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A goldfish is swimming peacefully in a clear bowl.

A hamster is running inside a cage.

A fox dressed in suit is dancing in a park.

A jeep car is moving on the road.

Figure 1: These are example videos with diverse content, generated using VidRD, guided by the text
prompts below. With a diffusion model for video synthesis, video frames can be generated iteratively
by reusing noise and imitating the diffusion process clip by clip. A large number of frames can be
finally generated, and smoothness across frames can also be maintained.

ABSTRACT

Inspired by the remarkable success of Latent Diffusion Models (LDMs) for image
synthesis, we study LDM for text-to-video generation, which is a formidable
challenge due to the computational and memory constraints during both model
training and inference. A single LDM is usually only capable of generating a very
limited number of video frames. Some existing works focus on separate prediction
models for generating more video frames, which suffer from additional training
cost and frame-level jittering, however. In this paper, we propose a framework
called “Reuse and Diffuse” dubbed VidRD to produce more frames following the
frames already generated by an LDM. Conditioned on an initial video clip with
a small number of frames, additional frames are iteratively generated by reusing
the original latent features and imitating the previous diffusion process. Besides,
for the autoencoder used for translating between pixel space and latent space, we
inject temporal layers into its decoder and fine-tune these layers for higher temporal
consistency. We also propose a set of strategies for composing video-text data that
involve diverse content from multiple existing datasets including video datasets for
action recognition and image-text datasets. Extensive experiments show that our
method achieves good results in both quantitative and qualitative evaluations. Our
project page is available at https://anonymous0x233.github.io/ReuseAndDiffuse/.
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1 INTRODUCTION

Text-to-video synthesis (Esser et al., 2023; Blattmann et al., 2023; Ge et al., 2023) recently has
become an increasingly popular research topic in the field of Artificial Intelligence Generated Content
(AIGC) following the success of Diffusion Models for image synthesis (Rombach et al., 2022).
This technique allows businesses to create engaging videos from written text without the need for
expensive equipment or professional illustrators. Video creation will become more efficient and
innovative with the advancement of artificial intelligence technologies.

Existing video synthesis methods have achieved some progress, but the quality of the generated
videos remains less than satisfactory. On the one hand, improving temporal consistency while
generating diverse content remains a big challenge. On the other hand, a typical LDM is only
capable of generating a few video frames due to the limitation of computation and memory resources.
High-quality smooth videos, involving diverse content and containing a quantity of frames, are
preferable in real applications. For this purpose, previous works such as FDM (Harvey et al., 2022),
MCVD (Voleti et al., 2022) and Video LDM (Blattmann et al., 2023), exploit prediction mechanisms
for producing future frames based on current video frames. Frame prediction, however, is no easier
than direct video generation, and solving frame-level jittering is difficult. Furthermore, a cascaded
pipeline, involving a video generation module and a prediction module, introduces more training cost
and inference time. In this paper, we propose a novel framework called “Reuse and Diffuse” dubbed
VidRD and Figure 1 shows some examples generated by it. VidRD can generate more coherent
and consistent video frames by leveraging the previous frames generated by a single LDM. After
generating an initial video clip by LDM, the following frames are produced iteratively by reusing the
latent features of the previous clip and imitating the previous diffusion process. VidRD contains a
temporal-aware LDM based on a pre-trained LDM for image synthesis. To train our model efficiently,
we initialize the parameters of our spatial layers with a pre-trained image LDM. We also reform and
fine-tune the decoder of autoencoder by injecting temporal layers into it. For iterative generation,
VidRD contains three novel modules: Frame-level Noise Reversion (FNR), Past-dependent Noise
Sampling (PNS), and Denoising with Staged Guidance (DSG). FNR reuses the initial noise in reverse
order from the previous video clip, while PNS brings a new random noise for the last several video
frames. Furthermore, temporal consistencies between video clips are refined by DSG.

Moreover, the training of LDMs usually relies on a massive amount of data to ensure the quality
of the generative content (Khachatryan et al., 2023). The scarcity of high-quality video-text data
has always been a problem. To this end, we devise a set of strategies to utilize existing datasets
including video datasets for action recognition and image-text datasets. In addition to the typical
video datasets in which each video is captioned with a short descriptive sentence, we use multi-modal
Large Language Models (LLMs) to segment and caption videos in action recognition video datasets.
Additionally, images with text captions are transformed into pseudo-videos by random zooming and
panning so visual content of videos can be largely enriched.

Extensive experiments demonstrate that VidRD consistently achieves high performance in both
quantitative and qualitative evaluations. On the benchmark on UCF-101 (Soomro et al., 2012), we
achieve Fréchet Video Distance (FVD) of 363.19 and Inception Score (IS) of 39.37.

In summary, our contributions are three-fold:

• We propose an iterative text-to-video generation method that leverages a temporal-aware LDM
to generate smooth videos. By reusing the latent features of the already generated video clip and
imitating the previous diffusion process every time, more video frames can be produced iteratively.

• A set of effective strategies is proposed to compose a high-quality video-text dataset. We use LLMs
to segment and caption videos from action recognition datasets. Image-text datasets are also used
by transforming into pseudo-videos with random zooming and panning.

• Extensive experiments on UCF-101 benchmark demonstrate that VidRD achieves good FVD and
IS in comparison with existing methods. Qualitative evaluations also show good results.

2 RELATED WORK

Image synthesis models. Automatic image synthesis is seen as a major milestone towards general
artificial intelligence (Goertzel & Pennachin, 2007; Clune, 2019; Fjelland, 2020; Zhang et al.,
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2023). Diffusion Models (DMs) show amazing results for text-guided image synthesis. Massive
works (Kawar et al., 2023; Bhunia et al., 2023; Liu et al., 2023b; Fan et al., 2023; Dabral et al., 2023;
Huang et al., 2023; Ramesh et al., 2022; Saharia et al., 2022) focus on this technology. GLIDE (Nichol
et al., 2021) and Stable Diffusion (Rombach et al., 2022) are two representative DM-based works that
employ Vision-Language Models (VLMs) such as CLIP (Radford et al., 2021) for text-guided image
synthesis. With the rapid development of DMs, advanced image editing task has also been achieved.

Video synthesis models. Recently, motivated by DM-based image synthesis, several works (Esser
et al., 2023; Ge et al., 2023; Blattmann et al., 2023; Khachatryan et al., 2023; He et al., 2022; Dabral
et al., 2023; Luo et al., 2023; Brooks et al., 2022) propose to explore DMs for conditional video
synthesis. Among these works, Video LDM (Blattmann et al., 2023) is a representative work and
also exhibits excellent results. On the basis of an LDM for image synthesis pre-trained on large-scale
image-text data, Video LDM fine-tunes its newly added temporal layers with video data. In addition,
the authors propose an interpolation model and an upsampler model for generating high-quality
videos. Almost at the same time, PYoCo (Ge et al., 2023) is proposed as an improved method for
extending LDM from image synthesis to video synthesis. Based on the continuity of video content
over time, the authors design a video noise prior to achieve better temporal consistency. With the
satisfactory results of LDM-based video synthesis, there are also some works (Molad et al., 2023; Qi
et al., 2023; Liu et al., 2023a) on controllable video editing.

3 PRELIMINARIES

3.1 LATENT DIFFUSION MODELS

DMs learn to model a data distribution pdata via iterative denoising from a noise distribution so the
desired data distribution can be generated. Given samples x0 ∼ pdata, the diffusion forward process
iteratively adds noise:

q(xt | xt−1) = N (xt;αtxt−1, σ
2
t I) (1)

which represents the conditional density of xt given xt−1. Here, a noise schedule is defined by αt

and σt parameterized by diffusion time t. For generating a fully random noise with the increase of
diffusion time t, signal-to-noise ratio λt = log(α2

t /σ
2
t ) needs to monotonically decrease. To this end,

a variance-preserving time schedule satisfying α2
t + σ2

t = 1 is usually used. Following the closure of
normal distribution, we can directly sample xt at any diffusion time t by:

q(xt | x0) = N (xt; ᾱtx0, (1− ᾱ2
t )I) (2)

where ᾱt =
∏t

i=1 αi.

In the backward process of diffusion, a model denoted by fθ parameterized by θ is trained to predict
the noise to iteratively recover x0 from xT which is noisy data after adding noise T times. As long as
T is large enough, the original sample of real data is fully perturbed such that xT ∼ N (0, I). While
training, the denoising matching score is optimized following:

Ey∼N (0,I)[∥y − fθ(xt; c, t)∥22] (3)
where y representing the target features can be a random noise and c is an optional conditioning
signal such as text prompt in text-to-something DMs. Also, t is sampled from a uniform distribution
which is set to U{0, 1000} in Stable Diffusion (Rombach et al., 2022). Once fθ is trained, we can
generate a novel x0 from a random noise xT ∼ N (0, I) with a deterministic sampling DDIM (Song
et al., 2021).

Since training DMs in pixel space requires a large amount of computational resources, Stable
Diffusion (Rombach et al., 2022) proposes to apply a regularized autoencoder to compress the
original pixels into latent space to save computation and memory. In this way, DMs are transformed
into Latent Diffusion Models (LDMs). The autoencoder in an LDM consists of an encoder E for
encoding pixel features x into latent features z and a decoder D for decoding z back to x. In general,
the autoencoder is trained by reconstructing:

x̂ = D(E(x)) ≈ x (4)
where x̂ denotes the reconstructed sample after the real data x is processed by the encoder and the
decoder in turn. For the typical implementation of the autoencoder for an image LDM such as Stable
Diffusion, both the encoder E and the decoder D are for static images only. For an LDM for video
synthesis, it works frame by frame so no temporal information is considered.
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4 METHOD

4.1 MODEL ARCHITECTURE
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Figure 2: The architecture of VidRD is derived from an LDM for image synthesis. Modules with
snowflake marks are frozen while those with flame marks are trainable. Modules with dashed boxes
are added in addition to the original LDM for image synthesis.

VidRD is based on the pre-trained Stable Diffusion for image synthesis, including its Variational
Auto-Encoder (VAE) for latent representation and U-Net for latent denoising. Figure 2 shows the
architecture of VidRD. We adapt the original U-Net for image diffusion to video synthesis by injecting
temporal layers. These two types of temporal layers are: Temp-Conv representing 3D convolution
layers and Temp-Attn representing temporal attention layers. Also, most network layers, except for
the newly added Temp-Conv and Temp-Attn, in our devised U-Net, are initialized with the pre-trained
model weights of Stable Diffusion. The parameters of Temp-Conv and Temp-Attn are randomly
initialized with the last layer zeroed and residual connections are also applied.

For efficient training, only part of our network layers are trainable. All the parameters of the text
encoder are frozen. For U-Net, existing works use either a two-stage (Blattmann et al., 2023) or
alternating (Ge et al., 2023) training scheme with image and video data. Essentially, they use image
data for fine-tuning spatial layers and video data for training temporal layers, respectively. Instead of
this manual training scheme, our U-Net is trained with pure video data in a unified way since the
image data are transformed into pseudo-videos. Specifically, as illustrated in Figure 9, the network
modules in U-Net with red background, including two newly added temporal layers and the spatial
attention layers originally designed in LDM for image synthesis, are trainable. Furthermore, since
the autoencoder is originally designed for image synthesis, temporal relations between video frames
are not considered. To achieve a more accurate representation of videos in the output pixel space, we
inject temporal layers implemented with 3D convolutions into the decoder D and fine-tune it with
video data. The details are presented in Section 4.4.

4.2 VIDEO-TEXT DATA COMPOSITION

The training of an LDM for text-guided video synthesis requires a large amount of captioned videos.
Large-scale well-captioned video datasets such as VATEX (Wang et al., 2019) or WebVid-2M (Bain
et al., 2021) are very limited however. To compensate for the lack of high-quality video-text data, we
propose a set of strategies for composing video-text data from different types of existing datasets
other than well-captioned video-text datasets like VATEX (Wang et al., 2019) and WebVid-2M (Bain
et al., 2021). Figure 3 illustrates the three types of datasets that we use: text-image datasets, short
video classification datasets, and long video classification datasets.
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Figure 3: A set of strategies is devised for processing different types of datasets including image-text
datasets, short video classification datasets, and long video classification datasets.

Image-text datasets. Since the quantity and quality of image datasets are much better than those
of video datasets, it is necessary to exploit image datasets to improve the video generation model.
As shown in the top part of Figure 3, for each image with a caption, we apply random zooming and
panning to produce multiple images and they are further composed into a pseudo-video.

Short video classification datasets. For those short video datasets typically involving a single scene,
the problem is how to give a proper text caption based on its classification label to each video. Our
strategy is illustrated as green modules in Figure 3. For each short video with a given classification
label such as “abseiling”, we randomly select a video frame from it and then use BLIP-2 to generate
a text caption by querying the LLM with the frame and its classification label. In order to make the
LLM produce more diverse text captions, we use a few prompt templates for querying the LLM, and
one of them is randomly selected every time.

Long video classification datasets. For the datasets containing long videos involving multiple
scenes such as VideoLT (Zhang et al., 2021), it is improper to use the description of a single frame
as the whole video’s caption. To this end, we use a segment-then-caption strategy as shown in the
bottom part of Figure 3. For each video, we employ CLIP (Radford et al., 2021) with vision-language
alignment ability and MiniGPT-4 (Zhu et al., 2023) with vision-language understanding to mark
those frames irrelevant to the classification label. Those frames with low CLIP matching scores with
classification labels or considered irrelevant by MiniGPT-4 are marked to be dropped. A video can
then be segmented with this attribute of each frame. To avoid producing too short videos, we drop
those segments with too few frames. Finally, MiniGPT-4 is again used for captioning the segmented
sub-videos with devised prompt templates.

4.3 LONGER VIDEO GENERATION

Since LDM for video generation requires a large amount of computation and memory, it is usually
unable to generate a lot of frames at once. For this problem, we propose an iterative approach for
longer video generation with a single LDM, and the whole pipeline is shown in Figure 4. We use zi,j
to represent the latent features of the j-th frame in the i-th video clip. Within each iteration, there
are N frames generated and the last M frames are used as prompt frames for the next iteration. The
whole process is briefly outlined in Algorithm 1. The details of the key modules are stated below.

Frame-level Noise Reversion. As previous works have revealed, for generating smooth videos, the
initial noise of LDMs for video synthesis is essential (Ge et al., 2023), and sharing a base noise across
video frames also helps (Luo et al., 2023). We borrow a similar scheme for generating longer videos.
Specifically, the initial video clip is firstly generated with our trained LDM by denoising from an
initial noise sampled from a normal distribution like:

z0,jT ∼ N (0, I), j ∈ {0, 1, . . . , N − 1} (5)
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Figure 4: Videos can be generated iteratively with a single LDM. After each iteration, N frames are
generated and the last M frames are used as prompt frames for the next iteration.

Algorithm 1: Iterative video generation.

Input: {z0,jt | j ∈ Z ∩ [0, N), t ∈ Z ∩ [0, T ]}: Latent features of the first clip.
Output: {zi,j0 | j ∈ Z ∩ [0, N), i ∈ Z ∩ [0, Vmax)}: Denoised latent features of all Vmax clips.

1 for i = 1 to Vmax do
2 for j = 0 to N − 1 do
3 zi,jT = zi−1,N−j−1

T ; // Frame-level Noise Reversion (FNR)
4 if j ≥ M then // Past-dependent Noise Sampling (PNS)
5 zi,jT = zi,jT α/

√
1 + α2 + ϵi,j ; ϵi,j ∈ N (0, I/(1 + α2));

6 for t = T to 1 do // Denoising with Staged Guidance (DSG)
7 if t > (1− β)T + βTj/M then zi,jt−1 = zi−1,N−j−1

t−1 ;
8 else zi,jt−1 = DDIM(zi,jt , t) // Progressively denoising with DDIM;

where N is the number of frames in a single video clip. To ensure continuity between video clips,
FNR is proposed by reusing the initial noises in a reversed order every iteration. That is:

zi,jT = zi−1,N−j−1, i ≥ 1, j ∈ {0, 1, . . . , N − 1} (6)

In combination with Equation 5, the initial noise of each frame in the following video clips can be
computed. However, FNR alone cannot guarantee that videos are smooth. The video content may
simply become repetitive in some extreme cases. For this problem, PNS and DSG are proposed.

Past-dependent Noise Sampling. To mitigate the extent of video content repetition, which is critical
to perception, randomness needs to be introduced on the basis of FNR. To this end, we propose Past-
dependent Noise Sampling (PNS) which is used for introducing randomness gradually. Specifically,
excluding the M prompt frames, random noises are added to the remaining N −M frames, which are
initialized with that of N −M frames of the previous video clip. Therefore, Equation 6 is modified
based on the position of the frames in each video clip:

zi,jT =

{
zi−1,N−j−1
T if j < M
α√

1+α2
zi−1,N−j−1
T + ϵi,j otherwise

, ϵi,j ∼ N (0,
1

1 + α2
I), α ≥ 0 (7)

where ϵi,j is a newly added random noise, and α is a hyper-parameter for controlling the ratio of this
noise to the original reversed noise. The results of PNS are identical to those of FNR when j < M
and the difference is only on the remaining N − M frames. New random noise sampled from a
standard normal distribution is used when α = 0. A larger α brings more proportion of the reversed
noise of the last video clip so higher temporal consistency can be achieved.

Denoising with Staged Guidance.
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Simply reusing the initial noises are not enough for high temporal consistency so we propose
Denoising with Staged Guidance (DSG) for replicating denoising process. The approach involves
replicating some denoising steps by reusing the latent features from the DDIM process in generating
the previous clip. At the same time, to avoid content repetition, a staged strategy for denoising with
guidance is also used. Specifically, we have:

zi,jt−1 =

{
zi−1,N−j−1
t−1 if t > (1− β)T + βTj

M

DDIM(zi,jt , t) otherwise
, β ∈ [0, 1] (8)

where β represents the extent of guided denoising. Latent features in the current clip are denoised
totally with DDIM sampling when β = 0, and a larger β brings more guidance for each latent feature
with j < M . In this way, video content of the first M prompt frames can be consistent with the last
M frames of the last clip, and new content can also emerge along with the denoising process because
staged guidance becomes weaker as j gets closer to M .

4.4 TEMPORAL-AWARE DECODER FINE-TUNING

Since the original autoencoder of Stable Diffusion is specifically designed for image synthesis, it is
necessary to fine-tune it with video data for better performance of video synthesis. However, the
latent features used as inputs to U-Net after encoding are critical for efficient training when the
pre-trained weights of Stable Diffusion are loaded. The encoder remains unchanged and the weights
are frozen during fine-tuning. Also, temporal relations across video frames need to be considered for
better temporal consistency after decoding so we add Temp-Conv layers after ResNet of each block
in the decoder. For efficient fine-tuning, only the newly added Temp-Conv layers are trainable. In
addition, for better adapting from the autoencoder for image, we initialize the last layer of Temp-Conv
with zero and apply a residual connection.

For fine-tuning the autoencoder, we use the same datasets used for training U-Net describe in
Section 4.2. The fine-tuning also follows the adversarial manner following Stable Diffusion (Rombach
et al., 2022). The total loss is as follows:

L = αrecLrec(x,D(E(x)) + αregLreg(x; E ,D) + αdiscLdisc(D(E(x)) (9)

In addition to the main reconstruction loss Lrec and a regularizing loss Lreg for regularizing the
latent representation, a discrimination loss Ldisc is also used which is computed by a patch-based
discriminator for differentiating the original videos from the reconstructed. These three losses are
respectively weighted with αrec, αreg and αdisc.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets for training. In total, four types of datasets are used for training VidRD, including: 1) Well-
captioned video-text datasets: WebVid-2M (Bain et al., 2021), TGIF (Li et al., 2016), VATEX (Wang
et al., 2019) and Pexels 1; 2) Short video classification datasets: Moments-In-Time (Monfort et al.,
2021) and Kinetics-700 (Smaira et al., 2020); 3) Long video classification datasets: VideoLT (Zhang
et al., 2021); 4) Image datasets: LAION-5B (Schuhmann et al., 2022). The statistics about these
datasets and the model training details are provided in the Appendix.

Evaluation metrics. Following previous works like Make-A-Video (Singer et al., 2023), PY-
oCo (Ge et al., 2023) and Video LDM (Blattmann et al., 2023), the following metrics for quantitative
evaluation are used: (i) Fréchet Video Distance (FVD) (Unterthiner et al., 2019): Following Make-A-
Video (Singer et al., 2023), we use a trained I3D model (Carreira & Zisserman, 2017) for calculating
FVD. (ii) Inception Score (IS) (Saito et al., 2020): Following previous works (Singer et al., 2023;
Hong et al., 2023; Blattmann et al., 2023), a trained C3D model (Tran et al., 2015) is used for
calculating the video version of IS.

1https://huggingface.co/datasets/Corran/pexelvideos
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5.2 MAIN RESULTS

To fully evaluate VidRD, we conduct both quantitative and qualitative evaluations. All the generated
videos for evaluation are 16 frames in 256× 256 resolution unless otherwise specified.

Model #Videos for Training IS ↑ FVD ↓
CogVideo (Hong et al., 2023) 5.4M 25.27 701.59
MagicVideo (Zhou et al., 2022) 27.0M - 699.00
LVDM (He et al., 2022) 2.0M - 641.80
ModelScope (Wang et al., 2023a) - - 639.90
Video LDM (Blattmann et al., 2023) 10.7M 33.45 550.61
Make-A-Video (Singer et al., 2023) 20.0M 33.00 367.23
VideoFactory (Wang et al., 2023b) 140.7M - 410.00

VidRD w/o fine-tuned VAE 5.3M 39.24 369.48
VidRD w/ fine-tuned VAE 5.3M 39.37 363.19

Table 1: Quantitative evaluation results on UCF-101. All the videos for evaluation are generated in
a zero-shot manner. In comparison with other methods, VidRD achieves better IS and FVD while
using fewer videos for model training.

Quantitative Evaluation. Following previous works (Singer et al., 2023; Hong et al., 2023;
Blattmann et al., 2023), we use UCF-101 (Soomro et al., 2012), a dataset for video recognition, for
evaluating FVD and IS. Since there are only 101 brief class names such as knitting and diving in
UCF-101, we devise a descriptive prompt for each class for video synthesis in our experiments. The
whole list of prompts we use is provided in the Appendix. Following Make-A-Video (Singer et al.,
2023), 10K videos are generated by VidRD following the same class distribution as the training set.
The quantitative evaluation results are shown in Table 1. VidRD achieves the best FVD and IS while
using much fewer videos for training. Meanwhile, fine-tuning VAE helps improve VidRD further.
The reason is that a temporal-aware decoder can restore pixels from latent features more accurately.

Qualitative Evaluation. Since all the currently used metrics for evaluating video generation models
are considered not fully reliable and may be inconsistent with perception, qualitative evaluation is
necessary. To this end, example videos are generated with the same text prompts by VidRD and the
other models including Make-A-Video (Singer et al., 2023), Imagen Video (Ho et al., 2022). Figure 5
shows the comparisons between the video generation results of these methods. VidRD performs well
in both structure and appearance. More video examples can be found on our project website.

A confused grizzly bear in calculus class.

Make-A-Video VidRD

Sailboat sailing on a sunny day in a mountain lake.

VidRDImagen Video

A sheep to the right of a wine glass.

A cat eating food out of a bowl, in style of Van Gogh.

Figure 5: For comparison, some video examples generated by different methods are shown here. The
examples generated by VidRD show good text alignment and structure.
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5.3 ABLATION STUDY
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Figure 6: Ablation studies on hyper-parameters for a text-to-video generation under guidance scale
set to 10 and the number of inference steps set to 50.

Hyper-parameters for inference. , we conduct ablation studies following the controlled variable
method. The results are shown in Figure 6. Figure 6a reveals the parameter M has a significant
impact on temporal consistency but has little effect on structural quality. Figure 6b indicates that
temporal consistency can be improved by reusing more noises from the previous clip. Also, the
appearance or structure quality reflected by IS can be improved once the noise is reused, that is,
α > 0. Figure 6c shows that more guiding steps (larger β) help improve the output video quality.

Sailboat sailing on a sunny day in a mountain lake.

… ……

… ……

A cute corgi wearing a red robe, with a Christmas tree in the background.

… … …

… … …

𝛼
=
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𝛼
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𝛽
=
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𝛽
=
1

Figure 7: These are two visual examples showing the generated videos using different values of α
and β respectively. The red dashed box highlights the positions where abrupt, unreasonable visual
changes occur. The yellow dashed box indicates that the issue is resolved by enabling PNS and DSG.

Effects of PNS and DSG To gain a more intuitive understanding of the parameters α and β, Figure 7
shows some generated videos with different parameter values. Some unreasonable abrupt video
content changes, highlighted with red dashed boxes, can be easily observed when α = 0 in which
case no previous noises are reused. Similar artifacts can also be observed when β = 0 in which case
there are no guiding steps for denoising the prompt frames.

6 CONCLUSION

In this work, we introduce a novel text-to-video framework called VidRD to generate smooth videos
with text guidance. A set of strategies is proposed to exploit multiple existing datasets, which include
video datasets for action recognition and image-text datasets, in order to train our text-to-video
generation model. For generating longer videos, we propose an iterative approach through reusing
the noise. and imitating the diffusion process clip-by-clip. Extensive experiments demonstrate that
our method excels in both quantitative and qualitative evaluations.
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A APPENDIX

A.1 MODEL DETAILS

A.1.1 SAMPLING STRATEGY

To exploit the ability of image synthesis models, we use the pre-trained weights of Stable Diffusion
v2.1 to initialize the spatial layers of our model. Both the VAE and the text encoder are frozen after
they are initialized with pre-trained weights from Stable Diffusion. During model training, only the
newly added temporal layers and transformer blocks of the spatial layers are trainable. Since our
model is essentially an LDM, VAE of Stable Diffusion but with a fine-tuned decoder is used for latent
representation. For LDM sampling, we use DDIM (Song et al., 2021) in all our experiments.

A.1.2 TEMPORAL-AWARE VAE ARCHITECTURE
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Figure 8: The backbone of the autoencoder is inherited from Stable Diffusion. Temp-Conv represent-
ing temporal layers and implemented with 3D convolutions are injected into the decoder. Most parts
of the autoencoder are frozen and only the parameters of Temp-Conv are trainable.

To make the model restore pixels from latent features more accurately, temporal layers are injected
into the decoder of VAE as Figure 8 shows.

A.1.3 DETAILS OF TEMPORAL MODULES

We have input videos denoted by x ∈ RB×F×3×H′×W ′
where B, F , H ′ and W ′ respectively denote

the inputs’ batch size, number of frames, height, and width in the pixel space. After encoding, we
can get its corresponding representation in the latent space z = E(x) ∈ RB×F×C×H×W where C,
H and W respectively denote their channel, height, and width in the latent space.

For dealing with video inputs, the original 2D ResNet of Stable Diffusion is inflated to 3D-ResNet by
fusing the inputs’ temporal dimension into batch dimension. In this way, this part of network parame-
ters can be directly inherited from Stable Diffusion. For an input z = E(x) ∈ RB×F×C×H×W , it is
transformed into R(BF )×C×H×W .

For strengthening temporal relations between video frames, two temporal modules are added. One
temporal module is Temp-Conv implemented with 3D convolution layers which are added right after
the ResNet block. Another temporal module is Temp-Attn which is an attention layer similar to
Self-Attn in the original Stable Diffusion, but applied on the temporal dimension. Specifically, for
3D-ResNet, Temp-Conv and Temp-Attn, the axes of input data are swapped accordingly to make the
whole model work. The implementation details are shown in Figure 9.

A.2 TRAINING DATASETS

We use three types of datasets for training and below are the details about these datasets:
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bn×c×h×w b×c×n×h×w b×c×n×h×w bn×c×h×w

Temp-Conv

Temp-Attn

3D-ResNet

bn×d×c bd×n×c

b×c×n×h×w bn×c×h×w bn×c×h×w b×c×n×h×w

bd×n×c bn×d×c

b: batch_size c: channel n: frame number 

h: height     w: width   d: token number    : axes swap

Figure 9: These are three essential network layers in VidRD. 3D-ResNet, inherited from Stable
Diffusion, treats the number of frames n as a part of batch size. This is equivalent to applying the
original 2D-ResNet frame by frame so this layer is frozen in model training. Temp-Conv, implemented
with 3D convolutions, processes video inputs in a tube manner while Temp-Attn applies attention
layer along temporal axis.

1. Well-captioned video-text datasets: WebVid-2M (Bain et al., 2021), TGIF (Li et al., 2016),
VATEX (Wang et al., 2019) and Pexels 2. WebVid-2M contains a total of about 2.5 million
subtitled videos but we only use those whose duration is less than 20 seconds. Additionally, we
use a basic watermark removal solution to remove watermarks from the videos. TGIF consists of
100K GIFs collected from Tumblr and the duration is relatively short. VATEX is a large-scale
well-captioned video datasets covering 600 fine-grained human activities. Pexels contains about
360,000 well-captioned videos from a popular website providing free stock videos.

2. Short video classification datasets: Moments-In-Time (Monfort et al., 2021) and Kinetics-
700 (Smaira et al., 2020). Moments-In-Time contains more than one million videos covering
339 action categories and Kinetics-700 contains over 650,000 videos covering 700 human action
categories. Most videos in these two datasets last a few seconds and each video is captioned using
the strategy proposed in Section 4.2.

3. Long video classification datasets: VideoLT (Zhang et al., 2021). This dataset contains a total of
250,000 untrimmed long videos covering 1004 categories. After applying the strategy for long
video classification datasets, we totally produce 800K captioned videos with an average length of
5 seconds.

4. Image datasets: LAION-5B. This dataset originally contains 5.58 billion image-text pairs but
only a small part of it is used as compensation to our video-text data. After applying the strategy
of transforming images to videos introduced in Section 4.2, 640K pseudo-videos with an average
length of 2 seconds are produced.

Dataset WebVid-2M TGIF VATEX Pexels Moments-In-Time Kinetics-700 VideoLT LAION-5B

Num. Videos (K) 1,700 100 35 360 1,000 650 800 640
Avg. Duration (s) 11.9 3.1 10.0 19.5 3.0 10.0 5.0 2.0

Table 2: Four types of datasets are used including well-captioned video datasets, short video classifi-
cation datasets, long video classification datasets, and image-text datasets.

Table 2 shows the statistics of the datasets for model training. VAE for encoding and decoding
videos is the same as Stable Diffusion and only the newly added temporal layers in the decoder of
VAE are trainable. For training the decoder of VAE, we set αrec, αreg and αdisc to 1, 1−5 and 0.5
respectively. In U-Net, there are a total of 2.0B parameters, of which 565M are trainable and 316M
are allocated for temporal layers. The base resolution of input videos for model training is 256× 256
and 8 keyframes are sampled uniformly every 4 frames. The starting frame of sampling is randomly
selected along the timeline. Each frame is resized along the shorter side and then randomly cropped
to the target resolution. For video datasets with multiple captions such as VATEX (Wang et al., 2019),

2https://huggingface.co/datasets/Corran/pexelvideos
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one caption is randomly chosen every time it is sampled. In general, these practices can be seen as
data augmentation.

A.3 MORE ABLATION STUDIES

A.3.1 CLASSIFIER-FREE GUIDANCE

For generating diverse videos, two hyper-parameters are critical in model inference: the number
of inference steps and the scale of classifier-free guidance. The number of inference steps means
the total steps of denoising from the initial random noises to the resulting latent features of video
frames. The scale of classifier-free guidance is proposed with classifier-free diffusion guidance (Ho
& Salimans, 2021). In each reversed diffusion step during model inference, the predicted noise ϵ̃θ is
computed with two types of predictions: the prediction conditioned on prompt text features c that is
ϵθ(z, c) and the prediction without such condition that is ϵθ(z). The final predicted noise is calculated
by combining these two, controlled with guidance scale w: ϵ̃θ = ϵθ(z) + w(ϵθ(z, c) − ϵθ(z)).
Classifier-free guidance is disabled when w = 1 and a larger w means more video-text alignment
but weaker diversity. To study the effects of these two hyper-parameters only, we do experiments
using our base model without any strategies for iterative video generation. Figure 10 shows FVD and
IS results of using different combinations of these hyper-parameters. The impact of the number of
inference steps is relatively small and we set the number to 50 considering the efficiency of video
synthesis. For the guidance scale, there is a trade-off between FVD and IS. A smaller guidance scale
can achieve lower FVD which means higher temporal consistency. Yet a small guidance scale leads
to low IS which means poor spatial appearance. Therefore, we set the guidance scale to w = 10.0.
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(a) FVD of using different guidance scale w
and the number of inference steps.
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(b) IS of using different guidance scales w and
the number of inference steps.

Figure 10: Ablation results of the number of inference steps and the guidance scale are based on
FVD and IS, which are evaluated on UCF-101 in a zero-shot manner.

A.3.2 JOINT TRAINING WITH IMAGE DATASETS

Strategy IS ↑ FVD ↓
VidRD w/o pseudo-videos 42.00 451.16
VidRD w/ pseudo-videos 40.87 433.22

Table 3: This is a comparison between fine-tuning VidRD with and without pseudo-videos by
randomly zooming and panning static images. FVD and IS are evaluated on UCF-101 and all
experiments here are in a zero-shot manner.

To evaluate the effect of VidRD of joint training with pseudo-videos produced from image-text
datasets, experiments are designed by fine-tuning VidRD with a small-scale dataset in which images
are either in raw format or in pseudo-video style. This dataset totally consists of 5,000 videos from the
VATEX (Wang et al., 2019) testing set and 8,000 images from LAION-5B (Schuhmann et al., 2022).
We tabulate our findings in Table 3. Compared with using static images for training spatial layers
only, we find that pseudo-videos, produced by random zooming and panning of static images, help
enhance temporal consistency but compromise visual appearance. The reason is that pseudo-videos
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bring more training for temporal layers while static images focus on spatial layers more. In practice,
since the amount of video data is much less than that of image data, this technique is a cheap way to
train a video diffusion model with high temporal consistency.

A.4 PROMPTS FOR EVALUATION

For evaluating our method on UTF-101, we expand the original 101 class labels of UTF-101 as
prompts. The arrows are flanked by the original class labels and the expanded prompts.

apply eye makeup → applying eye makeup; apply lipstick → applying lipstick; archery → archery;
baby crawling → baby crawling; balance beam → gymnast performing on a balance beam; band
marching → band marching; baseball pitch → baseball pitcher throwing baseball; basketball → a
basketball player shooting basketball; basketball dunk → dunking basketball in a basketball match;
bench press → bench press; biking → biking; billiards → billiards; blow dry hair → blow dry hair;
blowing candles → blowing candles; body weight squats → body weight squats; bowling → a person
bowling on bowling alley; boxing punching bag → boxing punching bag; boxing speed bag → boxing
speed bag; breast stroke → swimmer doing breast stroke; brushing teeth → brushing teeth; clean and
jerk → clean and jerk; cliff diving → cliff diving; cricket bowling → bowling in cricket gameplay;
cricket shot → batting in cricket gameplay; cutting in kitchen → cutting in kitchen; diving → diver
diving into a swimming pool from a springboard; drumming → drumming; fencing → two fencers
have fencing match indoors; field hockey penalty → field hockey match; floor gymnastics → gymnast
performing on the floor; frisbee catch → group of people playing frisbee on the playground; front
crawl → swimmer doing front crawl; golf swing → golfer swings and strikes the ball; haircut →
haircutting; hammering → a person hammering a nail; hammer throw → an athlete performing the
hammer throw; handstand pushups → an athlete doing handstand push up; handstand walking → an
athlete doing handstand walking; head massage → massagist doing head massage to man; high jump
→ an athlete doing high jump; horse race → horse race; horse riding → group of people racing
horse, person riding a horse; hula hoop → a woman doing hula hoop; ice dancing → man and
woman dancing on the ice, ice dancing; javelin throw → athlete practicing javelin throw; juggling
balls → a person juggling with balls; jumping jack → a young person doing jumping jacks; jump
rope → a person skipping with jump rope; kayaking → a person kayaking in rapid water; knitting →
knitting; long jump → an athlete doing long jump; lunges → a person doing lunges with barbell;
military parade → military parade; mixing → mixing in the kitchen; mopping floor → mopping floor;
nunchucks → a person practicing nunchuck; parallel bars → gymnast performing on parallel bars;
pizza tossing → a person tossing pizza dough; playing cello → a musician playing the cello in a
room; playing daf → a musician playing the daf; playing dhol → a musician playing the indian dhol;
playing flute → a musician playing the flute; playing guitar → a musician playing the guitar; playing
piano → a musician playing the piano; playing sitar → a musician playing the sitar; playing tabla
→ a musician playing the tabla; playing violin → a musician playing the violin; pole vault → an
athlete jumps over the bar; pommel horse → gymnast performing pommel horse exercise; pull ups
→ a person doing pull ups on bar; punch → boxing match; push ups → push ups; rafting → group
of people rafting on fast moving river; rock climbing indoor → rock climbing indoor; rope climbing
→ rope climbing; rowing → several people rowing a boat on the river; salsa spin → couple salsa
dancing; shaving beard → young man shaving beard with razor; shotput → an athlete practicing
shot put throw; skate boarding → a teenager skateboarding; skiing → skier skiing down; skijet → jet
ski on the water; sky diving → sky diving; soccer juggling → soccer player juggling football; soccer
penalty → soccer player doing penalty kick in a soccer match; still rings → gymnast performing on
still rings; sumo wrestling → sumo wrestling; surfing → surfing; swing → kids swing at the park;
table tennis shot → a person playing table tennis; tai chi → a person doing TaiChi; tennis swing →
a person playing tennis; throw discus → an athlete practicing discus throw; trampoline jumping →
trampoline jumping; typing → typing on computer keyboard; uneven bars → a gymnast performing
on the uneven bars; volleyball spiking → people playing volleyball; walking with dog → walking
with dog; wall pushups → a person standing, doing pushups on the wall; writing on board → a
person writing on the blackboard; yo yo → a kid playing Yo-Yo.
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