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Abstract

Offline reinforcement learning aims to train a policy on a pre-recorded and fixed
dataset without any additional environment interactions. There are two major
challenges in this setting: (1) extrapolation error caused by approximating the
value of state-action pairs not well-covered by the training data and (2) distri-
butional shift between behavior and inference policies. One way to tackle these
problems is to induce conservatism - i.e., keeping the learned policies closer to the
behavioral ones. To achieve this, we build upon recent works on learning policies
in latent action spaces and use a special form of Normalizing Flows for construct-
ing a generative model, which we use as a conservative action encoder. This
Normalizing Flows action encoder is pre-trained in a supervised manner on the
offline dataset, and then an additional policy model - controller in the latent space
- is trained via reinforcement learning. This approach avoids querying actions out-
side of the training dataset and therefore does not require additional regularization
for out-of-dataset actions. We evaluate our method on various locomotion and
navigation tasks, demonstrating that our approach outperforms recently proposed
algorithms with generative action models on a large portion of datasets.

1 Introduction

Offline Reinforcement Learning (ORL) addresses the problem of training new decision-making pol-
icy from a static and pre-recorded dataset collected by some other policies without any additional
data collection [Lange et al., 2012, Levine et al., 2020]. One of the main challenges in this set-
ting is the extrapolation error [Fujimoto et al., 2019] – i.e. inability to properly estimate values
of state-action pairs not well-supported by the training data, which in turn leads to overestimation
bias. This problem is typically resolved with various forms of conservatism, for example, Implicit
Q-Learning [Kostrikov et al., 2021] completely avoids estimates of out-of-sample actions, Conser-
vative Q-Learning [Kumar et al., 2020] penalizes q-values for out-of-distribution actions and others
[Fujimoto and Gu, 2021, Kumar et al., 2019] put explicit constraints to stay closer to the behavioral
policies.

An alternative approach to constraint-trained policies was introduced in PLAS [Zhou et al., 2020],
where authors proposed to construct a latent space that maps to the actions well-supported by the
training data. To achieve this, Zhou et al. [2020] use Variational Autoencoder (VAE) [Kingma
et al., 2019] to learn a latent action space and then train a controller within it. However, as was
demonstrated in Chen et al. [2022], their specific use of VAE leads to a necessity for clipping the
latent space. Otherwise, the training process becomes unstable, and the optimized controller can
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exploit the newly constructed action space, arriving at the regions resulting in out-of-distribution
actions in the original space. While the described clipping procedure was found to be effective, this
solution is rather ad-hoc and discards some of the in-dataset actions which could potentially limit
the performance of the trained policies.

In this work, inspired by the recent success of Normalizing Flows (NFs) [Singh et al., 2020] in the
online reinforcement learning setup, we propose a new method called Conservative Normalizing
Flows (CNF) for constructing a latent action space useful for offline RL. First, we describe why a
naive approach for constructing latent action spaces with NFs is also prone to extrapolation error, and
then outline a straightforward architectural modification that allows avoiding this without a need for
manual post-hoc clipping. Our method is schematically presented in Figure 1, where we highlight
key differences between our method and the previous approach. We benchmark our method against
other competitors based on generative models and show that it performs favorably on a large portion
of the D4RL [Fu et al., 2020] locomotion and maze2d datasets.

2 Preliminaries

Offline RL The goal of offline RL is to find a policy that maximizes the expected discounted return
given a static and pre-recorded dataset D consisting of state-action-reward tuples. Normally, the
underlying decision-making problem is formulated via Markov Decision Process (MDP) that is
defined as a 4-elements tuple, consisting of state space S, action space A, state transition probability
p : S × S × A → [0,∞], which represents probability density of the next state s′ ∈ S given the
current state s ∈ S and action a ∈ A; bounded reward function r : S×A×S→ [rmin, rmax] and a
scalar discount factor γ ∈ (0, 1). We denote the reward r(st,at, st+1) as rt. The discounted return
is defined as Rt =

∑∞
k=0 γ

krt+k. Also, the notion of the advantage function A(s,a) is introduced
– a difference between state-action value Q(s,a) and state value V (s) functions:

Qπ(st,at) = rt + Eπ[
∞∑
k=0

γkrt+k]

V π(s) = Ea∼π[Q
π(s,a)]

Aπ(s,a) = Qπ(s,a)− V π(s)

(1)

Advantage Weighted Actor Critic One way to learn a policy in an offline RL setting is by following
the gradient of the expected discounted return estimated via importance sampling [Levine et al.,
2020], however, methods employing estimation of the Q-function were found to be more empirically
successful [Kumar et al., 2020, Nair et al., 2020, Wang et al., 2020]. Here, we describe Advantage
Weighted Actor Critic [Nair et al., 2020] – where the policy is trained by optimization of log-
probabilities of the actions from the data buffer re-weighted by the exponentiated advantage.

In practice, there are two trained models: policy πθ with parameters θ and criticQψ with parameters
ψ. The training process consists of two alternating phases: policy evaluation and policy improve-
ment. During the policy evaluation phase, the critic Qπ(s, a) estimates the action-value function for
the current policy, and during the policy improvement phase, the actor π is updated based on the
current estimation of advantage. Combining all together, two following losses are minimized using
the gradient descent:

Lπ(θ) = E(s,a)∼D[− log πθ(a|s) · exp(Aψ(s,a)/λ)]
LTD(ψ) = E(s,a,r,s′)∼D[(r + γQψ(s

′,a′ ∼ πθ(·|s′))−Qψ(s,a))2]
(2)

Where Aϕ(s,a) is computed according to Equation 1 using critic Qϕ and λ is a temperature hyper-
parameter.

Normalizing Flows Given a dataset D = {x(i)}Ni=1, with points x(i) from unknown distribution
with density pX the goal of a Normalizing Flow model [Dinh et al., 2016, Kingma and Dhariwal,
2018] is to train an invertible mapping z = fϕ(x) with parameters ϕ to a simpler base distribution
with density pZ, typically spherical Gaussian: z ∼ N(0, I). This mapping is required to be in-
vertible by design to sample new points from data distribution by applying the inverse mapping to
samples from the base distribution: x = f−1

ϕ (z). A full flow model is a composition of K invertible
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functions fi and the relationship between z and x can be written as:

x
f1←→ h1

f2←→ h2 · · ·
fK←→ z (3)

Log-likelihood of a data point x is obtained by using the change of variable formula and can be
written as:

log pϕ(x) = log pZ(z) + log |det(dz/dx)|

= log pZ(z) +

K∑
i=1

log |det(dhi/dhi−1)|
(4)

Normalizing Flows models are optimized to directly maximize log-likelihood of data points using
Equation 4.

3 Method

Figure 1: Schematic visualization and comparison of PLAS and CNF (ours) approaches. Both
methods use an action encoder-decoder model trained in a supervised manner on an offline dataset
and a controller model to select actions from the latent space of the encoder. PLAS algorithm uses
VAE with normal latent distribution with unbounded support (represented as the blue circle) and
restricts latent policy outputs to only a part of the latent space (represented as the black borders
inside of latent space). Our algorithm uses Normalizing Flow instead of VAE and bound base
distribution itself, allowing the latent policy to use the whole latent space.

In this section, we describe our approach named Conservative Normalizing Flows (CNF) in detail
(Figure 1). We start by delineating the proposed architecture and then describe both the pre-training
and policy optimization phases.

3.1 Conservative Normalizing Flows

Normalizing Flows models are trainable bijective mappings, composed of fully invertible layers,
that transform the original data space to the base distribution space. The latter is often referred to as
the latent space. Typically, the base distribution is modeled as normal since it provides a tractable
density and is easy to sample from [Kingma and Dhariwal, 2018]. However, similar to the PLAS
[Zhou et al., 2020], this distribution would result in unbounded support. Therefore, when learning
a policy in the latent space to maximize q-values it may exploit the regions that lead to the out-of-
distribution actions in the original space exaggerating the extrapolation error.

To illustrate this problem better, consider a toy 2-d task with modeling moons dataset which consists
of points of two interleaving half circles [Buitinck et al., 2013] using normalizing flows. We train
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(a) NF-Normal, Density (b) NF-Normal, Samples (c) NF-Uniform, Density (d) NF-Uniform, Samples

Figure 2: A toy example to demonstrate that both NFs either with Normal or Uniform latent dis-
tributions can recover the training data. However, as we demonstrated above, a potential controller
trained in the latent space of normal-based NFs is still able to sample actions outside of the training
dataset.

two normalizing flow models, first with the normal latent distribution and second with the uniform
latent distribution. We additionally squeeze data points to lie in (−1,+1)2 2-d region via linear
transformation in this experiment, and add the inverse of tanh function as the first layer of NFs
models, so that tanh function applied as the last transformation during sampling from the model.
Both trained NFs model the underlying training distribution well (Figure 2). We then select the NF
model with normal latent space and gradually increase the amplitude a of the latent samples drawn
from a ·N(0, I) during sampling new data points from the model, this process is presented in Figure
3. And, as expected, higher amplitude values result in more out-of-distribution data points.

One solution to avoid exploiting regions leading to out-of-distribution actions is to restrict policy
output amplitude by some value. This approach was proposed in Zhou et al. [2020], Chen et al.
[2022], where the output of the deterministic policy in the latent space was modeled as z = zmax ·
tanh(πθ(s)) and zmax was set to 2.

However, it was shown that the optimal clipping value zmax is different for every locomotion dataset
in the D4RL benchmark (Zhou et al. [2020], Appendix C). Since zmax value is essentially part of the
latent space policy model, it is necessary to evaluate multiple values online after training to select
the best one, which may not be feasible in some tasks.

To tackle this problem we would like to avoid this post-hoc clipping and construct a latent action
space model that would prohibit the exploitation of out-of-distribution actions by design. To do so,
we make use of NFs versatility, and add invertible tanh activation after the last layer of the Normaliz-
ing Flows model - it makes NFs outputs lie in a bounded n−dimensional1 interval (−1,+1)n, which
in turn allows us to substitute normal base distribution with n−dimensional uniform U(−1,+1)n.
With these changes, the potential actor model should not be capable of generating actions outside of
the training distribution.

3.2 Latent Action Space Pre-Training

First, we start by pre-training conditional Normalizing Flow model f(a|s) with parameters ϕ on the
actions and states from the offline dataset, this is essentially a supervised learning problem. We use
the same Normalizing Flow conditioning scheme as in the Singh et al. [2020] (for more details, see
Figure 8 in the original paper): for each NF layer, we add additional input for the state vector. Given
a conditional NFs f with parameters ϕ, we use it to compute log-likelihood log pϕ(a|s) of actions a
conditioned on states s from the offline dataset D, minimizing the following loss:

Lf (ϕ) = E(s,a)∼D[− log pϕ(a|s)] (5)

The pre-training algorithm is summarized in Algorithm 1 and the final result of this optimization
process is a mapping f : A × S → Z, where Z is the latent action space bounded by the (−1, 1)
interval. As this mapping is invertible, we can further transform latent vectors into the original action
space for policy optimization.

1n is the action space dimensionality.
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(a) Amplitude = 2 (b) Amplitude = 4 (c) Amplitude = 10 (d) Amplitude = 30

Figure 3: A toy example demonstrates that the normal-based NF can be manipulated by a controller
to produce out-of-distribution training points. We model this by increasing the amplitude of the
latent space samples, as we found this to happen in the preliminary experiments when the controller
tries to maximize q-values. Note that the model with uniform latent space does not suffer from
this problem because it already uses the whole latent distribution support during the training and
sampling processes.

Algorithm 1 CNF, Pre-training

1: Input: offline data replay buffer D
2: Initialize flow action encoder parameters ϕ
3: repeat until convergence
4: Sample a mini-batch B = {(s,a)} from D
5: Compute flow loss using Equation 5, compute loss gradient and update flow model:

∇θ1
1

|B|
∑

(s,a)∈B

[− log pϕ(a|s)]

3.3 Policy Optimization

The whole procedure is outlined in Algorithm 2. Here, we describe this phase in detail as follows.
Given a pre-trained latent action space model, we freeze its parameters and add it as an action
encoder during RL training. We modify policy optimization loss from Advantage Weighted Actor
Critic [Nair et al., 2020] to use it with our flow model. Specifically, we train a stochastic latent
policy model π(z|s) with parameters θ, which predicts µ and σ2 for tanh(N(µ, σ2)) distribution,
and two critic models Q1(s,a), Q2(s,a) with parameters ψ1 and ψ2 to mitigate positive bias in
the policy improvement step that is known to degrade the performance of value-based methods
[Hasselt, 2010, Fujimoto et al., 2018]. Note that our policy model operates in the latent space, not in
the original space. By combining latent policy and a pre-trained normalizing flow model, we obtain
the following loss function for policy optimization:

Lπ(θ) = E(s,a)∼D[ω(s,a) · |a− f−1(z ∼ πθ(·|s)|s)|], (6)
where weights ω comes from exponentiation of the Advantage function:

ω(a, s) = exp
((
Q(s,a)−Q(s, f−1(z ∼ π(·|s)|s))

)
/λ

)
= exp (A(s,a)/λ)

(7)

and Q-function is set to the minimum between two trained models: Q(s,a) = mini=1,2Qi(s,a), as
proposed by Fujimoto et al. [2018]. Here, λ ∈ (0,∞) is a temperature hyperparameter: for higher
values training objective behaves similarly to behavioral cloning and for lower values it aims to
maximize advantage. Overall, this loss function train a policy that maximizes the Q-values subject
to a distribution constraint [Nair et al., 2020].

Together with the latent policy model, we optimize two critics with the standard Q-learning loss:

LQ(ψ1, ψ2) = E(s,a,r,s′)∼D[(Q1(s,a)− y)2 + (Q2(s,a)− y)2]
y = r + γEa′∼f−1(π(·|s′))[min

i=1,2
Qi(s

′,a′)]
(8)
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Since NFs are differentiable, we can compute the gradient of the given loss functions for the policy
model weights using the chain rule and reparametrization trick [Kingma et al., 2019]. Note, that one
could bypass the differentiation through the NFs model, and optimize policy and critics in the latent
space directly. However, we show in the Appendix (Section A.4), that this results in worse policies.

Algorithm 2 Offline RL with CNF training

1: Input: Pre-trained flow action encoder model f(a|s) with parameters ϕ, offline data replay
buffer D

2: Initialize actor π with parameters θ and two critics Q1 and Q2 with parameters ψ1 and ψ2

3: repeat for a given number of train-ops
4: Sample a mini-batch B = {(s,a, r, s′)} from D
5: Sample next-state actions a′ using policy π(·|s′) and flow f(·|s′) models, compute Q-target:

a′ = f−1(z ∼ π(·|s′)) for all s′ ∈ B

y = r + γ(min
i=1,2

Qi(s
′,a′))

6: Compute critics loss using Equation 8, compute loss gradient and update models:

∇ψ1,ψ2

1

|B|
∑

(s,a,r,a′)∈B

[(Q1(s,a)− y)2 + (Q2(s,a)− y)2]

7: Sample actions a using policy π(·|s) and flow f(·|s) models, compute advantage weights 7:

â = f−1(z ∼ π(·|s)|s) for all s ∈ B

A(s,a) = Q(s,a)−Q(s, â)

ω = exp(A(s,a)/λ)

8: Compute policy loss using Equation 6, compute loss gradient and update policy model:

∇θ2
1

|B|
∑

(s,a)∈B

exp(A(s,a)/λ) · |a− â|

4 Experiments

To show how the proposed method works, we benchmark it on various locomotion and navigation
tasks from the popular D4RL benchmark [Fu et al., 2020] comparing it to the other methods based on
generative models - PLAS [Zhou et al., 2020] and LAPO [Chen et al., 2022]. We also include AWAC
[Nair et al., 2020] algorithm in our comparisons because we build our policy optimization method on
top of it, and IQL [Kostrikov et al., 2021] algorithm because of its competitive performance across
non-ensemble methods.

4.1 D4RL benchmark

Locomotion We focus on three locomotion environments from the D4RL dataset: Walker2d-v2,
Hopper-v2, and HalfCheetah-v2. For the Normalizing Flows model’s pre-training phase, we divide
the training dataset into two parts by separating 10% portion of randomly selected data for validation.
We run 50 experiments with the random search of hyperparameters from Table 3, and then select
the best model according to the log-likelihood on the validation dataset for RL training. We train
all models, including Normalizing Flows, latent policies, and critics, using Adam optimizer Kingma
and Ba [2014]. During the RL phase, we run 1 million training steps for actor and critic models on
all environments except HalfCheetah-v2, where we use only 200.000 training steps as it is enough
for convergence. We evaluate the agent by running 10 episodes and averaging the scores over them
once per 5000 (100 for HalfCheetah-v2) training steps. Hyperparameters for RL training are listed
in Table 2.
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For comparison, we implemented AWAC and IQL algorithms in our code base and used the publicly
available PLAS implementation. We run AWAC and IQL algorithms with hyperparameters found
in the papers Kostrikov et al. [2021], Nair et al. [2020] and PLAS with hyperparameters recom-
mended in Zhou et al. [2020]. For LAPO, we use scores reported in the paper. The final scores of
benchmarked algorithms are summarized in Table 1. Missing environments are labeled as ’-’ in the
table.

To highlight the performance of our method, we include training curves in Figure 4. It can be seen
that the proposed algorithm exhibits preferable performance on all 9 locomotion datasets, especially
on the HalfCheetah-v2 environment.

Figure 4: Average normalized performance on D4RL locomotion tasks. The x-axis denotes the
training steps. Each curve is averaged over 3 random seeds. Shaded area represents one standard
deviation.

Maze2d For our next experiment, we choose three maze2d datasets with increasing layout com-
plexity: umaze-v1, medium-v1, and large-v1. We use the same flow pre-training scheme as before:
we run 20 experiments with random hyperparameters from Table 3 and select the model with the
highest log-likelihood on the validation dataset. We list the hyperparameters for RL training used in
this experiment in Table 2. For comparison, we use our implementation of IQL, rely on a publicly
available PLAS implementation, and report scores from the LAPO paper. As can be seen in Table
1, our method outperforms baselines in 2 out of 3 environments.

4.2 Ablations

To study the importance of each major component in the proposed CNF method, we conduct addi-
tional ablation experiments. We begin by comparing training policies in uniform and normal latent
spaces. Then, we examine additional clipping for the latent policy to see if it can operate in normal
latent space. And finally, we integrate the VAE model into our approach and compare performance
between Normalizing Flows and VAEs for training policies in latent spaces.

Normalizing Flows with normal latent distribution, no clipping In the first experiment, we com-
pare the performance of the proposed method but with normal latent distribution in Normalizing
Flow and latent policy models. We use a conventional Normalizing Flows encoder without tanh
activation after the last layer and with the normal latent distribution. We pre-train action encoders
in the same way as before, using only the best hyperparameters from previous experiments (note
that these hyperparameters result in very similar models in terms of the training and validation
losses, as depicted in Figure 8). We also remove tanh activation after the last layer from the latent
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Table 1: Normalized performance on D4RL benchmark. The scores are averaged over 10 final
evaluations and 3 random seeds. The results are reproduced for all of the algorithms except LAPO,
for which we take the values stated in the original paper. CNF outperforms other methods on 8 out
of 9 locomotion datasets, and on two out of three maze2d datasets.

Environment AWAC IQL PLAS LAPO CNF

walker2d-medium-v2 78.20 78.80 71.2 80.75 83.60 ± 3.01
walker2d-medium-replay-v2 76.76 74.49 2.74 - 81.96 ± 1.98
walker2d-medium-expert-v2 112.97 111.96 108.13 - 112.32 ± 0.21
hopper-medium-v2 62.59 63.7 52.93 51.63 69.32 ± 1.04
hopper-medium-replay-v2 73.12 87.72 3.17 - 89.04 ± 10.39
hopper-medium-expert-v2 109.64 109.05 106.5 - 108.6 ± 5.45
halfcheetah-medium-v2 43.15 47.4 43.78 45.97 50.55 ± 0.53
halfcheetah-medium-replay-v2 42.00 43.2 44.8 - 45.84 ± 0.31
halfcheetah-medium-expert-v2 87.40 78.95 86.63 - 96.23 ± 0.20

locomotion-v2 average 76.20 77.25 57.76 - 81.94
maze2d-umaze-v1 - 37.69 53.9 118.9 62.9 ± 10.36
maze2d-medium-v1 - 35.45 66.4 142.8 155.89 ± 10.49
maze2d-large-v1 - 49.64 107.2 200.6 212.8 ± 2.23

Figure 5: Comparison of the proposed method with uniform (CNF) and normal (NF) latent spaces.
Policy performance is significantly worse when the latent space is normal.

policy model, letting it operate over the whole latent space of the pre-trained Normalizing Flow
action encoder, which we make to predict µ and σ2 for N(µ, σ2) distribution. We again select the
HalfCheetah-v2 environment and run 3 experiments with different random seeds per dataset. We
plot the results in Figure 5. One can see that the performance degraded substantially, indicating that
latent policy without clipping could not be trained to produce a competitive performance.

Normalizing Flows with normal latent distribution, manual clipping As it was shown in the
previous ablation, latent policies without clipping in normal space perform poorly. To test how
different clipping values affect the agent’s performance, we did the following experiment, which
is similar to the previous one, except we manually clip latent policy output by some value. To
do so, we return tanh activation at the end of the policy model and multiply it by a, treated as a
hyperparameter. Latent policy output is modeled as z ∼ a · tanh(N(πθ(.|s))), where N is a normal
distribution with parameters predicted by the policy model. This experiment is similar to Zhou et al.
[2020] Ablation C, but instead of VAEs, we use Normalizing Flows to extract latent policies using
Algorithm 2. Also, we use datasets from the Walker2d-v2 environment. We examine several values
for parameter a and compare them with the proposed method. The results are averaged over three
random seeds and are shown in Figure 6. One can see that optimal clipping values are different for
each dataset: for the medium dataset, there is no disparity in performance, but the clipping value of
3 produces slightly better results and almost matches the performance of the uniform latent space;
for the medium-replay, it equals to 2 and for the medium-expert, it equals to 1. On the other hand,
CNF, parameterized with the uniform latent distribution, does not add extra clipping value as a
hyperparameter and performs better on each dataset.

Action encoder model: Normalizing Flow and VAE In this experiment, we compare the perfor-
mance of latent policies obtained by the CNF with different action encoders, namely, Normalizing
Flow and VAE. We adopt the best VAE architecture and training parameters from Zhou et al. [2020],
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Figure 6: Normalized average performance of the proposed method (uniform on the X-axis) and
latent policies with clipped normal latent distribution. Number on the X-axis is the clipping value.
Optimal clipping value is different for each dataset and final performance is better for the proposed
method.

and then integrate pre-trained models into the latent policy training as in Algorithm 2. For this com-
parison, we rely on the HalfCheetah-v2 environment and plot training curves for PLAS, CNF, and
CNF-VAE. Results are presented in Figure 7. One can see that the CNF performs best with the Nor-
malizing Flow action encoder. On the other hand, the use of the VAE encoder shows performance
similar to PLAS. On the halfcheetah-medium-replay-v2 dataset, it starts from a commensurate per-
formance to CNF, but exhibit marginal improvement during the training process. This experiment
indicates the importance of the whole pipeline with the use of Normalizing Flows as opposed to the
VAEs.

Figure 7: Comparison of CNF, CNF with VAE (CNF-VAE) and PLAS. CNF with Normalizing
Flow and uniform distribution performs above all. For normal distribution optimal clipping value is
different for each dataset.

5 Conclusion

In this work, we presented a new deep offline RL method called Conservative Normalizing Flow
(CNF). It constructs a latent action space with the use of the NFs model and then runs a policy
optimization within it. This approach makes trained policies capable of fully utilizing the latent
space as opposed to the post-hoc manual clipping procedures in PLAS Zhou et al. [2020] and LAPO
Chen et al. [2022]. We benchmarked our method against other competitors based on generative
models and showed that it performs favorably on a large portion of D4RL Fu et al. [2020] locomotion
and maze2d datasets.
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A Appendix

A.1 Related Work

Normalizing Flows in RL Several prior works applied Normalizing Flows models for reinforce-
ment learning tasks. In the work Haarnoja et al. [2018] Normalizing Flows were used for training
hierarchical policies using the Soft Actor-Critic RL algorithm. They choose Normalizing Flows be-
cause it provides an expression for exact likelihood computation and has an intuitive way to stack a
sequence of models to construct one hierarchical model. In contrast to our work, they did not modify
NF’s latent space, they did not use offline pre-training of flow models and train models in the online
RL framework.

The PARROT work [Singh et al., 2020] proposes to use the Normalizing Flows action encoder dur-
ing the behavioral cloning pre-training phase before running reinforcement learning on the target
task. After pre-training, they freeze Normalizing Flow and run reinforcement learning on a new
and unseen task. They aimed to develop a method leveraging near-optimal demonstrations dur-
ing Normalizing Flows pre-training and speed up the convergence of RL by better and meaningful
exploration, while we use Normalizing Flows in purely offline RL setting and to make agent conser-
vative.

Offline RL A large portion of recently proposed deep offline RL algorithms focuses on addressing
the extrapolation issue, trying to impose a certain degree of conservatism limiting the deviation
of the final policy from the behavioral one. Researchers approached this problem from multiple
angles. For example, Kumar et al. [2020] proposed to directly penalize out-of-distribution actions,
while Kostrikov et al. [2021] avoids estimating values for out-of-sample actions completely. Others
Fujimoto and Gu [2021], Kumar et al. [2019], Jaques et al. [2020] put explicit constraints to stay
closer to the behavioral policy. Here, we took a different approach by constructing a latent action
space that allows us to bypass the need for explicit regularizations.

Offline RL with generative models In the method named PLAS [Zhou et al., 2020], the authors
proposed to pre-train conditional variational autoencoder on actions from an offline dataset. This
idea resembles ours, but to make agent conservative authors restrict policy outputs in the latent
space to a fixed range. In our work, we aimed to make a better action encoder model by switching
from VAEs to Normalizing Flows. This allows us to utilize the whole latent space of the action
encoder, avoid manual clipping, and we experimentally demonstrate that our approach leads to better
performance on the popular offline RL benchmark.

One recent approach called LAPO [Chen et al., 2022] proposes to train an action encoder together
with a reinforcement learning agent. They motivated this by observing that the action distribution
does not match the return distribution in the training data set, and therefore actions that lead to higher
returns are more important for action encoder training. In our work, we examine an orthogonal
direction, studying a different generative model for action encoding.
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A.2 Hyperparameters

Table 2: Hyperparameters for latent policy and critics models for RL training phase on locomo-
tion and maze2 tasks. We ran a grid-search for the values written in square brackets. Rest of the
parameter were fixed for all of the datasets.

Hyperparameter value

number of training steps 1000000
number of training steps (HalfCheetah-v2) 200000
number of layers (locomotion) [3, 4]
number of layers (maze2d) 4
hidden size 256
learning rate 3e-4
batch size (locomotion) [256, 512, 1024]
batch size (maze2d) 10240
λ-temperature (locomotion) 1/3
λ-temperature (maze2d) 1/10

Table 3: NFs hyperparameters for the supervised pre-training phase on locomotion and maze2 tasks.
Medium, medium-replay, and medium-expert datasets are marked as m, m-r, and m-e correspond-
ingly. We sample learning rate and weight decay from the continuous uniform distribution.

Hyperparameter value

number of training steps 100000
number of layers (locomotion m and m-e datasets) 12
number of layers (locomotion m-r and maze2d datasets) 4
hidden size (locomotion m and m-e datasets) 256
hidden size (locomotion m-r and maze2d datasets) 64
learning rate min = 1e-5, max = 3e-3
weight decay min = 0.0, max = 1e-2
batch size [512, 1024, 2048]

A.3 Normalizing Flows training curves

Figure 8: Training and validation loss for Normalizing Flows pre-training with Uniform and Normal
latent spaces. Both training and validation curves are almost identical between models with different
latent spaces, which means that models have similar encoding and reconstruction quality. For each
latent policy training, we select NF model with the lowest validation metric.
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A.4 Training controller in latent space

Ideologically, policy optimization can be carried out directly in the latent space. This can be done
by simply substituting the original actions with their latent counterparts. After this substitution,
a myriad of offline RL algorithms can be used to extract a new policy. To test if this is a viable
approach, we train actor and critic models in the latent space of the Normalizing Flows without
utilizing gradients from the action encoder during the policy optimization phase. First, we convert
actions from the original environment’s action space to the latent space by encoding them with the
pre-trained action encoder. After that, we run the AWAC algorithm with no additional changes
to the dataset with converted actions. We conduct this experiment on HalfCheetah-v2 datasets:
medium, medium-replay, and medium-expert. Results are presented in Figure 9. It can be seen
that this approach shows promising results, but convergence speed and the final score are slightly
lower on all datasets. We conjecture that the performance is lower because a metric in the latent
space is induced from the original action space by the flow model, and optimization of the distance
between latent vectors corresponds to optimization of the distance between actions only implicitly.
When training policy using metrics from the original action space, as suggested by Equation 6, the
Normalizing Flows model provides gradients to the policy model that guide it to minimize the actual
distance between actions.

Figure 9: Comparison of CNF trained in original (blue) and latent (red) action spaces. Final perfor-
mance is slightly lower for the training directly in latent space.
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