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Abstract

This paper studies the approximation and generalization abilities of score-based
neural network generative models (SGMs) in estimating an unknown distribu-
tion Py from n ii.d. observations in d dimensions. Assuming merely that
Py is a-sub-Gaussian, we prove that for any time step t € [to, (1], where
to > O(a*n=2?/4logn), there exists a deep ReLU neural network with width
< O(nilog,n) and depth < O(log? n) that can approximate the scores with
O(n~") mean square error and achieve a nearly optimal rate of O(n~'t; 4/ 2
for score estimation, as measured by the score matching loss. Our framework is
universal and can be used to establish convergence rates for SGMs under milder
assumptions than previous work. For example, assuming further that the target
density function pg lies in Sobolev or Besov classes, with an appropriately early
stopping strategy, we demonstrate that neural network-based SGMs can attain
nearly minimax convergence rates up to logarithmic factors. Our analysis removes
several crucial assumptions, such as Lipschitz continuity of the score function or a
strictly positive lower bound on the target density.

1 Introduction

Score-based generative modeling (SGM) [[1H5]], also called diffusion modeling, has emerged as
a powerful tool of generative models, demonstrating exceptional performance in a wide range
of applications, such as image and text generation [4, |6], video generation [3]. SGM typically
encompasses two Markov processes: a forward process that gradually adds noise to convert samples
drawn from a data distribution, denoted as F,, into noise (e.g., Gaussian noise), and a reverse
process that effectively reverses the forward process to recover the samples from noise. Specifically,
SGM uses score functions (i.e., gradients of the log probability density functions) to transform
the Gaussian noise into the target data distribution via solving a stochastic differential equation
(SDE). Implementing the reverse process requires accurately estimating the score functions, which is
typically accomplished through training neural networks on a finite number of samples using a score
matching objective [7, 18]

Despite their remarkable empirical success across a wide range of applications, the theoretical
understanding of SGMs remains in its infancy. In particular, the following fundamental questions
remain inadequately addressed in the literature:

How effectively do diffusion models approximate the true data distribution? What is the optimal
number of diffusion steps required for high-quality generation? How many training samples are
necessary for diffusion models to estimate the true distribution accurately? In which scenarios do
diffusion models excel, and where do they encounter limitations?
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To address these questions, existing theoretical analyses of SGMs primarily focus on two aspects: (i)
the convergence rates of SGMs, which aims to quantify how quickly SGMs converge to the target
distribution, assuming access to accurate score estimators; (ii) the generalization bounds of SGMs,
which, on the other hand, investigates the score estimation error bounds throughout the diffusion
process given a finite number of observations.

Early works on convergence analysis literature either often relied on strong structural assumptions
about the data distribution, such as requiring it to satisfy the log-Sobolev inequality (LSI) 9, [10]], be
log-Concave [[11]], or they exploit exponential convergence rates [[12} [13]]. Subsequent research [14-
16] achieved polynomial convergence rates under milder assumptions, requiring that the data distri-
butions have finite second moments and Lipschitz continuous score functions along the diffusion
process. More recently, [[17, 18] have established nearly linear convergence rates in data dimension,
requiring only that the data has finite second moments or finite Fisher information with respect to
(w.r.t) the Gaussian distribution. Notably, the best-known convergence rates for Langevin Monte
Carlo (LMC) under various functional inequalities [19H21] also scale linearly with the data dimension,
up to logarithmic factors, thus matching the rates achieved by [[L7,[18]]. This observation shows that
when arbitrarily accurate score estimators are available, SGMs can approximate the data distribution
effectively without imposing stringent regularity conditions such as isoperimetry, log-concavity, LSI,
or even smoothness on the target distribution.

However, assuming perfect score estimation in the convergence analysis of SGMs is highly restrictive
and generally unattainable in practice, especially when only a finite number of observations are
available. Recent studies have delved into analyzing score estimation errors and investigated how
these errors influence the final distribution estimation. [22H28] have studied the statistical guarantees
of neural network-based score estimators, showing that neural network-based SGMs are effective
distribution learners for distributions on bounded support [22] or smooth low-dimensional mani-
folds [26, 27] with lower-bounded densities; distributions on low-dimensional linear subspace [23|]
or manifolds which are the images of Holder smooth maps [28]]; distributions on bounded support
with Lipschiz continuous score functions [25]; and sub-Gaussian distributions with Barron class of
density [24]]. Additionally, [29-32] have focused on kernel-based score estimators and demonstrated
that kernel-based SGMs achieve minimax optimal convergence rates for distributions that are sub-
Gaussian with Sobolev class of density [29] or Lipschitz continuous score functions [30] as well as
for distributions on bounded support with Holder smooth density [31]. [32] investigated the sample
complexity results for scenarios where the target distribution is either a standard Gaussian or has
bounded support, and discussed challenges related to the potential memorization of training samples
when using KDE-based score estimators. Table[T|summarizes some recent studies on generalization
analysis for SGMs.

Despite these advances, some assumptions on the data adopted in existing work remain quite
restrictive. For example, the assumption of Lipschitz continuous score functions used in [25} [30]]
excludes many distributions of interest, such as those supported on a submanifold. Additionally,
the Lipschitz constant can conceal additional dependence on the data dimension in some cases,
especially when the data are approximately supported on a submanifold. Moreover, as highlighted
in [29]], the density lower-bound assumption, as employed in [22] 26, [27]], prevents their results
from being applicable to many natural distribution classes, such as multimodal distributions and
mixtures with well-separated components, significantly restricting their ability to explain the practical
success achieved by SGMs. Under such stringent requirements, the Holley—Stroock perturbation
principle [33]] allows us to conclude that the true density satisfies the LSI. When the LSI holds, it is
well-established that Langevin dynamics are sufficient to achieve statistical efficiency [34]. However,
diffusion models are designed to be effective for a broader range of distributions by incorporating
smoothed versions of the data distributions. On the other hand, several studies, such as [29-31]],
have been focusing on kernel-based estimators, whereas neural network-based estimators are more
widely used in practice. These works do not address the theoretical challenges associated with neural
network-based score estimation, leaving a gap in understanding the practical effectiveness of SGMs.

1.1 Our contributions

In this paper, we develop a new theoretical framework for analyzing the approximation and gen-
eralization capabilities of neural network-based SGMs. Assuming that the data distribution is
a-sub-Gaussian on R?, we first establish a bound on the score matching loss between the true score

functions, Vp’f E() ), and a regularized empirical counterpart ﬁt(vf% with a regularization p,, ; > 0,




Table 1: A summary of recently developed generalization bounds for SDE-based SGMs. Bounds are

expressed in terms of the distribution estimation error in total variation (TV) distance. (P, 160: true
and learned data distributions; pg: true density function; KDE: kernel-based density estimator; DNNs:

deep neural networks; z/}t() kernel function; s: smoothness parameter; ¢(: early stopping time)

Paper Assumption Estimator Metric Bound
- Sub-Gaussian P DE: O TV(Py, Psy) @(n‘”%&d“)
(2] Sub-Gaussian 7, C ) Loe()>pn = —
Sobolev class pg TV(F, Po) O(n>)
07 Sub-Gaussian Py KDE: _Yp() 5 ~ppdt2 1
1301 L-Lipschitz score © Be()Ven TV(Py, By) | O(L#ns)
— supp(Fo) = [0, 1] . V() 5 s
[31) Holder class pg KDE: pe()Vp(-,t) TV(Fy, Fo) O(” 1+25)
supp(Py) = [0,1]7 . L
[22] lower bounded pg | ReLU DNNs TV(Py, Po) O(n@=)
Besov class pg
Theorem Sub-Gaussian Py TV(P,,, Pyy) @(n—l/%gd/‘l)
Sub-Gaussian P,
Corollary Sobolev class pg ReL.U DNNs B A () Tres
supp(Py) = [0, 1] R R) | OWT)
Corollary Besov class pg

which is the KDE-based estimator introduced in [30]. We then derive the approximation and es-
timation rates of ReLU DNNs for learning the true score function % (see Theorems and

Vo)

respectively) by approximating and estimating the surrogate RO

Score estimation via empirical Bayes smoothing. Inspired by [30], we employ empirical Bayes

smoothing techniques to establish a score estimation rate of O n~lo; 42 (ol v 1)) for the estimator
#@g?t under only a sub-Gaussian assumption (see Lemma|l). Notably, we improve upon [30] by

removing the Lipschitz score requirement, demonstrating that regularity assumptions are unnecessary

for achieving minimax optimal rates for %, which matches the result obtained by [29] for the

truncated score estimator % Lip,()>pnd-

Neural network score approximation. We demonstrate in Lemma|[I2] that there exists a ReLU DNN

of width O(log® n) and depth O(n?/%log, n) that approximates #\‘/g)t with an O(n~!) rate for

time steps t € [n*Z/ 4 o0). While DNN approximation rates for smooth functions have been well
studied (e.g., [35H39]), a naive application of existing results, e.g., assigning one sub-network per
exponential component in KDE, would cause the network size to grow linearly with the sample size
n, making practical estimation infeasible. In contrast, our proof constructs a more compact DNN
architecture, which not only prevents the size from blowing up with n but also yields nearly optimal
estimation error bounds. Moreover, unlike [22]], our approximation results do not require the densit‘

1)

lower bound assumption. The approximation rate for the true score function vp;: E() ) (i.e., Theorem

follows immediately by combining Lemmas|I{and
Neural network score and distribution estimations. [28] recently identified a flaw in Theorem

C.4 of [22], which invalidates the proofs for the convergence rates claimed in that work and in
subsequent papers [26, 27 that rely on it. In contrast, [28] establish a corrected score estimation

rate of O(t5 ' (tg'n)~ Tt ) for data supported on a d’-dimensional manifold (d’ < d), where the
manifold is the image of a s-Holder smooth map. In this paper, we aim to derive optimal convergence
rates for SGMs under broader conditions. Specifically, we provide a new proof strategy that removes

the need for a density lower bound condition. A key observation is that the surrogate #\Zg)t can

be uniformly bounded (see Lemma[5) which allows us to verify Bernstein’s condition for the excess

risk associated with learning ﬁt(v,f%. Instead of directly deriving a high probability bound for



the true score function, we first establish a uniform bound for the constructed DNN class trained to

learn #@g)t, using Bernstein’s inequality and a e-net argument. Combining this with the above

empirical Bayes score estimation bound (Lemmal(I)) and the score approximation rate (Theorem I)),
we obtain a neural network-based score estimation rate of O(n~'¢; ¢/ 2) (see Theorem . This

approach enables us to avoid the need for the density lower bound assumption (see Appendix [E.T]
for more details). Finally, applying Girsanov’s theorem [15} [17] yields a @(n’l/ 2ty 4/ 4) bound
in total variation (TV) distance for the distribution estimation error at the early-stopping time %,
(see Theorem[3)). Moreover, if the target density belongs to a Sobolev or Besov class, controlling the
truncation error at ¢ allows us to achieve nearly minimax optimal rates up to a logarithmic factor.

To summarize, we remove the Lipschitz score assumption used in [30] and establish minimax
optimal rates for the empirical score function under a sub-Gaussian assumption. We derive score
approximation and estimation error bounds without the density lower bound condition as used in
(22,126, 127] and show that neural network-based SGMs can achieve nearly minimax optimality in TV
distance, even under mild regularity assumptions.

The remainder of the paper is organized as follows. Section [2]introduces the notation and definitions
used throughout the paper, as well as the background of SGMs. Section [3| presents our main results
concerning the error bounds for score estimation and approximation as well as distribution estimation
in total variation distance for SGMs. Section [ offers proof sketches for the score estimation and
approximation errors. Finally, we conclude in Section[5} We defer all proofs to the appendix.

2 Preliminaries and Background

2.1 Notations and definitions

We use Ry = {z € R|z > 0} to denote the space of non-negative real values. Denote by
N := {0,1,2,...} the set of natural numbers and N, := N\ 0. We denote by N'(0,0%1,) the
Gaussian distribution with mean vector 0 and covariance matrix o> I; and write @, for its density. The
standard Gaussian distribution on R? is represented by v4 := N(0,I,). For any function or
distribution on €2, supp(£2) denotes its support. Let (X¢)(o,7] be a process with law(X;) = P
and corresponding density p;. We refer to (P, po) as the target data distribution and density. We
write @ V b := max{a,b} and a A b := min{a, b}. The notation a = O(b) means a < Cb for a
universal constant C' > 0 and we use O() to hide logarithmic factors. Throughout, < suppress
constants that depend on the dimension d.

Definition 1 (Sub-Gaussian Distribution [40]). We say a probability distribution P on R? is c-sub-
Gaussian for some 0 < o < oo if for all @ € R?:

IEXNp[eXp(QT(X —Ex~p[X]))] < exp(c?]6][3/2). e

Deep ReLLU neural networks. We follow the notation used in [38]] for ReLU neural networks, please
refer to Appendix [D.|for a more detailed introduction. We say that a neural network (architecture)
with width N and depth L if the maximum width of any hidden layer in the network is at most [V,
and the total number of hidden layers does not exceed L.

2.2 Score-based generative models

In this section, we introduce the background of SGMs. A SGM typically encompasses two Markov
processes: a forward process (X¢)(o,7] that starts from the target distribution X ~ Py, the model
gradually adds noise to transform the signal into noise Xy — X; — --- — Xp ~ Pr and a reverse
process Y; = Xp_;,0 <t < T starts with the noise Yy ~ Pr, and reverse the forward process to
recover the signal from noise Yy - Y7, — -+ = Yr ~ P.

OU process. We consider the following Ornstein—Ulhenbeck (OU) process as the forward process:

dX, = —X,dt +v2dB, (0<t<T), X, ~ Py, )

where B, denotes a d-dimensional standard Brownian motion and we have X; = e !X, +
V1 —e 2Z, with Z ~ ~4. The OU processis well-defined and has a reverse process (Y;)o,1):

dY; = (Y; + 2Vlogpr (V) dt + V2dB; (0<t<T), Yy~ Pr, 3)

where B; denotes another d-dimensional standard Brownian motion and V log p,(-) is called the
score function. The noise distribution and score function are unknown. Using the fact that the OU



process Eq. (Z) converges to standard Gaussian distribution 4 exponentially [16} [I7], for sufficiently
large T', we can replace Pr by 4.

Score matching. Given a finite set of samples, we can train a neural network @gcore(+, ) approximate
Vlog p.(+) for ¢t € [0, 7] by minimizing the score matching loss [7]:

T
EXt [”d)score(Xtv t) - v Ingt(Xt)Hg] dt, (4)
0

Lsm(uns) = [

which is equivalent to the denoising score matching Ex,[¢(¢score, X0)] up to a constant [[7, [8]], where

T
£(¢SCOTS7XO) = / OEXt\XO [||¢score(Xt; t) - VIngf(Xf|XO)H§:| dt. (5)
t=

We replace V log pr—+(x) by ¢o(x, T — t) and obtain the score-based process:
aY; = (Y, +2¢9(Y;, T — t))dt +V2dB, (0<t<T), Y~ Pr. (6)

We replace Pr by v4 in Eq. (@) and obtain a reverse process (lAft“)[o,T] that starting from 170"“ ~ Yq.

Early stopping. Instead of running Eq. (6)) back to the start time ¢ = 0, we stop early at a small time
to > 0. Hence, the diffusion model will approximate P, rather than Fp, i.e., we want Pt'(y) ‘P,

Problem statement. Given the ground-truth data distribution P and a set of n i.i.d observations
{x®M}n_ | ~ P$", we learn the score function V log p;, Vt € [to, T via the empirical risk minimizer:

~ 1< ,
¢ € argmin — (o, ™), @)
PENN n; ( )

and plugin ngS to the process Eq. (@) to generate new samples X' ~ ﬁ%”’, where 1330(1 is the modeled
distribution of SGMs. Our goal is to study the estimation error in total variation distance TV (Fy, P.*).

3 Main Results

In this section, we present our main results regarding the error bounds for score estimation and
approximation and establish the nearly optimal convergence rates for diffusion models.

3.1 Assumptions

Here, we outline the assumptions imposed on the target data distribution Py and density function
po in our analysis. In particular, our score approximation and estimation results are not specified to
Assumptions[2]and[3] where they are used only in Corollaries[I]and [2]to control errors induced by
early stopping, respectively. We follow [29, [22] for the definitions of the Sobolev ball and the Besov
space, respectively, which are deferred to Appendix [G|due to space limitations.

Assumption 1 (Sub-Gaussian Distribution). The target data distribution Py is a-sub-Gaussian.
Assumption 2 (Sobolev Class of Density). The density pg belongs to the Sobolev ball with0 < s < 2.

Assumption 3 (Besov Class of Density). The density po € L?([0,1]4) N U(B; ,([0,1]%); C) for
some C >0, where 1 < ¢ < 00,0 < ¢ <oo,and0 < s < 2.

3.2 Score estimation by regularized empirical score functions

Given a set of n ii.d. observations {z()}?_, drawn from an unknown target distribution
Py, let I:’é") = %Z?:l 04 be the empirical measure. For OU process Eq. , we have
P = L5 N(emta®, (1 - e2)1y)) and py() = 137 @, (- — mpa®), where my =

exp(—t),or = /1 —exp(—2t). [30] showed that for an a-sub-Gaussian distribution Py with
L-Lipschitz continuous scores, the following regularized empirical score function, with bandwidth

h = (W)Z/(d#ﬁ and regularizer p,, = (2wh)~%2e~1n=2
Vin() _ VE X e —2)

)V L3 0 a(-—2®)Vp,

®)



achieves a nearly minimax optimal rate of O (da2 L2nas logﬁ n) score estimation error in term of
score matching loss. However, the Lipschitz continuous score assumption excludes many distributions
of interest, such as those supported on a submanifold and the Lipschitz constant can conceal additional
dependence on the data dimension in some cases, especially when the data are approximately
supported on a submanifold. On the other hand, [29]] demonstrates that a similar truncated score

estimator ( ) ]l{p,( )>p,} attains a minimax optimal rate of O(n~'o; 7 %(of v 1)) under merely
sub—Gaussian distribution, indicating that regularity conditions on the score are not necessary to derive

optimal rates. We resolve this question with the following lemma, demonstrating that the estimator
in Eq. (§) can achieve minimax optimal rates as long as the data distribution is sub-Gaussian:

Lemma 1. For any d > 1,n > 3, Let P be a a-sub-Gaussian distribution on R? and P be
its empirical distribution associated to a sample {m(i)}?zl. For any o > an~'/4 logl/2 n, let
P, = P+ N(0,0%1,), P — p(n) N(0,021,) with density functions p,, ps : R? — R,. Fix

0 < pp < (2m02)~42e=n=1, then we have

Vpo () Vs () |12 (2702) "2\ log¥?n
E{z@yn [ - = ) )
=1L Rall Po (SC) Do (ZC) V pn 112 Pn

We provide a proof sketch for Lemmal(T]in Section [#.T]and defer the detailed proof to Appendix [C.2]
Remark 1. To establish our neural network approximation and estimation bounds, we adopt the
empirical regularized score estimator rather than the truncated estimator as our surrogate. The
regularized estimator is globally smooth and stable, ensuring compatibility with established approxi-
mation theories for smooth functions, while the truncated estimator’s discontinuities at low-density
regions violate these assumptions and complicate both approximation and generalization analyses.

pg(w)d:B} <o (O’d + ad) logg(

n

3.3 Score approximation and estimation by deep neural networks

3.3.1 Neural network score approximation

Lemma [I2]shows that the regularized empirical score function Eq. (8 can be well approximated by
a ReLU DNN in L,-distance. Combining Lemmas [I]and [I2] we obtain the neural network score
approximation error by the following theorem. For the proof, please refer to Appendix [D.4]

Theorem 1 (Neural Network Score Approximation for Sub-Gaussian Distributions) Suppose that
Py satisfies Assumptwn Forany 1 < d < \/logn,n > 3 and any 3 a n_Q/d logn <ty <1
and T = n°W), let {@¢}eepto,m) e the solutions of the process Eq. ) with density function

‘R - R,. Fixk € Ny withd/2 < k < 10%" . Then, there exists a ReLU DNN ¢y, With

~ loglog
Wldﬂ’l < O(n 2k log, n) and depth < O(log n) constructed from i.i.d. samples {a:(i) w_, such that
s 1Ogd/2+3n
E{w(i)};lZI |:EthPt [HVIngt(wt) - ¢sc0re(wt7 t)||2]:| N 0-; B (Ud + ad)T’

and we have ||Gseore (-, 1)|| 0o S 07 1v/Togn. Moreover, let T = n°M), we have

T
_ 4
E{m(i)}?zl |:/ Emtht [HVingt(wt) - ¢scare(wtaﬁ)ii idti| S adt d/2 ! 1Og2+47’l
t=to

3.3.2 Neural network score estimation
According to Theorem gg(a:, t) can be taken so that ||5(-,1)||oe < o "v/Iogn. Hence, we limit the
neural network class of Theorem [I]into

NN = {¢ € NN (width < O(n?F logy n); depth < Olog” n)) | [¢(-,1)]|0 < Y2E2}. (9)
Together with the score approximation error bound from Theorem [T} applying Bernstein’s inequality
and an e-net argument, we obtain the following neural network score estimation error bound in terms
of score matching loss. A proof sketch is provided in Section @.3]and see Appendix [E.T| for details.
Theorem 2 (Neural Network Score Estimation for Sub-Gaussian Distributions). Assume that the

conditions of Theoremhold. For 3 < d < +/logn, fix k € N with # vd/2<k<

Toglog in Eq. (9). Then, for any 6 € (0, 1), with probability at least 1 — ¢, the excess risk of an
empirical risk minimizer Eq. over the neural network class NN satisfies that

logn

T
~ _ 2
/ Ex, [qu(Xt,t) — Vlogpt(Xt)Hg]dt Sty /2,1 10g%+4n + tgln_l logn - log 5

to



Our rate in Theorem [2] matches the rate for regularized kernel-based estimators in Lemma [T] and
aligns with the nearly minimax optimal rate derived in [29]] for a similar truncated estimator.

3.4 Distribution estimation errors of SGMs for sub-Gaussian distributions

Here, we evaluate the distribution estimation error of neural network-based SGMs in TV distance.
The following theorem aims to bound the TV distance between the true marginal distribution P, at

time ¢ty > a®n~2/¢logn and the learned distribution 13% “ by SGMs. Proof refer to Appendix

Theorem 3 (Distribution Estimation Error of P;,). Assume that the conditions of Theorem hold.
Then, for any § € (0, 1), with probability at least 1 — §,

Ep@yn | [TV(PtO,ﬁtzd)] < ozd/21f5d/47fl/2 1og%+2 n-+ t61/2n71/2 logl/2 n - +/log(2/9).

Somewhat unexpectedly, by choosing 6 = 1/n, Theorem [3| shows that with only a sub-Gaussian
assumption, neural network-based SGMs achieve a TV distance bound of @(ad/ 2ty a1/ %) for
the distribution estimation error at the early stopping time. By triangle inequality, TV (FPy, P;,) <

TV(Py, Pyy) + TV(P,,, Py,), indicating that to bound TV(P,, P,,), it is necessary to control the
error introduced by stopping early. To this end, we introduce nonparametric class assumptions.

Bounding the early stopping induced error. Assume that the target density function py belongs
to Sobolev space W3 (R?) (Assumption , or Besov space B3 ([0,1]) (Assumption , with

to=n" ﬁ, it can be upper-bounded by Lemma and Theorem (9] respectively:
TV(Py, Pyy) S @, (10)

Theorem [3|and Lemma [26]immediately imply Corollary [T}

Corollary 1 (Distribution Estimation Error for Sobolev Class of Density). Assume Assumptions!|I]
andhold. Letty = n- T T = n®W). Then, with probability at least 1 — 1/n, it holds that

Ifl?ll{m(i)}?:1 [TV(Po, ﬁgd)] 5 polylog(n)n_ﬁ

Notice that P, on [0, 1]¢ is v/d-sub-Gaussian, Corollary immediately follows by Theorems [3|and @

Corollary 2 (Distribution Estimation Error for Besov Class of Density). Assume that Assumption
2

holds. Let to = n~ @2 | T = n®(). Then, with probability at least 1 — 1/n, it holds that

E(aey, [TV(Po, )] Sn™ %5,

Therefore, we have proved that neural network-based SGMs achieve minimax estimation rates for
Sobolev and Besov class densities in TV distance up to logarithmic factors, even without the Lipschitz
score assumption (as opposed to [30]) and the lower bounded density assumption (as opposed to
[22] 26l 27])).

Remark 2 (Dependence of Network Width on Dimension d and the Bias-Variance Trade-Off). The
(7)(n3/ 1) network width appearing in Theorems|l|and|2| suggests that the required width decreases
with dimension d, which may seem counter-intuitive. This is a direct consequence of the interplay
between the smoothness of Py, and the network architecture in our analysis, which has a clear
theoretical motivation: (1) Higher dimensions force more smoothing. Our condition on the early
stopping time (tg > @(n*wd) in Theoremsandor to = n= T in Corollariesandforces
larger tg for higher d to ensure theoretical guarantees. (2) More smoothing simplifies the learning
of P.,. A larger ty means that Py, is convolved with a Gaussian of higher variance. This makes
Py, inherently smoother and less complex. Its score can thus be approximated by a network whose
size scales less severely with the sample size n. Hence, while higher dimension usually implies
increased statistical difficulty (as seen in the convergence rate n~ T suffering from the curse of
dimensionality), the necessity of stronger smoothing to achieve uniform control in high dimensions
makes the intermediate learning problem architecturally less demanding in terms of network size.
This is a reflection of the bias—variance trade-off: we reduce variance (by smoothing), but incur bias,
which is ultimately what limits the rate.



4 Proof Sketch

4.1 Proof sketch of Lemmall]

We use the following two ingredients to prove Lemmal|T}

(1) From score matching to Hellinger distance via empirical Bayes smoothing. The follow-
ing lemma shows that the score matching loss can be upper-bounded by the Hellinger distance
H2(P;, Pt(")) plus the Lo-norm of the score over low-density regions:

Lemma 2. Given any distributions P, Q on R? with density functions p,q : R* — R, respectively.
Fixo > 0, let P, = PxN(0,0%1,), Qs = Q+N (0,02 1,) with density functions p,, ¢y : R* — R,
Foralld > 1,n > 1,1let 0 < p, < (27m2)*d/2e*1/2 andlet G .= {x € R? : py(x) < pyn}, then
there exists a universal constant C' > 0 such that

/ Vo, () Vo (x)
Rd

Po(@)  go()V pn
< C’(% max{log3 (W)vlog(H_Q(PaaQa))}HQ(Pg,Qg) n /QHVPZZ:(BJ)’) Hzpa($)d$>

2

(z)dx

o
2

For the proof, please refer to Appendix [A.T] The second term in Lemma [2]is the Ly-norm of the
score function over the low-density region {x € R? : p,(x) < p,}. By Assumption I} P is
a-sub-Gaussian and once convolved with Gaussian noise, the resulting marginal P, will become
Va2 + o2-sub-Gaussian. Using Lemmato bound the Lo-norm of the score function and leveraging
the sub-Gaussian property of P,, we find that this term is bounded above by O (o2 p,, log(c—¢ p‘li)

)

n

(see Lemma . For the first term, recall the fact that H2(P(™, P,) < KL(P{™ || P,) (see Lemma 32).
Remark 3. Lemmal[2|does not require the density functions to exist for P and Q.

Remark 4. Notably, [30, Lemma 1] employs a rescaling argument to adjust the random variables
and apply [41| Theorem E.1], yielding a bound similar to Lemma[2] However, a careful examination
reveals that a term h=%? has been missing in their proof. Simply following their strategy results in a
bound that scales as 0~ instead of 0~2. On the contrary, we employ the rescaling argument to
get a generalization result (see LemmaW)) of [41l Lemma F.2], and adopt a similar proof strategy of
[41l Lemma E.1] to derive a bound that scales as o~ 2.

(2) KL-divergence rate of smoothed empirical distribution. The following lemma is a restatement
of [42, Theorem 3], in which we explicitly demonstrate the dependence of the bound on the Gaussian
parameter o. In particular, following the original proof of [42], one obtains a bound that scales expo-

nentially with 1, i.e, E[KL(P, | P2)] < O(exp(%)@), which blows up when ¢ is sufficiently
small. We refine their proof and establish a rate that scales polynomially in % as given below:
Lemma 3 (Convergence Rate of Smoothed Empirical Sub-Gaussian Distributions). Givend > 1,n >
1,0 > 0. Suppose that P is a d-dimensional o-sub-Gaussian distribution. Let Py = P x N'(0,0%1)
and P be the empirical measure of an i.i.d. sample of size n drawn from P and P,=pP *N(0,0%1,).
Then we have

d logd/2 n

Epen [KL(JSUHPU)] < Cd(a) n

a

(11

For the proof, please refer to Appendix[B.2] To upper bound the first term in Lemma 2] notice that
x — zlogz~! is concave and is increasing in (0, e~ 1), by Jensen’s inequality we have

Epon loa(H™2(Pp, PV) W (P, YY) < log (gt ) Epon [H2(Py, PS)
cwe(()E) () w

where the last inequality holds by letting Cya%o—%n~! logd/ 2n < e~ !, which can be satisfied when
(/o) < nlog=?n, ie., o > an~1/%log"? n. Combining the sub-Gaussian tail Lemma an
Eq. (T2) we complete the proof for Lemmal[2] Please refer to Appendix[A.T]for a more detailed proof.



4.2 Proof sketch of Theorem

The approximation rates of DNNs for smooth functions have been extensively investigated in the
literature [35H39 43]]. At first glance, one might try to construct a sub-network for each exponential
component of the KDE, leveraging these existing results. However, such an approach would require n
sub-networks, causing the overall network size to scale at least linearly with n. In contrast, our proof
constructs a more compact DNN architecture, which not only prevents the DNN size from blowing
up with n but also yields an optimal estimation error bound as shown in Theorem [2] Moreover,
unlike [22]], our approximation results do not require the density lower bound assumption. Recall
that the regularized empirical score function with regularizer p,, = (2m0?)~%2e~ n~! for the OU
process Eq. (2) can be expressed as

A 3 2
Vi (y) _ 1 x fk(de)(yvt) -y X fk(de)(y>t)
Pe(Y)V s 0F k(je) (y,t) Ve ln—1 ’
where we denote by
1 2 mtw( %) 3 mtm( ) i
W (W), F3 (y,1) = Zexp lome g 12), i ) = Zexp ly=mee 1),

Thus, we conduct two steps to construct a ReLU DNN to approximate %.

ly—msz®]|3
20’t2

and h(y,t) = (130, (h(i)(y,t))s)l/s for some s € N,. Whenever h() > C, where
C = O(y/slog(e~1)) for some 0 < e < 1, the term exp(—h(?)) becomes small enough to be
trivially approximated by a DNN. Consequently, we only need to approximate fxge for h € [0, C'].
We further divide [0, C] into K subintervals. For each 8 € {0,1,..., K — 1}, define

Approximating Gaussian kernel density estimators (Lemma . Let () =

Qp={heR:he [, EE0C 5.0 5]}

For each 3, we define hg = %, B €{0,1,..., K — 1} as the vertex of Q3. The Taylor expansion
of the Gaussian kernel density estimator at Eg up to order s — 1 is given by

s—1 n n
Lex 1 i 1 —1)* exp(—0 i 7o)o
fuae(y. ) = k§702 CUopha) nZ* (h® ;Zil( Lol (O — hp)” = (@) + ),

The second term (b) can be upper-bounded by 3 |h h5|5 (c.f. Eq .) We can approximate

this term by constructing a sub-network to learn hg such that |h — hg| < € for some 0 < € < 1
(c.f. Proposition ). For the first term (a), some elementary calculations lead to

s—1 n
= _9)—(k—lwalli—ag) ,, llv2lli+2lvsiy ~ /1 ) +2u.
@=ex(hy) Y 3 m (1§ gr0) )

vilvslvslay! ;
k=017|1+as=k i=1

we construct each sub-network to approximate o, ~2k by ¢1 /o2 (c.f. Proposition , y¥ by oy

(c.f. Proposition , h(y,t) by ¢;, (cf. Proposmon, hs(y,t) by ¢j,, (c.f. Proposition , ﬁg (y,t)
by gb;fw (c.f. Proposition [6), exp(—hg(y,t)) by QSZ’;p (c.f. Proposition . By combining the sizes
and approximation errors of all the sub-networks described above, we obtain sub-networks that
approximate fk(;e) , frae@ » respectively. A similar argument applies to the approximation of fk(j’g .

Approximating regularized empirical score functions (Lemma [10). After constructing sub-

networks that approximate fi 4.1y, frge® » frde® > Mt, Of 2, we can compose them into a single ReLU
DNN to approximate the regularized empirical score function. For more details, see Appendix

The approximation rate for the true score functions follows immediately by combining Lemma|[T]and
the above approximation rate for the regularized empirical score functions.



4.3 Proof sketch of Theorem 2]
Denote by ¢*(+,t) := Vlog p;(-) and 5(7 t) = %. For any ¢ € NN from Eq. @), we have

_/f(;EXt[”(b(Xtat) - ¢*(Xtat)‘|%]dt = IEXo [£<¢7 XO) - £(¢*7X0)] = EXO [E{m(l)}[€(¢7X0) -

(¢, Xo)]] + Ezi}[Ex, [K((;S, Xo) — 4(¢*, Xo)]], where the second term can be controlled using
the empirical Bayes score estimation result from Lemma[I] For the first term, a key observation is

that the surrogate (z(, t) can be uniformly bounded (see Lemma , allowing us to verify Bernstein’s

condition for the random variable E )y [£(¢, Xo) — £ ((z, X)]. This enables us to apply Bernstein’s
inequality together with an e-net argument to obtain a uniform high-probability bound for the first

term over NA/. Combining these two terms and applying them to the empirical risk minimizer ngS
trained over V'V, together with the score approximation results from Theorem [T} we obtain an upper

bound on ftf Ex, [||<$(Xt7 t) — ¢* (X, t)||3]dt. This approach allows us to establish the desired
generalization bound without requiring a lower bound on the density (see Appendix [E.T| for details).

5 Conclusion and Discussion

5.1 Conclusion

In this paper, we introduce a theoretical framework for studying the approximation and generalization
abilities of neural network-based SGMs for estimating sub-Gaussian distributions on R?. Using
empirical Bayes smoothing techniques and neural network approximation theory, we established
nearly minimax optimal convergence rates for SGMs without requiring strong regularities, such as
Lipschitz score and density lower bound assumptions.

5.2 Limitations and future work.

Curse of dimensionality (CoD). One of our limitations is that our current bounds still suffer from the
curse of dimensionality (CoD). Incorporating structural assumptions, such as manifold assumption
explored in [44}45]], or low-rank structures [46])) is a crucial next step to mitigate the CoD. This would
require non-trivial extensions to our analysis, particularly in adapting our empirical Bayes smoothing
techniques and neural network approximation theory to efficiently exploit low-dimensional geometry.
In particular, our analysis relies on an isotropic Gaussian kernel for the empirical score estimator.
To effectively leverage a manifold structure, this would need to be replaced with an estimator that
respects the underlying geometry, such as one using anisotropic or manifold-intrinsic kernels (e.g.,
heat kernels), to prevent smoothing data off the manifold. A manifold-aware analysis, following, e.g.,
the path of [44}45]], would require establishing new bounds for score estimation and approximation
that depend on the intrinsic dimension of the data, rather than the ambient dimension.

Going beyond sub-Gaussian distributions. Our current analysis leverages the sub-Gaussian assump-
tion in two essential components: controlling the score function in low- density regions (Lemma 7))
and bounding the KL divergence of the Gaussian-smoothed empirical distribution (Lemma[3)). Re-
laxing this assumption to encompass broader tail behaviors, such as sub-exponential or sub-Weibull
distributions [47, 48], poses both technical and conceptual challenges, requiring finer control of tail
integrals and stability properties of the score. We believe that developing such extensions would
substantially deepen the theoretical foundations of score-based models, bridging the gap between
idealized sub-Gaussian settings and the heavy-tailed distributions often encountered in practice. In
particular, leveraging recent progress on the convergence of Gaussian-smoothed empirical measures
under heavy-tailed assumptions offers a promising pathway toward this goal.

Higher-order smoothness. Our nearly minimax optimal rates in Corollaries[T]and [2] currently apply
to smoothness parameters 0 < s < 2. This restriction arises because our analysis employs an
isotropic Gaussian kernel-based score estimator, which is a linear estimator and thus cannot fully
exploit higher-order smoothness [49,50]. Exploring nonlinear or adaptive estimators that can leverage
higher-order smoothness represents another compelling direction for extending our framework.
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Broader Impacts

This work advances the theoretical understanding of score-based generative models (SGMs) by
providing approximation and generalization guarantees under minimal assumptions. By removing
restrictive conditions such as Lipschitz continuity or density lower bounds, our results broaden the
applicability of SGMs to more complex and realistic data distributions. These insights may inform
the design of more robust and sample-efficient generative models, particularly in high-dimensional or
structured data settings. While primarily theoretical, our findings contribute to a deeper understanding
of SGMs, which is essential for their safe and responsible use in real-world applications.
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: As the paper is purely theoretical and does not involve experiments or datasets,
data and code are not applicable.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented conforms with the NeurIPS Code of Ethics. It is purely
theoretical, does not involve human subjects, and does not involve sensitive data or models
with potential for misuse.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a discussion on the broader impacts of the theoretical
analysis. We outline the potential positive impact in advancing the understanding of diffusion
models’ generalization properties, as well as possible negative societal impacts if the findings
are misinterpreted or applied without consideration of their limitations. This discussion is
included in the broader impact section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks, as it does not release data or models that could
have high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

15.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use external datasets, models, or code assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce new datasets, models, or code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The paper does not rely on LLMs as a core or non-standard component of the
methods presented.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A From Score Matching to Hellinger Distance via Empirical Bayes

The following lemma extends [41, Lemma F.2] by generalizing it from densities convolved with a
standard Gaussian distribution A (0, I;) to densities convolved with a general isotropic Gaussian
distribution N'(0, 021,) for any o > 0.

Lemma 4. For every pair of probability distributions P and Q on R® with density functions p, q

R? — Ry respectively. Let po(y) = [pa 0oy — x)p(x)dz and 4, (y) = [pa 0o (y — x)q(z)dz.
For1 <j<dandk > 1, we have

2 2 2
k _ ok < 4oy—2k+1 2N-d/2 2k 42 \/7 2%—1,-a®
/]Rd (3J Po(x) — 0} qa(m)) dz < 4o (2ma?) az\l/r;fkﬁ{a H*(P,,Q,) + —a e }

Proof. For X ~ P)Y ~ @, we let

P = |aw(£) « N(0,1),

o
Y
Q' =law( =) + N(0, L),
o
and their density functions p’, ¢’ : R? — R, respectively. Let
X, = X + N(0,0%I,) ~ P+ N(0,0°1,),

Y, =Y +N(0,0°13) ~ Q* N(0,6°I),

X
X'= = A N(0.1g) ~ P!

Y
Y = - +N(0, 1) ~ Q'
Then we have
X, =0X',
Y, =0Y',

and p, (z) = 0~/ (2), ¢, (x) = 0~ %¢'(%). Therefore,

[ #pet@) ~obas@)) aw= [ (oot (7) ~ otk (7)) a(7)
o [ (o) - ()

By [41, Lemma F.2], we have
L) -G () 2w g e o)

By the scale-invariance of the Hellinger distance, i.e.,

H?(Py, Qo) = H*(P',Q"),

we obtain
2 2 2
a’?ga:—a’?ax)dx<4*2k+12 2=d/2 pp {”“HQPU, o)+ —Q’Hfa}.
[ (o @)-0kan @) o < 10702 ooty 2 int LB (P, Qo) 2 e

O

The following lemma extends [41, Lemma F.1] by generalizing it from densities convolved with a
standard Gaussian distribution A/ (0, I;) to densities convolved with a general isotropic Gaussian
distribution A/(0, 0%1,) for any o > 0.
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Lemma 5. Fix a probability distribution P on R with density function p : R* — R. Forall pi,0 > 0,
letY = uX + 0Z, where Z ~ N(0,0%1,). Denote by P, the marginal distribution of Y with
density function p,(y) = fRd 0o (y — px)p(x)dax the density function of Y. For all y € R?, we
have

[VPo (y)]l22 1 V2(ps(y)) (2m0%) /2
WP < (o gy + LI < 2 o (222 ), (13)
( Po(y) ) (02 T pe(y) ) 02 ( P (y) )
Moreover, we have
ro2)—d/2 . _ B
(Ve @7 [ os (E202) po<ps@roy e
pe(y)Vp/ % ifp> (2mo?)~2e=1/2,
Proof. If X ~ Pand Y |X ~ N (uX,0?1,), then by Tweedie’s formula, for every y € R?,
Voo 1
20 —SEpX —Y[Y =yl (15)
Po(+) —y o
Then we have
V2(po V2(ps (|
Po(y) _ (o (] ))pg(w|-)daz‘
Po(y) po () =y
_ 2
—zlgexp ( - %) + 4(Y = pX)(Y — pX) " exp ( 7”},25"(”2)
= EX|Y:y{ }

Y —pX|3
exp ( — 5,7 2

1 1
=Exjy—y { - ;Id + ;(Y —pX)(Y - MX)T}

1 1
= — L+ SE[(EX - Y)(pX -Y)'|Y = yl.

Then we have

1 V2(ps 1

gzlat p(f(;;y)) = SE(X -Y)(pX - Y)|Y = y]
- %(@E[ X -Y|Y =y))(EpX - Y[Y =y]) +Cov(pX — Y|V = y))
- 01 ((E[ (E[MX—Y|Y=yDT+C0V(uX\Y:y))

)
pX =YY = yl)
(
(

:
— (e PN | Cov(uXIY =) oy B )

\V4 o \V4 o T 2
S S oy )

Hence,

Ve (y) (Vpa ()" _ 1, Vpe(y))
Pe(y)  po(y) a2 po(y)

2
— ;COV(XlY:y), (16)

which gives that

Veo() (Vo) | 1, V(o)) (17)
po(y) po(?;/) ~ o2 pa(y) '
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By the convexity of z — exp(3Tr(Z)), we have

o

a*V3(ps(y))
pofy)y >)

= exp (%Tr(%E[(uX ~Y)(uX Y)Y = y]))

< E[exp (%Tr(%(uX -Y)(puX — Y)T)) Y = y] (by Jensen’s inequality)
o (2 By

. 2
||/1'X20-2Y||2):|

2
T —Y
— /exp (%)130@@)0@

e (L2 ), (yj2)p, (@)
B / Po(y)

1
exp <§Tr (Id +

=Exy—y [GXP(

dx

feXp s y”2)pa ylz)p,(x)de

(4
Po(y)
(4

Iz~ y“z) (2702) =42 exp ( - ”’“;%”g)%(w)dw

f exp

[oa

(Y|X ~N(uX,0%1,))

Po(y)
_ (2mo?)~4/?
o pe(y)
Therefore,
1 V2(ps(y)) 2 (2mo?) =4/
(ot ) < e (o)

together with Eq. which gives

IVps (y)ll3

V2(p,(y)y _ 2
P2 (y) )<

o) —d/2
i) = o8 (B)

1
< Tr(—Id +
o2 pa(y)

o2

Then, we have
2 Qro2)—d/2
1VPs(y)ll2 < Po(y) 7log(( mo?) )
pe(y) Vp pg(y) Vp\ o Po(Y)
ro2)—d/2 ro2)—d/2 .
\/fQ log (%) < \/0.22 log (%) if po () > p,

ro2)—d/2 .
pg;()y)\/ log ((2 g()y) ) if py(y) < p.

When p,(y) < p < (2m0?)~42e71/2, since x + zy/log (£) is non-decreasing on (0, 5=l we

Po(y)Vp S\/021g< p )

Therefore, if p < (2r02?)~%2e~1/2, we conclude that

VP (y)ll2 (2mo2)—d/2
pa(y)\/p_\/o21 (f) (18)

have
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C

If p > (2102)~%/2e71/2, since x| /log (£) < (2¢)~1/2, where the equality is obtain when z = =
Then,

Ves(y)ll2 . _Po(y) \/210 ((271’0'2)7d/2)
po(Y)Vp T ps(y)Vp
(271.02)711/2671/2 1
< =7 -
Po(Y) V p o

A.1 Proof of Lemma[2l

Lemma[z] Given any distributions P, Q on R with density functions p, q : R* — R, respectlvely
Fixo >0, let P, = PxN (0,0 Id) Qo = Q*N(0,021,) with density functions p,, qs : RT — R,
Foralld > 1,n > 1,let0 < p, < (2mo?)~ 4/26=1/2 gnd let G = {x € R : p,(x) < pp}, then
there exists a universal constant C > 0 such that

- S
(fmax g (P71 g (M1, @) (P2 00) + [ ooz

Proof. With 0 < p,, < (2m02)~42e712 let G; == {x € R : p,(x) > pn},Go = {2z € R4 :
Pn > Do ()} such that R? = G; U Gs.

J.

2 2 2

Vp, Vo

Po Go V pn 2

Vp, Vo

Po qs V pnll2 Do Qo V pnll2
=(I) = (II)

Vp, Vo,

Case 1: G, = {x € R%: p,(x) > p,},

Vps _ Vo 2 p
Do Qo Vopnllz 77
Vpe 2Vp, 2(VPJ - VQG) 2Vqs o Vo 2

pG’ p0'+q0'\/p7l pU+Qvan p0'+q0'\/p’ﬂ qG'\/pTL 2

a\/ n — Mo vz:r V QVO‘_VO' 2
o \V pn — P ( Po | )H py + 2/ ’ (Vp, 9o)
p0+qavpn Po qg\/pn

‘Do

‘Mo

Po+Gqo V pn 112
/HVpa 2 (4o V pn = Po) 4 / ‘ Vps =V,
1 qa\/pn (pU+QUan be Do+ 4o V prll2 7

= (I-a) = (I-b)

Bounding (I-a)
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V o 2 v o 2 a\/ n - o
(I_a)<4/(p LY )q pn —Ps)’p
g, Mps M2 gy Voppll2 pa+qa\/pn)
_4/ ( Ve |2, || Vo 2) Vo V /Pn — /D)’ (Vo V \/Pn + \/Ps)D
g1 Do 2 o \ Pn 12 (po + do \ pn)2
<8 / ( Vpo |2 || Vo 2) Vo V \/Pn = \/Ds)*Po
- Ja Po 12 Go V pnll2 pa"'qo\/pn
Vpe ||2 Vg, |2 — /Do )“Do
SS/ ( Poll” 4+ 4 ) Po)’p by ps = pn)
g1 Do 2 QJVpn 2 Do +QUVpn
Vps 2 Vo 2
e [ (12 + -2 ) - v
g1 pa 2 qcr \/pn 2
32 Inwg2)—d/2
< 0210g<(p))/ (VPo — V@s)% (by Lemma5))
n G1
Bounding (I-b)
Ve — Vs |3 Voo — V|3
G1 (pa +4q V pn) G, Pot 4o V pn
Case2: Go == {r € R?: p,, > p,(x)}
Bouding (II)
/ HVpo* _ 2 .p — / (QU VPn)VPo —pav% 2 i
Go 4o V Pn P Po(qo V pn) 2
— / (qU Vv Pn)vl)a - pona +pana - pUVQU 2 .
Ga pa‘(‘]a‘ \ Pn) 2
B / (4o V pn — Po) Vo +0s (Ve — V45) ‘2
- ‘Do
Go pO’(qO' Vpn)
- (o v o
§2/ (95 V pn — Po) Vpg 0+2/ HVp G|,
Go 4o V pn qo V pn 2

= (Il-a) := (II-b)

Bounding (II-a)
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(l-a) = 2/ Ve "oV oo~ po) P
po 2 g2V p2 7

Q
%)

:2/ Vo 2(\/617V\/pn—\/p?) (V@7 V /Pn + \/Po)”
Go Po 2 vpn Pe
<4/ Vo, 2(\/%V\/pn—\/ﬁ) (qavpn+pa)_p
= Jg, Il po 2 a2V p? 7
o [ 90 8 = VP 4 (P = VB )(as ¥ o+ )
= /g o 2 2 V3 Po
\Y% o 2 \/pn_ pa2QU\/pn+pa
g, I Do 112 qz Vv py,

(by ¢o V prn > pn > po > 0)

Sg/g2 Vo ||2 ( (Vis — /Po)? + (Pn+p03§q\j;/%pn+pg) -pa)
/ vaa ( ~ Vo)’ +2po> (bY ¢ V pr = pn > po > 0)

32 2 /2 Ve |12
< ﬁlog(%)/ (\/q?—\/pg)2+32/ ‘ P Do (by Lemmalj)
a Pn Go G, I Po 112
Bounding (II-b)
_ 2
(H-b):2/ e —Vaols .,
Go 95 V Pr,
Voo — Va3
§2/ Vs = V4alla (by g6 = pn > p5)
G2 9oV Pn
_ 2
Gy, 4o V pn + Do
Combining Case 1 and 2
Bounding (I-a) + (II-a)
32 2mo2) /2 Vpe |2
)+ @) < Zog (P21 [ (g o a3
o Pn Rd g, I P 12
32 Qw2 —d/2 o 112
< = log (%)H%Pmczawm/ [ Y2 |, @)
o Pn Gy ! Po 112
Bounding (I-b) + (II-b)
_ 2
Re Qo V Pn T Do
Forl1 <j<dandk >0, let
() — 05 gy (2))? oF
A?k::/ (97Po() ~ 9745 ()) dex, with@fp,,::—kpg.
’ Rd Do+ 45V pn : al‘j
Then, we have
d
IVPs = VoI5 >
I-b) + (II-b) < — == A% 22
(1-b) + ( >_/dea+qavpn ;j,l (22)
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(1) Bounding A% .

A?,O — /]R (po(m) — QU(x))Q dx

d pa(w) + QU(w) \ Pn

- [ e Ve ) + VG,

Do (x) + qo () V pp

§2/ (\/pa(w)_ VQU(m))z(pa(w)+QU(x))dm
Rd

Po(T) + 4o () V pn
<2 [ (Voo@) ~ V(@) P,

< 2H*(P,,Q,). (23)

(2) Bounding Ai . for k> 2.
Note that

(8 po () — O go(x))? 1
A2 :/ J J dx<—/ p, () — 0%q, (x))*d.
gk R4 pa(w) +Q<7(m) \/pn o Pn ]Rd( jp ( ) ]q ( ))

By Lemmad] we have

4 - : 2 opi1 g2
LI o L SENIE T g S
n a> —
(3) Bounding A?)l.

dx

o [ Ofpe(x) - 9q,(2))”
B = /Rd Po(T) + g0 () V pr
[ B 00w,
R4 Po(x) + qo () V pr

1 1
= [ 0 @) — @) ) — @)y ()

_ / 8;?71(170(33) - QU(CE»aJI'CJrl(pU(w) —4¢s(T))

dx.
Po(x) + qo () V pp

Note that

‘8:( 1 ) —0jps(x) — 040 ()
! Po(®) + qo () V pr/ | = 1 (po () + go(x) V pn)?
< VDo (@)ll2 + [[Vao (®) ]2 1

Po(®) + 4o () V P po(®) + 4o () V pp
- 1 2V2 ) (M).

T Po(®) +qo(x) VP o Pn
(by Lemma[5|and ¢, > py)
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Therefore,
1

83 = [ 0r @)~ 00 (@)} o) ~ 0 @) (a0
- / aj]'cil(pa(w) - QU(z))a]l‘€+1(pa(w) - QU(w))
R Po(®) + 4o (T) V P
27\/5 (271'0'2)7(1/2 ‘8;‘671(100(:3) - QU(w))l : |8Jk(p0(fl:) - QU(w)”
o \/Iog ) /]Rd Po(T) + 4o () V P
Iaf (pa( ) — qo( )| - 107+ (o (®) — g0 (2)))]
)+ a0 () V Py

dx

dx

IN

dx

I /\

zf (2 \/ / (0}~ 1pg ) 4 (@ \/ / z) — 4 (@)
Rd +ch \/pn R4 po +qg( )\/Pn
\// (5 lpa ) — g0 (@ \// (05 (po () — g0 ()))?

dx
R4 +Q<7( \/pn Rd +q0‘( )\/,On

2)—d/2
_ Zﬁ\/log ((27rcr )
o P

)Aj,k—lAj,k + A 1A gt

Divide both sides of the above inequality by A; x_1A; 5 and denote by

24/2 2mo2)—d/2
)

Aj k Aj k+1
= < Cppa+ —2 . forallk > 1. (25)
Ajpor = 7T A

we obtain

* Suppose first that there exist an integer 1 < k < kg such that A; 11 < SA; ;. Then
applying Eq. (23)) recursively for 1, - - - , k, we obtain
A;
—l S kcp,o’,d + B
i,0
Then we have

Ajq1 < (kC'p,a,d + 5)AJ 0
< V2(kCpa+ B)H(P,. Qy) (by Eq. @3)
< V2(KoCp 0+ B)H(P;, Q). 26)

* On the other hand, suppose that A 11 > BA; ;, for every integer 1 < k < ko. Then, by
Eq. 23), we have

A
Pk S Cp,(r,d +

forevery k =1,..., kg.
Ajk-1 ik v ’

Ajrt1 (1 + oo, d) Ajikt1
A B/ Ak
Recursively applying the above inequality we obtain,
A < (1 + M)km
Ajo B Aj g

Taking the geometric mean of the above inequality for k = 1, ..., kg, we obtain

k
ijtl) = (1:010(14‘ C’Jg’d)kAAi,zli:l)l/(koﬂ)

Crod\F0/2  1/(ko+1) x —1/(ko+1
= 1+ Comt) Pt gy o,

forevery k =0, ..., ko.
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which 1mphes that
C o,d ko/2 1/(ko+1 k ko+1
Ajq1 < (1+ —£57 ) Aj,/k(ool )AJOO/( oth),

Therefore, with k = ko + 1 and Eq. we have

C " ko 4(2 2\—d/2
Aj1 < <1+ £, ’d) ’ ( (2mo7) o 2ko=1 inf {a2k°+2H2(Pon)
B Pn a>/2koF1

4 g2kotlg—a® } ¥z (2H2 PU7QU)) e

_d
< 1<(2m2> )( )700- Wt inf ( 2R t2H2(P,, Q,)
2 Pn a>+/2ko+1
4 gkotle— >2k0+2 )
2\ — 2 kg
_ L@ty red) Foomn a(H(Pr. Q)
2 Pn a>V2ko T 1
+eia2)2ko+2Hk 5;1 (PUHQU) (27)
Choose 3, kg, a:
* Choose 3 = koC) .4, Eq. becomes
Aj1 < 2V2k0Cpp.aH(Ps, Qo). (28)
and the term in Eq. (27),
kg ko
od\ 2 Nz
(1+ %) " — (14 1) T < ve (29)
B ko

(2#02)7% 2"“0ﬁ . .
» Choose kg so that we have ( ~———— < /e and thereby the term in Eq. (27) will

Pn

a'
O

_4d 2.1 5 =2
be (%}#) ro (1 + oo d) < e . This requires that
(270?)~ d/2> T2 1 (2m02) 42
(2mo®)~ | ( )) < \/e. 30
( Pn 2o +2 0 Pn < ve GO

Hence, for all n > 1, we can choose ky > 1 to be the smaller integer such that

log((Qﬂgj)d/Q) + 1<k < log((%m;)m).

Consider the term in Eq. (28), we obtain,

3/2
8 2 2\—d/2
2V2k0Cpre < = <1og((mp))>
n

= exp(

which gives that

8 (2mo?)~d/2 o2
Apa € 2V2hoCpoa < — (log () | (31)
o Pn

* Choose a? = max{2ky + 1, — log (H*(P,,Q,))}. Notice that a > 1 and

e <HX(P,,Q,).

32



Consider the term in Eq. (27)), we have

(H2(Paa Qo) + 67a2> ot < (Hz(Paa Qa) + Hz(Pov QU)) 2<k3+1) < QHﬁ(Pm ch)'
(32)

Combine Eq. (29), (30) and (32), we obtain that Eq. (Z7) is upper-bounded by

Aj1 < eas” T2 H(Py, Qy) < camax{o !, 1}H(Py, Qo) (33)

Combining Eq. and and ko = Uog(M)j, we obtain

2mo?) =42

Aj1 < max{§10g3/2(( p ),ea, eao_l}H(Pa,Qg).

Hence, by Eq. (20) we obtain

(271_02)7d/2> 5 o e2a2
72 e

d
4
(I-b) + (11-b) < 4" A%, < 4dmax{%log3< ; a ,?}HQ(PU,QG). (34)

j=1

Therefore, by combining (I-a), (I-b), (II-a), (II-b), i.e., Eq. (21 and (34), we obtain

/ Vpo(x) Vo (x)
]Rd

Po(T) 4o () V pnll2

2

po(x)dx

< 4dmax{(6;§log3((27r0p22d/2>762(210g((27mp22d/2) 1), S og(H2 (. 0) P2
+ 2 log(W)H%Pm Q,) + 32 fo:?(m)) | po )iz
SQiidmaX{b?(W)’ S 08(H (P, @0)) I (P, Q,) + 32 / HW“ s ()0

O
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B Convergence of Smoothed Sub-Gaussian Distribution in KL Divergence

B.1 Rényi divergence and Rényi mutual information

Definition 2 (Rényi Divergence and Rényi Mutual Information [51]]). Assume random variables
(X,Y) have joint distribution Pxy. For any A € R\ {0, 1}, the Rényi divergence of order \
between probability distributions P and Q) is defined as

1 dPy\*
DAPIQ) = 3= 105 (Ee|(55) ])
The Rényi Mutual Information of order \ are defined as
I\(X;Y) = Dx(Px,yl|Px ®Py),

where Px , Py to denote the marginal distribution with respect to X,Y, and Px ® Py denotes the
Jjoint distribution of (X', Y") where X' ~ Px,Y' ~ Py are independent to each other.

The following lemma is a restatement of [42, Lemma 5], in which we explicitly demonstrate the
dependence of the bound on the Gaussian parameter o and relieve the exponential dependence of o.

Lemma 6. Fixc > 0,let X ~ P,Z ~N(0,0%1;),X L ZandY = X +Z. Fix1 < A< 2. If
P is a a-sub-Gaussian distribution, we have,

1 Cy a
: < — .
I,\(X,Y)_Ail(log(&_)\)d/g)—i—dloga) (35)
for some Cy > 0 depends only on d.

Proof. By the definition of Rényi divergence Definition [2] we have

hw) = 1o (o () )
- Ai 1 log (EPX®PY Kd(f;}l,X)AD
vo(Y — X)

(Ex[po (¥ — X)) )
byY =X+0Z,Z ~N(0,1,))

1
= N1 log (Cpr®pY

for some positive constant C' > 0. Therefore, we only need to upper-bound

Ex [ Jga Mﬁf?jf)ﬁg)])kdy] for sub-Gaussian distributions.

Decompose RY = Uz ¢; as a union of cubes of diameter 20. For any X € ¢;, we have

Yy = X3
202

Iy = X3

Ex [ exp (
x| oxP 202

)} ZPI‘(XECZ‘)']Ex[eXp( )‘XGQ}.

Fix any (non-random) X’ € ¢;, by || X — X'||2 < 20 forall X, X’ € ¢;, we have

2
Iy = X153 < (IY = X'l + 11X’ — X])

IN

1Y = X'|5 + 40lY = X'l2 + 40°
3 1
= 51Y = X5 = S(IY = X'||2 + 40)* + 120

IN

3
Sy = X'|3 + 1202
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Then, for any X, X’ € ¢;, we obtain

B [exp (= o XIE)] 5 prx ) B [ep (- WY XE 590y 0 ¢ ]

202 402
Y — X/
= exp(—6) -Pr(X €¢;) -Ex [exp ( — %)}
3 Y — X'||2
= exp(—6) - Pr(X € ¢;) - exp ( — %), (36)

which indicates that

oxp (- 2PEE) e ([ B=NIY - X3
Exlen@ =t < o (00— 1) Pr(X e e (- =0 —0)
_ 2
< exp(6) Pr(X € ¢;)' P exp ( - %) 1<A<2)

Therefore, for any X € R? we have

exp (- A7) Y - X3
i dy < 6)Pr(X € ¢ I=A B et [ |
/Rd Exlpa (Y — X)) 1= /R exp(6) Pr(X € ei)! exp ( — = 5 )y
_ Y — X||2
_ Pr(X ’ 1 )\/ o H 2 d
exp(6) Pr(X € ¢;) y exp ( T ) Yy

< exp(6)(4mo?) 2 Pr(X € ¢;)'~

Taking expectation over X, we obtain

P Y - X) PAY — X)
Ex [/Rd o= X < 2 PriX €c): / Exlo (V=X

(27T0'2)_d/2 exp ( _ AH‘;;XH%)
d

R ) | Ew
exp(6)2%/2 ZPr(X €e)

IN

LetC, == {c¢;|(r—1)o < ||si]|2 < ro} denote the set of cubes whose centers s; belong to {(r—1)c <
[|sill2 < ro}. Then we have |C,.| = Cqr@='. We further let Pe, =Y. .o Pr(X €¢;).

If P is a-sub-Gaussian, we have for all ¢; € C,,

Pr(X €¢;) < Pr(| X — s;ll2 < 0) (by ¢; is a cube of diameter 20)
< Pr(lllsill2 — of < [|X[l2 < [lsill2 + o)
< Pr([flsiflz = o < [1X]l2)
202
< Cexp ( - — ), (by {(r — 1)o < ||s;|l2 < ro} and P is a-sub-Gaussian)
«
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which gives that

ZPT(X €)' = Z Z Pr(X €¢)** < ZC|CT\ exp ( - W)

[0
r=1¢;€C, r=1

<3 Cartexp (- @Ay
r=1

[ 2
. _(2=202 2
SC’d/ rile” "2z Tdr
0

2 — N)o?\ —d/2
- C’dl“(d/Q)(%)
by [ 74 exp(—ar?)dr = F(ﬁ) witha > 0,T(d) == (d — 1)!)
0
2a 2

- i)

Hence, we obtain forall 1 < \ < 2,

1

—— log (C&’Zd/Q exp(6) Z Pr(X € ci)Z*)‘>

ILNX;Y) N1

IN

2

ﬁ log (C‘/f” ( 2 —ax)cﬂ)w)

= ﬁ(log ((2_05/”/2) —&—dlog%).

IN

B.2 Proof of Lemma[3

The following lemma is a restatement of [42, Theorem 3], in which we explicitly demonstrate the
dependence of the bound on the sub-Gaussian parameter o while removing the dependence on the
Gaussian smoothing parameter o.

Lemma 3} (Empirical Convergence of Gaussian Smoothed Sub-Gaussian Distributions in KL-
Divergence) Given d > 1,n > 3,0 > 0. Suppose that P is a d-dimensional a-sub-Gaussian

distribution. Let P, = P x N'(0,0%1,) and P be the empirical measure of an i.i.d. sample of size n
drawn from P and P, = P * N'(0,021,). Then we have

d logd/ Zn

Bpe [KL(E1P5)] < Ca(2) 22

e
Proof. Let X ~ P,Z ~ N(0,0%°1;),X 1L ZandY = X + Z. Then, we have Y|X ~
N(X,0?1,;), which indicates that Py | x - P ~ P % N(0,0%1;). Therefore, adopting [42, Lemma 4]
and Lemma@ we obtain that forany 1 < A < 2,
1
A—1

< /\il log (1+exp <log ((2_6';\1)(1/2 . (%)d) —(A— 1)logn)>

(by L
1 o s y Lemma 6]
:ﬁl‘)g(”m'(;”

Cd a\d
< =T e (;) . (by log(1 + z) < z,Va > 0)

Epen [KL(P,|[P,)| < 1= log(1 + exp(A = 1)(I(X; Y) — logn))
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Choosing A\ =2 — ——,byn > 3wehave 1 < \ < 2 and

logn?

A—1

1
n =pn Tgntl

1
:n.EXp<710gn‘logn> :g' (37)

We have

Epon {KL(IE’UHPO)] < %(j)d < /(g)dlogdﬂn.
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C Score Estimation by Regularized Empirical Score Functions

C.1 Sub-Gaussian tail bound for score functions

The following Lemma follows a similar proof from [30, Lemma 5], while our results do not require
the assumption that the parameters satisfy o < a:

Lemma 7 (Sub-Gaussian Tail Bounds for Score Functions). Given a a-sub-Gaussian distribution
P, let P, := P N(0,021,) with density function p,. Fix0 < p < (2n02)~42e et G == {x €
R? : py(x) < p}. Then,

d

- 2m0?) "% 4 2d3/2
/ HVP (z)dx < glog((mp)z)(SZ(a2 +02)logn)g + o

Proof. For some A > 0, set A = p+ [—A, A%, where p = Ex . p, [X]. Then we have

[ o

Vo Vps(x) |12
- [ u% s [T e
gnA gnAe po(w) 2
Vpe Ty, |2
= /A ‘ pp 2pa(ﬂc)]l{pg(ac) ép}dm+/ pp po () 1{ps(x) < p}da.

= (D) = (II)

Then by the sub-Gaussian tail bound of P, with parameter v/ a2 + o2,

A2
— < —_—_
Pr[X ¢ A] /Cpg(a:)dw < 2dexp( STeERn 02)). (33)
Let Xo ~ P, X ~ P,,Z ~ N(0,1;) and we have X | X ~ N (Xo,0%1,).
Vps(x) (12
an < / pp (;)) | po(@)da (39)
Ae o
1 2 .
= /C ;]E[XO - X|X = w]H2pg(w)daz (by Tweedie’s formula Eq. (T3))
1
— SE|[EZIX]I31{X ¢ 4} (by X = Xo +02)
1 . .
< EE{]E[HZHQX] 1{X ¢ A}} (by Jensen’s inequality)
< = VENZIg Prix ¢ A (by Cauchy-Schswarz)
g
<L J@d+d)2d (—i) (by E nd E[|| Z|4] = 2d + d?)
~ o2 P 2(a? 4+ 0?) y =4 a 2
2d3/2 A2
< —— .
Y e e

Let A = \/8(a? + 02) logn, then

8(a? + o?)logn 4
Pr[X <2d —————— ) =2d
X A) < 2SN
which gives that
243/

< 5.

(41)
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By Lemma and notice that 2 log(£) is monotonously increasing on [0, £], we have

4 A2 —d/2
M < /A0_210g<%)p0(w)]l{pg(w) < pldx (by Lemma[B)
2\—d/2
B % Alog <(2mp))pd“’ (by po () < p < (2m0?)~2e71)
4 (2mo?)=/2 d
=2 los (#)(2‘4)
2\—d/2
= g log (<27mp)) (32(a2 + 0?) log n) d/2. (42)

Combine Eq. @#T) and (@#2) we obtain

Vo () |12 2p (2mo2)=4/? ) ) a/2  9q3/2
< — N s 2a”"
/g H Po () Hzpcr(w)dal S 3 10g( P )(32(& + o )logn> + =

n2o2

C.2 Score estimation error for sub-Gaussian distributions

Lemma |I| For any d > 1,n > 3, Let P be a a-sub-Gaussian distribution on Re and P be
its empirical distribution associated to a sample {w(i)}}’:l. For any ¢ > an~1/4 logl/2 n, let
P, = P+ N(0,0%1,), P = pln) N(0,0%1,) with density functions py,py : R — R, Fix
0 < pp < (2102)~42e=n"1, then we have

2

B iin Vpo(x) _ Vio(z)
(= }izl{
Rd

Po () B Po(x) V pr
Proof. By Lemma[2] we have
/ Vs (x) Ve (x)
R

pa(a’) a ﬁa(w> V pn
2\—d/2
< Cda—2(1og3((2”"pi/) v log(H_Q(PU,QU)))HZ(PU,PU) +32 /g

2\—4¢ d/2
pa(il:)da:} < g d? (Ud + ad) 1Og3<(2770 )2 ) log n

2 Pn n

2
po(x)dx
2

Vp, (@) H2 o (x)de.

po(x) ll2

By Lemma[3] forallo > 0,n > 3,d > 1,
dlogd/zn

n

Epon[H(Py. )] < Epon[KL(P,|1Py)] < Ca( )

Notice that = — xlog ™! is concave and by Jensen’s inequality we have
A - 1 R
Epon [log(H~2(Pr, E)HA(Py. PS)] < log | Epen [P )
Epen [H2(P,, P{)]

Note that z + x log(z~!) is increasing in (0, e~ 1). If Cga?o~9n"11log®* n < e, which can be
satisfied when (a/c)? < nlog”™%?n, ie., 0 > an~1/?log'/? n. Therefore, we obtain

log (Epor [H™2(Ps, PI")] ) Epen [HA(Py, BS)]

/
o ey (2) el 2)

log(Cdflnlog*d/Q n))Cd((o;)dlog(;/Qn n Cd<:)d10g(2)dlogd/2n

n

/2

d] d/2 1 1 d/2
gc;bgn(%) o8 ”+5 dogn z (Llog(x) < 1/2,Va > 0)
ag
. C(,i(a>dlogd/2+1n
g n
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Hence, forany d > 1,n > 3,0 > an~/?log!/?n

Vps(x) Vo ()
po () Po(x) V pp ll2

< Cdo‘2(10g3(M)Ep®n[H2(Pg, P + Epen [1og(H—2(Pm pim )) H2(P,, p;m)])

Efaoyr, ~pen

pa(w)dwl

Pn
+32 Vpi ?S) Hzpn(a:)dm
< 02<j>d<1og3((27mp22d/2) + logn / H Vpo ( a): po(x)dx
<o <%>d log3((27rap2:d/2 log?/ / H Vpg (z)da.

(by 0 < pn < (2m0?)~2e=1n~1)

2\—d/2
Notice that x log(%) is nondecreasing on x € [0, (2r0?)~%2¢~1]. By sub-Gaussian tail

bound Lemma foralld > 1,n > 3,0 > an~/?log"?nand 0 < p, < (2m02)~42¢=n"1, we
obtain

Vs () Vis(x) |2
E k3 n n - o d
e ~Pe pe@)  Ba@)V pn 1PN
2re2)—4/2\ 1oo?/? ” Iro2)—d/2 dj2 d3/2
< ada*d*21og3(( mo) ) 8N Pn log(i( mo”) )<(on + 02)logn) +
Pn n o? Pn n2o02
2102)—4/2+ log?/? log?/2
Sada_d_2log3(( mo”) ) og' n +0_d_2(10gn+1)(a2+02)d/2 g n
Pn n n
(by 0 < p, < (210%)~42e71n~1)
< alo4 2 1og? < (27T02)7d/2) log"* n + o2 (o + o) log"/** n
Pn n n
< o2 (a4 o) 10g3<(27702)_d/2 ) log™*n
~ Pn n
O]

C.3 Score estimations along OU process by regularized empirical score functions

Theorem 4. Suppose the target dlstrlbutlon PO satisfies Assumpnonland let PO be the empirical
distribution associated to a sample {az . Forany d > 1,n > 3 and any 3 La2p=2/d1ogn <

to <land T =n®M), let {@i}eerto ) be the solutions of the process Eq. wnh density function
et RT — Ry Let pi(y) = Sy 0o, (y — e 'xW) be the empirical density function. Let
pnt = 27(1 — e=2))~/2e=1n=1, Then,

t=tg JRRA

Proof. For OU process, we have X; = ¢ ' X + V1 — e 2Z, Z ~ N(0,I;). With Assumption
e~ t Xy is e ta-sub-Gaussian. To use Lemma we need 07 = 1 — exp(—2t) > o’n~%/ogn, ie.,

—log(1— %) and a®n=?/?logn < 1. Notice that T > to > Sa?n~%/?1log n, we have for

th xy) V()
pe(xe)  Pe(x) V Pnt

H Pe( wt)dwtdtl < at d/Qn_llog%Hn
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all t € [to, T),

1 1 21 1 1
t>—a’n 2/dlognz flog(l—i— w) = —710g<7)
2 2 1+

n2/d 2 a? 123%n
1 a?logn n2/d
= —= log(l — ) )
2 n2/d  n2/d 4 a?logn
1 a?logn a*log?n
= — - log(l - )
2 n2/d n2/d(n2/d + a2 log n)
! a*logn atlog?n
> -z log(l - )
2 n?/d 2n2/d(n2/d A a2 logn)
1 o? logn ot ]og2 n
2 =5 - 2,,—2/d <
< T3 log(l n2/d on2/d? logn)) (by a”n logn < 1)
1 1a?logn
=3 log(l 5 W)’

which gives that
1 —exp(—2t) > a?*n*?logn
and it follows from Lemmaand Pt = (2m(1 — e72t))~4/2e=1n =1 that

\Y% Vp logd/2+3
/ pe(Tt) _ Pe(Tt) H pol@)dz, | < e~ ( dg;dv 1)0—2 0og n
rall p(s) Pe(xe) V Pt n
Case 1: When « > 1, we always have a > oy, Vt > 0.
th(mt) . Vﬁt(l’t)
pi () De(xe) V pp e ll2
d/2+3

E{m(ﬂ}?:lNP@n

2

E{m<”}£;1~P®" [ o pt(fct)dxt]

—2t

n i/ € 42 1 log
sa (1—6—275) 1—e2t n

d/2+3

< efdtad(l _ 672t)7d/27110g
n

Note that (—2t) L1
exp(—
— L < AN, T t > 0. 43
1—exp(=2t) = ¢t 12’ oranyt > “43)
To see this, let f(t) := 1 — exp(—2t) — texp(—2t),Vt € [0,00). Since f(0) = 0 and we have
1'(t) = 2exp(—2t) — exp(—2t) + 2t exp(—2t) = exp(—2t) + 2t exp(—2t) > 0, foranyt >0,

which indicates that f(¢) > f(0) = 0 for any ¢ > 0 and validate Eq. (#3). Then, for any T' > to > 0,
we have

e e 1 T
/ (=) ==t < / Y2 4 1)de (by Eq. (@3))
to to
T T
= / t*d/2*1dt+/ t=42qt
to tO
a2 apa T
d t=to d+2 t=to
2, _a/2 2 _q/e1 —d/2
<=t —t St
=gl g ’

which gives that
V() V()

| [
(2O} ~Pe [ R Pt wt Pt(ﬂ?t)vpnt

log2+3 T e—2t \d/2 1 dy—d/2 _—17 443
a T/t (1—6—2t) 1—e—2tdt§ato o log=n

pt (mt)da:tdt]
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Case 2: When 0 < o < 1.

Low noise region: When o > o, = /1 — exp(—2t), which indicates that to < t < —1 log(1—a?),
it follows from Case 1 that

— 3 log(1—a?)
- t=to R4

. d —dj2 1, 4
< o't 21 og2 3 < to 21 og2 3 p

th(ivt) Vﬁt(fﬂt
pe(s) pt(wt) V Pnt

H Pt Lt d$tdt]

High noise region: When o < g, which indicates that —% log(1 — a2) <t < T, we have

th(mt) _ Vﬁt(mt)
pe(s) Pe() V pp e ll2

2 1 log?/*+3

pt(mt)dmt‘| 5 €7dt(1 — 672t)7 _—

E (H)wn  P®n
{2}, ~P n

which implies that
Vpi(xy) _ Vpi(xy) H (e dmtdt]

T
E () L pPRn / /
=P lt——;logu—oﬁ) rall pe(@e)  Pe(@e) V pse

<1ogd/2Jr3 n /T e~ gt < log®/#3 /T et dt
~ n t=—1log(l—a?) l—e 2 — n t=—1log(1—a?) 1—e 2

d/2+3 T d/2+3 T
_log T ”/ BLENPTF. n/ "
2n t=—1log(1—a?) e —e 2n t=—1log(1—a?) et —1

1Ogd/2+3n T 1
<= = —dt by —A— <t~ 1Vt >0
- 2n / log(1—a?) t ( Y exp(t)=1 = )
1ogd/2+4n
~ n
]

C.4 Score estimation along Brownian motion process

Brownian motion process Consider the Brownian motion process as the forward process of
diffusion models:

dX,=dB, (0<t<T), Xo~ P. (44)
It has an explicit solution
X, =Xo+ViZ (0<t<T), Z~N(01I;) L X, (45)
which implies that X;| Xy ~ N(Xy, tI;). The reverse Brownian motion process is given by
dY; =Viegpr_«(Yy)dt +dB; (0<t<T), Yy~ Pr. (46)

Corollary 3. Suppose the target dlstrlbutlon Py satisfies Assumptlonland let Po be the empirical
distribution associated to a sample {a: }” 1~ Foranyd > 1,n > 3 and any 5 a2n 2/d]ogn <

to < land T = n°W), et {@t}iepto,m) e the solutions of the process Eq. (44) with density
function py : RT — R Let p(y) = Y| 00, (y — mux?)) be the empirical densityfunction with
o =Vt,my = 1. Let Pt = (27Tt)_d/2e_1n_1. Then, we have

E(z@)n  ~pon l/ /
t=tg JR2

Proof. For Brownian process, we have X; = X, + V1Z, Z N(0,1;). With Assumptlonl Xo
is a-sub-Gaussian. For any d > 1,n > 3 and any T > 2 L1a2p=2/d log n, by Lemmal we have

/ th(wt) Vﬁt(wt
rall pe(®:) Pt(ﬂft) V Pn,t

th xy) Ve (xt)
pi(ze)  pelze) V Pnt

H Dt th)dCBtdt] < Cyatt d/2 _110g2+4

d/2+4

1
H pt Lt dfl}t‘| < Cd( dt d/2 Vl)tilog?

E(zmyp,~pon
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Low noise region: when o > Vi,

Forany 0 < tp < o2, we have

o 2 t=a® 9 _ 2 _
=42 1qt = —ft*d/Q‘ = f(— —d 4y d/Q) < Zg542
/to d t=to d @ "t —d°

Therefore, we obtain

E 3 n n
[ [

log?+? o _
<a ¢ 08" 1 / t=4/2714t < Chaty R s A
n t=to

th Cct Vﬁt(mt)
pt iBt pt(wt) V Pt

pt(mt)dmtdt]

High noise region: when o < /1,

E i n n
-

1 §+3 T
<log?n / 1dy
t

n — 2

th wt Vﬁt(mt)
pt wt pt(wt) V Pnt

pt(wt)dwtdt]

[e3

d da
log2*? log?**
:M(logT—ﬂoga) < o8 i

n
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D Score Approximation by Deep Neural Networks

D.1 Deep ReLLU Neural Networks

We follow the notation used in [38]] for ReLU neural networks. For a function ¢ € NN (#input =
d; widthvec = [Ny, Na, ..., Np]; #output = 1), if we set Ng = d and N1 = 1. Then, ¢ can be
represented in a form of function compositions as:

¢=LroReLUo Ly _10ReLUo---0L; oRelLUo Ly,

where ReLU : R — R denote the rectified linear unit, i.e. ReLU(x) = max{0, z} and £, is the i-th
affine linear transform in ¢ with weight matrix W; € Ri+1XNi and bias vector b; € RVi+1 | ie.

U1 =W, -u; + b; 2:,61‘(111‘), fori=0,1,...,L

and 4y = = € R% @; = ReLU(u;) fori = 1,2,..., L.. We say that a neural network (architecture)
with width NV and depth L if the maximum width of any hidden layer in the network is at most N,
and the total number of hidden layers does not exceed L.

For simplicity of notation, we write || - || as | - | throughout this section.

D.2 Neural network approximation for Gaussian kernel density estimators
D.2.1 The main result
Assumption 4. Given a sample {x(") ', of size n, there exist s € Ny ,0 < € < 1 < « such that

sup |:c(i)| < V2aslog(e1).
i€[n]

Lemma 8 (Approximation of Gaussian Kernel Density Estimator). Given a data set {xV}7_,,

let my == exp(—t), 0 = /1 — exp(—2t) for any t € [ty,o0).For any y € Rt € [ty,0), the
Gaussian kernel denszty estimators is given by

(1
frde(Y, 1) ZGXP( ymiwnz) 47

Fixany 0 < € < tg < 1/2, there exist N, L,s € N such that N~2L~2 < ¢ andAssumptionholds.
Then, there exists a function ¢yg. implemented by a ReLU DNN with width < 0(56d+3N 3logy(N) V
043 1og” (7)) and depth < O(L*logy(L) V s?log®(e™)) such that

’¢kd€(yat) - fkde(yvt)’ 5 a38(2s)!53d+98+1 loggs(eil)esv fO}" anyy € ]Rdvt € [t()v OO),
and 0 < ¢rae(y,t) S 1.

D.2.2 Proof of Lemmal§

We decompose RY = B U B, where
B:={y eR": |y| < 2\/2aslog(c 1)}, (48)
B:={yeR":|y| >2y/2aslog(e1)}. (49)

We approximate fyg. ony € B,t € [tg,00) in PartIand y € B,t € [tg, c0) in Part IL.

Part I: Approximating fiqe on B

Fix any N, L, s € N, here we aim to approximate fi4. for y € B. By Assumption@], we have

ly = miz |3 _ (y2asTogle)? _ 2slog(e™))

1 .
207 207 > 5 =slog(e™), Vie[n], (50)
which implies that
frae(y,t) < exp(—slog(e™')) =€*, foranyy € B,t € (0,00). (5D
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Therefore, fiae(y,t),Vy € By,t € [to,o0) can be well approximated with an error within € by
simply setting the output of the neural network to be zero. Therefore, we only need to consider the
approximation error of a neural network for y € B,t € [tg, 00).

Part II: Approximating fig4. on B

In the following, we prove the neural network approximation results for Gaussian kernel density
estimator Eq. (47) for y € B, t € [ty, 00). Given {x(W}?_,, forany y € B,t € [tg, 00), denote by

ly = a3
207 ’

R for any i € [n]. (52)

Then we have
2/|yll3 + 2m.||=3
202

0<h® < = 100; %aslog(e™) < 10t; 'aslog(e ™). (53)

Step 1: Domain decomposition

Let ¢;, be defined as in Eq. l| By Eq. li we can find a universal constant Cy depended only
on d such that

0 < ¢j,(y,t) < Catytaslog(e™!), forany y € B,t € [to, o0). (54)

Set K = N*L*, where § € (0, Cyaty taslog(e 1) /K). Let ([0, Catg Laslog(e )], K, §) partition
[0, Caty 'aslog(e™)] into K cubes Qg for 3 € {0,1,..., K — 1}, where

Qs = {h ER:he [5cdt51aélog(;l)7 (ﬂ-‘r-l)CdtO_Il(aslog(e*l) -5 ﬂ{ﬂSK*Q}} } (55)

For each 3, we define
P ﬂédtglas log(e™1)
B K ’

Befo,1,...,K—1}. (56)

Clearly, [0, Caty 'aslog(e™1)] = Q([0, Caty 'aslog(e )], K, 8) U (Useqor,.- ic—13 Qs) and hg
is the vertex of g with minimum || - ||;-norm.

Step 2: Taylor expansion of the Gaussian density kernel estimators
For all {h(y, )} ,, denote by
n 1/s

w0 = (- > w.0)’) (57)

Clearly, we have h(y,t) € [0,10t; *aslog(e~")] for any y € B,t € [to, 00). By Eq. (141},
|67.(y, 1) — h(y,t)| S a”sls™ 2 log? 2 (e h)e".
We choose ﬁg for 8 € {0,1,..., K — 1} such that for some y, ¢, we have

- Caty 'ovslog (e
03(u.1) — hyly.p)| < S0 08, (58)

In what follow, we use h = h(y, t) and hg = hs(y,t). Forany y € B,t € [tg, 00), we have
b= hs| < |h = 65 (y. )] +|67(y. 1) — ]
—_——
< Eq. ([0

-1 —1
,Sa25!523+2log28+2(e’1)68+ ty aslog(e™)

K
‘ totaslog(e?
= aZslg?t? 10g25+2(e_1)es 0 oo oz;fz{ie )
< o515 2 log® 2 (e 1)e® 4 aslog(e )€ (by N72L72 < e < tp)
< a?sls?ot? log25+2(e_1)es. (59)
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The Taylor expansion of the Gaussian kernel density estimator at flg up to order s — 1 is given by

*ZGXP( L )
1 i 1” S_lf’exf~ 1 7 —1)% exp(—0" 7 7 \S
“n Zexm—m - nz{ RGP (W0 —hy)" + S (00— hg) }
i i=1

k=0

_ Z( 1)kexp( hﬁ)1 Z(h()_hﬂ ZM(}«L() hg) , (60)

11 11

for some real number /() that is between 2 and l~15. By Minkowski’s inequality, for all s > k > 0,
L, e TN, i\ s -
2 (i) < (7 (i) ) _
(nZ(h )< S (n) h. ©1)
i=1 i=1
Eq. (39) and (6]) give that

%z": (—=1)% exp(—0) (h® —Tg)*

s!
i=1

<[22 S 0 by (& = )" = iy fia ()
s! k= 0
(_1)3 . s! T \s—k 1 ¢ (i) k (_1)8 - s! s—kik (_1)3 7 T \s
5! k_ok!( is) {n;(h ) ”—) 5! Hk.( hg)™*h ” ‘ (= hs)
= = =
<hk by Eq. G
S l' [3’ 1 Oé S|825+2 10g23+2(67 )6 o a2s2s+2 1og2s+2(671)€s' (62)
S s!

Denote by a = [a1, a2, a3,as] " € N% and

n

s 1 Z<x(i))u2+2u3_ (63)

n <
1=1

we have

1 & NN

- (1) _

n;(h hg)
_ li(”y — my™||? _ )k
n & 202 g

1 1 n )
= o= 2 (ly = m®|2 = 202hs)"

2kg2k n —

= Qk g2k Z > *||y||2’“ x (=2mey " 2®)% x mie | 2V|?% x (~207hg )"

=1 |la|l1=Fk
az+2a n
_ § : k!(_ )a2+a4mt2 3th14 E ail, 211 E as! 1’21 § (l.(i))l'2 § ( ())2V3
- 2k—2ay B Vlly Vg'y l/';
al2ko ;
llalli=k t llv1lli=a1 lv2lli=az2 "= lvslli=as

k‘!(_2)a2+a4ma2+2a3~ 1 1 1 /1 i)\ Va2
= Z a4!2ko—t2k'_2t’l4 h%‘l Z > 'y2l/1 Z F,yuz Z 73'(5 Z(w( )) p) 3)

llalli=k lealli=ar [valli=as = lvslli=as i=1

- >

lerllitllvalli+Hlvslli+aa=k

Vo, v v lvalli+2(lvslly
CEZ 3kl(_1)\| 2H1+a4mt

2(k—
a4!2k_”"2”1_“40t( aa)

{hg x g2, (64)
Vv !1/2 !I/g!
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Denote by & == [v1, vs, 3] € N34, we obtain

s—1 7 n
(— 1)kexp )1

- h(l)
- IS

k=0 i=1

s—1 7 +2||vs

_ (fl)kexp(fhg) Z C;'Q,Vsk!(,l)||V2||1+a4m|t‘”2”1 Il ﬁ? % y2u1+uz}
| _ _ 2(k—aaq)
=0 k! (il +llwa 1t lvsll +aa=Fk 2k—llvallx g, Y lvgluslay!

va,vs, o Iv2lli+2(lvs|l
Cy2v3m,

= exp(—hg) x z_: Z

k=0 ||&||1 +as=k

hes x y2“1+"2}. 65)
(—2)k_|”2|1_a40t2(k_a4)l/1!l/2!l/3!a4!{ ?

Combine Eq. (60) and (63) gives that

Z ( lly — mtw()HQ)
exp|l ————————

Mln (@ 7 kL L~ (EDTexp(=09) ooy
= (W —hg)t = (h'*) = hg)

k=0 =1 =1
= oxp(~ Z >
k=0 ||D||1+as=k

1 (—1 exp (—0@)
n 4

_

S

vo,vs, Iv2lli+2]lvs|l
Cm’ my Ba4y2u1+u2

2(k—
(—2)’“‘“'/2H1—‘14Ut( Wy lwyluslay!

+- (A — hg)",

where the second term is bounded by Eq. (62):

1 & ( 1) eXp( 9( ) (4) s’ 2,92 —
- 1 < ! s+21 2542 1 s
‘n Z (h 3) < a’sls og (e )e

s!
i=1
In what follows, we aim to construct a ReLU DNN ¢yq. to approximate the first term.
Step 3: Construction of the ReLU DNN ¢4,

For each o € N3 g4 € N such that |&||; + as <
2(s —1),2||lv1ls + ||vellt <2(s—1). Foreachk =0
Then, by Propositions [ and [7] there exist

QSZ‘; € NN (width < 32 N?log, (N) v s34+2 log®(e™1); depth < L?log,(L) V 52 log? (eh)

S — 1 we have 0 < ||l/2||1 + 2“1/3”1 S
1. —1,wehave 0 < k—ag <s-—1

(66)
sy NN (width < s*2N3log,(N) v s%*2log®(e71);depth < L3 logy (L) V s* log? (e 1))
(67)

such that
|c/)%“ (y,t) — Bg“ (y,t)’ < a?s% log? (e V) NTILTY, Yy € BVt € [tg,00), (68)
|65 (y, 1) — exp(—hg)(y,t)| < N#L™* Vy € BVt € [ty, 00), (69)

and

<G5 (U,1) St Mats™ log™ (7)), (70)
¢e"p( t) <1. (71)

Moreover, by Eq. (132), (133 and (139)), for each & € N3? a4 € N such that ||D||; + a4 < k, k =
0,1,...,s — 1, there exists

@Y € NN (width < s> N logy(N) V s° log®(e71); depth < s?Llogy (L) V 52 log®(e71)). (72)
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such that for any y € B, t € [tg, >0),

V ,aq (y7 ) leuQH1+2”V3”10';2<k_a4)y2111+u2 C;z,ug S Oé28 (25)1585 logSS (671)628, (73)
and }
0< @7 (y, 1) Sty a’s" log*(e7). (74)
By Lemma([I3]and Eq. (70) and (74), there exists
o) € NN (width < 9(N + 1) + 1,depth < 14sL), (75)

such that
G (85 (5,00, 07" (5,0)) = 62 (y,1) % 07" (3, 1))
< 6ty "ak st logh(e7l) -ty Sas® log® (e 1) (N + 1) 7145

5 t523a28828 10g28(671)64 (by Eq @)
< 0[25825 IOgQS (6_1)628. (76)

For each 7 € N3? a, € N such that |||y + a4 < k,k =0,1,...,5 — 1, define
5% (Y, 1) = dus (d’mu]tl(éb%?j(y,t), Vs (y, ))), forany y € B,t € [tg,00),  (77)

where g () = ReLU(2)+ReLU(—x) = |z, forany = € R. By the size of ¢5* , o7 D0 s Db
we have

@5 € NN (width S s>T2N%1ogy(N) V 53942 log® (e 71); depth < L2 logy (L) V s* log?(e™1))

(78)
and for any y € B, ¢ € [tg, c0),
’¢v a4 ha4 X 1N ||V2||1+2HV3H1 *Q(k as) 21/1—&-!/201/2,1/3‘
3 U,a U,a v,a
< ]qsfm?m ;z;< 0,67 (y,1)) = 61" (g 1) x 67" (. 1)| + [0 (y.8) — B |- |97 " ()]
< Eq. (%) < Eq. @8 SEe 0@
|h | |¢u aa m]IJV2|\1+2HV3H1052(k*a4)y2u1+u20;12,'/3‘
< Eq. (M)
5 0425525 IOgQS(Eil) +a25825 10 ( ) 45L74s ~taSOéSSS lOgS(Eil)
+ 15 s  log® (e71) - a?*(25)!55° 1og® (¢ 71) e
< a?(3s)1s% log? (e 1)e®, (79)

which gives that
0< ¢29,a4 (y,t) 5 ’ﬁaﬂ4 % m]\t\vzH1+2HV3H10;2(1€*a4)y2u1+u20;2,u3’ + 0425(28)!893 1og98(671)€s
g taa4—k+a4 . (S log(cfl))HVlH1+I|V2||1+\|V3H1+a4
R T (] (80)
Similar to Eq. (134), for any o € N3¢, a, € N, we have
k+3d (k + 3d)! 3d
1= =——><(k+1
> ( 3d ) Gam = FFD
[|2]|1+as=k,pEN34 a €N

which implies that for any s € N,

s—1 s—1
YooY 1Y B <s (s— 14 1) =S (81)
k=0||&|yfas=k k=0
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With Eq. and (1)) and the face that ||y ||; + |21 + |[vs]l1 + as < s — 1, we have

okl —as)

S—
ua4 g3d+1 —(s—1) s—1_s—1 s—1/ —1
0< Z Z V1!V2!V3!a4! (yvt) ~ to (&7 S IOg (6 )
k=0 ||||1+as=Fk

=t s g3 gt T (1), (82)
Again, by Lemma|[T3|and Eq. (71) and (82), there exists

oD e NN (width < 9(N + 1) + 1,depth < 7sL), (83)

such that for any z € [0, 1] (c.f. Eq. ) andy € [0,t; “Vas~1s38510g° 1 (e71)] (c.f. Eq. (32),

(4) exp 9—(k—[lvll1—a4) pas(y 4
¢multi ’; 0: § : vy !VQ!V3!G4! ¢2 (y7 )
171 +as=k

o—(h=llvli—as)

exp g-thlvliman
Z Z vl luslay! ¢2 (y’t)

k=0 ||D||1+as=k

S ta(s_l)a87153d+s logS—l(efl)(N 4 1)77514. (84)

Given ¢)pr o4, ¢mum above, for any y € R% ¢ € [ty, o), we define
B

ox 9—(k—llvlli—a4) s
Brde(Ys 1) = Pabs <¢mum< P( Z Z m%’ (?Jﬂf)))’ (85)

k=0 ||D||14+as=k

By Eq. (67), (78). (81)., (83), (83) and (TTI)), we obtain that

Pre € NN (width < s%T3N31og, (V) v 5573 log®(¢71); depth < L3 logy (L) V s? log?(e71)).
(86)

Step 4: Approximation error.
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For any y € B and any t € [tg, 00),

s—1 7 n
1 . ~
’(rbkde(ya § eixp ﬁ) E E (h(l) — hﬁ)k‘
k=0 i=1

(4) exp 2_(1‘7_HV‘|1—G4) s
< | Pruii | @ Z Z m% (y,t)

k=0 ||7||1+as=k

s—1 —(k—=|lv2lli—a4)
7 (—2) ( 2 Fas llvzllit2llvslly _—2(k—a4)  2u;+vs ~wo,vs
—exp(—hg) x Z Z v lolwslay! hg'my Tt Y Ca

k=0 7|1 +as=k

—(k=lvlli—as) _
@ [ goxp( Z ) 2 7.a
< ¢multi< V1!V2!I/3!a4! ¢2 4(y7t)>

k=0 ||u||1+a4 k

exp Z Z

k=0 Hu\|1+a4 k

o—(k—llvlli—as)
2y, ) O

(S Eq. (84))

I/l!VQ!I/3!CL4!

o o~ (k=llvli—as)
— - ) t
., (Y1) —exp(— ‘ § > o alala] |05 (y,1)]

k=0 |7|l1+as=k
< Eq. ©9)

s—1
+ |exp(—ﬁ3)’ . Z Z

k=0 ||7||1 +as=k

+

< Eqa. B2

o= (k=llvlh—as) el i
) 2lli+2llvslly  —2(k—a4), 2014w ws,v
— |92 (y, 1) — h54mt o yTroYe

1/1!1/2!1/3!(14!

< Eq.
< tof(sfl)as—lsSd—i-s logsfl(e_l)(N—i— 1)—75L 4+ N—dsp—4s _tof(sfl)as—lsSd—i-s logsfl(e_l)
4+ g3dt1 (28)!a38895 loggs(efl)es
a3 (25)1s70H 95+ 1og%% (¢71) s, (87)

Therefore, for any y € B,t € [to, c0),

| Prae (Y5 1) — frae(y, 1)

s—1 ~ n n .
(=1)*exp(=hg) 1 S k] (L= (—D)fexp(—0D)
= ’stde(yvt) - Z . n Z(h( ) — hg) ‘Jr ‘E Z #(h( ) — hp)
k=0 i=1 i=1
< Eq. < Eq. ©)
(83)
/S a35(25)!53d+93+1 logQS( )6 +a 825+2 10g2s+2( 71)
< a35(2s)!s3d+93+1 loggs(e_l)es, (89)
which gives that
0 < Grae(y,t) S | frae(y, )] + 0% (2)1s3 95 1og™ (e71)e” < 1. (90)

Combine Part I and II
Combining the approximating results from Part I (c.f. Eq. (51)) and II (c.f. Eq. (89)), we obtain that

’(bkde(y,t) - fkde(y,t)| < a®(25)!s30H 95 1og? (e 7)€, forany y € R, t € [tg,00), (91)

and
0 < drae(y,t) S 1.

Therefore, we finish the proof.
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D.2.3 Neural network approximations for basic functions

In the section, we give the approximation results used in approximating the Gaussian kernel density
estimator functions:
s Approximating m;, o2 by ¢, ¢,2, respectively (c.f. Lemma@]).
« Approximating m} by ¢¥, (c.f. Proposition|[I).
* Approximating o, 2k by gi)’f /o2 (c.f. Proposition .
* Approximating y” by ¢}, (c.f. Proposition .
« Approximating h(y, t) by ¢j, (c.f. Proposition .
* Approximating ﬁg(y, t) by qb;LB (c.f. Proposition .
* Approximating Bg (y,t) by ¢ga (c.f. Proposition |§I)
« Approximating exp(—hz(y,t)) by gb%’;p (c.f. Proposition .

We give detailed derivations for the sizes of neural networks and approximation errors for approxi-
mating each of the above functions as below.

D.2.4 Approximations of m; and o7 for OU process

Lemma 9 (Approximate m;, o7 for OU process). For all t € [0,00), let m; = exp(—t) and
oy = /1 —exp(—2t). Forany N,L,s € Ny and 0 < € < 1 such that N=2L~2 < ¢, there exist
some functions ¢y, , b,> implemented by some ReLU DNNs with width 485?(N + 1) log,(8N) and
depth 185%*(L + 2) log, (4L) + 2 such that for all t € [0,log(e™1)],

| (t) — mu| < s°log® (e 1)e?,
|po2(t) — Ut2| <s® logs(e_l)es.

Proof. For OU process, we have m; = exp(—t) and 07 = 1 — exp(—2t) for all t € [0, 00].
Therefore, both m;, o2 can be approximated by some ReLU DNNs that well approximate the
exponential function exp(—t).

Step 1: ¢ € (slog(e~ 1), 00).
For t > slog(e!), we have

exp(—t) < exp(—slog(e™!)) = ¢€*,

which indicates that exp(—t), V¢ > slog(e~') can be well approximated with an error within € by
simply setting the output of the neural network to be zero. Therefore, we only need to consider the
approximation error of a neural network for ¢ € [0, slog(e~1)].

Step 2: ¢ € [0, slog(e™1)].
Notice that for any N, L € N such that N~2L~2 < ¢, we have
1
N72L7?2<e< < )
== log(e=1) — slog(e1)

Then, it follows from Lemma 16| that there exists a function ¢ implemented by a ReLU DNN with
width 4852 (N +1) log,(8N) and depth 18s%(L+2) log, (4L) +2 such that for all ¢ € [0, slog(e™1)],

|p(t)—exp(—t)| < (45s+s°log®(e ) +4) N2 L™2* < s°log®(e )N 2L~ < s%log®(e ')€",

Therefore, there exists a function ¢ implemented by a ReLU DNN with width 4852 (N + 1) log, (8N)
and depth 18s%(L + 2) log,(4L) + 2 such that for all ¢ € [0, 00),

|p(t) — exp(—t)| < s°log® (e ')e®.
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Hence, there exists
¢m € NN (width < 48s°(N + 1) log,(8N); depth < 185*(L + 2)log, (4L) + 2)
such that for all ¢ € [0, 00),
|6 (t) = my| < 5"log™ (e )e”.

Similar, by letting £ = 2t, there exist
b0z € NN (width < 485%(N + 1) log,(8N); depth < 185*(L + 2)log, (4L) + 2)
such that for all # € [0, c0),

|$o2 () — exp(—F)| < 5" log™(e™)e”.

Define ¢,2(t) = ¢,2(2t). Clear, we have
bo2 € NN (width < 48s*(N + 1) log,(8N); depth < 18s°(L + 2) log, (4L) + 2)
and L R
|62 (t) — exp(=2t)| = |92 (f) — exp(—1)| < 5”log®* (7).
O

Proposition 1 (Approximating m} by ¢F ). Forany k,s € N, withk < sand 0 < ¢ < 1. Let
my = exp(—t),Vt € [0,00). There exist N,L € Ny with N"?L~2 < ¢, and

oF, € NN (width S s> N log,(N); depth < s*Llogy(L)) (92)
such that
‘gbfn(t) —mPF| < s%log®(e7V)e®, foranyt € [0,00). (93)
and
0 < dm(t) S14s%log®(e e < 1. (94)

Proof. Since my = exp(—kt). By LemmaEI, there exist

Gm € NN (width < 52N logy(N); depth < s>Llog,(L))
such that

‘qu(t) — il s 1005 ()6 for any ¢ € [0, 0ol

Then, we define . B
Gm(t) = ReLU (¢, (t)) + ReLU(—¢p (1)) (95)

and clearly, we have
¢m € NN (width < s> N log, (N ); depth < s%(Llog, (L))
and by the fact that |z| = ReLU(z) + ReLU(—xz),

Sm(t) =m0 < |G (0) — gl e

Therefore,

< s*log’(e1)e®, forany t € [0, oq].

0< () S14+5%log®(eHe® <1, foranyt € [0, 00).
O

Proposition 2 (Approximating a;%). Foranyk,s € Ny withk < sand0 < € < tg < 1/2. Let
o = /1 — exp(—2t),Vt € [tg,00). There exist N, L € N with N"2L2 < ¢, and

(b’f/gz € NN (width < s°Nlogy(N) V s log® (e~ 1);

depth < s* Lv/log(e~1)log,(Lv/log(e~1)) v s* log*(e™ 1)),

602 (1) — 0772 | S W 1og™ (e V)e?,  for any t € [to, 00),

such that

and
0< ¢116/0'2(t) Stk
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Proof. When k = 0, % = 1, which is trivial. In what follows, we focus on k > 1.

Note that oy = /1 — exp(—2t) for all t € [0, c0), we have
k

’I"k'
o2k = (1 — exp(— Z exp(—2rt)
r=0 r!

Foreachk =1,...,sandeachr =0, 1,...,k, by LemmalJ]there exists
bexp € NN (width < (35)°N log,(N); depth < (3s)*Llog, (L))

such that
Gexp(t) — exp(—2rt)‘ < 5% log?* (e71)e®*,  forany t € [0, 00). (96)
Define i
—1)"k!
oL (t) = Z %tbexp(t), for any ¢ € [tg, 00).
r=0 ’
Clearly,
k, € NN (width < s° N log,(N);depth < s%(L1log, (L)) 97)
and
E gl
ra(t) — afk‘ Z . Gexp(t) — exp(—2rt)‘
r=0 "
< ek!s3 log* (e71)es (by Eq. and ZT o <e)
< kls® log (1), (98)
Note that for any 0 < to < 1/2,
02 =1 —exp(—2t) > 1 —exp(—2tg) > to, foranyt € [tg, o], (99)
which gives that
ra(t) > o2F — k!5 log®* (e71)e3* > th — ks log®® (e 7)€ >
k 2% 357 3s( —1y.3 357 3s( —1\.3 (100)
ca(t) <oy + kls*log™(e7)e”® <1+ kls>log™ (e7)e”® < 1.
Recall that 0 < € < to. By Lemma[23] there exists
rec € NN (width < s%log®(e71); depth < s?log®(e™ 1)), (101)
such that for any = € [t§,1] C [¢*, e *] and 2’ € R,
1 -z
Prec(a) — ;( <€+ [~ 2| EF 5 (102)

Foreachk =1,...,s, define
¢]f/0,2 (t) = ReLU (aﬁrec( k, (t))) + ReLU (—qﬁm (¢’;2 (t))) , foranyt € [0,00). (103)
Recall the fact that |x| = ReLU(x) + ReLU(—x), we have gb’f/gg (t) > 0 forany ¢ € [0,00) and
[68/02(8) = 07 2| = || 6rc (65 (8)) | - 07|
< |G (h2(6)) — 07|
¢ha(t) — o]
N

<Eq. (8)
se +k'83810g ( 1)635723

< Kls3 log (e 1)e?, (104)

S 65 +€—25
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which gives that
0 < ¢ 0o (1) S 07 2 + Kls®* log™ (¢ D)e* S 15, (105)
Moreover, Eq. (97) and (T0T) indicates that
O /o2 € NN (width < 5° Nlogy(N)V s*log®(e7"); depth < s°Llog,(L) Vs* log?(e™)). (106)
O
Proposition 3 (Approximating y¥). Given k,s € N, v € N? with |[v||; <k < sand 0 < e < 1.

Let
y € B = [-2y/2aslog(e~1),2+/2aslog(e~1)]%.
There exist N, L € Ny with N72L72<¢ and

v o € NN (width < 9(N + 1) + k — 1;depth < Ts(k — 1)L) (107)
such that
|¢,’,’{,ly(y) — y”’ < kal/2gk/2 logk/Q(efl)(N + 1)*75L, foranyy € B. (108)
and
|Gy ()| S ka/2s*/ 2 1ogh (7). (109)

Proof. By Proposition[J] there exists
Dpoty € NN (width < 9(N + 1) 4+ k — 1;depth < 7s(k — 1)L)
such that
|0y (1) — y| < 30k(2¢/2aslog(e 1)) “(IV +1)77F
< ka/25%/210g" 2 (e )(N +1)" 7L, forany y € B.
which gives that
6% ()] < |v”| + kak /282 10gh 2 (VY (N 4 1)L
< kb2 10gR/2 (1) 1 kot 264/ 2 10gh 2 (1) (N + 1)~ T
< k2552 1ogh /2 (¢ 1),

Proposition 4 (Approximating B(y, t)). Given s € N, and h is defined in Eq. :
N 1 & ) o\ 1/s
h(y,t) == (f R (y,t ) .
(1) = (- ;( (.1)
Forany 0 < € < 1, There exist N, L € Ny with N72L72<¢ and
¢j, € NN (width < s*2N logy(N) V s’ 2 log® (e 71); depth < s*Llogy (L) V 5% log?(e7'))
such that
‘(ﬁﬂ(y,t) - B(y,t)’ < a?sls?ot? 10g28+2(e_1)65, foranyy € B, and t € [ty, 0),
and

0 < ¢5(y,t) Sty taslog(e™).

Proof. Step 1: Taylor expansion of ﬁ(y,t). Recall from Eq. (63) that Clzvs

%Z?:l(w(i))l/2+2u3 and U = [v1,v9,10] € N9 Similar to the derivation for Eq. || we
can obtain
1/s
7 1 - i s 1/s CV27V35!mHV2H1+2||U3||1
h(y,t) = (7 ht" y,t ) = E z t y2u1+u2 (110)
( ) n i:l( ( )) 5] es (—2)S—HV2\|1U?sullu2!u3!
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Step 2: Approximating each base function. Notice that
|x] = ReLU(x) + ReLU(—x), forany x € R.
Therefore, we define ¢, to approximate |z| by
¢avs(2) = ReLU(z) + ReLU(—z), foranyz € R,

and we have
Pabs € NN (width = 2, depth = 1).

(111)

For each 7 € N3¢ such that || #||; < s, we have 0 < ||va|1 +2vs]l1 < 2s and 2||vy ||1 + ||v2 1 < 2s.

By Propositions|[T|to[3] there exist

plvali2llvsl e AAf (width < 2N logy (N); depth S s2(Llogy (L)),
B3 /g2 € NN (width < s°Nlogy(N) V 5% log®(e71);
depth < s?Llog,(L) V s* logz(e_l)),

G2 € NN (width < 9(N + 1) + 25 — 1;depth < 7s(2s — 1)L)

such that
|pllvalit2livali gy 2l d2lvslig < 2516025 (= 1)e25 - for any ¢ € [0, o0,

|03 )2(t) — 07 2| < sls** log™ (e7")e®,  forany ¢ € [to,00),

’¢2U1+U2 (y) _ y2u1+u2’ 5 a®s® IOgs(Eil)(N + 1)775L, for any y € B.

poly

and
0 < g2l () < 1,
0< ¢§/U2(t) Sty

Fix {z(W}1_, for any y € R%,t € [tg, 00), define
Doty () = Ca™ S0 (y),
where C2 s == LS (2(0)¥2 7% Clearly, we have
Oy € NN (width < 9(N + 1) + 2s — 1;depth < 7s(2s — 1)L).
Recall from Assumptionthat SUD;en] || < \/2aslog(e1),

| pﬁoly(y) _ C;z,u3y2u1+uz| < Cr2vs |¢[2)(l)/1§/+u2 (y) — y2u1+u2|

< a2 log®* (e ) (N 4+1)""™E,  forany y € B.

which gives that
oy ()] S [Coz o y™ 472 | 4 057 g (e 1) (N +1)77F
< ( s log(e_l))2“"1H1+2||V2||1+HV3H1 — o’ logs(e—l).
By Lemma([I3]and Eq. (TT9) and (123), there exists
o1 € NN (width < 9(N + 1) + 1,depth < 7sL),

such that

‘(br(nlu)lti((bi/oz (t), ¢pﬂoly(y)) - ¢i/g2 (t)- ¢§;§+U2 (y)Cy>ve
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(113)
(114)

(115)
(116)
(117)

(118)
(119)

(120)

(121)

(122)

(123)

(124)

<tofats®log (e M) (N + 1)7 7k,

(125)



Therefore, for any & € N3¢ such that ||2||; = [jv1 |1 + |21 + lvslh < s,

[ (65 102(6), Oy () — 7 2y 2 Copes

< | (8302 (0): Sy () = 012 (1) - Sy ()] + |10 (8) = 07| | 0y (0]
N——

< Eq. (D) < Eq. (IT9) < Fo @33

By () — g 2O
poly x

—2s
+ oy

< Eq (@
Sty fadstlog® (e (N +1)7 7L 4 5153 log®* (e 71)e® - a®s® log® (¢ 1)
4 tas . 0125825 logQS(efl)(N + 1)773L

a’s*log® (e 1)e® + slty fassts log** (e71)e?s + a? s log?* (e 1)e® (by Eq. (I31))
< a’sls?® log* (e 1)es, (126)

which gives that

|¢r(nlu)hi( i/oZ (t)>¢goly(y))| < |0_25y2V1+V2CV2’V3| + a®slgts 10g4s(671)68
< tOS s elog ( )+QSS!S48 10g48(6—1)€s
<tyfats®log®(e7h). (127)

Again, by Lemma[I3]and Eq. (IT8) and (I27), we have
o2 e NN (width < 9(N + 1) + 1, depth < 7sL) (128)

such that

‘djmultl (¢U:2H1+2“V3”1( ) ¢mult1 (¢1/o2( ) ¢pﬂoly(y)>)

— lvali+2lvslly gy ¢mum(¢1/a (t ),¢p';01y(y))‘

Stofats®log (e M) (N + 1) 7k, (129)

Step 3: Construct the whole neural network.

Given ¢gps, ¢||"2”1+2”"3”1,¢1/02, ¢poly, oM 63 above, forally € B,t € [to, 00), we define ¢;,

multi? multl
by

¢;L,i) (y; t) = ¢abs ((br(nZu)lli (¢D;;2H1+2HV3H1 ( ) d)mulu (Qﬁ/cﬂ (t)’ (bpﬂoly (y)))) . (130)

Forany N,L,s € N4,

(N+1) 7sL (N+1) 45L(N+1)—35L < N—4sLo=3sL _ N—4s(2%L)—4s < N—4s—4s < €25
(131)
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Then, we obtain
lvzlli+2llvslli _—2s, 2u1+vo o,
’éﬁf;(yat) —my o, Syt OgTe

Dt (S0 (0), 0000 (612 (1), Dy () — 2 P21 g 2oy 2 v s
(by dans(-) =1+

IN

< | (O (1), G0 (6312 (1), Sy (9))) — 220 0) - 60 (032 (8), ey ()
< Eq. (29
S O A N N G ON M)
<Eq. (IT3) < Eq. (I20)
o G (91 (0, ey (9)) — o7 Wy 2O
<Egq. (126)

St fals®log® (e ) (N + 1)L 4 25 log? (e 71)e® - t5°a’s* log® (¢ 1) + a®sls log*® (e 1)e®
< a®s*log® (e H)e® 4+ a®s3 log®* (e 1)e® + a®sls*® log™ (e 71)e® (by € < to and Eq. (I31))
< a’sls log*s (e71)es. (132)

Therefore, for 7 € N3¢ such that || 7|, = sand 0 <ty < 1/2, forany y € B,t € [to, ),

0< ¢E,1)<y’ t) 5 m?HVZHIJFHVB»”l0.t—2sy2v1+l/2cgz,u3 + 0488!845 1Og45(6—1)€s

<ty fats®log(e7h). (133)

Notice that
d—1
(s/d+1)1 < > 1= (HS ) < (s41)371 (134)

3d—1
12]l1=s,0EN3

which gives that

s!
0 S Z 25—||u2||1,/1!y2!y3'Qs;},,;(y,t)

IZl1=s ’

(e— v +2||vs
92— (s HVHI)S! (‘mlt 2[l1+2]] 3H1y2V1+V2052,V3|

DY
~ I/ﬂl/z!l/g!

IZll=s

o + a®sls?* log* (e_l)es>
¢

St %l (s + 1) Lsls* log®(e71). (135)

Additionally, by Lemma|I7] there exists
5ot € NN (width < 48(25)%(N + 1) log, (8N), depth < 18(25)*(L + 2) logy(4L) + 2), (136)

ToO!

and for any k € N, with k < s and for any x € [0,%5°a*(s + 1)3¢71sls% log®(e71)],

| Dot (@) — x1/5| < (90s +5) (tg *a®(s + 1) tsls® logs(efl))iN*“L*“, (by Lemma([I7)
< 95t81/2a1/2(s + 1)3%7‘:182 log'/?(e~1)e?s (by (s!)7 < (s°)2 = \/5)
<ty a5 log! /2 (e )€, (137)

For any y € R%,t € [tg, 00), we define ¢, to approximate h as below

g—(s—Ilvalli) g)
¢ﬁ(yat) = ¢root <|~|Z W¢B,D(yat) ) (138)
vll1=s
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,) Network size. With the sizes of gups, ot 221700 g g2 ot oo (Ba. (111 to (113),
(121). (124) and (128)), for each & € N3* such that ||7[|; = s,

&5 € NN (width < s Nlog,(N) V s° log® (e "); depth S 5*Llogy (L) V s” log”(e71)). (139)

With Eq. (134), (I38) and (T39), we have

¢j, € NN (width < s**2 N log,(N) v s**21og® (e 71); depth < s*Llogy(L) V s? log*(e™1)).

(140)
ii) Approximation error.
With |a/* — b1/k| < L max{a'/k~1,b1/*~1}|a — b|, we obtain
, —(a=lvall) gy —(s—llvall) g 1/s
¢?om( > W%,&(W)) —( > W%,D(W))
1Z]l1=s 1&]|1=s
< Eq. (3
9= (s=llvali1) g stm[v2l1 21Vl 2wy + AN
+ ’( Z vilvglug! = d)h’/ Yyt ) ( (—2)5*||f"2Hlafsullu2!u3!y o V2CZQ V3)
IZlli=s 12]l1=s
< tal/galﬂsz log!/?(e71)e?
1, d— 25/ — 1 —(s—llvall1) o vz llit2llvsliy, 20y 4o 2:vs
+g(t08a25(8+1)3 15!52510g S(é 1)) ’ Z 2 1,11,,2!21,31! s! (¢;}7,~,(y,t)— m, G.;i )‘
lZ]li=s

< 1551/2041/252 log!/?(e71)e?

1 1_1 —(s—llvally) llvalls+2llvslly , 201 +vg ~V2,v3
—s s 3d—1 s s —1\\%s 2 201 gl m Yy Ca
+§(t a®(s+1) sls®log®(e™1)) E s | 9o (Y ) — =

IZ]1=s

<Eq. (32
—1/2 1/2 21 1/2/ —1y 2s

<ty Pat/?s%1og! 2 (67 e

1

1
+f (to (s + 1)30-1a28 51528 logzs(efl)) (s +1)347 151 %5154 log* (7)€

_ —1/2 al/? 210g1/2(6—1)6 —|—(s—|—1) ts 1 8,825+210g2s+2(6—1)€s
< t01/2a1/282 logl/Q(e’l)e S 1 a2sls?+2 g2 2 (e 1)es

(by (s + 1) < el ¥s € Ny)
< a?sls? 2 log? T2 (7 1)ed, (141)
which implies that

0 < d)fz(yat) S ‘}NL| —+ a25!525+2 10g23+2(6,1)68

2s+2 2S+2(€_1)68

< tylaslog(e™) 4 a?sls
<tylaslog(e™), foranyy € B,t € [ty,o0]. (142)

log

O

Proposition 5 (Approximating hs(y, t)). Given s € N;,0 < e < tg < 1/2, set K = N*L*. Let
Cy is defined in Eq. and hg be defined in Eq. , ie.,

~ =1 -1
hy = BCaty O‘I‘?Og(e ), Befo,1,..., K1}

Let ¢;, be defined in Eq. (138). Then, there exist N, L € Ny with N"2L~? < ¢, and
bp, € NN (width < s> 2N? v s 2 10g® (e71); depth < L? v s* log® (e 1))
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such that for any y € B, t € [tg, ),

S5, (U, 1) =hg, BE{0,1,..., K —1}.
and
|67, (1) — 67,(y,1)| S aslog(e YN L™%.
Proof. Forany y € B,t € [tg, 00), we define

¢h (ya )
C’dto aslog(e1)’

¢5(y,t) = (143)

ich indicates that 0 < ¢ ( ) < 1. For K = N4l,4, by Proposition there exists a Re
DNN LT
step © NN(Width < 4N? + 3;depth < 4L + 5)

such that
¢Slep(qgﬁ(y7 t)) = kz if ¢E(y7 t) € [deai(l'ng(67 )a (k+1)Cd]?:010g(67 )_5']]-k§K—2]a k= 07 17 ey K_17

where 8 € (0, Cyty 'aslog(e 1) /K). Define by, by

(Z)FLQ (y7 t) =

Cat, 1a8Klog(€—1)¢step (5{1750_?2312(6—1))7 forany y € B,t € [tg,00). (144)
Clearly, by the size of ¢;, (c.f. Eq. @)) and @gep, We have

i, € NN (width < $3 T2 N2 v s34 2 10g3 (¢71); depth < L2 V 5% log? () (145)
and for any y € B and any ¢ € [tg, 00),

BCaty s log(e

1 ~
= ):hg, for3e{0,1,..., K —1}, (146)

bp, (Y1) =

such that

aslog(e™!)  aslog(e™?)

_ < 1 —1 N72SL728.
Kt Nipig,  ~slos(e™)

|67, (4. t) = &5 (y,0)| = [hs — Sy, )] <
O

Proposition 6 (Approximating A% (y7 t) ). Under the same settings of Proposmonﬁ Given k €
N,k < s, there exist N,L € N wzthN L2 < and

gbgﬂ € NN (width < s> 2 N?logy(N) v s34 2 log® (e 71); depth < L? logy (L) V s* log?(e 7 1)).
such that

‘gf)hﬂ y,t) ﬁg(y,t)’ < a®slog®(e N2 L7 foranyy € B,t € [ty, ),
and

0<dt (u.1) Sty ok log (e ).

Proof. For 8 €{0,1,...,K —1}andk =0,1,...,s, we define

1 Cato 'aslog(e 1)\ *
P — . — (/3 ato g( )) . (147)
Chity"aksklogh (e 1) K
With K = N*L*, we have ¢§ € [0,1] forany 8 € {0,1,...,K —1}and k = 0,1,...,s. By

Proposition[I3] there exists a ReLU DNN

pmm € NN(w1dth < 165(N? + 1) logy (8N?); depth < 5(L? + 2) log, (4L2))
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such that for any fixed &k € {0,1, ..., s}, we have
| Phoin(B) — €| < N™*L™* foreach 3 =0,1,...,K — 1,
0 < ¢polnt(16) S L.

We define

~ Koj, (y,1)
(b’f y,t) = ChtFak sk logk e ! koin ( — g
hﬁ( ) ¢ (7)o Cdtalas log(e~1

Clearly, by the size of ¢, (c.f. Eq .) and (bpmm, we have

)), Yy € RLVE € [tg, 00). (148)

¢’§[, € NN (width < sN?logy(N) V s 2 1log? (e 7!); depth < L*log, (L) V s*log” (7).

BCaty ~aslog(e

Then for all hg = %, g €{0,1,..., K — 1}, we have
o, (. 1) € [0,5§takaksk log®(e™h)] (149)

and forany k =0,1,...,sand 3 € {0,1,..., K — 1},

iy = ‘¢Z (Bédtglaslog(e_l)) B (,Bédtolaslog(e_l))k‘
B

‘thg y,t) K K
— |Gt a"s* 105" (¢ ) ofim (8) — Cltg " as" log ()¢
< Chtg*a"s* log" (e71) | éhom(8) — €}
Stokakshlogh(e ) N4 L4
< aFfsFlogh(e V) N~2 L2, (by N"2L=2 < e < 1)
O

Proposition 7 (Approximating exp(— hg(y, t))). Under the settings of Proposmon@ Then, there
exist N, L € N, with N"2L=2 < ¢, and

¢;5:;p € NN (width < s 2 N?logy(N) v s34 2 log® (e 7); depth < L logy (L) V s* log?(e 1))
such that
|65 (y,1) — exp(—hs(y,1))| < N"PL™, forany y € B.t € [to, o),

and

0< ¢ (y:t) < 1.

Proof. Similar to approximate hk, for g e€{0,1,...,K — 1}, we define

~ -1 -1
§exp — exp ( BCqty aslog(e )) (150)

K

Then we have {3 € [0,1] forany 8 € {0,1,..., K — 1}. Again, by Proposition T3] there exists a
ReLLU DNN

point

6P € NN (w1dth < 165(N? + 1) log,(SN?); depth < 5(L2 + 2) log, (4L2))

such that
‘(bgzﬁt EZXP‘ < N~4L74s  foreachf=0,1,..., K —1,
0 < dpom(B) < 1.
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We define

exp ( ¢’~1B (y’ t)

Py (Y1) = dpoin , foranyy € R% ¢ € [tg, o). (151)
(1) = Gpom Caty taslog(e1) lto, o)

By the size of ¢;,  (c.f. Eq. 145) and ¢, we have

sy NN (width < s**2N?log,(N) v s%T2log® (e !);depth < L? logy (L) V s? log?(e ™ 1)).

Then for all g M B€{0,1,..., K — 1}, we have
P (], 1
¢h8 ( [3) € [07 ]7

and foreach g € {0,1,--- | K — 1},

e (ﬁ@talas log(E‘l)) B exp(_ﬁédtalas log(e‘l)) ‘

|65 (y, ) — exp(—hp(y, 1)) =

hﬁ K K
Dpoimt(B) — &5
S N~ 45L 43.

D.3 Neural network approximations for regularized empirical score functions

Recall that the regularized empirical score function at time ¢ is given by

/21 e —msz @3 = (@i —m,2D)
kde Vpe(2:) (2maf) =25 30, exp( 207 o
fscore(xt’t) = ]3 (33 ) V P - d/21 llzs—myz |3
t\ Tt n,t (2770 ) P Zz exp( T) V Pn.t
a2 .
| L5, e o) o, - o)
= - = a2
oF L3 exp(— g ClE) v emin
where p,, , = (2#02)*51/26’171*1.

D.3.1 Approximation of regularized empirical score functions in Z°°-norm

Lemma 10 (L°°-Approximation of Regularized Empirical Score Functions). Given a set of sample
{x®}n_, for any y € Rt € [tg,00), let my = exp(—t),0; = /1 —exp —2t). Fix pp, =
(27ra ) =42 1n=1 and 0 <ty < 1/2, let N,L,s € N, suchthatN 272 <eand0 < e <ty A

—1/5. Suppose Assumpnonlholds Then, there exists a function ¢scor implemented by a ReLU DNN
with width < O(s%43 N3 log, (N) V 5943 log® (¢ 1)) and depth < O(L*log,(L) V s log® (¢ 1))
such that

|bucore (U, 1) — f1, (3, £)| S @155 (125)15° T30 F F 1og™H T3 (7 1)e, vy € R, Vit € [to, 00),

score

and we have |¢seore(y,t)| < o7 ' /Togn.
Corollary 4. Under the same conditions of Lemma let a’n=2/4logn <ty < 1/2. Fixk € N,
such that k > d/2. Then, there exists a ReLU DNN with width < O(n? logy n) and depth
< O(log® n) such that

|bucore (1) — [ (3, 1)| S "3 10g™ 2 n, vy € RY VL € [to, 00),

score

and we have |¢seore(y, )| < o7 *v/Togn.

Proof. Apply Lemmal[l0|with e = n='/* s = k and N = [n!/®¥)], L = 1 such that N"2L2 <
€ < to An~1/* hold and we complete the proof. O
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D.3.2 Proof of Lemma
For any y € R%,t € [tg, 00), recall that the empirical score functions is given by

— (i) (i) 2
1 me X %E;L:lexp(—%) ) —y x LY exp(— vl

kde
7t = 3
sere () o} 1Ly exp(— Hy*ﬂ;tf;( >H2) Ve—lp-1
i =
3 2
U mex [, — y < ()
7 faly Ve n
_ lfs‘c%)re( t) (152)

t fscore(y7 )

where we denote

1< ly — mx|3
1 2
N (o), ) (1) = ﬁZexp(——%’% 2), (153)
1=1
(%)
mi
O Zexp( —”y e 2) 40, (154)
W)y, ) = édi(y, Hvetn, (155)
@y t) = my x £y 1) —y x fa (y,1). (156)

Similar to Eq. l) and lb we decompose R? = BuU E, where

B:={y cR?: |y| < 3y/2aslog(e 1)}, (157)
B:= {y €R?: Jy| > 3y/2aslog(e~1)}. (158)

We approximate fig. on y € E, t € [tp,00) inPartTand y € B,te [to, 00) in Part IL.

Part I: Approximating f*%_ on 33

score

For any y € E,t € [to,00),0 < € < exp(—7%), similar to the derivations for Eq. ( | that, by
Assumption[d] we have

ly — rwarz(i)|\2 (24/2aslog(e~1) J Bas log(e™1) 1
=4asl >1
207 207 2 aslog(e™)

b

which gives

ly —mex |3

exp(f . >§e4s, foralli =1,...,n
t

Noting that the function z +— exp(—2z2/2)z is monotonously decreasing in [1, cc), then

11\ ly—m.z |3 ()
oZn i=1 exp(— 202 (mtm - y)

1\ ly—mez® |3 —1,-1
n Zi:l eXp(_T Ve 'n

enl IIy—mtw(”H%) mea® — y|
< b2 _
“oin ZEXP( 207 oy

kde
score

2
< 2N Jas log(e—1)ets
Ot

(exp(—22/2)x is monotonously decreasing in [21/as log(e—1), 00))
< 2ey/aslog(e—1)e?. (159)

Part II: Approximating fXd¢_on

score
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Step 1: Approximating fyre By ¢leore
Notice that
2z = ReLU(z) — ReLU(—z), and |z| = ReLU(z) + ReLU(—x).

Then, for any z,y € R, we have

max{z,y} = rrytir-yl +2|$ il
1
=5 (ReLU(z + y) — ReLU(—z — y) + ReLU(z — y) + ReLU(—z + y)),

which indicates that
Pmax € NN (width = 4;depth = 1), (160)
and
d)max ($7 y) = maX{x7 y}a for any r,y € R.
By Lemma 8] there exists

(1) € N (width S (35)°3 N7 log, (N) V (35)%+ log*(e™));

depth < L3logy(L) V s?log?(e™1)). (161)
such that (1) @
|Brae (U, 1) = frad (9, 1)| S @' (128) 157454  1og™te (1) €0, (162)
and we have
0< ¢kde(ya t)S1 (163)

For any y € R% ¢ € [ty, c0), we define
¢score(y7 ) ¢max( kde(y7 )7 _171_1). (164)
By Eq. (I60) and (T6T)), we have

(L € NN (width < 55773V log, (N) v 4+ log? (e 71);
depth 5 L? logy(L) V 5 log™(¢ ), (165)

and for any y € B,t € [to, 50), we have

6880 () — F (1) < |y 1) — Fad (5. 6)] S @t¥5 (1251835454 10g43 (1) 0,

(166)
which implies that for any y € B,t € [tg, o0),
e—l -1 < ¢score(y’ ) ‘ e (y’ t)| + a18s(125)!53d+54s+1 10g045( )668 5 1. (167)
Step 2: Approximating f score DY (bscore
Again, by Lemmal(g] there exists
62 e NN (width S s53 N3 log, (N) v 55913 log? (e 71);
depth < L3logy (L) V s? log?(e™1)). (168)
such that @)
’¢kde y, fkde (y, t)| S a95(68)!53d+27s+2 10g275( )638, (169)
and we have @
0 < dia(y,t) S 1. (170)

By Lemma foreach j = 1,...,d, there exists
o) € NN (width < 9(N + 1) + 1, depth < 7sL),

multi,j
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such that for any y; € [0,3/2aslog(e~1)],Vh € [0,1],
‘(bmulll,j (yJ7 ) - yjh‘ S V OéS]Og(G_l)(N—|— 1)_7SL'

Forall y € R%, h € R, we define

¢multl (y7 ) [¢mu]t1 1 (y17 h)7 ) ¢I(T;r)u)]tj}d (yd7 h)] . (171)
Then, we have
o) . € NN (width < 9d(N + 1) + d, depth < 14sL), (172)
and
‘(bmulll (v, kdi(.% t) — y¢kde(y7 )’ aslog(e 1) (N + 1)1, (173)

which gives that

1680 (3, o ()| Syl - [ o (g, )] + Vs log(e D) (N + 1)~ < \/aslog(e D).

(174)
For any y € B, t € [tg, 00), it follows that
(5) (2)
| Dot (U kde( £) = Yfrae (y:1)|
5 2 2 2
< |05 (u, 0w, 1) — yelad (w.1)] +lyl - |6l (w.1) — Sy, 1)]
< Eq. 73 < Eq. (1)
< /as log(e—l)(N + 1)—14sL + a93+1/2(68)!83d+27s+3/2 10g27s+1/2(6_1)638
< a95+1/2(65)!53d+27s+3/2 log27s+1/2(e*1)635. (175)
Moreover, similar to the derivations of Eq. @), we can obtain
(@)
Y — My
Dy.1) = zexp( by =g )0
(—2)~(k=llva \I1*a4)m1‘|"2”1+2”'/3”1 % a4 201 +s 1 " (3)\V2+2vs @)
= eXp Z Z 02("*“4),,1!,)2!;,3!a4! hﬁ Yy ’ E Z(:E ) AR
k=0 [|&]1+as=F ¢ i=1
For each & € N3? a4 € N such that |#||; + a4 < s — 1, denote by
o v 1 " i)\ V2+2v, [
Cyzvs = EZ(:A N g e RY (176)

i=1

Following a similar derivation for ¢ (i.., Eq. (86) and (91)) in Appendix[D.2} we can obtain that
there exists

kde € NN (width < s%3 N3 logy (N) v s%+3 1og? (e 71);
depth < L3log, (L) V s*log®(e 1)), (177)
such that for any y € B, t € [tg, 00),

3 S S S S
[ Shae(y:8) = fiad (. D] S 0% (65)1s™ 27 og? ™ (71)e™, (178)
and we have
|¢kde y,t ’ k((i’)e) y7t)| +a95(68)!33d+275+1log27s( 13
< Vaslog(e ) 4+ a (65)!s34T275  1og? 5 (e71)e3* < \/aslog(e—1).  (179)
By Lemma(J] there exists

¢m € NN (width < s*(N + 1) log,(N); depth < s*Llogy (L)) (180)
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such that for any ¢ € [0, 00),

[fm (t) =] S 5% log™ (7)™, (181)
and
0<om(t) 1. (182)
Similar to Eq. (T72), there exists
o© e NN (width < 9d(N + 1) + d, depth < 14sL), (183)
such that for any ¢,,(t) € [0,1], 1(312:(’!/, [—/aslog(e~1), \/aslog(e~1)]4,

1684 (D (1), i (4, 1)) — D (D (y, )| S Vaslog(eD)(N + 1)L (184)
It follows that

1684 (Sm (1), 650 (g, 1) — me £ (y, )|
< |8 (Dm (1), D (,1)) — S (DD (y, )] + | S (1) — e - | Sy, 1)]

< Eq. (5% < Eq. (1) < Eq. ()
3 3
e | d (u,1) — fiad (u.1)]
< Eq. )

< Vaslog(em)(N + 1) 71451 4 635 10g®* (1) - \/aslog(e—1)
4 a9$ (68)!83d+27s+1 10g27s (6_1)638
5 ags (68)!53d+27s+1 log275(€71)635. (185)
With Eq. (I69), (I73). (ITD. (T80) and (TS, we define
0Py 1) = b (%( ) Bha(: 1) — Ska (U, daa(w, 1), forany y € RY ¢ € [0, 00). (186)

. (2
By the sizes of (bkdz, kde, Om, ¢r(nult17 (;Smum, we have

o3 e NN (width < s8N log, (N) v s%9+3 1og® (7 1);
depth < L*log, (L) V s*log®(e1)). (187)
Moreover, for any y € B, t € [tg, 00),
|3ooe (s 1) — fare(y, 1)
= [0 (m (D), 6025, 1)) — B (1 Oad (5, 6)) — e % 3 (0, 8) + 1y x S5 (3. 1)
< |6 (0m(8), 63w 0) — e x K3, 1)] + |65 (w68 w. 1) —y x F (w,1)]

< Eq. () < Eq. (IT3)

5 a¥s (65)!83d+27s+1 10g27s (671)638 + a95+1/2 (65)!53d+27s+3/2 10g27s+1/2 (671)635

< a95H1/2(6g) 1534+ 2Ts+3/2 10g27s+1/2(e_1)635, (188)
which implies that
|¢£20)re (y,t | | F@ (y,t ‘+a95+1/2(6s)' 3d+27s43/2 10g27s+1/2(6—1)63s
< t|fkde Y, |+\y| |fkde Yy, 1) |_|_a95+1/2(6s)!83d+27s+3/21Og27s+1/2(671)€35
< Vaslog(e™1). (189)

Step 3: Construction of the neural network ¢gcore-

Recall from Eq. (167) that e 'n~! < ¢§§3re(y,t) < 1forany y € B,t € [tg,00) and 0 < € <
to An~1/*. By Lemma[23] there exists

Prec € NN (width < s%log®(e71); depth < s?log®(e71)), (190)
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such that for any n=! < d)score(y, t) <1landz’ € R,

(brec (qbs('clgre(yvt)) m 25 +e€ s |¢sc0re yv ) s(clo)re(ya )‘
score vy, S Eq @
< 625 +a183(128)!83d+54s+1 lo 548(6_1)628
/S a18s(125)!53d+54s+1 10g548( )628, (191)

which implies that

1
¢)rec (¢§c1(2re(y’ t)) ‘ ~ (1D, N 185( 28) SdtbAstl 10g548( )625 (by Eq- )
‘fscore |
<n+ 04183(128)!s?’d'*"[”‘l“""’1 log™*(e71)e?* < . (192)
By Lemma([I3]and Eq. (T89) and (192), there exists
o) . € NN (width < 9(N + 1) + 1, depth < 14sL), (193)

such that
(M (42 1)
¢mul[i (bscore(yv ) ¢1‘ec (¢5C0[6 (y’ )) ¢score(y7 ) X (brec (¢5C0r6(y7 ))
< ny/aslog(e=1) (N + 1)L < ny/aslog(e—1)e** < /aslog(e—1)e, (194)
which indicates that
7
‘(br(nu)lti ((bgggre(y? )a ¢rec (¢£c1(2re(yﬂ t))) - ¢£c%2re(y7 ) X ¢rec (qsgigre(y? t)) ‘
|¢§core y7 | |¢rec <¢qcore y7 )| + V as log € 1
< Eq. (39 < Eq. (02
< ny/aslog(e=l) + aslog(e—1)e®* < ny/aslog(e=1) (195)

By Proposition 2} there exists
b1/02 € NN (width < s*Nlogy(N) V s®log® (e 1);

depth < s?Ly/log(e=1)log,(Lv/log(e=1)) v s? log?(e 7)), (196)
such that
’qbl/gz (t) — 0;2‘ < (25)!5% log® (e71)e?*,  forany t € [to, 00), (197)
and
0< hryo2(t) St (198)
By Lemma|[T3]and Eq. (T93) and (198),
o™ € NN (width < 9(N + 1) + 1, depth < 145sL), (199)
such that

[0t (91702 (0 (6201, ); e (89,1 ) )
= 61/02 (1) % S5 (B (¥, 1), e (60e(w:1))
Sty WasT(eU(N +1)7M 8 <t nyJaslog(e )™ < yaslog(eD)e®.  (200)
With Eq. (165} , , , , 196) and (199} , for any y € R%,t € [tg, o0), we define
Dreore (1) = Bt (91702 (), Ol (020 (1, 8), Bree(0e(0,) ) ) 201)
By the sizes of ¢§§3re, ¢§§3re, brec, P1/02(t), gbgu)hi, (b[(fu)hi, we have

Docore € NN (width < 83 N3 1og, (V) v 5593 1og? (e 71);
depth S_; L3 10g2 (L) V 82 10g2(€_1)) (202)
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Step 4: Approximation error of ¢score.

For any y € B,t € [tg, ),
(bscore( t) - skccti)ie(y’t)‘

< |0 (91702 (1), 8550 (620 (0, 8), b (90 1)) ) )

= 6170 () X Sy (620 1): drec (6. 1)) )| (by Eq. (200))
‘(151/02 - 7‘ ‘¢mu]u< score(y7 ) ¢rec(¢score(y7 )))‘
< Eq. @0 < Eq. (O3
]asmum (020 (1), drec (e (01.1)) ) = 01, 1) X e (6L0e(w: )|
< Eq. (0%

L1
o

O 2he(0:t) = 0] - [ (6w 1)|
< Eq. (189 < Eq. @2

1 1
+ = fs(czore Y, ¢YSC ¢score Y, - 1 ‘
o7 0 D] o Be0) ~ 5

< Eq. @
< Vaslog(e=1)e?® + (25)!5% logh* €2 -ny/aslog(e™1) +ty ' /aslog(e 1)
+ nty 1, a93+1/2(68>!s3d+275+3/2 10g27s+1/2( ) 3s
151\ Jaslog(e 1) - al¥(125)1s3d+545+] |ogh4s (e~ 1)e2s

< a185+1/2(125)!33d+54s+3/2 log54s+1/2(6— )e®. (203)

4/2¢=1n=1 we have for any y € R%,t € [to, 00),

<’ f\/ (2mo?) d/2>
= £\/long— 1 <oyt logn, (204)

Ot

By Lemma and p,, ¢ = (2moy) ™

‘ kde y ‘_) th )
score\ s \/Pn

Pt(y)

which gives that
|¢score y7 ‘ ~ skc%ere 7t)’ + a18s+1/2(128)!83d+543+3/2 10g548+1/2(€_1)68 5 0;1\/@~

Therefore, we have completed the proof of Lemma[I0]
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D.3.3 Approximation of regularized empirical score functions for sub-Gaussian distributions

Lemma 11. Suppose that P satisfies Assumption For any d,n € N.,0 < tg < 1/2, fix
pnit = (2102)~ 2 n"t Let N, L,s € Ny, e € Ry suchthat N"2L™% < e < tg An~Y/*. Let
my = exp(—t),o: == /1 —exp(—2t) for any t € [tg,00). Then, there exists a function Qscore
implemented by a ReLU DNN with width < O(s%43N3log,(N) V s54+31og®(e 1)) and depth
< O(Llogy(L) v s?log*(e™1)) such that

Vi (y)
d ﬁt (y) \ Pn,t

2
E{w(i>}?1~P®"[ _ ¢sww(y’t>H2dy] < 715 ((125)1)2500+108543 o 108541 (—1y 25
R

and we have || Ogcore(, 1) |0 S 04 ~1/logn.

Proof. For some A > 0, set A = pu + [—A, A]?, where i = Ex.p,[X]. With loss of generality,
we assume that Ex..p,[X] = 0. Our results can be easily applied to Ex..p,[X] # 0. By the
sub-Gaussian tail bound of Py with parameter «,

AQ
Pr[X ¢ Al = /Cpt(:c)d:v < 2dexp(—ﬁ). (205)
Let A = O(y/a?slogn), then
O(a?slogn) —0(s)
Pr[X ¢ A] < 2dexp(—T) < 2dexp(—O(slogn)) = 2dn )
a
By Lemma[|and p,,., = (270)~%?e~'n"1, we have for any y € R% ¢ € [to, 00),
Vie(y) |12 _ 2 (2ra?)=/? 2 1
_VPRY) T o 2 o (M9 ) = £ (ogn 4 1) < — logn. (206)
Hpt(y)\/pn 27 of g( Pnt ) slosn 15 g los

By Lemma([I0] there exists a function
e € NN (widh 5 5553\ logy (N) V s Log? (¢
depth < L3log, (L) V 2 logQ(efl))

such that for any sup; ¢, || < A= ./O(a2slogn),

|fucore (U, 1) — fite(y,1)| S @7 (12515324 10g™ T 3 ()", Wy € RY, Vi € [to, ),

score

Thus, as we have shown in Eq. (204), for all y € R ¢t € [tg,00), we have |pseore(y,t)| <
| Pscore (U5 t)||2 < o ' /Tog i, which gives that

H(bscore(ya t) H% N 0';2 log n. (207)
With Eq. (206) and (207),
i,
- score 7t d m dx
/ / vpnt Drcore(y. )| dyp(z)
th( )
<2 _— re Y, d.’l)
< / e M O )3)p(@)
n=® (o, % logn + o; *logn) < n~ % logn. (208)

On the other hand, for € A, we have

L L

2
f,/ d( 375(128)|83d+54s+210g54s+%(6—1)63> p(x)dz

5 a74s((12s)!)256d+1083+3 10g1085+1 (6_1)€2S. (209)

S et J (o)
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Combine Eq. (208) and (209), we obtain

Vi (y) 2
E AN n|: ~ 7 N, Wscor at H d :|
{:r,( )}i:1 P® [Rd pt(y) V Pt Qb.co e(y ) 9 Yy
5 a74s((128)!)286d+108$+3 10g1085+1(€_1)628. (210)

O

Lemma 12 (L2-Approximation of Regularized Empirical Score Functions for Sub-Gaussian Distri-

butions). Suppose that P satisfies Assumption Forany d,n € N_, fix p, 4 := (27r0t2)_d/26_1n_1

and n=2/4 <ty < 1/2. Let my = exp(—t),0; == /1 —exp(—2t) for any t € [ty,00). Fix
k € Ny with k > d/2. Then, there exists a ReLU DNN ¢cor with width < O(n% log, n) and depth
< (9(log2 n) such that

Efeoyp, ~pon [/
3 y

and we have || Oscore (5 1) || oo S a[lx/logn.

Vi (y)
ﬁt (y) \ Pn,t

2
_ ¢swre(y,t)H2dy] < QT4 1og 08K () -1

Proof. Fixk € Ny and k > d/2, apply Lemmall1|with e = n~'/* s = kand N = [n!/(?F)], L =1
such that N=2L~2 < € < tg An~/* hold and we complete the proof. O

D.4 Score approximation errors by deep ReLU neural networks

We are now able to prove the score approximation error bounds of deep RelU neural networks for
sub-Gaussian distributions by combining Theorem [[]and Corollary [T2}

Theorem [T] (Neural Network Score Approximation for Sub-Gaussian Distributions) Suppose that
Py satisfies Assumption Forany 1 < d < v/logn,n > 3 and any %a2n*2/d logn <ty <1
and T = n°W), let {Zt}iepto,m) be the solutions of the process Eq. with density function
pi:RY = Ry Fixk € Ny withd/2 <k < 198" Then, there exists a ReLU DNN yeore With

~ loglogn"

width < O(n%c log, n) and depth < O(log2 n) such that

2 —d—2(_d d logd/HB n
]E{:c<i>};;1~P(‘?" [EthPt [HVIOgPt(wt) — Gscore(Tt, t)Hz” S oy (Jt + o )Tv

and we have || seore (1) |oo S Ut_l\/log n. Moreover, let T = n°®, we have

E{mu)};:lwpgm [/t

=to

T
— _ 4
Eg,r, [V 108 p1(@2) = duon (@i, t)[3]dt] S @ty *n " log? .

Proof. By Lemma with p,, ; = (2102)~42e"1n~1, we have

’vmm V(a4 Hﬂ

Eizin pen EthPt[ - =
@0}~ Pe l pe(s) De(x) V g ll2

(2mo2) =% ) log%? n

Pn
2 log?/2 3 5
T

< at_d_z (Uf + ad) log3( -

Sop ol +a
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Therefore, together with ¢gcore from Lemma|[I2] we obtain

E, « n
{w(z)}?leP(;@

Ea:t~Pt [Hlegpt(xt) - (bscore(wta t)”%}‘|

th(iﬂt) Vﬁt(wt) 2

SN SN . O

S Bla®yr ~pE PN () pe(®e) Vo png llo
< Lemmall]

Vﬁt(wt)

2E tht[ -_—
* Pe(Te) V pn

E,pinn
+ {m()}'i:INP(j@"

- ertect]]

< LemmalI2]

1Ogd/2+3 n .10g108k+1(n)
—d—2(_d d 74k
S oy (Ut +a ) n n
logd/2+3n
—d—2(_d d
Soy (Ut + o ) n

where the last inequality follows from the fact that its second term will be dominated by the first term.

To see this, let’s fix d/2 < k < (1+2/71l)110g ntloglogn—2loga hon we have
og a+108 log log n

T4k log o + 108k logn < (1 4+ 2/d)logn + loglogn — 2log a,
which gives

— 2
O[74k 10g108k+1(n) S «a 2n1+d10g2n

lo d/2+3n
< grd—2,d298

~ Yt

- (by a?n=?/4logn < tq < 0})

log?/2+3 5,
<og;072 (o + ad)gT.

Notice that we also need
(1+2/d)logn + loglogn — 2log «
741log o + 108loglogn

d
Z<
5 =

)

which implies that d < y/logn. Assuming that « is a universal constant, we have verified that to

: log n+loglogn logn
ensure our results hold, we require d/2 < k < Toglogn < oglogn forl <d < VlIogn.

Moreover, following the same proof for Theorem ] we obtain

T
E{w(i)}?zlwpc‘?" |:/t ]EthPt [”v logpt(wt) - ¢score(wt7 t)”g} dt

=t

T d/2+3
lo n _ d
< / o, 472 (af’ + ad) 25 Mt < ot /21 logg+4 n.
. n

=t

Thus, we complete the proof. O
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D.5 Auxiliary approximation lemmas

Proposition 8 (Approximate Square Function on [a, b]). For any N,L € Ny and a,b € R with
a < b, there exists a function ¢ implemented by a ReLU DNN with width 3N + 1 and depth L such
that

6(z) — 2% < N7, foranyz € [a,b].

Proof. For any z € [a,b], let & = =2, which implies that Z € [0, 1]. By Lemma there exists a

b—a’

function ¢ implemented by a ReLU DNN with width 3V and depth L such that
6(z) - 2°| < N7F,
which gives that

Tr—a

b—a

’(b—a)ng( )+2axfazf:c2 <(b—a)’N"EL.

For any x € R, define

o) = (b —a)’o(

Tr—a

a) + 2a - ReLU(z + |a|) — a® — 2alal.

o)

RelLU(x + |al)

Figure 1: An illustration of the network architecture implementing & for approximating 2 on [a, b].

By ¢ € NN (width < 3N;depth < L) from Lemma [18] the network in Proposition [8| has width

< 3N + 1 and depth < L + 2. Tt follows that ¢ can be implemented by a ReLU DNN with width
3N + 1 and depth L, since the two hidden layers have the identify function as their activation
functions.

Since x + |a| > 0 for any = € [a, b], which indicates that

o) = (b a6 (5

—a

) + 2ax — a®, forany z € [a, b].
—a

Therefore, ~

|p(z) — 2%| < (b—a)’N~L, forany z € [a, b].
O

Lemma 13 (Approximate xy on [ay, b1] X [ag,b2]). Forany N,L € N, and a1, az,b1,bs € R with
a1 < by and as < b, there exists a function ¢ implemented by a ReLU DNN with width 9N + 1 and
depth L such that

‘(ﬁ(.’lﬁ‘,y) - xy\ < 6(b1 - al)(bQ - a2)N_L7 foranyx € [alabl]?y € [a27b2]'
Proof. Forany x € [a1,b1],y € [as, bo], let 7 = =71, = =22, which implies that #,§ € [0, 1].

By Lemma there exists a function qz~5 implemented by a ReLU DNN with width 9N and depth L
such that

|&(ialg) - i‘g} < 6N7L7
which gives that

r—ay Y—a L

‘(bl — al)(bg — ag)d;( ) — ch+a1y+a2x — a1a2 S 6(b1 — a1)(b2 — CLQ)N7

b1 — a1’ by —as
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For any = € R, define

-/ —a —a
d(z,y) = (b1 —ay)(bs — a2)¢(b1 — all’ byg — a22> + a1 + asy — aias. (211)

By construction, ¢ can be implemented by a ReLU DNN with width 3N + 1 and depth L. Therefore,
forall x € [al, bl], AS [ag, bg},

|p(z,y) — 2y| < 6(b1 — a1)(by — az) N~ L.
O

Lemma 14 (Approximate Monomial Function on [~ R, R]*). Forany N, L, k,s € Ny withs > k >
2 and R € Ry, there exists a function ¢ implemented by a ReLU DNN with width 9(N + 1) + k — 1
and depth TsL(k — 1) such that

(6(@) — w1 ax] <30k — VRE(N +1)775, forany @ = [a1,a2,...,04] T € [-R, R

Proof. By Lemma there exists a function ¢n,; implemented by a ReLU DNN with width
9(N + 1) + 1 and depth 7sL such that

|dmute (2, 9) — zy| < 6(b1 — a1)(b2 — az)(IN + 1)775L forany x € [a1,b1],y € [a1, ba].

For all x1, x5 € [~ R, R], define ¢; : [~ R, R]?> — [~ R?, R?], which can be implemented by a ReLU
DNN with width 9(N + 1) + 1 and depth 7sL such that

|1 (21, 20) — z122) < 6(2R)A(N +1)"7F < 30R*(N + 1)L, (212)

Next, we construct a sequence of functions ¢; : [~ R, R|'** — [-R, R] fori € {1,2,...,k — 1} by
induction such that

(i) ¢; can be implemented by a ReLU DNN with width 9(N + 1) + ¢ and depth 7sLi for each
ie{l,2,... k—1}

(ii) Foranyi € {1,2,...,k — 1} and 1,2, ...,2;4+1 € [-R, R], it holds that
s (@1, ..., @ig1) — T12 - - g1 | < B0PRTFL(N 4 1)~ 7L, (213)
First, let us consider the case ¢ = 1, it is obvious that the two required conditions are true:
i) IN+1)+i=9(N+1)+1land 7sLi =7sLifi =1;
(ii) Eq. (212) implies Eq. (213) for i = 1.
Now assume ¢; has been defined; we then define

Giv1(z1,. . Tiy2) = Gmui (Pi(@1, ..., Tig1), Tiyo) forany zi,... 240 € R.

Note that ¢; € NN (width < 9(N + 1) + ¢;depth < 7sLi) and ¢y € NN (width < 9(N + 1) +
1;depth < 7kL). Then ¢;11 can be implemented via a ReLU DNN with width

max{I(N+1)+i+ 19N +1)+1} =9(N+1)+(i+1)
and depth 7sLi + 7sL = 7sL(i + 1). By the hypothesis of induction, we have
‘gﬁi(.’th N 7xi+1) — X1 .. .xi+1| é SOZRH_l(N + 1)_7SL.

Recall the fact that

-7

) i ) i .92 )
30iRTH(N +1)"F < 30kR™1277 < 30kR™T! T — < 0.25RM!
S
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forany N, L,k,s € Ny withs > kandi € {1,2,...,k—1}. By ;qz2 - - 2441 € [-RT! RITY,
it follows that

Gi(x1,. .., xi41) € [-1.25R"TH 1.25R"™Y,  forany xy,...,2;11 € [-R, R].

Therefore, by Eq. 211) and 213), we have

|pit1(z1,. ., Tita) — T1T2 ... Tita)
= ’¢1 (¢i(x1,...,2i41), ReLU(2i12)) — 122 - - ~xi+2’
< |¢1 (¢i(21, ..., Tig1), Tig2) — di(T1, ... ,xi+1)xi+2| + |¢>¢(IE1, ey Tip1) T — T1To . .:cH_Q’
<6 x25RTL X 2R x (N + 1)L £ 30iRHH(N +1)77L - |z, (by Lemma([T3)

< 30R™2(N + 1)L 4 30iRT (N + 1)L . R
=30(i 4+ 1)R*™3(N 4 1)~ L,

for any x1,2,...,2;42 € [—R, R], which means we finish the process of induction. Now let
¢ = ¢r_1, by the principle of induction, we have

’¢(w1,...,xk) —x1x2~-~xk| < 30(k — 1)Rk(N+ 1)~k foranyzy,...,z € [-R, R].

So ¢ is the desired function implemented by a ReLU DNN with width 9(N + 1) + k& — 1 and depth
7sL(k — 1). O

Proposition 9 (Approximate Multivariate Polynomials on [—R, R]¢). Assume P(x) = z¥ =
zray? 2l forv € N with ||lv||y < k € Ny. Forany N,L,s € N, withs > kand R € R,
there exists a function ¢ implemented by a ReLU DNN with width 9(N + 1) + k — 1 and depth
7s(k — 1)L such that

|p(xz) — P(x)| < 30kR*(N +1)""*L  forany x € [-R, R]%.

Proof. The case k = 1 is trivial, so we assume that & > 2. Set k= lv|li < k, denote by
v=[vi,vs,...,v4)" andlet[z1,...,2;]" € R” be the vector such that

j—1 l
2 =z, if Zm<l§2ui, forj=1,...,d.
i=1 i=1

That is,
vy times Vo times vg times ~
[ T _ N —— Rk
21,22, 0,27 =@, .., 010,02, X2y, X, .., 2q) € R

Then, we have P(x) = ¥ = z122... ;.
We construct the target ReLU DNN in two steps:

Step 1: There exists an affine linear map ¢y, : R¢ — RF that duplicates x to form a new vector
(21,22, ., 25,1, .., 1]T € R, ie,,

¢1in(sc) = [2’1,22, cey R 1,..., I]T € Rk.

Step 2: By Lemma there exists a function ¢, : R¥ — R implemented by a ReLU DNN with
width 9(N + 1) 4+ k — 1 and depth 7sL(k — 1) such that
|¢)mon(m) - CCu| < 30(:115 — 1)Rk(N + 1)775[/.
For any = € [—R, R]¢, define
¢(x) = Pmon (Piin()). (214)
Clearly, we have

¢ € NN (width < 9(N + 1) + k — 1;depth < 7s(k — 1)L)
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and
l¢(z) — P(x)| = |p(x) — x¥|

= | bmon (d1in(®)) — @ 252 - - - 2y

= |¢m0n(z1722, o2 1) — 2120 z,;|

< 30(k —1)RF(N +1)~ "L (by Lemma|[T4)

< 30kRF(N + 1)~ 7L,
for any x1, z2,...,24 € [- R, R). O
Proposition 10 (Approximate One-Dimensional Step Function on [a, b]). For any N, L,d € Ny,

a,b € Rwitha < b, and § € (0,%:2] with K = |NY/|2|L*/¢|, there exists a one-dimensional

function ¢ implemented by a ReLU DNN with width 4| N/ | + 3 and depth 4L + 5 such that

o(x) =k, ifze {a—&— k(b—a) a—&—(kH}éb o) 6']1{k§K72}:|a fork=0,1,..., K — 1.

Proof. Letx = {= forall x € {a+ k(l};a),a+ (kH%((b*“) —0- ]]_{kSK_Q}:|7]§ =0,1,...,K—1,
which gives
e [%,%f&-n{kg{_ﬂ}, fork =0,1,..., K — 1.

Then, by Proposition there exists a one-dimensional function (5 implemented by a ReLU DNN
with width 4| N/¢| 4- 3 and depth 4L + 5 such that

#(7) =k, forallze {%,’f—;—ﬁ-ﬂ{kg_g}], fork=0,1,..., K —1.

Let ¢(z) = &(g:g) Then, ¢ can be implemented by a ReLU DNN with the same sizes as a ReLU
DNN for implementing ¢~> and we have

olx) =k, ifze [a—i— k(b—a) a+(k+1)(b a) 5']1{kSK72}]7 fork=0,1,..., K — 1.
O

Definition 3 (Modulus of Continuity [38]]). For any a,b € R with b > a. The modulus of continuity
of a continuous function f € C([a,b]?) is defined as

wi(r) =sup{|f(x)— fY)|: |-yl <rzye [a,b]d}, forany r > 0.

Definition 4 (Trifling Region [38]). Given any K € Nt and § € (0, %) define a trifling region
Q([0,1]%, K, 6) of [0,1]¢ as

C&

K-
Q([o, {:cle,;vg,..., a0, a; € U
i=1

In particular, Q([0,1]4, K,8) =0 if K = 1.

N\
N\
—_

The following Lemma extends the approximation results of [38, Lemma 3.3] from [0, 1] to
[0,R],YR > 0:

Lemma 15 (Approximate Trifling Regions on [0, R]). Givenanye > 0, K, R € N4, and § € (0, ﬁ],
assume f € C([0, R]) and g : R — R is a general function with

l9(z) — f(x)| <&, foranyx € [0, R]\ ([0, R, K, ). (215)
ie, g(x) € B(f(z),e) forany x € [0, R] \ ([0, R], K, §). Then,
[¢(x) — f(2)| < e+wp(0), foranyx € [0, R],

where
¢(z) = mid(g(z — 6), g(z),g(x + ), foranyz €R.

74



Proof. Divide [0, R] into K R small intervals denoted by 7j, = [£, L) for k = 0,1,..., KR — 1.

Foreach k € {0,1,--- , KR — 1}, we further divide Z}, into four small closed 1ntervals as
Ly =21 ULp o ULy 3 ULy 4,
whereIk,l = [%, %—I—(S],Ik’g = [ +4, k+1 2(5},1]@73 = [%—25, %—5],.’[]@4 = [%— ,%]

Following a similar proof in [38, Lemma 3.3], we have forall x € 7, 1,2y, 2,2y, 3, Ly 4,

mid(g(sc —9),9(x),g(x+ 5)) € B(f(z),e 4+ wy(9)).

By [0, R] = Ur i (U U}_1Zy.;), which implies that
mld(g(x —9),9(x),g(x+ 5)) € B(f(x),e +wys(d)), forallz € [0,R)].
Therefore, we have

|o(x) — f(z)] <e+wyp(d), foranyx € [0,R].
O

While the technique of approximating the univariate exponential function exp(—z) using ReLU
neural networks has been explored in recent works, e.g., [22,43]], we develop a new proof strategy
tailored to our setting, which enables separate control of the approximation rates in terms of the
network’s width and depth.

Lemma 16 (Approximation of exp(—x) on [0, R]). For any N,L € N, and R > 0 such that
N72L72 < R™!, there exists a function ¢ implemented by a ReLU DNN with width 48s*(N +
1) logy(8N) and depth 1852 (L + 2) logy(4L) + 2 such that

|¢(z) — exp(—z)| < (455 + R* + 4)N"**L™>*,  forany z € [0, R].

Proof. Set K = N2L2 and 0 € (0,1/K). Let Q([0, R], K, §) partition [0, R] into K intervals Zg
for 8 € {0,1,.. — 1}. For each 3, we define zp := 5 and
To={reR e [, P — 5 Lpen g}

Clearly, we have [0, R] = Q([0, R], K, 0) U(UBE{0,1,~-~ k—1}Ls) and 24 is the vertex of Zy with
minimum || - ||;-norm.

Step 1: Approximation on non-trifling regions: = € [0, R] \ ([0, R], K, §).
Approximate z 3.
By Proposition [I2] there exists a ReLU DNN
Psep € NN (width < AN + 3;depth < 4L + 5)
such that
baep(x/R) =k, ifze [BE TR 5.9, p o], fork=0,1,...,K - L

Define a ReLU DNN ¢, by

(Z)S{ep(m) = %gf)step(x/R), for any x € [0, R].
Obviously, we have

buep € NN (width < 4N + 3; depth < 4L + 5) (216)
and 5R
(]’Sslep(l‘):?:mﬂ, fOl’ﬂE{O,l,,K—l}

By Taylor expansion of exp(—x) at g up to order s — 1, we have:

(—1)° exp(—0)
s!

s—1
M@_W)u

exp(— i

k=0

(ZE — .I'ﬂ)b .

=:Fy
:ZFl
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for some real number 6 that is between ¢ and z 3.
Forall z € [0, R] \ ([0, R], K, J), the magnitude of F% can be bounded by

(1) exp(=6) ! (5)5 < Lpon-rp2 @i
5! s!

| Py = e

(xfxg)s' < é(w—xg)s < ]

Therefore, we only need to construct a ReLU DNN to approximate F.
Approximate exp(—zg). For § € {0,1,..., K — 1}, define
= o~
=exp|—— ).
B Pl™ %

Then we have {5 € [0, 1] forall 3 € {0,1,..., K — 1}. With K = N2L?, by Proposition there
exists a ReLU DNN

Gpoint € NN (width < 165(N + 1) log,(8N); depth < 5(L + 2) log,(4L))
such that

| ¢poim (ﬁ) - 5[3

| < N"2L7% forf=0,1,...,K — 1,
0 S ¢point(ﬁ) S 1

For any x € R, define

~ K
¢poim(m) = ¢poim (f) .
Obviously, we also have
bpoint € NN (width < 165(N + 1) log, (8N); depth < 5(L + 2) logy(4L)). (218)

Then for all zg = 73,6 €{0,1,..., K —1},wehave 0 < (gpoim(xﬁ) < 1and
|§Z§poim(xﬁ) - eXP(*xﬁ)| = ’szoim(%) - exp(f%)‘

= |6poin(8) = &|
< N~ZL72s, (219)
Approximate (z — z3)*. Let & := z — 3, then & € [0, £] C [0, 1]. By Proposition there exists
a ReLU DNN
bpoty € NN (width < 9(N + 1) + s — 1,depth < 7s(s — 1)L) (220)
such that forall 0 < k£ < s,
| bpoty (&) — &*| < 9s(N +1)77*". 221)

Note that 0 < # < R/K, which gives that £* € [0, 1]. For 0 < k < s,
9s(N + 1) < 95277 < 0.1.
With Eq. we have for all z € [0, R] \ ([0, R], K, ),
Gpoly (T) = Ppoly (v — x5) € [-0.1,1.1].
Approximate exp(—z) for z € [0, R\ ([0, R], K, §). By Lemma |l 3] there exists a ReLU DNN
Gmui € NN (width < 9(N + 1) + 1;depth < 2s(L + 1)) (222)
such that for any x € [a1,b1],y € [az, ba],

|Gt (2, y) — 2y| < 6(by — a1) (b2 — az)(N + 1)~ 2=+,
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For all z € [0, 00), we construct a neural network of the form:

~ 1 ~
(bexp( ) ¢mult1 (¢pomt ¢§tep 72 L (ybpoly ¢step(x))) (223)
By Eq. l) 1| 1i and 1i it is easy to verify that éexp can be implemented by a ReLU
DNN with width
max{4N +3,165(N + 1) logy(8N), s - (I(N +1) +5—1),9(N + 1) + 1} < 1652(N + 1) log, (SN),
and depth

4L 45+ 5(L + 2)logy (4L) + 7s*L +2s(L + 1) + 3
< 4(L+2) + 5(L +2)logy (4L) + 7s*(L + 2) + 2s*(L + 2)
< 185*(L + 2)log, (4L).

Therefore, we have

Pexp € NN (width < 165%(N + 1) logy(8N); depth < 18s?(L + 2) log, (4L)). (224)
Fix 8 € {0,1,...,K — 1}, for all z € Zg, we have

’QEeXP(x) —exp(—z )‘

1 ~ s—1 _1 k _
S ¢mult1 (¢pomt (bstep ’Z k'(bpoly (bstep(x))) - Z ()GZM(SC - xﬁ)k + ‘FZ‘
k=0 )
1 - ~
S ¢mult1 (¢pmnt ¢§tep ) Z k! ¢p01y ¢step(x))) ¢pomt (ybstep Z L ¢poly ¢Step(z)) |
k=0 k=0

=Fy

1 ~ 1 ~
+ ¢p0mt ¢step X Z K ¢poly ¢step(m)) - eXP X Z K ¢pnly d)step(x))‘

=:F1 2
s

1 _
+ lexp(—z3) X Z k'¢pnly — Gsiep()) — exp(—z) . (x— xg)k

|
_
—
\
_
N
B

1
+7RSN725L725'
s!

ES
Il
o

=:Fi3

Bounding F; ;. For all z € [0, R\ ([0, R], K, ), we have quoim(éstep(a:)) €[0,1]) and

_ s— s—1
1.1
—03<—e><01<z Zk'%ly 7g) <Y -+ <exll1<3.
k=0 k=0
Therefore,
Fii <6s(3— (—0.3))(N + 1) 2D < 205(N 4 1)~ 254D, (225)

Bounding I ».

F1,2 < ‘époint(éstep(l‘)) eXp
<Eq. 19

— byep())| S3NTELT2. (226)

kl
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Bounding I 5.

s—1 o
1 i o
Fis < |exp(—zp)] - > gébpoly(x — @) = 3 ( kl) (o xﬁ)’“‘
k=0 P ]
s—1 1 i k
< E T "lspolch (2 — dsep(®)) — (z — ) ‘
- <Eq. 221)
s—1
< %93(]\7 +1)7 7 = 9es(N + 1)L < 255(N + 1)~ 7L, o
k=0

Combine Eq. 217) and (223) to (227), we obtain
- 1
|Gexp () — exp(—1)] < 20s(N + 1) 7>+ L 3NT2L 725 4 955(N + 1) 775 4 RN L2
St
< 208(N +1)72E+D L 955(N 4+ 1)L 4 (3 + R)N~2L 2.

Note that for any N, L,s € N,
(N +1)7F < (N4 1)) < (N 1) 22728 < N72L7%,

which gives that .
|Gexp () — exp(—a)| < (455 + R® + 3) N2 L7, (228)

Step 2: Approximation on the whole regions: = € [0, R)).
For all z € R, define ¢eyp by:
Poxp () = Mid (fexp (T = ), Pexp (), Goxp (z + 6)).
Then, by Lemma we have for all § € (0, 5],
|bexp(2) — exp(—z)| < (455 + R® + 3) N2 L™ + weyp(—a)(8), forany z € [0, R],

where Weyp(—4)(9) is defined as

Wexp(—a)(0) = sup {|exp(—z) — exp(—y)| : |z — yll2 < &, z,y € [0, [VR]]*}.

Choose d € (0, 7] such that

ochp(—m) (6) S N_QSL_287
which gives that for all = € [0, R],

|pexp(z) — exp(—z)| < (45s + R® + 3)N 2L~ + N™2°L 2% = (455 + R® + 4)N 2L %,
To determine the size of the network for implementing ¢exp, note that from Eq. (224), we have
Pexp(+—0), Pexp (), exp (-+6) € NN (width < 165*(N+1) log,(8N); depth < 18s%(L+2) log, (4L)).

Then, we have

Gexp € NN (#input = 1; width < 48s°(N+1)log, (8N ); depth < 18s*(L+2) log, (4L)#output = 3).
(229)

Recall that mid(-,-,-) € NA(width < 14;depth < 2) by Lemma Therefore, ¢exp =
mid(+, -, -) © gexp can be implemented by a ReLU DNN with width

max{48s*(N + 1) log,(8N), 14} = 48s*(N + 1) log,(8N)

and depth
185%(L + 2) log,(4L) + 2.

78



Lemma 17 (Approximate k-th Root Function on [0, R]). Forany N, L,k € Ny and R > 0, there
exists a function ¢ implemented by a ReLU DNN with width 48s*(N + 1)log,(8N) and depth
18s%(L + 2)logy(4L) + 2 such that

|p(x) — z'/*| < (45s + 5)R1/k‘N72SL725, forany x € [0, R].

Proof. LetZ = z/R € [0, 1], we have 2'/* = RY/*z1/* for any € [0, R).
Step 1: Decompose the domain.

Set K = N2L? and § € (0,1/K). Let ©([0,1], K, §) partition [0,1] into K intervals Zg for
8€{0,1,...,K — 1}. For each 3, we define x5 := % and

Ip={reR:ze[L BE 5.1 1 5]}

Clearly, we have [0,] = Q([0,], K,8) U(Ugeqo,,.,k—13Zs) and g is the vertex of Zg with
minimum || - ||;-norm.

Step 2: Taylor expansion of z'/%,

1/k

By Taylor expansion of /" at xg up to order s — 1, we have:

gtk = Si(—l)r (1&) (1—2)"+(-1)%0° <1£k> (1—7)°.

r=0

=N =:b
for some real number 6 that is between ¢ and x 3.
Step 3: Approximation error and the size of the network

Following a similar proof for Lemma[I6] we can obtain that for any s, k € N, there exists a function

¢ implemented by a ReLU DNN with width 48s%(N + 1) log, (8 N) and depth 18s%(L +2) log,(4L)
such that

|p(&) — &'/*| < (455 +5)N"2L~2° forany # € [0,1].
For any z € [0, R], define ¢ by )
¢(x) = R*¢(z/R).

Clearly, we have
¢ € NN (width < 48s*(N + 1) log,(8N); depth < 185°(L + 2) log,(4L))
such that
|6 (x) _xl/k-| _ Rl/k‘q;(x/R) B (x/R)l/k‘
< (455 + 5)RYFN~2L725 forany z € [0, R].
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D.6 Existing approximation results

Lemma 18 (Approximate Square Function on [0, 1] [38]). Forany N, L € N, there exists a function
¢ implemented by a ReLU DNN with width 3N and depth L such that

6(2) — 2% < N, foranyz € [0,1].
Lemma 19 (Approximate zy on [0, 1] [38]). For any N, L € N, there exists a function ¢ imple-
mented by a ReLU DNN with width 9N and depth L such that
|¢({E7y)—$y| S6]\[_L7 forany T,y € [07 1]

Lemma 20 (Approximate xy on [a, b] [38]). For any N,L € N and a,b € R with a < b, there
exists a function ¢ implemented by a ReLU DNN with width 9N + 1 and depth L such that

|é(z,y) —ay| <6(b—a)>N~F,  foranyz,y € [a,b].

Lemma 21 (Approximate Monomial Function on [0, 1] [38])). For any N, L,k € N, with k > 2,
there exists a function ¢ implemented by a ReLU DNN with width 9(N + 1) + k — 1 and depth
TkL(k — 1) such that

|p(x) — 129 - x| < 9(k—1)(N + 1)_7“, forany x = [1‘173’}2,...,Ik]—r € [071]’“.

Proposition 11 (Approximate Multivariate Polynomials on [0, 1]¢ [38]]). Assume P(x) = x¥ =
vy, V2

oV ak? 2l forv € N with ||lv||y < k € Ny. Forany N,L € Ny, there exists a function ¢
implemented by a ReLU DNN with width 9(N + 1) + k — 1 and depth Tk*L such that

|p(x) — P(x)| < 9k(N + 1)_7]”:7 forany x € [0, 1]d.

Our goal is to construct a step function ¥ mapping € (g to Tg = % forany 8 € {0,1,..., K —
1}¢. We only need to approximate one-dimensional step functions, because in the multidimensional
case, we can simply set U(x) = [1)(z1),%(x2),...,¥(zq)] ", where 1 is a one-dimensional step
function.

Proposition 12 (Approximate One-Dimensional Step Function on [0, 1] [38])). Forany N, L,d € N
and § € (0, 55| with K = | N'/4|2| L?/4], there exists a one-dimensional function ¢ implemented

' 3K
by a ReLU DNN with width 4| N/ | 4 3 and depth AL + 5 such that
) k kE+1
o(x) =k, ifze [?,7—5.1%9(_2} C fork=0,1,...,K —1.

Proposition 13 (Point Fitting on [0, 1] [38]]). Given any N,L,d € Ny and & € [0,1] fori =
0,1,...,N2L? — 1, there exists a function ¢ implemented by a ReLU DNN with width 16s(N +
1) logy(8N) and depth 5(L + 2)log,(4L) such that

(1) |¢(i) — &| < N~»L=* fori=0,1,...,N2L?* — 1;

(2) 0 < ¢(x) < 1foranyx € R

Lemma 22 (Approximate Middle Value Function [38])). The middle value function mid(x1, x2, x3)
can be implemented by a ReLU DNN with width 14 and depth 2.

Lemma 23 (Approximating the Reciprocal Function [22]]). For any 0 < € < 1, there exists a function
¢ implemented by a ReLU DNN
¢ € NN (width < log?(e71); depth < log?(e™1))

such that |

WA forallz e [e,e '] and 2’ € R.

o) - o] < e+
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E Neural Network Score Estimation and Distribution Estimation

E.1 Score estimation errors by deep neural networks

Theorem 2] (Neural Network Score Estimation for Sub-Gaussian Distributions) Assume that the

conditions afTheoremhold. For3 < d < +/logn, fix k € Ny with Wg)li)% vd/2<k<S
- 0

lolgign in Eq. (9). Then, for any 6 € (0, 1), with probability at least 1 — ¢, the excess risk of an
empirical risk minimizer Eq. (7) over the neural network class NN satisfies that

T
~ _ L 2
/ Ex, [Hgf)(Xt,t) - Vlogpt(Xt)Hg]dt Sty /2 -1 1og%+4n + talnfl logn - log 5

to

Proof. For notation simplicity, throughout the following, we write

NN = {NN(width < O(n log, n); depth < O(log?n)) | [|6(-t)]lee S o7 '\/logn}.
and
¢*(y,t) == Vlogpi(y), forally e R% e [to,T],
Recall that
T
(6. X0) = [ Expx [19(X2.t) - ¥ logpu(X: Xo) Bl

to

T
o Xt — mth 2
— /tg Ex,ix, [ 6(Xe,t) + THJdt.
For all ¢ : R? x [to, T] — R%, we have
T
/ Ex, [|0(Xe.t) — ¢ (X, ) |3]dt = Ex, [((¢, Xo)] — Ex, [((6", Xo)]. (230)
to

Given a set of i.i.d. samples S = {a:(i) ™ 1, where x() ~ Py, the denoising score matching estimate

is defined as an empirical risk minimizer Eq. (7)), i.e.,:

~ 1< .
o€ argminfzg(@m(”).

peENN T

Given another set of i.i.d. samples S = {i(i)}?zl, where (Y ~ Py, we write the regularized
empirical score functions associated with S and p,, ; = (2nc?) =42~ 1n~t

n~"'as
I Vﬁt(y)

) = = . (231)
¢(y ) Dt (y) 4 Pn,t
For any ¢ € NN, denote by
. 1 <& . )
Ex, [0(¢, Xo) = £(¢", X0)] = — > (U, 2') — £(",27)),
i=1
~ 2 1 n . N .
]EXU [E§[€(¢, XO) - E((ba XO)H = g Z Eg [E(qbv w(l)) - £(¢7 w(l))} )
i=1
where the samples x® ... 2 are drawn independently from the same distribution as X and
independent of S. We aim to provide a high-probability upper bound on
Ex, [((6, Xo) — £(¢", X0)] (232)

for the empirical risk minimizer ¢.
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Recall from Lemma 3 that

2 ~ 1 (2mo2)= /2 B
160 I e raerosrry < 190 Me oy < =5 log (o) S o7 *logn,  (233)

t Pt

which suggests that the random variable Eg[¢(¢, Xo) — £ ((Z, X)] can be bounded. Therefore, instead
of directly upper bounding Eq. (232)), we first use Bernstein’s inequality to upper bound the following
excess risk:

Ex, [Es[(6, Xo) — £(6, Xo)]] — Ex, [Es[t(e, Xo) — €(d, Xo)]]

for a fixed ¢ € NN Then, we provide a high probability bound for K(QAS, ) —4(¢*, ). We conduct
the following steps for our purpose:

Step 1: Bernstein’s large deviation bound for Eg[¢(¢, ) — E((Z, I

We first verify Bernstein’s condition for the excess loss class
L= A{E5[t(¢,) = £($,")] : 6 € NN} (234)

By Lemma[23] for any ¢ € NV, it holds that

Ex, | (Eslt(¢, Xo) — (6, Xo)))’]
< Ex, {]ES [(E(Qb» Xo) — 3(57 Xo))z]} (by Jensen’s inequality)
r 2 2
Sty logn - Ex, {Eé {/ Ex,|x, “W(Xt, t) — ¢(Xt,t)H2}dtH (by Lemma 25)
to

=t logn - Eg [/T Ex, [Hgb(Xt,t) - $(Xt,t)||;} dt]

to

S5 logn- (/tT Ex, [[6(Xe,t) = 9" (X0, 0)[[3] at + Es [/tT Ex, [[|6(Xe,t) - 0" (X0, 0)][3] at])

=Fa < Theorem[]
<t logn - ((Exy [£(6, X0)] ~ Ex, [6(6°, Xo)]) +at; /0" log? )

= t5 ogn - Ex, [((¢, Xo) — £(6*, X0)]] + aty > 'n~ log2+5 n. (235)

First, we show that for all ¢ € NN, the random variable Eg[¢(¢, Xo) — 5(57 X)] is bounded. By
Lemmal23} for any ¢ € NN and any = € R?, we have

(Eg[t(¢,x) — e z)] )2 < Eg[(t(¢, ) — e az))Q] (by Jensen’s inequality)

T
< t5'logn - Eg [/ Ex, 0 [0 1) — 6(X, 1) 3] ]
2
T :
Sty logn - Bs | | Ex,xums [100X O + 160, 1) 3] ]
to

T A
§t6110g2ﬂ/ oy 2dt by [o(Xe, )3, 16(Xe, )13 < 07 logn)

to

<tytlog’n < ty%log® n.

eo —1 —
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Applying the Bernstein’s inequality (i.e., Theorem[5) with Eq. (233)), we obtain that, for any fixed
¢ € NN and any § € (0, 1), with probability at least 1 — § it holds that

[Ex, [Es[0(6. X0) - €6, X0)]] ~ Bx, [Es[£(6, Xo) — €6, X0

. \/ Ex, [(Esl{(6, Xo) = U6, X)) Tlog(2/8) 15" logn - log(2/2)

by Th
- - (by Theorem 3))

< \/tol logn - <]EX0 [E(qﬁ, Xo) — £(¢*, XO)H + Ocdtgdmn*l log%‘s'4 n) log(2/6)
~ n
ty  logn - log(2/6)
+ n

. (236)

Step 2: e-net argument.

Here, we use the standard e-net argument to derive a uniform large deviation bound based on
Eq. (236).

Fix a parameter 7 > 0 to be specified later, and define
be the minimal —-net of N’ w.r.t. the L>*-norm on R x [to, T], where N, - := N(Z7 NN -

|loo) is the cover number of NN

By the union bound and Eq. (236), we obtain that for any § € (0, 1), with probability at least 1 — d, it
holds that

Ex, [Es[(6°, Xo) - €6, Xo)]] — Ex, [Es[0(6°, Xo) - (6. X0)])|

_ \/to_l logn - (Ex, [£(¢°, Xo) — £(¢*, Xo)] + adty*n—"110g 2+ n) log(2N, . /7/9)
~ n

ty ! logn - log(2N,, /7/9)
_l’_

n

, (237)

simultaneously for all ¢° € NN, ;.
Moreover, by Lemma@ we have for any ¢ € NV, there exists ¢° € NN, 7 such that

T
(g, ) — £(¢°,x))” < t5 ' logn /t Ex, xo=z [|6(X:,t) — ¢°(Xy,t)[|5]dt  (by Lemma[23)

logn [T 72
< —dt by ¢°
=4 /t0 T (}’(b ENNT/ﬁ)
2
1
=2 ognj (238)
to
which implies that
o logn
£(6,2) — 6, @) S 7/ = (239)
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For any ¢ € NN, let ¢° be its closest element in NNT/ﬁ. Then, for any § € (0,1), with
probability at least 1 — §, we have

[Ex, [Es[0(6, Xo) — (6. X0)]] — Ex, [Es[6(0. Xo) — £(6. Xo)]]|
< |Ex, [6(6. Xo) = €(¢°, X0)] — Ex, [€(6, Xo) — (6", Xo)]|
+ [Ex, [Bslt(6", X0) = 06, X0)]] — Ex, [Es[£(6°, Xo) — £(6, Xo)]]|
SBR[, [E5(66°, Xo) — €06, Xo)]] ~ Bx, [Es[A(6°, Xo) — €06, Xo)]
(by Eq. 239)
-, \/m . \/ log - (Ex, [£(6°, Xo) — (6", Xo)] + alty*n—log* ™ n) log(2A, , /7:/9)

logn - log(2N_, /7/6)
_l’_

Eq.
e (by Eq. 237))
- logn - (y/t5 " logn + Ex, [((, Xo) — £(¢*, Xo)] + adty ™’ n—11og?* n) log(2N,, /7/9)
~ ’nto
1 log n - log(2V_ 5
o flogn N, 7/ ). (240)

to nto

For the first term of Eq. (240), we have

\l logn - (Ty/ty " logn + Ex, [¢(¢, Xo) — £(¢*, Xo)] + adtgd/2n—1 log%Jr4 n) log(2N, AL

’rLto

logn - log(2N. d)
S\/ g g( /\F/ \/ logn \/EXO d),Xo ) — £(¢*, Xo) +\/adt 20— 110g2+4 )
_\/logn log(2N. /\f/é \/ logn \/logn log(2N. +/vT/9) ¢adt7d/2n_1log%+4n
= T/ 0

. \/10gn . EXO[ (6, Xo) — (6", XO)} log(2V, f/a)

nto
10 n - log(2NV. 5
< 2 g( /\F/ )+ [logn +1 dtad/Q 7110g2+4
nto 2 t() 2
1ogn : E’Xo [£(¢7 XO) - K((b*a XO)} 10g(2N /f/é)
" : (241)
nio

Substituting Eq. (241)) into Eq. (240) we obtain with probability at least 1 — 4, it holds that
[Ex, [Esl(, Xo) — €6, Xo)]] — Ex, [Es[t(9, Xo) — (6, Xo)]]|

<. [logn n \/logn “Ex, [Z(¢7X0) - f(¢*7X0>} IOg(QNT/\/T/(S) n logn - IOg(ZNT/\/T/(S)
t

ntg ntg

+ adtadﬂn_1 log%+4 n. (242)
Step 3: High probability bound for €(¢Aﬁ7 ) = L(*,-)

Recall that $ minimizes the empirical risk over the class NV, i.e.,

¢ € argmin Ex, [((¢, Xo)] = argmlan€ (¢, ).
GENN ENN M=
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Let ¢ € NN be the neural network from Theorem [1{and constructed from i.i.d. samples S =
{£®}1_ such that

ES[EXOV(&,X(»—£(¢>*,Xo)ﬂ=1Es[/TEXt[<Z>(Xm ¢ (X, t)[3] ]

to
—d/2 _ d
< 't 1p T ogitin

Then, with probability at least 1 — 4, it holds that
Ex, [Es[(d, Xo) — £(6, Xo)]]
< IEXo [ES [5(03’ Xo) — é(j’y XO)H (by the definition of &)

logn - Ex, [£(¢, Xo) — £(¢*, Xo)] log(2N.. vT/9)
nto

/S E’Xo [Eg[ﬁ((g’ XO) - 6(57 XO)H + \/

10gﬂ logn - log N vz !9) 4 adts Y ogh

(by Eq. (242))
—E; [E ow Xo) — ¢, Xo>]] — Ex, [E[0(d, Xo) — £(", Xo)]]

N \/logn~EXo [€(6, Xo) — U(¢%, Xo)] log(2N, /)

’/lt()

1 logn - log(2NV_ 0 _
g Otg” n ) vT/9) +adty U2 —1 g8+
0 nto

= Eg [Ex, [¢(6, Xo) — (6", X0)]| —Es| / B [160X00) - 0" (X, £)[3]at]

to

>0

N \/logn -Ex, [f(d;, Xo) — £(¢*, X)) log(2Nr/\/T/5)

n

to
1 logn - log(2N. ) a
.y ogn + e v/ + a’t, 421 ogttep (by Eq. (230))

1Og n- IE’Xo [E(é7 XO) - E((b*’ XO)} log(QNT/\/T/(S)
nto

<Eg []Exo [£(6, Xo) — £(¢", XO)H + \/

1 logn - log(2N. 5 -
/Og”+ /vT/9) adtodﬂn_llog%“n
nto

For the first term and the second term of the above inequality, recall from Theorem [T] that

~ T ~
Es [Ex, [¢(6, Xo) — (6", X0)]| = Es / Ex, [ (X0, ) = ¢*(Xp, ) [3)dt] (b Eq. @30)
< adtadﬂn_l 1og%+4 n. (243)

Therefore, with probability at least 1 — 4, it holds that

~ ~ A logn - 10g(2,/\f /5) adt d/2 _110gg+4n Torr,
Ex, [E5[¢(¢, Xo) — £(¢, X0)]] < \/ /T . s

nto T to
logn - log(2N. ) 3
n (2N, y7/9) +adty ¥y log2 T4
Tlto
logn - log(2NV_ 5 N
< ( /ﬁ/ ) +adt5d/2n_1log%+4n+7 ogn.
’I”Lto t()
(244)
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Noticing that

|
S
XX
==
S
y XX

0) — £(0", Xo)]
o) — Eg[0(6, Xo)] + Es[6(d, Xo)] — £(¢", X0)]

= ]EXO []Eg[é(d), XO) - f((ﬁ, XO)]] + EXU [Eg[g(j), XO)] - E(dj*v XO)] (245)

For the first term of the above inequality, according to Eq. (242)), with probability at least 1 — 9, it
holds that

Ex, [Es[t(, Xo) — £, Xo)]]

logn - Ex, [((¢, Xo) — €(¢*, Xo)] log(2N,  /7/0)
’rlto

< Ex, [Esl0(d, Xo) — £(d, Xo)]] +\/
< Eq. @34
logn N logn -log(2N_, /7/9) N
to nto

logn - Ex, [5(57 Xo) — £(¢*, XO)} IOg(QNT/\/TM) 4 [logn
to

nto

d,;—d/2 —17.  4+4
a’ty ' "n" log2 "

AN

logn - log(QNT/ﬁ/(S)
Jr

+ oty ogt i n, (246)
nto

For the second term of Eq. (243)), recall from Theorem [4] that

A T
Bx, [Bslfd, X)) = €06", X0)] = Bs[ | Ex [10(X:.6) = ¢ (X 0l]ae] - (oy Eq. @0
<ty logitin. (247)

~

Combining Eq. (245)) to (247), we obtain that with probability at least 1 — ¢, it holds that

~ I -E Y/ A7X -/ *7X 1 2N 5
Ex, [0, Xo) ~ (6", Xo)] SM gn Exo (16, Xo) e o) log(2N;yr/9) | T
N logn - log(2N_, /7/9)

+ adtgd/Qn_l logg%l n.
’/lto

Recall the fact that the inequality < 2a/z + b implies that 2 < 4a? + 2b for non-negative a, b and
x [28]]. Therefore, with probability at least 1 — 4, it holds that

N 1 logn -log(2N_, /7/9) _ 4
Ex, [£(¢, Xo)—L(6", X0)] S T4/ OinJr o IITT 4 g2 =1 10g 54 . (248)

Step 4: Covering number evaluation for \/_ I

It is shown in Theorem 6 and 8 of [52] that the Pseudo-dimension of ReL.U networks has two types
of upper bounds: O(W Llog W) and O(WU ), where W, L, and U are the numbers of parameters,
layers, and neurons, respectively. If we let N denote the maximum width of the network, then
W = O(N?L) and U = O(NL), implying that

WLlogW = O(N?L - Llog(N?L)) = O(N°L?log(NL))
WU = O(N?L-NL) = O(N°L?).

Recall that
NN = {$ € NN (width < O(n 3 log, n); depth < O(log?n)) | [|¢(-1)]|ee S 07 *v/logn}.
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With N < O(n3F log, n), L < O(log? n), the pseudo-dimension of A’/ satisfies that
Pdim(NN) < O(N%L*log(NL)) A O(N3L?)
< O(n% log*n -login - log(n% log® n))
< O(ntlog"n). (249)

Futhermore, by Theorem|§| ([53! Theorem 12.2]), the covering number ./\/T INT satisfies that

Pdim(NN) d 0_;)1 TlOgTL .
2 S (0 T
=1
V'
< Pdim(NN) log(#)
to
<n¥log'n- log( n ) (by T = n®M)
UtOT
1 1
<nklog'n- (logn + log N + log 7) (by 2a2n=2/?logn <ty < 1/2)
0 T
1
< nk log" n - (logn + log f) (250)
T

Substituting Eq. (250) into Eq. (248), we obtain
Ex, [E(;b\a Xo) — £(¢*, Xo)]

1 9 ) .
s % (log(NT/ﬁ) + log 5) + T\/?On + adto d/2, -1 log%+4 n

nto

1 1 2 1 _
< ogn (n% log7 n- (logn + log —) + log 7) + 7 g T + adto /2, -1 log%Jr4 n.
nto T 0 to

Step 5: Determining 7 and &

Choosing 7 = n~!, we obtain

~ 2 _
Ex, [¢(¢, Xo) — €(¢*, X0)] S taln%_l log” n 4ty 'n"'logn - log 5 +a’t, 421 log%+4 n.
Noticing that when d > 3, if k > __Blogn e have to Int < to d/ 2, which ensures that the last

(d—2) log(tg )
term will dominate the first term in the above inequality. Moreover, recall that to ensure Theorem I}

we require d/2 < k < 8" for d < \/Tog n.

loglogn

Therefore, we obtain that for 3 < d < v/logn, fix k € N with d/2 Vv ] g)lfgg’(lt,l) <kSq lg‘;lgg ,
—2) log(t, oglogn
with probability at least 1 — 4, it holds that

~ _ 2
Ex, [£(¢, Xo) — £(¢", X0)] S a’ty P logatn + tg ' ogn - log 5
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E.2 Distribution estimation by deep neural networks

Theorem[§] (Distribution Estimation Error of P,,). Assume that the conditions of Theorem [2] hold.
Then, for any § € (0, 1), with probability at least 1 — 0, it holds that

Eipyn, [TV(Piy, PI] < a2t 012 1og 5 2 n 4 152012 log /2 1 \/log(2/0).

Proof. The distribution estimation error in the TV distance at time % into the following two terms:
the score estimation error, and the Gaussian induced error.

E (g [TV(Pi, 13%‘1)]] < By [TV(Pyy, ﬁto)] + Eziy [TV(ﬁto,ﬁZﬁﬂ-
1) Bounding the score estimation error. By Pinsker’s inequality (c.f. Lemma[3T), TV distance is upper

bounded by the KL divergence, i.e., TV(P,,, ﬁto) < \/3KL(P, ||}3t0) Furthermore, by Girsanov’s
theorem (c.f. Theorem[7]and Corollary [6] [16, 54])), we have

Ezoy [TV(Py, Pry)]

1 ~
< \/ iE (=)} [KL(Py, || P,)] (by Pinsker’s inequality and Jensen’s inequality)
T
</ Egzony [/ Ea,np, [||V 10g pi (1) — dcore (@1, 1) ||§]dt} (by Corollary [6)
t=to
_ 2
< \/adto 21 og T + to'n=1logn - log 5 (by Theorem 2))

< ad/gtad/4n—1/2 log%+2n+ tgl/zn_l/Q log!/?n - \/log(2/6).

2) Bounding the Gaussian induced error. The error from the last term is induced by starting from
the standard Gaussian 7, instead of the marginal distribution Pr. The convergence of the OU
process [55,22] gives that

~ o~ 1 ~ o~
TV(P,, P]*) < ,/iKL(PtOHng) <e T, (251)

Given that T = n®W) | this term decays exponentially to zero. Therefore, the overall bound is
dominated by the first term, which completes the proof.

O

88



E.3 Useful lemmas for estimation
Lemma 24 ([56, Proposition 2.2]). Suppose that X is a sub-exponential random variable with
parameters v, b, that is
E[exp(A(X — E[X]))] < exp(v®A?/2),  for all X such that |\| < 1/b.

Then, for any t > 0, it holds that

Pr[X > E[X] + 1] < ( 1(t2 /\t))

T xpl—=(—=A<)).
- =P My

Remark 5 ([56, Eamples 2.5]). The chi-squared random variable with d degrees of freedom is
sub-exponential with parameters (2/d, 4). This yields that, if X ~ x?(d), then

2
d
Lemma 25. Let ¢ : R? x [to, T] — R% and ¢' : R? x [to, T] — R? be any Borel functions such that

P, )l Loo (ray S o "\/logn and 16" ( )Ml oo (mey S o; \/logn.

Then, for all x € R, it holds that

Pr[X2d+t}§exp(—é( /\t)) Sforallt > 0.

T
(06, 2) = U(¢/,@))” S 15 dlogn /t Ex, x0=a | [0(X1,t) = (X0, 0)[3] at

Proof.
E(qﬁ, (E) - £(¢/7 w)

- /:Extxo_w :ch(Xt,tHiXt agmthz (X 1) 4 X U?mthjdt
- /T Bt [I9(K0 DI + 20001, T3 ) — 0/ ) - 2(0/ (X0 1), H " s
= / B[ (60X t) ~ (X)) (60X ) + /(X0 1) + w)}ﬁ

to ) t

Applying the Cauchy-Schwarz inequality, we obtain that

£(6,2) ~ 10/, )
T
< [ Eximame 19060~ 606000600+ 00 0) + ZEZ

0+ ¢(X,, 1) + 2K ) | g S H ]

O

< \//tUT Ex,|xo=2 {qu(Xt?t) - Qs/(Xt,t)H;] dt - \//tOT ]EXt|X0:m|:

Noticing that for the OU process, we have X; = m; Xy + 0, Z, where Z ~ N (0, 1;). Then, we
have

4
= | = SE[1Z))2].
p [1Z]3]

Q(Xt — mtm) 2
P ]

%71
2

EXt\onw[
Since Z = (Z1,...,Z4) and Z; ~ N(0,1),¥i = 1,...,n, we have Z? ~ x?(1) and E[Z?] = 1

Thus,
E(|1 213 [222}—2 73 =d,

which gives that
R ]

<

4d
EXt\X[)::I: |: -
t
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Then it holds that
T
2(X; — mpx) |2
\// Ext\xozx[ ]¢>(Xt,t) + ¢ (X, t) + %HJ‘“
to

t

T
< \/31 (EXAXO::E [||¢(Xtvt)”§ + Hd)/(Xtvt)”%} +EX1,\X0:93[

R

T
< \// (60, %logn + 12do; 2)dt (by |6(X s, t)|| oo Raxto,7]) S 07 'VI0g )
to

T
1
6(d1 +2d / —dt
(dlogn )\/ o 1 —exp(—2t)

(eT —1)(eto 4+ 1))

) \/3(d1°g” +20) o8 ({7
to + 1

1
< \/3(dlogn+2d)log(:to — 1) < \/6(dlogn—|—2d)et0 — < \/ty tdlogn.

Thus, we have

(€(¢a :13) - €(¢17 w))Q

< /tTExtxo—m[HWXt,t)—¢’(Xt,t)||ﬂdt./tTEXtXO_w{‘¢(Xt,t)+¢,(xt’t) thmtm H }
5to1d10gn/tT]EXt|X0_m[HQS(Xt,t) —¢'(Xt,t)||ﬂdt
m

E.3.1 Bernstein’s inequality

Theorem 5 (Bernstein’s inequality for bounded distributions [40]). Let X, ..., X, be independent
random variables such that | X;| < K for all i € [n]. Then, for every t > 0, we have

t2/2
Yo EIX?] + Kt/3)'

v

i(Xi - E[XZ])’ > t} < 2exp(—

1=

In other words, with probability at least 1 — 6, it holds that

t 2Klog(2/9) |5 3o, BIXF]log(2/6)
n 3n n '

IN

50 - B <

E.3.2 Pseudo-dimension and covering number

Definition 5 (Pseudo-Dimension [52]). Let F be a class of functions from X to R. The
pseudo-dimension of F, written Pdim(F), is the largest integer m for which there exists
(T1y o s Ty Y1y - -y Ym) € X™ X R™ such that for any (b1, ..., by) € {0,1}™ there exists f € F
such that
Vi : f(l’l) > Y b, = 1.

Theorem 6 (Covering Number Evaluation by Pseudo-Dimension [53, Theorem 12.2]). Let F be a
set of real functions from a domain X C R% to the bounded interval [0, B]. Let ¢ > 0 and suppose
that the pseudo-dimension of F is Pdim. Then,

NeF )< > BIGE

k=1
which is less than (edB/ePdim)"3™ for d > Pdim.
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F Convergence of SGMs

F.1 Girsanov’s theorem

Theorem 7 (Girsanov’s Theorem [54]). Given a filtered probability space (Q, F, (Fi)i>0, Q) and
a Q-Brownian motion (By)c[o, 1) under the probability measure Q. Suppose that (b(-,t))¢cjo,1) is
an adapted process w.r.t. filtration (Fy).c(o,) generated by B such that the following Novikov’s

condition holds:
e 5
Bq [exp (5 [ Ib(But)at
0

t
Ly ::/ b(Bs, s)d Bs.
0

Then, L is a square-integrable QQ-martingale. Moreover, if we define the Doléans-Dade exponential:

< 00, (252

Consider the process:

(L) = exp (ct _ ;<c,,c>t) — exp (/Ot b(B., $)dB, — ;/Ot |b(BS,s)|§ds> 0<t<T),

and suppose that Eq[E (L)1) = 1, then E(L) is a Q-martingale and the process
¢
B, = B, —/ b(Bs,s)ds (0<t<T)
0

is a P-Brownian motion under the new measure P = £(L)1Q.

The following theorem, Corollary [5] provides an upper bound on the score estimation error in terms
of the score matching loss, which restates the results from [16]. In our analysis, we apply Girsanov’s
Theorem (Theorem to continuous SDE processes, whereas [[16]] utilizes discretized SDE processes.

Corollary 5 (Girsanov’s Theorem for SDE Processes [[16]). Let Py be any probability distribution,
and let X = (Xt)iepo,1), X' = (X{)ie[o,] be two different processes satisfying

dXy = f(Xp, t)dt +g(t)dB, (0<t<T), Xo~ P, (253)
dXi = f(X,t)dt +g(t)dB; (0<t<T), Xj~ D. (254)

Denote the distributions of Xy and X} by P, P| and the path measures of X, X' by P, P, respectively.
Suppose that the following Novikov’s condition holds:

exp ( / / ||f x,t) '(x7t)|§dxdt>1 < 0. (255)

Then, the Radon-Nikodym’s derivative of P w.r.t. P’ is

Ep

dP T , 1" , >
@(X) = exp </O m(f(Xtat) — f(X¢,t))dB; — 5/0 gT(t)Hf(Xtat) - f (Xt7t)|2dt> ;

and therefore we have that

KL(Pr||Pr) < KL(P|[P') = Ee [l‘)g <§1§>}

/ / ”f = (@, 1)|[3pe () dzdt.

Proof. Let X be the process of Eq. (253)), we define

b(By,t) == ﬁ(f’(Xt,t) — f(X4, 1), VO<t<T.
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Then, we have

Ep

g3(t)

T T 1
/ ||b(Bt7t)||%dt] = / S Ex,ep, [ (Xe,t) = F(Xe,1)]3] dt < co. (by Eq. (255))
0 0

Define £; = fot b(Bs, s)dBs and £(L); as in Theorem then we have £ is a P-martingale
By Theorem we have that under ' = £(L) 7P, there exists a Brownian motion (B}):c[o,77:

1

t t
B’:B—/st,sds:B—/i
! ! 0 ( ) ! 0 9(s)

which is a P’-martingale and we have

(f/(st 8) - f(Xsa 5))d87

dB, = dB, — b(B,, t)dt = dB, — ﬁ(f’(Xt, t) — F(Xy,t))dt. (256)

Recall that under IP, we have

dXt:f(Xtat)+g(t)dBt (OStST)a XONPO

Then, by Eq. (256), we have
dX; = f(Xy, t)dt + g(t)dB;
= [(Xp, t)dt + g(t)d By + f'( Xy, t)dt — f( Xy, t)dt (by Eq. 256))
= f'(Xy, t)dt + g(t)dB;

under the measure .

[ dP

= Ep [log(£(£)71)] (by P’ = £(L)7P)

T 1 T
=52 |~ [ BB+ [ (B I3s
0 0

- LT 2
=Ep —£T+§ lb(Bs, s)||5ds
0

1
-E
o P

T
/ |b(Bs, s) ||§ds] (Ep[L7] = Lo = 0 by L is a P-martingale)
0

1 /71 /
=5 [ B (11050 = (X0)] at

F.2 Girsanov’s theorem for SGMs

Corollary 6 (Girsanov’s Theorem for SGMs). Let P,, = law(Yr_y,), Py, = law(Yr_y,) be the
law of the random variables at time t =T — t, for the two processes Eq. (3) and (0), respectively,
ie.,:

dY; = (Y; +2Vlogpr—¢(Y))dt +vV2dB, (0<t<T —t,), Yy~ Pr,
AV, = (Y +2s9(Y;, T — t))dt + V2dB; (0<t<T —tg), Yo~ Pr.

Then, we have

T
KL(P [P < [ [ 9 10pon) = soCaon ] ().
to R
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Proof. By Corollary 5] we have
KL 1B, < [ 5 [ 31V iogprstun) — 250000 T = 0lBpri(un)dys
0

T
= / / |V log pe(z+) — so(x4,t)||5pe (@ )dadt. (by zt = yr—¢)
to

O
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G Controlling Early Stopping Induced Errors

G.1 Sobolev class of density

The following assumption, adopted from [29]], characterizes the Sobolev class via the Fourier
transform of f. Unlike the usual definition (which restricts orders to integer values), this allows each
v; to take values not only as integers but also as positive real numbers.

Definition 6. For s, K € R, the Sobolev class of density is defined as
WiRY) = {f:R! S RIS > o,/f = 1,V with v, = s,/|w“|2FT[f](w)\2dw < (2m)'K?}.

Lemma 26 ([29, E.1]). UnderAssumptionsandE] ifs€10,2],tg = n~ % and Dty = D0 * Po,s
where ¢, is the density of Gaussian distribution in d-dimension, N'(0,t1;) and x denote the
convolution operator, then there exists a constant C' that depends on py, s, L and dimension d such
that

TV(po, pr,) < Cpolylog(n)n~ 7.

G.2 Besov class of density

To define the Besov space, we introduce the modulus of smoothness.

Definition 7 (Modulus of Smoothness). For a function [ € L1(QY) for some q € (0, 00|, the r-th
modulus of smoothness of f is defined by

wrq(f,t) = sup [[AL(f)lg,

lallz<t

where

A (N)(z) =

{2;0 (V1) f(a+jh) (e, o+rheq),
0 (otherwise).

Based on the modulus of smoothness, the Besov space is defined as in the following definition.
Definition 8 (Besov space (B;q,(Q)) [49.22]). For0 < q,¢' < o0, s > 0,7 := |s]| + 1, let the
seminorm | - |ga | be
a,9

(g (£0)74) T (¢ < o0),

SUPso t ™ wrg(f, 1) (¢ = 00).
The norm of the Besov space By ., (Q) can be defined by

Iflle;, = 1l + 17

and we have B} ,(Q) = {f € L(Q) | ||f|

f

s
qu

B®
7.9

B: < OO}

Note that ¢, ¢’ < 1 is also allowed. In that setting, the Besov space is no longer a Banach space but
a quasi-Banach space. If s > d/q, By ,(€) is continuously embedded in the set of the continuous
functions. Otherwise, the elements in the space are no longer continuous.

Considering the Besov space, many well-known function classes, such as Holder space and Sobolev
space can be discussed unified. The relationship between Besov, Holder, and Sobolev space are well
known [57]]:

* Fors € N, By () = W;(Q) = B; ,.(Q).
* B3,(€) = W3(Q).
* Fors € Ry \ Zy,C%(Q) = B, ().

Theorem 8 (Marchaud inequality [58]). Letr f € LI(R%) with 1 < q < oco. For any integer r > 1
and 0 < k < r, there exists a constant C = C(r, k,d, q) depending only on r,k, d, q such that for

all't > 0,

o du
Wiq(f,1) < Ctk/ wr.q(f, U)W
t
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Lemma 27. Let p € L([0,1]%) N B, ([0,1]%) be a probability density with 0 < s < 2 and

1 <qg<00,0<q <oo Let p, = (27r02)_d/2 exp(— |l H"‘). Then, there exists a constant
C = C(s,d,q,q") such that for all o > 0,

Ip=p*¢olli < Co®lplB:

and hence it holds that

1 ;
TV(P, P+ N(0,0°1a) = 5 llp = p*¢olls < Co®lpls: ,

Proof. We proceed in the following four steps:
Step 1: Pointwise bound for the modulus from the Besov seminorm.

Recall from Definition [§]that the definition of the Besov seminorm is given by
1
b Ao )T (0 <),
a.q’

SUPyso t ™ Wrq(p,t) (q' = 00).

|p

For 0 < ¢’ < oo, one has the elementary estimate (averaging over a dyadic annulus):

s g ([ s g dk\1/d

sup Ky (p,) < (og2) 7 ([ (7w ) )" < Clolsy

t<k<2t t q,9

and for k € [t,2t] we get wy 4(p, k) < Ck®|p|ps ,. In particular, we can take k& = ¢ to obtain the
9,9

pointwise bound
wrq(p,t) < Cp

Be . (257)

For ¢’ = oo, the same conclusion follows directly from the definition in Deﬁnition
Step 2: Relate L'-difference to the modulus of smoothness w 1 (p, t).

By the definition of convolution,

wreo)(@) = [ pe— vy

we have

p@) = (e 9)@) = | (@)~ bl - v)ea(u)dy
R
Take L'-norm and apply Fubini and Minkowski’s inequality, we obtain

ppeoli= [ ][ 6@ pe ) wife

/Rd /[01 —p(- — y)ldzp, (y)dy.

Change variables y = oz and write ¢, for the standard Gaussian density, we have

2
0o (y)dy = (2mo?) /2 exp(—%)addz = ¢1(y)dz.
g

Then,
Ip—p*@olli < /[R [p(-) = p(- = 02)||,1(2)d=. (258)

Thus the problem reduces to bounding the L*-difference ||p(-) — p(- — h)||; for small shifts h = oz
in terms of the modulus of smoothness. By the definition of modulus of smoothness (Definition [8),
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we have

lp=preali < [ o) =t = 02)] o1 (2102
< [ 1ALplher(z)dz
Rd
< [ wiatolslaen ()= (259
R

Step 3: Bounding w1 1(p, t) by w, 4(p, t).
Recall from Definition [7] that the r-th modulus of smoothness is defined as

wnl(pat) = Ssup ||A2pH1’
IR]l2<t

where r = |s| + 1.
Casel: 0 <s<1.

For 0 < s <1 weuse r = 1 and the first-order difference is given by
App() = p(-+h) = p()
Since Q2 = [0, 1]d and 1 < ¢ < oo, by Holder’s inequality, for any shift h, we have
|API < 197 [ALplg, = [ Aplg:

which implies that
w11(p;t) < wiq(p; ). (260)

Further, by Eq. (257), we obtain

wy1(p,t) < Ctlp B - (261)

Case2: 1 <s<2

For 1 < s < 2 we use r = 2 and the second-order difference is given by
ARp(-) = p(- +2h) = 2p(- + h) + p(-),

and the second-order modulus is

waq(p,t) = sup [|ALp|q
Ihla<t

When s > 1, we have direct control only of the second-order modulus ws_4(p, ). We need a relation
bounding the first-order modulus w1 4(p, t) by wa 4(p, t).
Apply Theorem 8] we obtain
o du
qu(p? t) < Ct/ wQ,Q(p’ u)?
t
Further by Eq. (257) and 1 < s < 2, we have

0o
wl.q(pa t) S Ct/ u872|p
t

C
ps du=——2t°p
aq’ s—1

B;,q’ ’
Plugging into Eq. (260), we get
w1 (p,t) < Ct° |p|B§7q,~ (262)
Combining Cases 1 and 2, we obtain that for any 0 < s < 2,
w1 (p,t) < Ct° |p|B;; r (263)
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Step 4: Bounding the TV distance.
Plugging Eq. (263) into Eq. (259) we obtain

p-pr el < [ wralpolzlze ()dz
R
<Clals,, [ (olzl2)"er(2)dz
»d R

= Clplp: ,0°E[|1Z]3]
< Clpls: ,o*E[l|Z]13], (by 0 <5 <2)

where Z ~ N(0, I,;) and we have E[|| Z||3] = d. Therefore, for the law P with density p, we obtain
1 1
TV(P, P« N(0.0*1) = 3 [ 1p(e) = (o po)@lde = 5llp — p+ palls < C'dipli ,0°
R :

O

Theorem 9. Let 0 < s < 2and 1 < q < 00,0 < ¢ < oo. Consider a probability density

p € L1([0,1]) NU(By,q(]0,1]9), C), where U (-; C) denotes the ball of radius C. Let {Xitepo,n
be the solutions of the process Eq. 1i Setting tg = n_ﬁ, we have that

s

TV(Xo, X¢y) Sn™ a2

Proof. From Lemma[27] we have for all a;, > 0,
TV(Xo, Xty) S o7 |P

Bs
/
a,9

. . 2 .
Since o4, < /1o, substitute tg = n~ 25 gives

TV(Xo, Xy,) St/2 =n- a5,

97



H Other Lemmas and definitions

H.1 Fourier analysis

Lemma 28 (Fourier Transform and Inverse Fourier Transform). The Fourier transform of a continu-
ous function f € L'(R) is defined as:

1 —iwT
fle) = FT(() = o /}R F@)e“mdg

The inverse transform is defined as:

flx) = \/% /R f(w)eiwdw, vV € R.

Lemma 29 (Fourier Transform of Derivative). Suppose f : R — R is an absolutely continuous
differentiable function, and both | and its derivative [’ are integrable. Then the Fourier transform of
f' is given by

Fl(w) =FT(f' (@) = iwf(w).
More generally, the Fourier transformation of the k-th derivative f*) is given by
— dx ~
FOw) = FT (3 11a)) = ()" )

Lemma 30 (Plancherel’s Identity). For a square-integrable function f(x) € L*(R), Plancherel’s
identity is given by

1120 = / f(@)Pde = / |F(w)Pdw,

where f(w) is the Fourier transform of f(x).

H.2 Distribution inequalities
Definition 9. For distributions P,Q € P(R?), and their probability density functions p,q : R? — R,

¢ The total variation (TV) distance is defined as

1
TV(P.Q) = sup p(A) ~ a(A) = 5 [ Iple) ~al)lds.  6b
ACR¢ R4
e The Kullback-Leibler (KL)-divergence is defined as
- p(x)
KL(P||Q) = /Rd p(z) log (Q(ff)> dx. (265)

e The Hellinger distance is defined as

H(P.Q) = [ (Vo) - Vala)) da. (266

Lemma 31 (Pinsker’s Inequality [S1]). For any two probability distributions P and ) defined on the
same probability space, we have

TV(P.Q) </ JKL(P|Q).

Lemma 32. For any two probability distributions P and Q) defined on the same probability space,
we have

H?(P,Q) < KL(P[|Q).

98



H.3 Taylor’s theorem

Theorem 10 (Taylor’s Theorem). Let k € N be an integer and let the function f : R — R be k
times differentiable at the point a € R. Then there exists a function hy, : R — R such that

7

~ /0(a) - b
flx) = Z (@ —a)' + he(z)(z —a)”,
=0 =Ry (z)
and lim, _, , hi(a) = 0, which is called the Peano form of the remainder.
Lemma 33 (Lagrange Forms of the Reminder). Let f : R — R be k + 1 times differentiable on the
open interval with %) continuous on the closed interval between a and x. Then
f(k+1)(§L) k+1
R = —— —
w@) ="y @9

for some real number £, between a and .

H.4 Nonparametric classes

Definition 10 (Holder Space). [59] For s € Ry \ Z and Q) C RY, the Holder space is a set of | s
times differentiable functions

c%mz{f:ﬂw: S et Y s 'aaf(w)ﬁaﬂy)'goo}

z,yc,x r—Y s—Ls]
aillali<s alalels) #YEReFy | |

where 0% = 0“1 --- 0% witha = (o, ..., aq) € N°
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