∈ A] =

∫
Ac

pt(x)dx ≤ 2d exp
(
− A2

2α2

)
. (205)

Let A = O(
√
α2s log n), then

Pr[X /∈ A] ≤ 2d exp
(
−O(α2s log n)

2α2

)
≤ 2d exp(−O(s log n)) = 2dn−O(s),

By Lemma 5 and ρn,t = (2πσt)
−d/2e−1n−1, we have for any y ∈ Rd, t ∈ [t0,∞),∥∥∥ ∇p̂t(y)

p̂t(y) ∨ ρn

∥∥∥2
2
≤ 2

σ2
t

log
( (2πσ2

t )
−d/2

ρn,t

)
=

2

σ2
t

(log n+ 1) ≲
1

σ2
t

log n. (206)

By Lemma 10, there exists a function

ϕscore ∈ NN
(
width ≲ s6d+3N3 log2(N) ∨ s6d+3 log3(ϵ−1);

depth ≲ L3 log2(L) ∨ s2 log
2(ϵ−1)

)
such that for any supi∈[n] |x(i)| ≤ A =

√
O(α2s log n),∣∣ϕscore(y, t)− f kde

score(y, t)
∣∣ ≲ α37s(12s)!s3d+54s+ 3

2 log54s+
1
2 (ϵ−1)ϵs, ∀y ∈ Rd,∀t ∈ [t0,∞).

Thus, as we have shown in Eq. (204), for all y ∈ Rd, t ∈ [t0,∞), we have |ϕscore(y, t)| ≤
∥ϕscore(y, t)∥2 ≲ σ−1

t

√
log n, which gives that

∥ϕscore(y, t)∥22 ≲ σ−2
t log n. (207)

With Eq. (206) and (207),∫
Ac

∫
Rd

∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn,t

− ϕscore(y, t)
∥∥∥2
2
dyp(x)dx

≤ 2

∫
Ac

(∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn,t

∥∥∥2
2
+
∥∥ϕscore(y, t)

∥∥2
2

)
p(x)dx

≲ n−O(s)
(
σ−2
t log n+ σ−2

t log n
)
≲ n−O(s) log n. (208)

On the other hand, for x ∈ A, we have∫
A

∫
Rd

[∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn,t

− ϕscore(y, t)
∥∥∥2
2

]
p0(x)dx

≲
∫
Ac

d
(
α37s(12s)!s3d+54s+ 3

2 log54s+
1
2 (ϵ−1)ϵs

)2
p(x)dx

≲ α74s((12s)!)2s6d+108s+3 log108s+1(ϵ−1)ϵ2s. (209)
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Combine Eq. (208) and (209), we obtain

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn,t

− ϕscore(y, t)
∥∥∥2
2
dy
]

≲ α74s((12s)!)2s6d+108s+3 log108s+1(ϵ−1)ϵ2s. (210)

Lemma 12 (L2-Approximation of Regularized Empirical Score Functions for Sub-Gaussian Distri-
butions). Suppose that P satisfies Assumption 1. For any d, n ∈ N+, fix ρn,t := (2πσ2

t )
−d/2e−1n−1

and n−2/d ≤ t0 ≤ 1/2. Let mt := exp(−t), σt :=
√

1− exp(−2t) for any t ∈ [t0,∞). Fix
k ∈ N+ with k ≥ d/2. Then, there exists a ReLU DNN ϕscore with width ≤ O

(
n

3
2k log2 n

)
and depth

≤ O
(
log2 n

)
such that

E{x(i)}n
i=1∼P⊗n

[∫
Rd

∥∥∥ ∇p̂t(y)
p̂t(y) ∨ ρn,t

− ϕscore(y, t)
∥∥∥2
2
dy

]
≲ α74k log108k+1(n)n−1,

and we have ∥ϕscore(·, t)∥∞ ≲ σ−1
t

√
log n.

Proof. Fix k ∈ N+ and k ≥ d/2, apply Lemma 11 with ϵ = n−1/k, s = k andN = ⌈n1/(2k)⌉, L = 1
such that N−2L−2 ≤ ϵ ≤ t0 ∧ n−1/s hold and we complete the proof.

D.4 Score approximation errors by deep ReLU neural networks

We are now able to prove the score approximation error bounds of deep RelU neural networks for
sub-Gaussian distributions by combining Theorem 1 and Corollary 12:

Theorem 1 (Neural Network Score Approximation for Sub-Gaussian Distributions) Suppose that
P0 satisfies Assumption 1. For any 1 ≤ d ≲

√
log n, n ≥ 3 and any 1

2α
2n−2/d log n < t0 ≤ 1

and T = nO(1), let {xt}t∈[t0,T ] be the solutions of the process Eq. (2) with density function
pt : Rd → R+. Fix k ∈ N+ with d/2 ≤ k ≲ logn

log logn . Then, there exists a ReLU DNN ϕscore with

width ≤ O
(
n

3
2k log2 n

)
and depth ≤ O

(
log2 n

)
such that

E{x(i)}n
i=1∼P

⊗n
0

[
Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]]
≲ σ−d−2

t

(
σdt + αd

) logd/2+3 n

n
,

and we have ∥ϕscore(·, t)∥∞ ≲ σ−1
t

√
log n. Moreover, let T = nO(1), we have

E{x(i)}n
i=1∼P

⊗n
0

[∫ T

t=t0

Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]
dt
]
≲ αdt

−d/2
0 n−1 log

d
2+4 n.

Proof. By Lemma 1, with ρn,t = (2πσ2
t )

−d/2e−1n−1, we have

E{x(i)}n
i=1∼P⊗n

[
Ext∼Pt

[∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2

]]

≲ σ−d−2
t

(
σdt + αd

)
log3

( (2πσ2
t )

− d
2

ρn

) logd/2 n
n

≲ σ−d−2
t

(
σdt + αd

) logd/2+3 n

n
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Therefore, together with ϕscore from Lemma 12, we obtain

E{x(i)}n
i=1∼P

⊗n
0

[
Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]]

≤ E{x(i)}n
i=1∼P

⊗n
0

[
2Ext∼Pt

[∥∥∥∇pt(xt)
pt(xt)

− ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

∥∥∥2
2

]]
︸ ︷︷ ︸

≲ Lemma 1

+ E{x(i)}n
i=1∼P

⊗n
0

[
2Ext∼Pt

[∥∥∥ ∇p̂t(xt)
p̂t(xt) ∨ ρn,t

− ϕscore(xt, t)
∥∥∥2
2

]]
︸ ︷︷ ︸

≲ Lemma 12

≲ σ−d−2
t

(
σdt + αd

) logd/2+3 n

n
+ α74k log

108k+1(n)

n

≲ σ−d−2
t

(
σdt + αd

) logd/2+3 n

n
,

where the last inequality follows from the fact that its second term will be dominated by the first term.
To see this, let’s fix d/2 ≤ k ≤ (1+2/d) logn+log logn−2 logα

74 logα+108 log logn , then we have

74k logα+ 108k log n ≤ (1 + 2/d) log n+ log log n− 2 logα,

which gives

α74k log108k+1(n) ≤ α−2n1+
2
d log2 n

≲ σ−d−2
t αd

logd/2+3 n

n
(by α2n−2/d log n ≤ t0 ≤ σ2

t )

≤ σ−d−2
t

(
σdt + αd

) logd/2+3 n

n
.

Notice that we also need

d

2
≤ (1 + 2/d) log n+ log log n− 2 logα

74 logα+ 108 log log n
,

which implies that d ≲
√
log n. Assuming that α is a universal constant, we have verified that to

ensure our results hold, we require d/2 ≤ k ≲ logn+log logn
log logn ≲ logn

log logn for 1 ≤ d ≲
√
log n.

Moreover, following the same proof for Theorem 4, we obtain

E{x(i)}n
i=1∼P

⊗n
0

[∫ T

t=t0

Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]
dt

]

≲
∫ T

t=t0

σ−d−2
t

(
σdt + αd

) logd/2+3 n

n
dt ≲ αdt

−d/2
0 n−1 log

d
2+4 n.

Thus, we complete the proof.
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D.5 Auxiliary approximation lemmas

Proposition 8 (Approximate Square Function on [a, b]). For any N,L ∈ N+ and a, b ∈ R with
a < b, there exists a function ϕ implemented by a ReLU DNN with width 3N + 1 and depth L such
that

|ϕ(x)− x2| ≤ N−L, for any x ∈ [a, b].

Proof. For any x ∈ [a, b], let x̃ = x−a
b−a , which implies that x̃ ∈ [0, 1]. By Lemma 18, there exists a

function ϕ implemented by a ReLU DNN with width 3N and depth L such that

|ϕ(x̃)− x̃2| ≤ N−L,

which gives that ∣∣∣(b− a)2ϕ
(x− a

b− a

)
+ 2ax− a2 − x2

∣∣∣ ≤ (b− a)2N−L.

For any x ∈ R, define

ϕ̃(x) := (b− a)2ϕ
(x− a

b− a

)
+ 2a · ReLU(x+ |a|)− a2 − 2a|a|.

x

x − a
b − a

x + |a |

ϕ( x − a
b − a )

ϕ̃(x)
ReLU(x + |a | )

Figure 1: An illustration of the network architecture implementing ϕ̃ for approximating x2 on [a, b].

By ϕ ∈ NN (width ≤ 3N ; depth ≤ L) from Lemma 18, the network in Proposition 8 has width
≤ 3N + 1 and depth ≤ L+ 2. It follows that ϕ̃ can be implemented by a ReLU DNN with width
3N + 1 and depth L, since the two hidden layers have the identify function as their activation
functions.

Since x+ |a| ≥ 0 for any x ∈ [a, b], which indicates that

ϕ̃(x) = (b− a)2ϕ
(x− a

b− a

)
+ 2ax− a2, for any x ∈ [a, b].

Therefore,
|ϕ̃(x)− x2| ≤ (b− a)2N−L, for any x ∈ [a, b].

Lemma 13 (Approximate xy on [a1, b1]× [a2, b2]). For any N,L ∈ N+ and a1, a2, b1, b2 ∈ R with
a1 < b1 and a2 < b2, there exists a function ϕ implemented by a ReLU DNN with width 9N + 1 and
depth L such that

|ϕ(x, y)− xy| ≤ 6(b1 − a1)(b2 − a2)N
−L, for any x ∈ [a1, b1], y ∈ [a2, b2].

Proof. For any x ∈ [a1, b1], y ∈ [a2, b2], let x̃ = x−a1
b1−a1 , ỹ = y−a2

b2−a2 , which implies that x̃, ỹ ∈ [0, 1].
By Lemma 19, there exists a function ϕ̃ implemented by a ReLU DNN with width 9N and depth L
such that ∣∣ϕ̃(x̃, ỹ)− x̃ỹ

∣∣ ≤ 6N−L,

which gives that∣∣∣(b1 − a1)(b2 − a2)ϕ̃
( x− a1
b1 − a1

,
y − a2
b2 − a2

)
− xy+ a1y+ a2x− a1a2

∣∣∣ ≤ 6(b1 − a1)(b2 − a2)N
−L.
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For any x ∈ R, define

ϕ(x, y) := (b1 − a1)(b2 − a2)ϕ̃
( x− a1
b1 − a1

,
y − a2
b2 − a2

)
+ a1x+ a2y − a1a2. (211)

By construction, ϕ̃ can be implemented by a ReLU DNN with width 3N + 1 and depth L. Therefore,
for all x ∈ [a1, b1], y ∈ [a2, b2],

|ϕ(x, y)− xy| ≤ 6(b1 − a1)(b2 − a2)N
−L.

Lemma 14 (Approximate Monomial Function on [−R,R]k). For any N,L, k, s ∈ N+ with s ≥ k ≥
2 and R ∈ R+, there exists a function ϕ implemented by a ReLU DNN with width 9(N + 1) + k − 1
and depth 7sL(k − 1) such that

|ϕ(x)− x1x2 · · ·xk| ≤ 30(k − 1)Rk(N + 1)−7sL, for any x = [x1, x2, . . . , xk]
⊤ ∈ [−R,R]k.

Proof. By Lemma 13, there exists a function ϕmulti implemented by a ReLU DNN with width
9(N + 1) + 1 and depth 7sL such that

|ϕmulti(x, y)− xy| ≤ 6(b1 − a1)(b2 − a2)(N + 1)−7sL for any x ∈ [a1, b1], y ∈ [a1, b2].

For all x1, x2 ∈ [−R,R], define ϕ1 : [−R,R]2 → [−R2, R2], which can be implemented by a ReLU
DNN with width 9(N + 1) + 1 and depth 7sL such that

|ϕ1(x1, x2)− x1x2| ≤ 6(2R)2(N + 1)−7sL < 30R2(N + 1)−7sL. (212)

Next, we construct a sequence of functions ϕi : [−R,R]i+1 → [−R,R] for i ∈ {1, 2, . . . , k − 1} by
induction such that

(i) ϕi can be implemented by a ReLU DNN with width 9(N + 1) + i and depth 7sLi for each
i ∈ {1, 2, . . . , k − 1}.

(ii) For any i ∈ {1, 2, . . . , k − 1} and x1, x2, . . . , xi+1 ∈ [−R,R], it holds that

|ϕi(x1, . . . , xi+1)− x1x2 · · ·xi+1| ≤ 30iRi+1(N + 1)−7sL. (213)

First, let us consider the case i = 1, it is obvious that the two required conditions are true:

(i) 9(N + 1) + i = 9(N + 1) + 1 and 7sLi = 7sL if i = 1;

(ii) Eq. (212) implies Eq. (213) for i = 1.

Now assume ϕi has been defined; we then define

ϕi+1(x1, . . . , xi+2) := ϕmulti
(
ϕi(x1, . . . , xi+1), xi+2

)
for any x1, . . . , xi+2 ∈ R.

Note that ϕi ∈ NN (width ≤ 9(N + 1) + i; depth ≤ 7sLi) and ϕmulti ∈ NN (width ≤ 9(N + 1) +
1; depth ≤ 7kL). Then ϕi+1 can be implemented via a ReLU DNN with width

max{9(N + 1) + i+ 1, 9(N + 1) + 1} = 9(N + 1) + (i+ 1)

and depth 7sLi+ 7sL = 7sL(i+ 1). By the hypothesis of induction, we have∣∣ϕi(x1, . . . , xi+1)− x1x2 . . . xi+1

∣∣ ≤ 30iRi+1(N + 1)−7sL.

Recall the fact that

30iRi+1(N + 1)−7sL ≤ 30kRi+12−7s ≤ 30kRi+1 2
−7

s
< 0.25Ri+1
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for any N,L, k, s ∈ N+ with s ≥ k and i ∈ {1, 2, . . . , k − 1}. By x1x2 · · ·xi+1 ∈ [−Ri+1, Ri+1],
it follows that

ϕi(x1, . . . , xi+1) ∈ [−1.25Ri+1, 1.25Ri+1], for any x1, . . . , xi+1 ∈ [−R,R].

Therefore, by Eq. (211) and (213), we have

|ϕi+1(x1, . . . , xi+2)− x1x2 . . . xi+2|
=
∣∣ϕ1(ϕi(x1, . . . , xi+1),ReLU(xi+2)

)
− x1x2 · · ·xi+2

∣∣
≤
∣∣ϕ1(ϕi(x1, . . . , xi+1), xi+2

)
− ϕi(x1, . . . , xi+1)xi+2

∣∣+ ∣∣ϕi(x1, . . . , xi+1)xi+2 − x1x2 . . . xi+2

∣∣
≤ 6× 2.5Ri+1 × 2R× (N + 1)−7sL + 30iRi+1(N + 1)−7sL · |xi+2| (by Lemma 13)

≤ 30Ri+2(N + 1)−7sL + 30iRi+1(N + 1)−7sL ·R
= 30(i+ 1)Ri+2(N + 1)−7sL,

for any x1, x2, . . . , xi+2 ∈ [−R,R], which means we finish the process of induction. Now let
ϕ := ϕk−1, by the principle of induction, we have∣∣ϕ(x1, . . . , xk)− x1x2 · · ·xk

∣∣ ≤ 30(k − 1)Rk(N + 1)−7sL, for any x1, . . . , xk ∈ [−R,R].

So ϕ is the desired function implemented by a ReLU DNN with width 9(N + 1) + k − 1 and depth
7sL(k − 1).

Proposition 9 (Approximate Multivariate Polynomials on [−R,R]d). Assume P (x) = xν =
xν11 x

ν2
2 · · ·xνdd for ν ∈ Nd with ∥ν∥1 ≤ k ∈ N+. For any N,L, s ∈ N+ with s ≥ k and R ∈ R+,

there exists a function ϕ implemented by a ReLU DNN with width 9(N + 1) + k − 1 and depth
7s(k − 1)L such that

|ϕ(x)− P (x)| ≤ 30kRk(N + 1)−7sL, for any x ∈ [−R,R]d.

Proof. The case k = 1 is trivial, so we assume that k ≥ 2. Set k̃ = ∥ν∥1 ≤ k, denote by
ν = [ν1, ν2, . . . , νd]

⊤ and let [z1, . . . , zk̃]
⊤ ∈ Rk̃ be the vector such that

zl = xj , if
j−1∑
i=1

νi < l ≤
l∑
i=1

νi, for j = 1, . . . , d.

That is,

[z1, z2, . . . , zk̃]
⊤ = [

ν1 times︷ ︸︸ ︷
x1, . . . , x1,

ν2 times︷ ︸︸ ︷
x2, . . . , x2, . . . ,

νd times︷ ︸︸ ︷
xd, . . . , xd] ∈ Rk̃.

Then, we have P (x) = xν = z1z2 . . . zk̃.

We construct the target ReLU DNN in two steps:

Step 1: There exists an affine linear map ϕlin : Rd → Rk that duplicates x to form a new vector
[z1, z2, . . . , zk̃, 1, . . . , 1]

⊤ ∈ Rk, i.e.,

ϕlin(x) = [z1, z2, . . . , zk̃, 1, . . . , 1]
⊤ ∈ Rk.

Step 2: By Lemma 14, there exists a function ϕmon : Rk → R implemented by a ReLU DNN with
width 9(N + 1) + k − 1 and depth 7sL(k − 1) such that

|ϕmon(x)− xν | ≤ 30(k − 1)Rk(N + 1)−7sL.

For any x ∈ [−R,R]d, define
ϕ(x) := ϕmon

(
ϕlin(x)

)
. (214)

Clearly, we have

ϕ ∈ NN
(
width ≤ 9(N + 1) + k − 1; depth ≤ 7s(k − 1)L

)
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and

|ϕ(x)− P (x)| = |ϕ(x)− xν |
=
∣∣ϕmon

(
ϕlin(x)

)
− xν11 x

ν2
2 · · ·xνdd

∣∣
=
∣∣ϕmon(z1, z2, . . . , zk̃, 1, . . . , 1)− z1z2 . . . zk̃

∣∣
≤ 30(k − 1)Rk(N + 1)−7sL (by Lemma 14)

≤ 30kRk(N + 1)−7sL,

for any x1, x2, . . . , xd ∈ [−R,R].

Proposition 10 (Approximate One-Dimensional Step Function on [a, b]). For any N,L, d ∈ N+,
a, b ∈ R with a < b, and δ ∈ (0, b−a3K ] with K = ⌊N1/d⌋2⌊L2/d⌋, there exists a one-dimensional
function ϕ implemented by a ReLU DNN with width 4⌊N1/d⌋+ 3 and depth 4L+ 5 such that

ϕ(x) = k, if x ∈
[
a+ k(b−a)

K , a+ (k+1)(b−a)
K − δ · 1{k≤K−2}

]
, for k = 0, 1, . . . ,K − 1.

Proof. Let x̃ = x−a
b−a for all x ∈

[
a+ k(b−a)

K , a+ (k+1)(b−a)
K − δ ·1{k≤K−2}

]
, k = 0, 1, . . . ,K − 1,

which gives
x̃ ∈

[
k
K ,

k+1
K − δ

b−a · 1{k≤K−2}

]
, for k = 0, 1, . . . ,K − 1.

Then, by Proposition 12, there exists a one-dimensional function ϕ̃ implemented by a ReLU DNN
with width 4⌊N1/d⌋+ 3 and depth 4L+ 5 such that

ϕ̃(x̃) = k, for all x̃ ∈
[
k
K ,

k+1
K − δ

b−a · 1{k≤K−2}

]
, for k = 0, 1, . . . ,K − 1.

Let ϕ(x) = ϕ̃
(
x−a
b−a
)
. Then, ϕ can be implemented by a ReLU DNN with the same sizes as a ReLU

DNN for implementing ϕ̃ and we have

ϕ(x) = k, if x ∈
[
a+ k(b−a)

K , a+ (k+1)(b−a)
K − δ · 1{k≤K−2}

]
, for k = 0, 1, . . . ,K − 1.

Definition 3 (Modulus of Continuity [38]). For any a, b ∈ R with b > a. The modulus of continuity
of a continuous function f ∈ C([a, b]d) is defined as

ωf (r) := sup
{
|f(x)− f(y)| : ∥x− y∥2 ≤ r,x,y ∈ [a, b]d

}
, for any r ≥ 0.

Definition 4 (Trifling Region [38]). Given any K ∈ N+ and δ ∈ (0, 1
K ), define a trifling region

Ω([0, 1]d,K, δ) of [0, 1]d as

Ω([0, 1]d,K, δ) :=

d⋃
i=1

{
x = [x1, x2, . . . , xd]

⊤ ∈ [0, 1]d : xi ∈
K−1⋃
k=1

(
k

K
− δ,

k

K
)
}
.

In particular, Ω([0, 1]d,K, δ) = ∅ if K = 1.

The following Lemma extends the approximation results of [38, Lemma 3.3] from [0, 1] to
[0, R],∀R > 0:
Lemma 15 (Approximate Trifling Regions on [0, R]). Given any ε > 0,K,R ∈ N+, and δ ∈ (0, 1

3K ],
assume f ∈ C([0, R]) and g : R → R is a general function with

|g(x)− f(x)| ≤ ε, for any x ∈ [0, R] \ Ω([0, R],K, δ). (215)

i.e., g(x) ∈ B(f(x), ε) for any x ∈ [0, R] \ Ω([0, R],K, δ). Then,

|ϕ(x)− f(x)| ≤ ε+ ωf (δ), for any x ∈ [0, R],

where
ϕ(x) := mid

(
g(x− δ), g(x), g(x+ δ)

)
, for any x ∈ R.
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Proof. Divide [0, R] into KR small intervals denoted by Ik = [ kK ,
k+1
K ] for k = 0, 1, . . . ,KR− 1.

For each k ∈ {0, 1, · · · ,KR− 1}, we further divide Ik into four small closed intervals as

Ik = Ik,1 ∪ Ik,2 ∪ Ik,3 ∪ Ik,4,

where Ik,1 = [ kK ,
k
K+δ], Ik,2 = [ kK+δ, k+1

K −2δ], Ik,3 = [k+1
K −2δ, k+1

K −δ], Ik,4 = [ kK−δ, k+1
K ].

Following a similar proof in [38, Lemma 3.3], we have for all x ∈ Ik,1, Ik,2, Ik,3, Ik,4,

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B(f(x), ε+ ωf (δ)).

By [0, R] =
⋃KR−1
k=0

(
∪4
j=1Ik,j

)
, which implies that

mid
(
g(x− δ), g(x), g(x+ δ)

)
∈ B(f(x), ε+ ωf (δ)), for all x ∈ [0, R].

Therefore, we have
|ϕ(x)− f(x)| ≤ ε+ ωf (δ), for any x ∈ [0, R].

While the technique of approximating the univariate exponential function exp(−x) using ReLU
neural networks has been explored in recent works, e.g., [22, 43], we develop a new proof strategy
tailored to our setting, which enables separate control of the approximation rates in terms of the
network’s width and depth.
Lemma 16 (Approximation of exp(−x) on [0, R]). For any N,L ∈ N+ and R > 0 such that
N−2L−2 ≤ R−1, there exists a function ϕ implemented by a ReLU DNN with width 48s2(N +
1) log2(8N) and depth 18s2(L+ 2) log2(4L) + 2 such that

|ϕ(x)− exp(−x)| ≤
(
45s+Rs + 4

)
N−2sL−2s, for any x ∈ [0, R].

Proof. Set K = N2L2 and δ ∈ (0, 1/K). Let Ω([0, R],K, δ) partition [0, R] into K intervals Iβ
for β ∈ {0, 1, . . . ,K − 1}. For each β, we define xβ := βR

K and

Iβ :=
{
x ∈ R : x ∈

[
βR
K , (β+1)R

K − δ · 1{β≤K−2}
]}
.

Clearly, we have [0, R] = Ω([0, R],K, δ)
⋃(

∪β∈{0,1,··· ,K−1}Iβ
)

and xβ is the vertex of Iβ with
minimum ∥ · ∥1-norm.

Step 1: Approximation on non-trifling regions: x ∈ [0, R] \ Ω([0, R],K, δ).
Approximate xβ .

By Proposition 12, there exists a ReLU DNN

ϕstep ∈ NN
(
width ≤ 4N + 3; depth ≤ 4L+ 5

)
such that

ϕstep(x/R) = k, if x ∈
[
kR
K , (k+1)R

K − δ · 1k≤K−2

]
, for k = 0, 1, . . . ,K − 1.

Define a ReLU DNN ϕ̃step by

ϕ̃step(x) :=
R
Kϕstep(x/R), for any x ∈ [0, R].

Obviously, we have
ϕ̃step ∈ NN

(
width ≤ 4N + 3; depth ≤ 4L+ 5

)
(216)

and
ϕ̃step(x) =

βR

K
= xβ , for β ∈ {0, 1, . . . ,K − 1}.

By Taylor expansion of exp(−x) at xβ up to order s− 1, we have:

exp(−x) =
s−1∑
k=0

(−1)k exp(−xβ)
k!

(
x− xβ

)k
︸ ︷︷ ︸

=:F1

+
(−1)s exp(−θ)

s!

(
x− xβ

)s︸ ︷︷ ︸
=:F2

.
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for some real number θ that is between t and xβ .

For all x ∈ [0, R] \ Ω([0, R],K, δ), the magnitude of F2 can be bounded by

|F2| :=
∣∣∣ (−1)s exp(−θ)

s!

(
x− xβ

)s∣∣∣ ≤ 1

s!

(
x− xβ

)s ≤ 1

s!

(R
K

)s
≤ 1

s!
RsN−2sL−2s. (217)

Therefore, we only need to construct a ReLU DNN to approximate F1.

Approximate exp(−xβ). For β ∈ {0, 1, . . . ,K − 1}, define

ξβ := exp
(
−βR
K

)
.

Then we have ξβ ∈ [0, 1] for all β ∈ {0, 1, . . . ,K − 1}. With K = N2L2, by Proposition 13, there
exists a ReLU DNN

ϕpoint ∈ NN
(
width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L+ 2) log2(4L)

)
such that

|ϕpoint(β)− ξβ | ≤ N−2sL−2s, for β = 0, 1, . . . ,K − 1,

0 ≤ ϕpoint(β) ≤ 1.

For any x ∈ R, define

ϕ̃point(x) := ϕpoint

(xK
R

)
.

Obviously, we also have

ϕ̃point ∈ NN
(
width ≤ 16s(N + 1) log2(8N); depth ≤ 5(L+ 2) log2(4L)

)
. (218)

Then for all xβ = βR
K , β ∈ {0, 1, . . . ,K − 1}, we have 0 ≤ ϕ̃point(xβ) ≤ 1 and∣∣ϕ̃point(xβ)− exp(−xβ)

∣∣ = ∣∣∣ϕ̃point
(
βR
K

)
− exp

(
−βR

K

)∣∣∣
=
∣∣∣ϕpoint(β)− ξβ

∣∣∣
≤ N−2sL−2s. (219)

Approximate (x− xβ)
k. Let x̃ := x− xβ , then x̃ ∈ [0, RK ] ⊆ [0, 1]. By Proposition 11, there exists

a ReLU DNN

ϕpoly ∈ NN
(
width ≤ 9(N + 1) + s− 1, depth ≤ 7s(s− 1)L

)
(220)

such that for all 0 ≤ k ≤ s, ∣∣ϕpoly(x̃)− x̃k
∣∣ ≤ 9s(N + 1)−7sL. (221)

Note that 0 ≤ x̃ ≤ R/K, which gives that t̃k ∈ [0, 1]. For 0 ≤ k ≤ s,

9s(N + 1)−7sL ≤ 9s2−7s ≤ 0.1.

With Eq. (221) we have for all x ∈ [0, R] \ Ω([0, R],K, δ),

ϕpoly(x̃) = ϕpoly(x− xβ) ∈ [−0.1, 1.1].

Approximate exp(−x) for x ∈ [0, R \ Ω([0, R],K, δ). By Lemma 13, there exists a ReLU DNN

ϕmulti ∈ NN
(
width ≤ 9(N + 1) + 1; depth ≤ 2s(L+ 1)

)
(222)

such that for any x ∈ [a1, b1], y ∈ [a2, b2],

|ϕmulti(x, y)− xy| ≤ 6(b1 − a1)(b2 − a2)(N + 1)−2s(L+1).
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For all x ∈ [0,∞), we construct a neural network of the form:

ϕ̃exp(x) := ϕmulti

(
ϕ̃point

(
ϕ̃step(x)

)
,

s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

))
(223)

By Eq. (216), (218), (220) and (222), it is easy to verify that ϕ̃exp can be implemented by a ReLU
DNN with width

max
{
4N + 3, 16s(N + 1) log2(8N), s ·

(
9(N + 1) + s− 1

)
, 9(N + 1) + 1

}
≤ 16s2(N + 1) log2(8N),

and depth

4L+ 5 + 5(L+ 2) log2
(
4L
)
+ 7s2L+ 2s(L+ 1) + 3

≤ 4(L+ 2) + 5(L+ 2) log2
(
4L
)
+ 7s2(L+ 2) + 2s2(L+ 2)

≤ 18s2(L+ 2) log2
(
4L
)
.

Therefore, we have

ϕ̃exp ∈ NN
(
width ≤ 16s2(N + 1) log2(8N); depth ≤ 18s2(L+ 2) log2

(
4L
))
. (224)

Fix β ∈ {0, 1, . . . ,K − 1}, for all x ∈ Iβ , we have∣∣ϕ̃exp(x)− exp(−x)
∣∣

≤

∣∣∣∣∣ϕmulti

(
ϕ̃point

(
ϕ̃step(x)

)
,

s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

))
−
s−1∑
k=0

(−1)k exp(−xβ)
k!

(
x− xβ

)k∣∣∣∣∣+ |F2|

≤

∣∣∣∣∣ϕmulti

(
ϕ̃point

(
ϕ̃step(x)

)
,

s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

))
− ϕ̃point

(
ϕ̃step(x)

)
×
s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

)∣∣∣∣∣︸ ︷︷ ︸
=:F1,1

+

∣∣∣∣∣ϕ̃point
(
ϕ̃step(x)

)
×
s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

)
− exp(−xβ)×

s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

)∣∣∣∣∣︸ ︷︷ ︸
=:F1,2

+

∣∣∣∣∣exp(−xβ)×
s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

)
− exp(−xβ)

s−1∑
k=0

(−1)k

k!

(
x− xβ

)k∣∣∣∣∣︸ ︷︷ ︸
=:F1,3

+
1

s!
RsN−2sL−2s.

Bounding F1,1. For all x ∈ [0, R \ Ω([0, R],K, δ), we have ϕ̃point
(
ϕ̃step(x)

)
∈ [0, 1] and

−0.3 < −e× 0.1 ≤
s−1∑
k=0

−0.1

k!
≤

s−1∑
k=0

1

k!
ϕpoly(t− xβ) ≤

s−1∑
k=0

1.1

k!
≤ e× 1.1 < 3.

Therefore,
F1,1 ≤ 6s

(
3− (−0.3)

)
(N + 1)−2s(L+1) < 20s(N + 1)−2s(L+1). (225)

Bounding F1,2.

F1,2 ≤
∣∣∣ϕ̃point

(
ϕ̃step(x)

)
− exp(−xβ)

∣∣∣︸ ︷︷ ︸
≤Eq. (219)

·

∣∣∣∣∣
s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

)∣∣∣∣∣ ≤ 3N−2sL−2s. (226)
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Bounding F1,3.

F1,3 ≤
∣∣exp(−xβ)∣∣ ·

∣∣∣∣∣
s−1∑
k=0

1

k!
ϕpoly

(
x− ϕ̃step(x)

)
−
s−1∑
k=0

(−1)k

k!

(
x− xβ

)k∣∣∣∣∣
≤

s−1∑
k=0

1

k!

∣∣∣ϕpoly,k
(
x− ϕ̃step(x)

)
−
(
x− xβ

)k︸ ︷︷ ︸
≤Eq. (221)

∣∣∣
≤

s−1∑
k=0

1

k!
9s(N + 1)−7sL = 9es(N + 1)−7sL < 25s(N + 1)−7sL. (227)

Combine Eq. (217) and (225) to (227), we obtain

|ϕ̃exp(x)− exp(−t)| ≤ 20s(N + 1)−2s(L+1) + 3N−2sL−2s + 25s(N + 1)−7sL +
1

s!
RsN−2sL−2s

≤ 20s(N + 1)−2s(L+1) + 25s(N + 1)−7sL + (3 +Rs)N−2sL−2s.

Note that for any N,L, s ∈ N+,

(N + 1)−7sL ≤ (N + 1)−2s(L+1) ≤ (N + 1)−2s2−2sL ≤ N−2sL−2s,

which gives that
|ϕ̃exp(x)− exp(−x)| ≤

(
45s+Rs + 3

)
N−2sL−2s. (228)

Step 2: Approximation on the whole regions: x ∈ [0, R]).

For all x ∈ R, define ϕexp by:

ϕexp(x) := mid
(
ϕ̃exp(x− δ), ϕ̃exp(x), ϕ̃exp(x+ δ)

)
.

Then, by Lemma 15, we have for all δ ∈ (0, R3K ],

|ϕexp(x)− exp(−x)| ≤
(
45s+Rs + 3

)
N−2sL−2s + ωexp(−x)(δ), for any x ∈ [0, R],

where ωexp(−x)(δ) is defined as

ωexp(−x)(δ) := sup
{
| exp(−x)− exp(−y)| : ∥x− y∥2 ≤ δ, x, y ∈ [0, ⌈

√
R⌉]2

}
.

Choose δ ∈ (0, R3K ] such that
ωexp(−x)(δ) ≤ N−2sL−2s,

which gives that for all x ∈ [0, R],

|ϕexp(x)− exp(−x)| ≤
(
45s+Rs + 3

)
N−2sL−2s +N−2sL−2s =

(
45s+Rs + 4

)
N−2sL−2s.

To determine the size of the network for implementing ϕexp, note that from Eq. (224), we have

ϕ̃exp(·−δ), ϕ̃exp(·), ϕ̃exp(·+δ) ∈ NN
(
width ≤ 16s2(N+1) log2(8N); depth ≤ 18s2(L+2) log2

(
4L
))
.

Then, we have

ϕexp ∈ NN
(
#input = 1;width ≤ 48s2(N+1) log2(8N); depth ≤ 18s2(L+2) log2

(
4L
)
#output = 3

)
.

(229)

Recall that mid(·, ·, ·) ∈ NN (width ≤ 14; depth ≤ 2) by Lemma 22. Therefore, ϕexp =

mid(·, ·, ·) ◦ ϕ̃exp can be implemented by a ReLU DNN with width

max
{
48s2(N + 1) log2(8N), 14

}
= 48s2(N + 1) log2(8N)

and depth
18s2(L+ 2) log2(4L) + 2.
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Lemma 17 (Approximate k-th Root Function on [0, R]). For any N,L, k ∈ N+ and R > 0, there
exists a function ϕ implemented by a ReLU DNN with width 48s2(N + 1) log2(8N) and depth
18s2(L+ 2) log2(4L) + 2 such that

|ϕ(x)− x1/k| ≤
(
45s+ 5

)
R1/kN−2sL−2s, for any x ∈ [0, R].

Proof. Let x̃ = x/R ∈ [0, 1], we have x1/k = R1/kx̃1/k for any x ∈ [0, R].

Step 1: Decompose the domain.

Set K = N2L2 and δ ∈ (0, 1/K). Let Ω([0, 1],K, δ) partition [0, 1] into K intervals Iβ for
β ∈ {0, 1, . . . ,K − 1}. For each β, we define xβ := β

K and

Iβ :=
{
x ∈ R : x ∈

[
β
K ,

(β+1)R
K − δ · 1{β≤K−2}

]}
.

Clearly, we have [0, ] = Ω([0, ],K, δ)
⋃(

∪β∈{0,1,··· ,K−1}Iβ
)

and xβ is the vertex of Iβ with
minimum ∥ · ∥1-norm.

Step 2: Taylor expansion of x̃1/k.

By Taylor expansion of x̃1/k at xβ up to order s− 1, we have:

x̃1/k =

s−1∑
r=0

(−1)r
(
1/k

r

)
(1− x̃)r︸ ︷︷ ︸

=:F1

+(−1)sθs
(
1/k

s

)
(1− x̃)s︸ ︷︷ ︸

=:F2

.

for some real number θ that is between t and xβ .

Step 3: Approximation error and the size of the network

Following a similar proof for Lemma 16, we can obtain that for any s, k ∈ N+, there exists a function
ϕ̃ implemented by a ReLU DNN with width 48s2(N +1) log2(8N) and depth 18s2(L+2) log2(4L)
such that

|ϕ̃(x̃)− x̃1/k| ≤ (45s+ 5)N−2sL−2s, for any x̃ ∈ [0, 1].

For any x ∈ [0, R], define ϕ by
ϕ(x) := R1/kϕ̃(x/R).

Clearly, we have

ϕ ∈ NN
(
width ≤ 48s2(N + 1) log2(8N); depth ≤ 18s2(L+ 2) log2(4L)

)
such that ∣∣ϕ(x)− x1/k

∣∣ = R1/k
∣∣∣ϕ̃(x/R)− (x/R)1/k∣∣∣

≤ (45s+ 5)R1/kN−2sL−2s, for any x ∈ [0, R].
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D.6 Existing approximation results

Lemma 18 (Approximate Square Function on [0, 1] [38]). For anyN,L ∈ N+, there exists a function
ϕ implemented by a ReLU DNN with width 3N and depth L such that

|ϕ(x)− x2| ≤ N−L, for any x ∈ [0, 1].

Lemma 19 (Approximate xy on [0, 1] [38]). For any N,L ∈ N+, there exists a function ϕ imple-
mented by a ReLU DNN with width 9N and depth L such that

|ϕ(x, y)− xy| ≤ 6N−L, for any x, y ∈ [0, 1].

Lemma 20 (Approximate xy on [a, b] [38]). For any N,L ∈ N+ and a, b ∈ R with a < b, there
exists a function ϕ implemented by a ReLU DNN with width 9N + 1 and depth L such that

|ϕ(x, y)− xy| ≤ 6(b− a)2N−L, for any x, y ∈ [a, b].

Lemma 21 (Approximate Monomial Function on [0, 1] [38]). For any N,L, k ∈ N+ with k ≥ 2,
there exists a function ϕ implemented by a ReLU DNN with width 9(N + 1) + k − 1 and depth
7kL(k − 1) such that

|ϕ(x)− x1x2 · · ·xk| ≤ 9(k − 1)(N + 1)−7kL, for any x = [x1, x2, . . . , xk]
⊤ ∈ [0, 1]k.

Proposition 11 (Approximate Multivariate Polynomials on [0, 1]d [38]). Assume P (x) = xν =
xν11 x

ν2
2 · · ·xνdd for ν ∈ Nd with ∥ν∥1 ≤ k ∈ N+. For any N,L ∈ N+, there exists a function ϕ

implemented by a ReLU DNN with width 9(N + 1) + k − 1 and depth 7k2L such that

|ϕ(x)− P (x)| ≤ 9k(N + 1)−7kL, for any x ∈ [0, 1]d.

Our goal is to construct a step function Ψ mapping x ∈ Qβ to xβ = β
K for any β ∈ {0, 1, . . . ,K −

1}d. We only need to approximate one-dimensional step functions, because in the multidimensional
case, we can simply set Ψ(x) = [ψ(x1), ψ(x2), . . . , ψ(xd)]

⊤, where ψ is a one-dimensional step
function.
Proposition 12 (Approximate One-Dimensional Step Function on [0, 1] [38]). For any N,L, d ∈ N+

and δ ∈ (0, 1
3K ] with K = ⌊N1/d⌋2⌊L2/d⌋, there exists a one-dimensional function ϕ implemented

by a ReLU DNN with width 4⌊N1/d⌋+ 3 and depth 4L+ 5 such that

ϕ(x) = k, if x ∈
[ k
K
,
k + 1

K
− δ · 1{k≤K−2}

]
, for k = 0, 1, . . . ,K − 1.

Proposition 13 (Point Fitting on [0, 1] [38]). Given any N,L, d ∈ N+ and ξi ∈ [0, 1] for i =
0, 1, . . . , N2L2 − 1, there exists a function ϕ implemented by a ReLU DNN with width 16s(N +
1) log2(8N) and depth 5(L+ 2) log2(4L) such that

(1) |ϕ(i)− ξi| ≤ N−2sL−2s for i = 0, 1, . . . , N2L2 − 1;

(2) 0 ≤ ϕ(x) ≤ 1 for any x ∈ R.

Lemma 22 (Approximate Middle Value Function [38]). The middle value function mid(x1, x2, x3)
can be implemented by a ReLU DNN with width 14 and depth 2.

Lemma 23 (Approximating the Reciprocal Function [22]). For any 0 < ϵ < 1, there exists a function
ϕ implemented by a ReLU DNN

ϕ ∈ NN
(
width ≲ log3(ϵ−1); depth ≲ log2(ϵ−1)

)
such that ∣∣∣ϕ(x′)− 1

x

∣∣∣ ≤ ϵ+
|x′ − x|
ϵ2

, for all x ∈ [ϵ, ϵ−1] and x′ ∈ R.
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E Neural Network Score Estimation and Distribution Estimation

E.1 Score estimation errors by deep neural networks

Theorem 2 (Neural Network Score Estimation for Sub-Gaussian Distributions) Assume that the
conditions of Theorem 1 hold. For 3 ≤ d ≲

√
log n, fix k ∈ N+ with 6 logn

(d−2) log(t−1
0 )

∨ d/2 ≤ k ≲
logn

log logn in Eq. (9). Then, for any δ ∈ (0, 1), with probability at least 1 − δ, the excess risk of an
empirical risk minimizer Eq. (7) over the neural network class NN satisfies that∫ T

t0

EXt

[
∥ϕ̂(Xt, t)−∇ log pt(Xt)∥22

]
dt ≲ t

−d/2
0 n−1 log

d
2+4 n+ t−1

0 n−1 log n · log 2

δ
.

Proof. For notation simplicity, throughout the following, we write

NN ≡
{
NN (width ≤ O(n

3
2k log2 n); depth ≤ O(log2 n)) | ∥ϕ(·, t)∥∞ ≲ σ−1

t

√
log n

}
.

and
ϕ∗(y, t) := ∇ log pt(y), for all y ∈ Rd, t ∈ [t0, T ],

Recall that

ℓ(ϕ,X0) :=

∫ T

t0

EXt|X0
[∥ϕ(Xt, t)−∇ log pt(Xt|X0)∥22]dt

=

∫ T

t0

EXt|X0

[∥∥∥ϕ(Xt, t) +
Xt −mtX0

σ2
t

∥∥∥2
2

]
dt.

For all ϕ : Rd × [t0, T ] → Rd, we have∫ T

t0

EXt [∥ϕ(Xt, t)− ϕ∗(Xt, t)∥22]dt = EX0 [ℓ(ϕ,X0)]− EX0 [ℓ(ϕ
∗,X0)]. (230)

Given a set of i.i.d. samples S := {x(i)}ni=1, where x(i) ∼ P0, the denoising score matching estimate
is defined as an empirical risk minimizer Eq. (7), i.e.,:

ϕ̂ ∈ argmin
ϕ∈NN

1

n

n∑
i=1

ℓ(ϕ,x(i)).

Given another set of i.i.d. samples S̄ := {x̄(i)}ni=1, where x̄(i) ∼ P0, we write the regularized
empirical score functions associated with S̄ and ρn,t = (2πσ2

t )
−d/2e−1n−1 as

ˆ̄ϕ(y, t) :=
∇p̂t(y)

p̂t(y) ∨ ρn,t
. (231)

For any ϕ ∈ NN , denote by

ÊX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
=

1

n

n∑
i=1

(
ℓ(ϕ,x(i))− ℓ(ϕ∗,x(i))

)
,

ÊX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]
=

1

n

n∑
i=1

ES̄
[
ℓ(ϕ,x(i))− ℓ( ˆ̄ϕ,x(i))

]
,

where the samples x(1), . . . ,x(n) are drawn independently from the same distribution as X0 and
independent of S̄. We aim to provide a high-probability upper bound on

EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
(232)

for the empirical risk minimizer ϕ̂.
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Recall from Lemma 5 that

∥ ˆ̄ϕ(·, ·)∥2L∞(Rd×[t0,T ]) ≤ ∥ ˆ̄ϕ(·, ·)∥2L2(Rd×[t0,T ]) ≤
1

σ2
t

log
( (2πσ2

t )
−d/2

ρn,t

)
≲ σ−2

t log n, (233)

which suggests that the random variable ES̄ [ℓ(ϕ,X0)−ℓ( ˆ̄ϕ,X0)] can be bounded. Therefore, instead
of directly upper bounding Eq. (232), we first use Bernstein’s inequality to upper bound the following
excess risk:

EX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]
for a fixed ϕ ∈ NN . Then, we provide a high probability bound for ℓ(ϕ̂, ·)− ℓ(ϕ∗, ·). We conduct
the following steps for our purpose:

Step 1: Bernstein’s large deviation bound for ES̄ [ℓ(ϕ, ·)− ℓ( ˆ̄ϕ, ·)].
We first verify Bernstein’s condition for the excess loss class

L := {ES̄ [ℓ(ϕ, ·)− ℓ( ˆ̄ϕ, ·)] : ϕ ∈ NN}. (234)

By Lemma 25, for any ϕ ∈ NN , it holds that

EX0

[(
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

)2]
≤ EX0

[
ES̄
[(
ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)

)2]]
(by Jensen’s inequality)

≲ t−1
0 log n · EX0

[
ES̄
[∫ T

t0

EXt|X0

[∥∥ϕ(Xt, t)− ˆ̄ϕ(Xt, t)
∥∥2
2

]
dt
]]

(by Lemma 25)

= t−1
0 log n · ES̄

[∫ T

t0

EXt

[∥∥ϕ(Xt, t)− ˆ̄ϕ(Xt, t)
∥∥2
2

]
dt
]

≲ t−1
0 log n ·

(∫ T

t0

EXt

[∥∥ϕ(Xt, t)− ϕ∗(Xt, t)
∥∥2
2

]
dt︸ ︷︷ ︸

= Eq. (230)

+ES̄
[∫ T

t0

EXt

[∥∥ ˆ̄ϕ(Xt, t)− ϕ∗(Xt, t)
∥∥2
2

]
dt
]

︸ ︷︷ ︸
≲ Theorem 4

)

≲ t−1
0 log n ·

((
EX0 [ℓ(ϕ,X0)]− EX0 [ℓ(ϕ

∗,X0)]
)
+ αdt

−d/2
0 n−1 log

d
2+4 n

)
= t−1

0 log n · EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)]

]
+ αdt

−d/2−1
0 n−1 log

d
2+5 n. (235)

First, we show that for all ϕ ∈ NN , the random variable ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)] is bounded. By
Lemma 25, for any ϕ ∈ NN and any x ∈ Rd, we have

(
ES̄
[
ℓ(ϕ,x)− ℓ( ˆ̄ϕ,x)

])2 ≤ ES̄
[(
ℓ(ϕ,x)− ℓ( ˆ̄ϕ,x)

)2]
(by Jensen’s inequality)

≲ t−1
0 log n · ES̄

[∫ T

t0

EXt|X0=x

[
∥ϕ(Xt, t)− ˆ̄ϕ(Xt, t)∥22

]
dt
]

≲ t−1
0 log n · ES̄

[∫ T

t0

EXt|X0=x

[
∥ϕ(Xt, t)∥22 + ∥ ˆ̄ϕ(Xt, t)∥22

]
dt
]

≲ t−1
0 log2 n

∫ T

t0

σ−2
t dt (by ∥ϕ(Xt, t)∥22, ∥ ˆ̄ϕ(Xt, t)∥22 ≲ σ−2

t log n)

≤ t−1
0 log2 n

1

et0 − 1
≤ t−2

0 log2 n.
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Applying the Bernstein’s inequality (i.e., Theorem 5) with Eq. (235), we obtain that, for any fixed
ϕ ∈ NN and any δ ∈ (0, 1), with probability at least 1− δ it holds that

∣∣∣EX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]∣∣∣
≲

√
EX0

[(
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

)2]
log(2/δ)

n
+
t−1
0 log n · log(2/δ)

n
(by Theorem 5)

≲

√
t−1
0 log n ·

(
EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)]

]
+ αdt

−d/2
0 n−1 log

d
2+4 n

)
log(2/δ)

n

+
t−1
0 log n · log(2/δ)

n
. (236)

Step 2: ε-net argument.

Here, we use the standard ε-net argument to derive a uniform large deviation bound based on
Eq. (236).

Fix a parameter τ > 0 to be specified later, and define

NN τ/
√
T
:= {ϕj : 1 ≤ j ≤ Nτ/

√
T }

be the minimal τ√
T

-net of NN w.r.t. theL∞-norm on Rd×[t0, T ], where Nτ/
√
T
:= N ( τ√

T
,NN , ∥·

∥∞) is the cover number of NN .

By the union bound and Eq. (236), we obtain that for any δ ∈ (0, 1), with probability at least 1− δ, it
holds that

∣∣∣EX0

[
ES̄ [ℓ(ϕ◦,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ◦,X0)− ℓ( ˆ̄ϕ,X0)]

]∣∣∣
≲

√
t−1
0 log n ·

(
EX0

[
ℓ(ϕ◦,X0)− ℓ(ϕ∗,X0)

]
+ αdt

−d/2
0 n−1 log

d
2+4 n

)
log(2Nτ/

√
T /δ)

n

+
t−1
0 log n · log(2Nτ/

√
T /δ)

n
, (237)

simultaneously for all ϕ◦ ∈ NN τ,t.

Moreover, by Lemma 25, we have for any ϕ ∈ NN , there exists ϕ◦ ∈ NN τ/
√
T such that

(
ℓ(ϕ,x)− ℓ(ϕ◦,x)

)2
≲ t−1

0 log n

∫ T

t0

EXt|X0=x

[
∥ϕ(Xt, t)− ϕ◦(Xt, t)∥22

]
dt (by Lemma 25)

≤ log n

t0

∫ T

t0

τ2

T
dt (by ϕ◦ ∈ NN τ/

√
T )

=
τ2 log n

t0
, (238)

which implies that

|ℓ(ϕ,x)− ℓ(ϕ◦,x)| ≲ τ

√
log n

t0
. (239)
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For any ϕ ∈ NN , let ϕ◦ be its closest element in NN τ/
√
T . Then, for any δ ∈ (0, 1), with

probability at least 1− δ, we have∣∣∣EX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]∣∣∣
≤
∣∣∣EX0

[
ℓ(ϕ,X0)− ℓ(ϕ◦,X0)

]
− ÊX0

[
ℓ(ϕ,X0)− ℓ(ϕ◦,X0)

]∣∣∣
+
∣∣∣EX0

[
ES̄ [ℓ(ϕ◦,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ◦,X0)− ℓ( ˆ̄ϕ,X0)]

]∣∣∣
≲ τ

√
log n

t0
+
∣∣∣EX0

[
ES̄ [ℓ(ϕ◦,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ◦,X0)− ℓ( ˆ̄ϕ,X0)]

]∣∣∣
(by Eq. (239))

≲ τ

√
log n

t0
+

√
log n ·

(
EX0

[
ℓ(ϕ◦,X0)− ℓ(ϕ∗,X0)

]
+ αdt

−d/2
0 n−1 log

d
2+4 n

)
log(2Nτ/

√
T /δ)

nt0

+
log n · log(2Nτ/

√
T /δ)

nt0
(by Eq. (237))

≲

√√√√ log n ·
(
τ
√
t−1
0 log n+ EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
+ αdt

−d/2
0 n−1 log

d
2+4 n

)
log(2Nτ/

√
T /δ)

nt0

+ τ

√
log n

t0
+

log n · log(2Nτ/
√
T /δ)

nt0
. (240)

For the first term of Eq. (240), we have√√√√ log n ·
(
τ
√
t−1
0 log n+ EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
+ αdt

−d/2
0 n−1 log

d
2+4 n

)
log(2Nτ/

√
T /δ)

nt0

≤

√
log n · log(2Nτ/

√
T /δ)

nt0

(√
τ

√
log n

t0
+
√
EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
+

√
αdt

−d/2
0 n−1 log

d
2+4 n

)
=

√
log n · log(2Nτ/

√
T /δ)

nt0
·

√
τ

√
log n

t0
+

√
log n · log(2Nτ/

√
T /δ)

nt0
·
√
αdt

−d/2
0 n−1 log

d
2+4 n

+

√
log n · EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0

≤
log n · log(2Nτ/

√
T /δ)

nt0
+
τ

2

√
log n

t0
+

1

2
αdt

−d/2
0 n−1 log

d
2+4 n

+

√
log n · EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0
. (241)

Substituting Eq. (241) into Eq. (240) we obtain with probability at least 1− δ, it holds that∣∣∣EX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]
− ÊX0

[
ES̄ [ℓ(ϕ,X0)− ℓ( ˆ̄ϕ,X0)]

]∣∣∣
≲ τ

√
log n

t0
+

√
log n · EX0

[
ℓ(ϕ,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0
+

log n · log(2Nτ/
√
T /δ)

nt0

+ αdt
−d/2
0 n−1 log

d
2+4 n. (242)

Step 3: High probability bound for ℓ(ϕ̂, ·)− ℓ(ϕ∗, ·)

Recall that ϕ̂ minimizes the empirical risk over the class NN , i.e.,

ϕ̂ ∈ argmin
ϕ∈NN

ÊX0
[ℓ(ϕ,X0)] = argmin

ϕ∈NN

1

n

n∑
i=1

ℓ(ϕ,x(i)).
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Let ϕ̃ ∈ NN be the neural network from Theorem 1 and constructed from i.i.d. samples S̄ :=
{x̄(i)}ni=1 such that

ES̄
[
EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]]
= ES̄

[∫ T

t0

EXt

[
∥ϕ̃(Xt, t)− ϕ∗(Xt, t)∥22

]
dt
]

≲ αdt
−d/2
0 n−1 log

d
2+4 n.

Then, with probability at least 1− δ, it holds that

ÊX0

[
ES̄ [ℓ(ϕ̂,X0)− ℓ( ˆ̄ϕ,X0)]

]
≤ ÊX0

[
ES̄ [ℓ(ϕ̃,X0)− ℓ( ˆ̄ϕ,X0)]

]
(by the definition of ϕ̂)

≲ EX0

[
ES̄ [ℓ(ϕ̃,X0)− ℓ( ˆ̄ϕ,X0)]

]
+

√
log n · EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0

+ τ

√
log n

t0
+

log n · log(2Nτ/
√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n (by Eq. (242))

= ES̄
[
EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]]
− EX0

[
ES̄ [ℓ( ˆ̄ϕ,X0)− ℓ(ϕ∗,X0)]

]
+

√
log n · EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0

+ τ

√
log n

t0
+

log n · log(2Nτ/
√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n

= ES̄
[
EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]]
− ES̄

[∫ T

t0

EXt

[
∥ ˆ̄ϕ(Xt, t)− ϕ∗(Xt, t)∥22

]
dt
]

︸ ︷︷ ︸
≥0

+

√
log n · EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0

+ τ

√
log n

t0
+

log n · log(2Nτ/
√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n (by Eq. (230))

≤ ES̄
[
EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]]
+

√
log n · EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0

+ τ

√
log n

t0
+

log n · log(2Nτ/
√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n.

For the first term and the second term of the above inequality, recall from Theorem 1 that

ES̄
[
EX0

[
ℓ(ϕ̃,X0)− ℓ(ϕ∗,X0)

]]
= ES̄

[∫ T

t0

EXt

[
∥ϕ̃(Xt, t)− ϕ∗(Xt, t)∥22

]
dt
]

(by Eq. (230))

≲ αdt
−d/2
0 n−1 log

d
2+4 n. (243)

Therefore, with probability at least 1− δ, it holds that

ÊX0

[
ES̄ [ℓ(ϕ̂,X0)− ℓ( ˆ̄ϕ,X0)]

]
≲

√
log n · log(2Nτ/

√
T /δ) · αdt

−d/2
0 n−1 log

d
2+4 n

nt0
+ τ

√
log n

t0

+
log n · log(2Nτ/

√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n

≲
log n · log(2Nτ/

√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n+ τ

√
log n

t0
.

(244)
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Noticing that

EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
= EX0

[
ℓ(ϕ̂,X0)− ES̄ [ℓ( ˆ̄ϕ,X0)] + ES̄ [ℓ( ˆ̄ϕ,X0)]− ℓ(ϕ∗,X0)

]
= EX0

[
ES̄ [ℓ(ϕ̂,X0)− ℓ( ˆ̄ϕ,X0)]

]
+ EX0

[
ES̄ [ℓ( ˆ̄ϕ,X0)]− ℓ(ϕ∗,X0)

]
(245)

For the first term of the above inequality, according to Eq. (242), with probability at least 1− δ, it
holds that

EX0

[
ES̄ [ℓ(ϕ̂,X0)− ℓ( ˆ̄ϕ,X0)]

]
≲ ÊX0

[
ES̄ [ℓ(ϕ̂,X0)− ℓ( ˆ̄ϕ,X0)]

]︸ ︷︷ ︸
≲ Eq. (244)

+

√
log n · EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0

+ τ

√
log n

t0
+

log n · log(2Nτ/
√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n

≲

√
log n · EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0
+ τ

√
log n

t0

+
log n · log(2Nτ/

√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n. (246)

For the second term of Eq. (245), recall from Theorem 4 that

EX0

[
ES̄ [ℓ( ˆ̄ϕ,X0)]− ℓ(ϕ∗,X0)

]
= ES̄

[∫ T

t0

EXt

[
∥ ˆ̄ϕ(Xt, t)− ϕ∗(Xt, t)∥22

]
dt
]

(by Eq. (230))

≲ αdt
−d/2
0 n−1 log

d
2+4 n. (247)

Combining Eq. (245) to (247), we obtain that with probability at least 1− δ, it holds that

EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
≲

√
log n · EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
log(2Nτ/

√
T /δ)

nt0
+ τ

√
log n

t0

+
log n · log(2Nτ/

√
T /δ)

nt0
+ αdt

−d/2
0 n−1 log

d
2+4 n.

Recall the fact that the inequality x ≤ 2a
√
x+ b implies that x ≤ 4a2 + 2b for non-negative a, b and

x [28]. Therefore, with probability at least 1− δ, it holds that

EX0

[
ℓ(ϕ̂,X0)−ℓ(ϕ∗,X0)

]
≲ τ

√
log n

t0
+
log n · log(2Nτ/

√
T /δ)

nt0
+αdt

−d/2
0 n−1 log

d
2+4 n. (248)

Step 4: Covering number evaluation for Nτ/
√
T .

It is shown in Theorem 6 and 8 of [52] that the Pseudo-dimension of ReLU networks has two types
of upper bounds: O(WL logW ) and O(WU), where W , L, and U are the numbers of parameters,
layers, and neurons, respectively. If we let N denote the maximum width of the network, then
W = O(N2L) and U = O(NL), implying that

WL logW = O
(
N2L · L log(N2L)

)
= O

(
N2L2 log(NL)

)
WU = O

(
N2L ·NL

)
= O(N3L2).

Recall that

NN ≡
{
ϕ ∈ NN (width ≤ O(n

3
2k log2 n); depth ≤ O(log2 n)) | ∥ϕ(·, t)∥∞ ≲ σ−1

t

√
log n

}
.
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With N ≤ O(n
3
2k log2 n), L ≤ O(log2 n), the pseudo-dimension of NN satisfies that

Pdim(NN ) ≤ O(N2L2 log(NL)) ∧ O(N3L2)

≤ O
(
n

3
k log4 n · log22 n · log(n 3

2k log3 n)
)

≤ O
(
n

3
k log7 n

)
. (249)

Futhermore, by Theorem 6 ([53, Theorem 12.2]), the covering number Nτ/
√
T satisfies that

log
(
Nτ/

√
T

)
≲ log

(Pdim(NN )∑
l=1

(
d

l

)(σ−1
t0

√
T log n

τ

)l)
≲ Pdim(NN ) log

(√T log n

σt0τ

)
≲ n

3
k log7 n · log

( n

σt0τ

)
(by T = nO(1))

≲ n
3
k log7 n ·

(
log n+ log

1√
t0

+ log
1

τ

)
(by 1

2α
2n−2/d log n ≤ t0 ≤ 1/2)

≲ n
3
k log7 n ·

(
log n+ log

1

τ

)
(250)

Substituting Eq. (250) into Eq. (248), we obtain

EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
≲

log n

nt0

(
log(Nτ/

√
T ) + log

2

δ

)
+ τ

√
log n

t0
+ αdt

−d/2
0 n−1 log

d
2+4 n

≲
log n

nt0

(
n

3
k log7 n ·

(
log n+ log

1

τ

)
+ log

2

δ

)
+ τ

√
log n

t0
+ αdt

−d/2
0 n−1 log

d
2+4 n.

Step 5: Determining τ and k

Choosing τ = n−1, we obtain

EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
≲ t−1

0 n
3
k−1 log9 n+ t−1

0 n−1 log n · log 2

δ
+ αdt

−d/2
0 n−1 log

d
2+4 n.

Noticing that when d ≥ 3, if k ≥ 6 logn

(d−2) log(t−1
0 )

, we have t−1
0 n

3
k ≤ t

−d/2
0 , which ensures that the last

term will dominate the first term in the above inequality. Moreover, recall that to ensure Theorem 1,
we require d/2 ≤ k ≲ logn

log logn for d ≲
√
log n.

Therefore, we obtain that for 3 ≤ d ≲
√
log n, fix k ∈ N+ with d/2 ∨ 6 logn

(d−2) log(t−1
0 )

≤ k ≲ logn
log logn ,

with probability at least 1− δ, it holds that

EX0

[
ℓ(ϕ̂,X0)− ℓ(ϕ∗,X0)

]
≲ αdt

−d/2
0 n−1 log

d
2+4 n+ t−1

0 n−1 log n · log 2

δ
.
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E.2 Distribution estimation by deep neural networks

Theorem 3 (Distribution Estimation Error of Pt0). Assume that the conditions of Theorem 2 hold.
Then, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

E{x(i)}n
i=1

[
TV(Pt0 , P̂

γd
t0 )
]
≲ αd/2t

−d/4
0 n−1/2 log

d
4+2 n+ t

−1/2
0 n−1/2 log1/2 n ·

√
log(2/δ).

Proof. The distribution estimation error in the TV distance at time t0 into the following two terms:
the score estimation error, and the Gaussian induced error.

E{x(i)}
[
TV(Pt0 , P̂

γd
t0 )]

]
≤ E{x(i)}

[
TV(Pt0 , P̂t0)

]
+ E{x(i)}

[
TV(P̂t0 , P̂

γd
t0 )
]
.

1) Bounding the score estimation error. By Pinsker’s inequality (c.f. Lemma 31), TV distance is upper

bounded by the KL divergence, i.e., TV(Pt0 , P̂t0) ≤
√

1
2KL(Pt0∥P̂t0). Furthermore, by Girsanov’s

theorem (c.f. Theorem 7 and Corollary 6 [16, 54]), we have

E{x(i)}
[
TV(Pt0 , P̂t0)

]
≤
√

1

2
E{x(i)}

[
KL(Pt0∥P̂t0)

]
(by Pinsker’s inequality and Jensen’s inequality)

≤

√
E{x(i)}

[∫ T

t=t0

Ext∼Pt

[
∥∇ log pt(xt)− ϕscore(xt, t)∥22

]
dt
]

(by Corollary 6)

≲

√
αdt

−d/2
0 n−1 log

d
2+4 n+ t−1

0 n−1 log n · log 2

δ
(by Theorem 2)

≤ αd/2t
−d/4
0 n−1/2 log

d
4+2 n+ t

−1/2
0 n−1/2 log1/2 n ·

√
log(2/δ).

2) Bounding the Gaussian induced error. The error from the last term is induced by starting from
the standard Gaussian γd instead of the marginal distribution PT . The convergence of the OU
process [55, 22] gives that

TV(P̂t0 , P̂
γd
t0 ) ≤

√
1

2
KL(P̂t0∥P̂

γd
t0 ) ≲ e−T . (251)

Given that T = nO(1), this term decays exponentially to zero. Therefore, the overall bound is
dominated by the first term, which completes the proof.
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E.3 Useful lemmas for estimation

Lemma 24 ([56, Proposition 2.2]). Suppose that X is a sub-exponential random variable with
parameters ν, b, that is

E
[
exp(λ(X − E[X]))

]
≤ exp(ν2λ2/2), for all λ such that |λ| ≤ 1/b.

Then, for any t ≥ 0, it holds that

Pr[X ≥ E[X] + t] ≤ exp
(
−1

2

( t2
ν2

∧ t

b

))
.

Remark 5 ([56, Eamples 2.5]). The chi-squared random variable with d degrees of freedom is
sub-exponential with parameters (2

√
d, 4). This yields that, if X ∼ χ2(d), then

Pr[X ≥ d+ t] ≤ exp
(
−1

8

( t2
d

∧ t
))

for all t ≥ 0.

Lemma 25. Let ϕ : Rd× [t0, T ] → Rd and ϕ′ : Rd× [t0, T ] → Rd be any Borel functions such that

∥ϕ(·, t)∥L∞(Rd) ≲ σ−1
t

√
log n and ∥ϕ′(·, t)∥L∞(Rd) ≲ σ−1

t

√
log n.

Then, for all x ∈ Rd, it holds that(
ℓ(ϕ,x)− ℓ(ϕ′,x)

)2
≲ t−1

0 d log n

∫ T

t0

EXt|X0=x

[∥∥ϕ(Xt, t)− ϕ′(Xt, t)
∥∥2
2

]
dt.

Proof.

ℓ(ϕ,x)− ℓ(ϕ′,x)

=

∫ T

t0

EXt|X0=x

[∥∥∥ϕ(Xt, t) +
Xt −mtx

σ2
t

∥∥∥2
2
−
∥∥∥ϕ′(Xt, t) +

Xt −mtx

σ2
t

∥∥∥2
2

]
dt

=

∫ T

t0

EXt|X0=x

[
∥ϕ(Xt, t)∥22 + 2

〈
ϕ(Xt, t),

Xt −mtx

σ2
t

〉
− ∥ϕ′(Xt, t)∥22 − 2

〈
ϕ′(Xt, t),

Xt −mtx

σ2
t

〉]
dt

=

∫ T

t0

EXt|X0=x

[(
ϕ(Xt, t)− ϕ′(Xt, t)

)⊤(
ϕ(Xt, t) + ϕ′(Xt, t) +

2(Xt −mtx)

σ2
t

)]
dt

Applying the Cauchy-Schwarz inequality, we obtain that

|ℓ(ϕ,x)− ℓ(ϕ′,x)|

≤
∫ T

t0

EXt|X0=x

[∥∥ϕ(Xt, t)− ϕ′(Xt, t)
∥∥∥∥∥ϕ(Xt, t) + ϕ′(Xt, t) +

2(Xt −mtx)

σ2
t

∥∥∥]dt
≤

√∫ T

t0

EXt|X0=x

[∥∥ϕ(Xt, t)− ϕ′(Xt, t)
∥∥2
2

]
dt ·

√∫ T

t0

EXt|X0=x

[∥∥∥ϕ(Xt, t) + ϕ′(Xt, t) +
2(Xt −mtx)

σ2
t

∥∥∥2
2

]
dt

Noticing that for the OU process, we have Xt = mtX0 + σtZ, where Z ∼ N (0, Id). Then, we
have

EXt|X0=x

[∥∥∥2(Xt −mtx)

σ2
t

∥∥∥2
2

]
= 4EXt|X0=x

[∥∥∥σtZ
σ2
t

∥∥∥2
2

]
=

4

σ2
t

E[∥Z∥22].

Since Z = (Z1, . . . , Zd) and Zi ∼ N (0, 1),∀i = 1, . . . , n, we have Z2
i ∼ χ2(1) and E[Z2

i ] = 1.
Thus,

E[∥Z∥22] = E
[ d∑
i=1

Z2
i

]
=

d∑
i=1

E[Z2
i ] = d,

which gives that

EXt|X0=x

[∥∥∥2(Xt −mtX0)

σ2
t

∥∥∥2
2

]
≤ 4d

σ2
t

.
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Then it holds that√∫ T

t0

EXt|X0=x

[∥∥∥ϕ(Xt, t) + ϕ′(Xt, t) +
2(Xt −mtx)

σ2
t

∥∥∥2
2

]
dt

≤

√
3

∫ T

t0

(
EXt|X0=x

[
∥ϕ(Xt, t)∥22 + ∥ϕ′(Xt, t)∥22

]
+ EXt|X0=x

[∥∥∥2(Xt −mtX0)

σ2
t

∥∥∥2
2

])
dt

≲

√∫ T

t0

(
6σ−2

t log n+ 12dσ−2
t

)
dt (by ∥ϕ(Xt, t)∥L∞(Rd×[t0,T ]) ≲ σ−1

t

√
log n)

=
√
6(d log n+ 2d)

√∫ T

t0

1

1− exp(−2t)
dt

=

√
3(d log n+ 2d) log

( (eT − 1)(et0 + 1)

(eT + 1)(et0 − 1)

)
≤
√
3(d log n+ 2d) log

(et0 + 1

et0 − 1

)
≤
√
6(d log n+ 2d)

1

et0 − 1
≲
√
t−1
0 d log n.

Thus, we have(
ℓ(ϕ,x)− ℓ(ϕ′,x)

)2
≤
∫ T

t0

EXt|X0=x

[∥∥ϕ(Xt, t)− ϕ′(Xt, t)
∥∥2
2

]
dt ·

∫ T

t0

EXt|X0=x

[∥∥∥ϕ(Xt, t) + ϕ′(Xt, t) +
2(Xt −mtx)

σ2
t

∥∥∥2
2

]
dt

≲ t−1
0 d log n

∫ T

t0

EXt|X0=x

[∥∥ϕ(Xt, t)− ϕ′(Xt, t)
∥∥2
2

]
dt.

E.3.1 Bernstein’s inequality

Theorem 5 (Bernstein’s inequality for bounded distributions [40]). Let X1, . . . , Xn be independent
random variables such that |Xi| ≤ K for all i ∈ [n]. Then, for every t ≥ 0, we have

Pr
[∣∣∣ n∑
i=1

(Xi − E[Xi])
∣∣∣ ≥ t

]
≤ 2 exp

(
− t2/2∑n

i=1 E[X2
i ] +Kt/3

)
.

In other words, with probability at least 1− δ, it holds that∣∣∣ 1
n

n∑
i=1

(Xi − E[X])
∣∣∣ ≤ t

n
≤ 2K log(2/δ)

3n
+

√
2
n

∑n
i=1 E[X2

i ] log(2/δ)

n
.

E.3.2 Pseudo-dimension and covering number

Definition 5 (Pseudo-Dimension [52]). Let F be a class of functions from X to R. The
pseudo-dimension of F , written Pdim(F), is the largest integer m for which there exists
(x1, . . . , xm, y1, . . . , ym) ∈ Xm × Rm such that for any (b1, . . . , bm) ∈ {0, 1}m there exists f ∈ F
such that

∀i : f(xi) > yi ⇐⇒ bi = 1.

Theorem 6 (Covering Number Evaluation by Pseudo-Dimension [53, Theorem 12.2]). Let F be a
set of real functions from a domain X ⊆ Rd to the bounded interval [0, B]. Let ϵ > 0 and suppose
that the pseudo-dimension of F is Pdim. Then,

N (ϵ,F , ∥ · ∥∞) ≤
Pdim∑
k=1

(
d

k

)(B
ϵ

)k
,

which is less than (edB/ϵPdim)Pdim for d ≥ Pdim.
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F Convergence of SGMs

F.1 Girsanov’s theorem

Theorem 7 (Girsanov’s Theorem [54]). Given a filtered probability space (Ω,F , (Ft)t≥0, Q) and
a Q-Brownian motion (Bt)t∈[0,T ] under the probability measure Q. Suppose that (b(·, t))t∈[0,T ] is
an adapted process w.r.t. filtration (Ft)t∈[0,T ] generated by B such that the following Novikov’s
condition holds:

EQ

[
exp

(
1

2

∫ T

0

∥b(Bt, t)∥22dt

)]
<∞, (252)

Consider the process:

Lt :=
∫ t

0

b(Bs, s)dBs.

Then, L is a square-integrable Q-martingale. Moreover, if we define the Doléans-Dade exponential:

E(L)t := exp

(
Lt −

1

2
⟨L,L⟩t

)
= exp

(∫ t

0

b(Bs, s)dBs −
1

2

∫ t

0

∥b(Bs, s)∥22ds
)

(0 ≤ t ≤ T ),

and suppose that EQ[E(L)T ] = 1, then E(L) is a Q-martingale and the process

B′
t := Bt −

∫ t

0

b(Bs, s)ds (0 ≤ t ≤ T )

is a P -Brownian motion under the new measure P = E(L)TQ.

The following theorem, Corollary 5, provides an upper bound on the score estimation error in terms
of the score matching loss, which restates the results from [16]. In our analysis, we apply Girsanov’s
Theorem (Theorem 7) to continuous SDE processes, whereas [16] utilizes discretized SDE processes.

Corollary 5 (Girsanov’s Theorem for SDE Processes [16]). Let P0 be any probability distribution,
and let X = (Xt)t∈[0,T ], X

′ = (X ′
t)t∈[0,T ] be two different processes satisfying

dXt = f(Xt, t)dt+ g(t)dBt (0 ≤ t ≤ T ), X0 ∼ P0, (253)

dX ′
t = f ′(X ′

t, t)dt+ g(t)dB′
t (0 ≤ t ≤ T ), X ′

0 ∼ P0. (254)

Denote the distributions ofXt andX ′
t by Pt, P ′

t and the path measures ofX,X ′ by P,P′, respectively.

Suppose that the following Novikov’s condition holds:

EP

[
exp

(
1

2

∫ T

0

∫
x

1

g2(t)
∥f(x, t)− f ′(x, t)∥22dxdt

)]
<∞. (255)

Then, the Radon-Nikodym’s derivative of P w.r.t. P′ is

dP
dP′ (X) = exp

(∫ T

0

1

g(t)
(f(Xt, t)− f ′(Xt, t))dBt −

1

2

∫ T

0

1

g2(t)
∥f(Xt, t)− f ′(Xt, t)∥22dt

)
,

and therefore we have that

KL(PT ∥P ′
T ) ≤ KL(P∥P′) = EP

[
log

(
dP
dP′

)]
=

∫ T

0

1

2

∫
x

1

g2(t)
∥f(x, t)− f ′(x, t)∥22pt(x)dxdt.

Proof. Let X be the process of Eq. (253), we define

b(Bt, t) :=
1

g(t)
(f ′(Xt, t)− f(Xt, t)), ∀0 ≤ t ≤ T.
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Then, we have

EP

[∫ T

0

∥b(Bt, t)∥22dt

]
=

∫ T

0

1

g2(t)
EXt∼Pt

[
∥f ′(Xt, t)− f(Xt, t)∥22

]
dt <∞. (by Eq. (255))

Define Lt :=
∫ t
0
b(Bs, s)dBs and E(L)t as in Theorem 7, then we have L is a P-martingale

By Theorem 7, we have that under P′ = E(L)TP, there exists a Brownian motion (B′
t)t∈[0,T ]:

B′
t = Bt −

∫ t

0

b(Bs, s)ds = Bt −
∫ t

0

1

g(s)

(
f ′(Xs, s)− f(Xs, s)

)
ds,

which is a P′-martingale and we have

dB′
t = dBt − b(Bt, t)dt = dBt −

1

g(t)
(f ′(Xt, t)− f(Xt, t))dt. (256)

Recall that under P, we have

dXt = f(Xt, t) + g(t)dBt (0 ≤ t ≤ T ), X0 ∼ P0

Then, by Eq. (256), we have

dXt = f(Xt, t)dt+ g(t)dBt

= f(Xt, t)dt+ g(t)dB′
t + f ′(Xt, t)dt− f(Xt, t)dt (by Eq. (256))

= f ′(Xt, t)dt+ g(t)dB′
t

under the measure P′.

KL(P∥P′) = EP

[
log

(
dP
dP′

)]
= EP

[
log(E(L)−1

T )
]

(by P′ = E(L)TP)

= EP

[
−
∫ T

0

b(Bs, s)dBs +
1

2

∫ T

0

∥b(Bs, s)∥22ds

]

= EP

[
−LT +

1

2

∫ T

0

∥b(Bs, s)∥22ds

]

=
1

2
EP

[∫ T

0

∥b(Bs, s)∥22ds

]
(EP[LT ] = L0 = 0 by L is a P-martingale)

=
1

2

∫ T

0

1

g2(t)
EXt∼Pt

[
∥f(Xt, t)− f ′(Xt, t)∥22

]
dt.

F.2 Girsanov’s theorem for SGMs

Corollary 6 (Girsanov’s Theorem for SGMs). Let Pt0 := law(YT−t0), P̂t0 := law(ŶT−t0) be the
law of the random variables at time t = T − t0 for the two processes Eq. (3) and (6), respectively,
i.e.,:

dYt =
(
Yt + 2∇ log pT−t(Yt)

)
dt+

√
2dBt (0 ≤ t ≤ T − t0), Y0 ∼ PT ,

dŶt =
(
Ŷt + 2sθ(Ŷt, T − t)

)
dt+

√
2dBt (0 ≤ t ≤ T − t0), Ŷ0 ∼ PT .

Then, we have

KL(Pt0∥P̂t0) ≤
∫ T

t0

∫
Rd

∥∇ log pt(xt)− sθ(xt, t)∥22pt(xt)dxtdt.
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Proof. By Corollary 5, we have

KL(Pt0∥P̂t0) ≤
∫ T−t0

0

1

2

∫
1

2
∥2∇ log pT−t(yt)− 2sθ(yt, T − t)∥22pT−t(yt)dytdt

=

∫ T

t0

∫
∥∇ log pt(xt)− sθ(xt, t)∥22pt(xt)dxtdt. (by xt = yT−t)
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G Controlling Early Stopping Induced Errors

G.1 Sobolev class of density

The following assumption, adopted from [29], characterizes the Sobolev class via the Fourier
transform of f . Unlike the usual definition (which restricts orders to integer values), this allows each
νi to take values not only as integers but also as positive real numbers.
Definition 6. For s,K ∈ R+, the Sobolev class of density is defined as

Ws
2(Rd) :=

{
f : Rd → R|f ≥ 0,

∫
f = 1,∀ν with ∥ν∥1 = s,

∫
|ων |2FT[f ](ω)|2dω ≤ (2π)dK2

}
.

Lemma 26 ([29, E.1]). Under Assumptions 1 and 2, if s ∈ [0, 2], t0 = n−
2

d+2s and pt0 = p0 ∗ φσt ,
where φσt is the density of Gaussian distribution in d-dimension, N (0, tId) and ∗ denote the
convolution operator, then there exists a constant C that depends on p0, s, L and dimension d such
that

TV(p0, pt0) ≤ Cpolylog(n)n−
s

d+2s .

G.2 Besov class of density

To define the Besov space, we introduce the modulus of smoothness.
Definition 7 (Modulus of Smoothness). For a function f ∈ Lq(Ω) for some q ∈ (0,∞], the r-th
modulus of smoothness of f is defined by

wr,q(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥q,

where

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) (x ∈ Ω, x+ rh ∈ Ω),

0 (otherwise).

Based on the modulus of smoothness, the Besov space is defined as in the following definition.
Definition 8 (Besov space (Bsq,q′(Ω)) [49, 22]). For 0 < q, q′ ≤ ∞, s > 0, r := ⌊s⌋ + 1, let the
seminorm | · |Bα

q,q′
be

|f |Bs
q,q′

:=


(∫∞

0
(t−swr,q(f, t))

q′ dt
t

) 1
q′

(q′ <∞),

supt>0 t
−swr,q(f, t) (q′ = ∞).

The norm of the Besov space Bsq,q′(Ω) can be defined by

∥f∥Bs
q,q′

:= ∥f∥q + |f |Bs
q,q′
,

and we have Bsq,q′(Ω) = {f ∈ Lq(Ω) | ∥f∥Bs
q,q′

<∞}.

Note that q, q′ < 1 is also allowed. In that setting, the Besov space is no longer a Banach space but
a quasi-Banach space. If s > d/q,Bsq,q′(Ω) is continuously embedded in the set of the continuous
functions. Otherwise, the elements in the space are no longer continuous.

Considering the Besov space, many well-known function classes, such as Hölder space and Sobolev
space can be discussed unified. The relationship between Besov, Hölder, and Sobolev space are well
known [57]:

• For s ∈ N, Bsq,1(Ω) ↪→ Ws
q (Ω) ↪→ Bsq,∞(Ω).

• Bs2,2(Ω) = Ws
2(Ω).

• For s ∈ R+ \ Z+, Cs(Ω) = Bs∞,∞(Ω).

Theorem 8 (Marchaud inequality [58]). Let f ∈ Lq(Rd) with 1 ≤ q ≤ ∞. For any integer r ≥ 1
and 0 < k < r, there exists a constant C = C(r, k, d, q) depending only on r, k, d, q such that for
all t > 0,

wk,q(f, t) ≤ Ctk
∫ ∞

t

wr,q(f, u)
du

uk+1
.
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Lemma 27. Let p ∈ Lq([0, 1]d) ∩ Bq,q′([0, 1]
d) be a probability density with 0 < s ≤ 2 and

1 ≤ q ≤ ∞, 0 < q′ ≤ ∞. Let φσ = (2πσ2)−d/2 exp(−∥x∥2
2

2σ2 ). Then, there exists a constant
C = C(s, d, q, q′) such that for all σ > 0,

∥p− p ∗ φσ∥1 ≤ Cσs|p|Bs
q,q′
,

and hence it holds that

TV(P, P ∗ N (0, σ2Id)) =
1

2
∥p− p ∗ φσ∥1 ≤ Cσs|p|Bs

q,q′
.

Proof. We proceed in the following four steps:

Step 1: Pointwise bound for the modulus from the Besov seminorm.

Recall from Definition 8 that the definition of the Besov seminorm is given by

|p|Bs
q,q′

:=


(∫∞

0
(t−swr,q(p, t))

q′ dt
t

) 1
q′

(q′ <∞),

supt>0 t
−swr,q(p, t) (q′ = ∞).

For 0 < q′ <∞, one has the elementary estimate (averaging over a dyadic annulus):

sup
t≤k≤2t

k−swr,q(p, k) ≤ (log 2)−1/q′
(∫ 2t

t

(
k−swr,q(p, k)

)q′ dk
k

)1/q′
≤ C|p|Bs

q,q′
,

and for k ∈ [t, 2t] we get wr,q(p, k) ≤ Cks|p|Bs
q,q′

. In particular, we can take k = t to obtain the
pointwise bound

wr,q(p, t) ≤ Cts|p|Bs
q,q′
. (257)

For q′ = ∞, the same conclusion follows directly from the definition in Definition 8.

Step 2: Relate L1-difference to the modulus of smoothness w1,1(p, t).

By the definition of convolution,

(p ∗ φσ)(x) =
∫
Rd

p(x− y)φσ(y)dy,

we have

p(x)− (p ∗ φσ)(x) =
∫
Rd

(
p(x)− p(x− y)

)
φσ(y)dy

Take L1-norm and apply Fubini and Minkowski’s inequality, we obtain

∥p− p ∗ φσ∥1 =

∫
[0,1]d

∣∣∣∫
Rd

(
p(x)− p(x− y)

)
φσ(y)dy

∣∣∣dx
≤
∫
Rd

∫
[0,1]d

|p(·)− p(· − y)|dxφσ(y)dy.

Change variables y = σz and write φ1 for the standard Gaussian density, we have

φσ(y)dy = (2πσ2)−d/2 exp
(
−∥σz∥22

2σ2

)
σddz = φ1(y)dz.

Then,

∥p− p ∗ φσ∥1 ≤
∫
Rd

∥∥p(·)− p(· − σz)
∥∥
1
φ1(z)dz. (258)

Thus the problem reduces to bounding the L1-difference ∥p(·)− p(· − h)∥1 for small shifts h = σz
in terms of the modulus of smoothness. By the definition of modulus of smoothness (Definition 8),

95



we have

∥p− p ∗ φσ∥1 ≤
∫
Rd

∥∥p(·)− p(· − σz)
∥∥
1
φ1(z)dz

≤
∫
Rd

∥∆1
σzp∥1φ1(z)dz

≤
∫
Rd

w1,1(p, σ∥z∥2)φ1(z)dz. (259)

Step 3: Bounding w1,1(p, t) by wr,q(p, t).

Recall from Definition 7 that the r-th modulus of smoothness is defined as

wr,1(p, t) := sup
∥h∥2≤t

∥∆r
hp∥1,

where r = ⌊s⌋+ 1.

Case 1: 0 < s ≤ 1.

For 0 < s ≤ 1 we use r = 1 and the first-order difference is given by

∆1
hp(·) := p(·+ h)− p(·)

Since Ω = [0, 1]d and 1 ≤ q ≤ ∞, by Hölder’s inequality, for any shift h, we have

∥∆1
hp∥1 ≤ |Ω|1−

1
q ∥∆1

hp∥q,= ∥∆1
hp∥q,

which implies that
w1,1(p, t) ≤ w1,q(p, t). (260)

Further, by Eq. (257), we obtain
w1,1(p, t) ≤ Cts|p|Bs

q,q′
. (261)

Case 2: 1 < s ≤ 2.

For 1 < s ≤ 2 we use r = 2 and the second-order difference is given by

∆2
hp(·) := p(·+ 2h)− 2p(·+ h) + p(·),

and the second-order modulus is

w2,q(p, t) = sup
∥h∥2≤t

∥∆2
hp∥q.

When s > 1, we have direct control only of the second-order modulus w2,q(p, t). We need a relation
bounding the first-order modulus w1,q(p, t) by w2,q(p, t).

Apply Theorem 8, we obtain

w1,q(p, t) ≤ Ct

∫ ∞

t

w2,q(p, u)
du

u2
.

Further by Eq. (257) and 1 < s ≤ 2, we have

w1.q(p, t) ≤ Ct

∫ ∞

t

us−2|p|Bs
q,q′

du =
C

s− 1
ts|p|Bs

q,q′
.

Plugging into Eq. (260), we get

w1,1(p, t) ≤ Cts|p|Bs
q,q′
. (262)

Combining Cases 1 and 2, we obtain that for any 0 < s ≤ 2,

w1,1(p, t) ≤ Cts|p|Bs
q,q′
. (263)
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Step 4: Bounding the TV distance.

Plugging Eq. (263) into Eq. (259) we obtain

∥p− p ∗ φσ∥1 ≤
∫
Rd

w1,1(p, σ∥z∥2)φ1(z)dz

≤ C|p|Bs
q,q′

∫
Rd

(
σ∥z∥2

)s
φ1(z)dz

= C|p|Bs
q,q′
σsE

[
∥Z∥s2

]
≤ C|p|Bs

q,q′
σsE

[
∥Z∥22

]
, (by 0 < s ≤ 2)

where Z ∼ N (0, Id) and we have E[∥Z∥22] = d. Therefore, for the law P with density p, we obtain

TV(P, P ∗ N (0, σ2Id)) =
1

2

∫
Rd

|p(x)− (p ∗ φσ)(x)|dx =
1

2
∥p− p ∗ φσ∥1 ≤ C ′d|p|Bs

q,q′
σs.

Theorem 9. Let 0 < s ≤ 2 and 1 ≤ q ≤ ∞, 0 < q′ ≤ ∞. Consider a probability density
p ∈ Lq([0, 1]d)∩U(Bq,q′([0, 1]

d), C), where U(·;C) denotes the ball of radius C. Let {Xt}t∈[t0,T ]

be the solutions of the process Eq. (2). Setting t0 = n−
2

d+2s , we have that

TV(X0, Xt0) ≲ n−
s

d+2s

Proof. From Lemma 27, we have for all σt0 > 0,

TV(X0, Xt0) ≲ σst0 |p|Bs
q,q′

Since σt0 ≲
√
t0, substitute t0 = n−

2
d+2s gives

TV(X0,Xt0) ≲ t
s/2
0 = n−

s
d+2s .

97



H Other Lemmas and definitions

H.1 Fourier analysis

Lemma 28 (Fourier Transform and Inverse Fourier Transform). The Fourier transform of a continu-
ous function f ∈ L1(R) is defined as:

f̃(ω) := FT(f(x)) =
1√
2π

∫
R
f(x)e−iωxdx

The inverse transform is defined as:

f(x) =
1√
2π

∫
R
f̃(ω)eiωxdω, ∀x ∈ R.

Lemma 29 (Fourier Transform of Derivative). Suppose f : R → R is an absolutely continuous
differentiable function, and both f and its derivative f ′ are integrable. Then the Fourier transform of
f ′ is given by

f̃ ′(ω) := FT(f ′(x)) = iωf̃(ω).

More generally, the Fourier transformation of the k-th derivative f (k) is given by

f̃ (k)(ω) = FT

(
dk

dxk
f(x)

)
= (iω)kf̃(ω).

Lemma 30 (Plancherel’s Identity). For a square-integrable function f(x) ∈ L2(R), Plancherel’s
identity is given by

∥f∥2L2(R) :=

∫
R
|f(x)|2dx =

∫
R
|f̃(ω)|2dω,

where f̂(ω) is the Fourier transform of f(x).

H.2 Distribution inequalities

Definition 9. For distributions P,Q ∈ P(Rd), and their probability density functions p, q : Rd → R,

• The total variation (TV) distance is defined as

TV(P,Q) := sup
A⊆Rd

|p(A)− q(A)| = 1

2

∫
Rd

|p(x)− q(x)|dx. (264)

• The Kullback-Leibler (KL)-divergence is defined as

KL(P∥Q) :=

∫
Rd

p(x) log

(
p(x)

q(x)

)
dx. (265)

• The Hellinger distance is defined as

H2(P,Q) :=

∫
Rd

(√
p(x)−

√
q(x)

)2
dx. (266)

Lemma 31 (Pinsker’s Inequality [51]). For any two probability distributions P and Q defined on the
same probability space, we have

TV(P,Q) ≤
√

1

2
KL(P∥Q).

Lemma 32. For any two probability distributions P and Q defined on the same probability space,
we have

H2(P,Q) ≤ KL(P∥Q).
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H.3 Taylor’s theorem

Theorem 10 (Taylor’s Theorem). Let k ∈ N+ be an integer and let the function f : R → R be k
times differentiable at the point a ∈ R. Then there exists a function hk : R → R such that

f(x) =

k∑
i=0

f (i)(a)

i!
(x− a)i + hk(x)(x− a)k︸ ︷︷ ︸

:=Rk(x)

,

and limx→a hk(a) = 0, which is called the Peano form of the remainder.

Lemma 33 (Lagrange Forms of the Reminder). Let f : R → R be k + 1 times differentiable on the
open interval with f (k) continuous on the closed interval between a and x. Then

Rk(x) =
f (k+1)(ξL)

(k + 1)!
(x− a)k+1

for some real number ξL between a and x.

H.4 Nonparametric classes

Definition 10 (Hölder Space). [59] For s ∈ R+ \ Z+ and Ω ⊂ Rd, the Hölder space is a set of ⌊s⌋
times differentiable functions

Cs(Ω) :=

{
f : Ω → R :

∑
α:∥α∥1<s

∥∂αf∥∞ +
∑

α:∥α∥1=⌊s⌋

sup
x,y∈Ω,x̸=y

|∂αf(x)− ∂αf(y)|
|x− y|s−⌊s⌋ ≤ ∞

}
,

where ∂α := ∂α1 · · · ∂αd , with α = (α1, . . . , αd) ∈ Nd.
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