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ABSTRACT

The continuous evolution of pre-trained large language models with ever-growing
parameters and corpus sizes has augmented their capacity to solve complex tasks.
This ability, which obviates the necessity for task-specific training or fine-tuning,
relies on providing the model with a language description or some task exemplars—
referred to the prompt—that guide the desired autoregressive generation. Despite
the remarkable success, the underlying mechanisms that facilitate such exceptional
generalization abilities remain an open question. In this paper, we present a novel
framework that formally conceptualizes answer generation for complex natural
language tasks as a hierarchical “template-content” structure. According to our
modeling, there exist pre-trained models that can automatically decompose tasks
into constituent steps during autoregressive generation, through language modeling
on a sufficiently large corpus, thereby solving them. Our framework offers an
explanatory tool for the complex reasoning abilities of large language models from
the perspective of modeling autoregressive generation tasks. Our experiments
show that practical models exhibit different behaviors for “template” and “content”
providing support for our modeling.

1 INTRODUCTION

The continuous evolution of pre-trained Large Language Models (LLMs) (Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023) with ever-growing parameters and corpus sizes has notably
augmented their capacity to solve complex tasks in natural language. These tasks range from
arithmetic and symbolic logic to factual reasoning (Qin et al., 2023; Liu et al., 2023; Yang et al., 2022;
Bang et al., 2023; Tan et al., 2023). With the prompts (Liu et al., 2021) (either exemplars (Brown et al.,
2020) or task descriptions (Ouyang et al., 2022)), LLMs can solve the tasks through an autoregressive
generation process, essentially following the prompts and creating the response token by token. The
objective of transforming all processes into a generative format has elicited significant attention
and curiosity regarding its mechanism. Within the reasoning community, a question of greatest
concern is “What mechanisms underlie the acquisition and application of LLMs’ reasoning ability in
autoregressive generation?” Recently, several studies have been taken to explain how LLMs can
accomplish reasoning on complex tasks from various perspectives. Akyurek et al. (2023) interpret the
few-shot prompt as a learning algorithm that performs gradient descent on the linear model. Xie et al.
(2022) provide an explanation from a Bayesian standpoint. However, their primary focus centers
around in-context learning, and less on the autoregressive behavior.

In this paper, our primary objective is to draw a connection between autoregression and reasoning
ability. To this end, we propose template-content structure, a modeling for natural language
autoregressive generation, which divides the generation of sentences into two parts: the relatively
task-specific template and the content that varies with specific questions. With this division, well-
trained LLMs can learn the template as a flow indicator, which guides the LLMs to split a task into
sub-tasks, a critical aspect of reasoning, during the autoregressive generation and then finish the given
task by filling the template in accordance with the provided content. We provide an illustration in
Figure 1. We further point out that the template-content structure could be hierarchical and nested
in Section 5, which provides the models with the flexibility and capacity to combine various training
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Let’s denote x = number of corrects and y = number of wrongs. Based on the information, we have 
two equations: x + y = 35, 6 * x + (-2) * y = 178. Then we try to solve the equations, …

Solve the following arithmetic problem as an example of the famous rabbit and chicken problem. There are 
35 questions in a test. 6 marks are awarded for each correct and 2 marks are deducted for each wrong 
answer. Amar attempted all the questions and got 178 marks. How many questions did he answer correctly? 

Let’s denote x = number of <obj1> and y = number of <obj2>. Based on 
the information, we have two equations: x + y = <total_value1>, <value1>
* x + <value2> * y = <total_value2>.
Then we try to solve the equations, …

Solve the following 
arithmetic problem as …

Let’s denote x = number of <obj1> and y = number of 
<obj2>. Based on the information, we have two equations: 
x + y = <total_value1>, <value1> * x + <value2> * y = 
<total_value2>. 
Then we try to solve the equations, …

There are 35 questions in a test. 6 marks 
are awarded for each correct and 2 marks 
are deducted for each wrong answer. Amar 
attempted all the questions and got 178
marks…

Content

Template

Figure 1: An illustration of the template-content structure. With the given prompt and question: 1. the
model will generate the template tokens (highlighted as yellow) as a flow to solve the task according
to the prompt, and some content placeholder (blue) in the template that needs to be filled in, which
are displayed in the upper half of the dashed box. 2. The content generation with the guidance of the
template such as <value> could be understood as pointing, shown in the bottom half. Here we
use corresponding colors to show the pointing process. The combination of these two mechanisms
ultimately leads to model output.
samples and, therefore, greatly enhances the generality of this structure. Our experiments provide
evidence that current LLMs indeed demonstrate the template-content structure.

In addition, as a tool to support our claims, we recognize that prevailing research on model capacity
has not been adequately extended to the currently most-used causal Transformer, i.e., the Transformer
architecture with causal masked self-attention. Here and in the remaining part of the paper, the term
“causal” means that the attention at the current token can only be allocated to the preceding tokens
(Vaswani et al., 2017). As a side contribution to address the gap, we extend the well-known universal
approximation theorem (UAT) for Transformers to models with causal masks in Section 3.

We hope our work can provide a new perspective and tool for understanding the reasoning ability
of LLMs. Our contribution contains (1) We modify the UAT for Transformers to fit causal models,
which is the most commonly used architecture in LLMs. (2) We propose a novel framework, i.e.,
the template-content structure to conceptualize the autoregressive generation for solving complex
tasks. With our modification of the UAT, we show that the causal Transformer can implement the
template-content structure. (3) We prove that if well-trained on a sufficiently large corpus, this
Transformer can solve tasks by borrowing knowledge from its training data. By generalizing this
structure to a hierarchical version, we can utilize its combinatorial capacity to explain the remarkable
performance of large language models on complex tasks. (4) We conduct experiments to provide
evidence that the current LLMs demonstrate the template-content structure.

2 BACKGROUND AND RELATED WORK

Autoregressive language models After the Transformer architecture (Vaswani et al., 2017) was
proposed, there are two main research directions of the language models (Yang et al., 2023): one is
the bi-direction encoder-only architecture, whose typical models are BERT (Kenton and Toutanova,
2019) and its following work RoBERTa (Liu et al., 2020), and another is the causal decoder-only
architecture with the autoregressive generation, whose typical models are the series work of GPT
(Radford et al., 2018; 2019; Brown et al., 2020). Specifically, these models employ causal attention
layers. With the given beginning, the model generates the next token and repeats the process until a
special stop token is generated, which is called autoregressive generation.
Prompt engineering The performance of autoregressive language models largely depends on the
quality of prompts. The chain-of-thought (cot) prompt (Wei et al., 2022) shows LLMs have the
step-by-step reasoning ability with exemplars in the same format and this task decomposition largely
improve the performance. Even a simple “step-by-step” instruction can make a large progress (Kojima
et al., 2022). The released chatGPT inherits the idea and forces the model to generate step-by-step
answers during its RLHF phase (Ouyang et al., 2022). The basic idea of these prompts is to help or
instruct models to split tasks into sub-tasks, which we believe is the key to reasoning ability.
Capacity of LLMs Two types of work have been undertaken on the capacity of LLMs. One of them
is about the Turing completeness of the Transformers (Perez et al., 2021; Hahn, 2020) and another one
focuses on the UAT, which is more related to our work. Yun et al. (2020) prove that the Transformer
with positional embedding can approximate any continuous function with their construction. In our
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paper, we will modify this theorem to show that the causal Transformer, can also approximate any
causal continuous function (see Theorem 1). Following Yun et al. (2020), Luo et al. (2022) talk about
the situation with relative position embedding and Haotian et al. (2023) give another proof of the UAT
with more dimensions but fewer layers. Recently, Feng et al. (2023) follows the framework of Perez
et al. (2021) and discusses the expressive capacity on some specific problems such as arithmetic tasks
and dynamic programming in a more realistic situation, i.e., limited precision and context window.
Explain the reasoning ability of LLMs There is some prior work on the topic: explaining the
reasoning ability of LLMs. Most research focuses on the in-context learning ability, where models
without finetuning learn from the given exemplars of the task. Akyurek et al. (2023) prove that
transformers can implicitly implement gradient descent and closed-form algorithms for linear models
using given exemplars. Xie et al. (2022) start from the long-range coherence during training and
proposes that models learn potential document-level concepts and the in-context learning aims to
learn the shared concept from the exemplars. Our framework, however, centers on task breakdown
and template creation using autoregressive generation.
Template and content Ford et al. (2018) classify words into “templates” and “contents” based on
grammar or frequency and proposes a “two-pass” generation. They first generate “template” words
and placeholders for “content” and then replace placeholders, which slightly enhances language
modeling. Unlike them, we emphasize single-pass generation, highlighting the capacity of single-pass
autoregressive models to distinct templates and contents.

3 UNIVERSAL APPROXIMATION THEOREM FOR CAUSAL MODEL

In this section, we will extend the UAT to the causal Transformer. The UAT proved in Yun et al.
(2020) claims Transformers can approximate any continuous function (defined on a compact support
set) with arbitrary precision. A formal formulation is in Appendix B.1 as Theorem 2. This theorem
underscores the expressive capacity of Transformers and can serve as the foundation for explaining
their reasoning mechanisms. However, to the best of our knowledge, there is currently no work
that has extended this theorem to causal Transformers, which are the prevalent structures used in
large-scale models today. Therefore, we first provide modifications to this theorem and then utilize it
as a tool for studying the autoregressive model and template-content structure.
Definition 1 (Causal sequence-to-sequence function). The sequence-to-sequence function f : D →
Rn×d (where D ⊆ Rn×d) is a causal function, if and only if for any two input X and X ′, and any
i ∈ [n], we have: f(X)1:i = f(X ′)1:i, if X1:i = X ′

1:i, where X1:i means the first i rows of X .
Because the first i outputs only depend on the first i inputs, we also denote the causal function as
f : Ri×d → Ri×d for any i ≤ n.
Theorem 1 (Universal approximation theorem of causal Transformer). For any causal sequence-to-
sequence function f and the class of causal Transformer, which means all the attention is masked
except for the preceding tokens, the convergence in Theorem 2 still holds.
The proof of this theorem is roughly the same as the original theorem, except that there is a difference
in a key bijective construction. We provide a highly simplified summary of the original proof as well
as our construction in Appendix B.1.

4 TEMPLATE-CONTENT STRUCTURE

4.1 MOTIVATION

To understand why pre-trained autoregressive models handle various tasks, think of the two-step
solving scheme: first sketching a basic outline (like a draft) and then filling in specifics. For example,
when we solve math problems, we first decide the steps to take and then address each using given
details, as depicted in Figure 1. This can be seen as having a general “template” and specific
“contents”. The template relates to the process of solving the overall task that is independent of the
specific problem, while the content is specific to the particular problem.

By separating the template and content in an answer sequence, the process of generating an answer is
divided into a relatively stable process (template) and a flexible process (content). This separation
makes it possible to discuss how the models pre-trained on a large language corpus can generalize
on reasoning task, where the word “generalize” means learning a question-independent task-solving
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flow. If a model can separate the template and the content, we can expect it to learn the template from
the huge corpus and then have the capacity to solve not only the same question that occurs in the
training corpus but also different questions of the same task.

With a suitable template, the remaining work of the language model to fill in the details will be natural
for LLMs. We describe the basic capacity of the content filling as template-dependent pointing.
The generated template leaves blanks to be filled in with specific information, and also provides
descriptions or “roles” for these blanks. For the example in Figure 1, with a template like “x = number
of <obj1>”, the left job for the content part is to find the corresponding object, property and value
in the problem. So we describe it as pointing. It is not surprising that the language models have the
ability, because it is also the basic ability to understand the semantics and finish many classic NLP
tasks such as named entity recognition (Chiu and Nichols, 2016; Li et al., 2020) and translation. In a
word, we believe learning to generate the template is key to solving complex tasks. Therefore, the
focus of our theory will be on whether and how the model can generate such templates.

Above, we explain why the template-content structure can help us to understand the reasoning
ability of LLMs. In the following, we will model the template-content structure in a formal way
and use it to explain the reasoning ability of LLMs. We first model the autoregressive generation
task with the template-content structure in Section 4.2 and then show (1) Transformer can model the
template-content generation in Section 4.3 and (2) how a well-trained model can solve complex tasks
with the template-content structure in Section 4.4.

4.2 TASK MODELING

Firstly, let us model the task we focus on. With a prompt and a question sequence as the start, a
language modelM generates an answer sequence autoregressively by continuing writing.
Definition 2 (Prompt-leading autoregressive models for answer generation). For a task and the
corresponding prompt sequence p, a question q and a partial answer a1:t

1, t ∈ N, all of which belong
to T ∗ (the power set of the token space T ), we consider models M which generate the answer
autoregressively (until generating the end of text token):M(p, q,a1:t) = at+1 ∈ T .
As mentioned in Section 4.1, we believe the answer sequence includes the template part and content
part. Here, we define the T/C classification function as follows:
Definition 3 (Template and content, T/C). Function F : N× S → {T,C} is called a T/C classifica-
tion function, where S ⊆ T ∗.2 The function takes a token sequence a and an index i as input and
gives the binary classification of the indexed token, denoted as F(i;a), abbreviated as F(ai). We
also use F(a) to denote the T/C sequence of the whole sequence.
To align with the autoregressive generation and causal model, in the following part, we always assume
the T/C classification function (as a sequence-to-sequence function) should be a causal function.
Figure 1 provides an intuition, where the yellow tokens are templates and blue are contents. We
consider the distinct behavior between templates and content as an inherent characteristic of natural
language, where the generation of templates is independent of specific contents, while contents
relies on templates. We require this characteristic by introducing the definition of the groundtruth
classification function and its corresponding template-content model (T-C model). For brevity, we
place the formal definition in the Appendix B.2, and here we introduce its idea. The T-C model
and the groundtruth classification defines such an ideal sequence generation schema: every token is
classified into template or content, and for two sequences 1) when the preceding T/C sequences align
and the template tokens at the corresponding positions are the same, then the classification of the
next token to be generated is always the same (which is invariant to different content tokens in the
preceding sequences), 2) furthermore, if the next token is a template, then the exact token is invariant
to different content tokens in the preceding sequences, but only depend on the template tokens.

Additionally, we always consider prompts as templates and questions as contents. For instance,
“the same template” requires the same prompt while the questions can be different. With some
approximations, we believe that for natural language, such ideal modeling is appropriate, that is,
Assumption 1 (Natural language has the template-content structure). There exists an autoregressive
modelM and a T/C classification function F that satisfy the requirements of the definition of the
T-C model and the groundtruth classification.

1In the following, we use a1:t to denote the first to t-th token sub-sequence or the empty sequence if t = 0.
2Here, we define this function only on a subset rather than the entire sequence set because we believe that

this T/C classification is meaningful only in “normal” natural language rather than in random or garbled text.
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The intuition behind this assumption is that we believe natural language inherently exhibits a hi-
erarchical semantic phenomenon, allowing us to separate the more functional parts from the more
specific parts, as mentioned in Section 4.1, demonstrated in Figure 1 and also talked in Ford et al.
(2018). Notice that here we use M to describe our ideal T-C-based autoregressive generation
schema, instead of a specific parametric model or an algorithm. We will prove that Transformer can
implement the T-C model in Section 4.3 and give some empirical evidence that the natural language
as well as real-world LLMs has this T-C structure in experiment (Section 6). We will also give a
finer version with hierarchical templates in Section 5 and also some discussion such as generating a
distribution instead of a token in Appendix C. Here, we focus on this binary setting for simplicity.

Until now, we have defined the natural language generation task as an autoregressive process in
which template tokens only depend on preceding template tokens and content tokens can depend on
both. This reflects our core understanding of natural language, where tokens can be classified into
either “templates” or “contents”. Template tokens define the flowing structure of the expression, and
content tokens fill in the details. Template tokens are independent of content tokens, since changing
the specific details should not alter the overall structure of the sentence. Below, we prove that the
template-content structure (and the T-C model) can be achieved by a Transformer model.

4.3 THE EXISTENCE OF THE TEMPLATE-CONTENT TRANSFORMER

Given any preceding sequence p, q,a1:t, a groundtruth classification function F and a T-C model
MI , we want to prove there is a TransformerM that can generate the same tokens asMI .

(𝑝,𝑞 ,𝑎1:𝑡)

𝐻𝑇 𝐻𝐶

𝑎𝑡+1

Figure 2: The archi-
tecture of the combined
Transformer.

The framework of our constructive proof is as follows. (1) We can
reorganize the generation process of the T-C modelMI : the input tokens
are divided into two template tokens and content tokens according to
the groundtruth T-C classification F . Each group extracts its respective
information HT and HC by a function fT and fC , which is then combined
by a function g for the final output at+1. (2) Because of the UAT that we
have proved in Section 3, the information extractor fT , fC and the final
output function g can be all implemented by Transformers. (3) These
three Transformers can be combined into a final T-C Transformer. Here
we provide a diagram showing the architecture of our construction in
Figure 2. The detailed constructive proof can be found in Appendix B.3.

Until now, we have proven that there exists a Transformer that can gen-
erate following the template-content structure. In the rest, we always
assume that the T/C classification function F is groundtruth and we use
(fT , fC , g) to represent a T-C Transformer constructed as above.

4.4 SAMPLE-BASED TEMPLATE GENERATION

In this section, we want to show that the template-content structure can explain how a pre-trained
Transformer gains the ability to generate the template from a sample-based learning perspective,
which leads to the task-solving capacity. Here we assume the pre-trained model perfectly fits the
training samples.
Definition 4 (Well-trained). A modelM is well-trained on a training sample (p, q,a), which means
given the prompt p and question q, the model can perfectly generate the answer a autoregressively.
This definition requires a pre-trained model to “remember” and then reproduce a training example.
We believe that such a requirement is not challenging for the prevailing LLMs with a huge amount of
parameters, as it does not demand any form of generalization. Until now, we have demonstrated that
(1) the template represents the general process of solving complex tasks in Section 4.1 and shown
in Figure 1; (2) given our modeling of the autoregressive generation task using the T-C structure in
Section 4.2, and our construction of the T-C Transformer in Section 4.3, the T-C Transformer exhibits
the ideal behavior that enables template generation independent of specific content. Now, coupling
the ideal behavior with the assumption that the Transformer is well-trained, it is a natural conclusion
that this Transformer can generate the template according to training samples.

Here we describe the template generation as a partial sequence continuation problem and have the
following proposition:
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Table 1: A hierarchical template-content example, where the content is further decomposed into
sub-template and sub-content. The different levels of the template are shown as underline (T1), bold
(T2), and italic (T3), as well as different indents in the answer.

[Prompt]: Solve the arithmetic problem step by step. Melanie will be 18 years old in 10 years, what is the current age of Melanie?

[Answer]: First, let’s identify <target value>. According to the problem, <information in question>.
This means that <write in equation>...

<target value>: <obj>’s <property>
<obj>: Melanie, <property>: current age

<information in question>: Melanie will be 18 years old in 10 years
<write in equation>: <variable> + <value1> = <value2>

<variable>: age, <value1>: 10, <value2>: 18

[Final generation]: First, let’s identify Melanie’s current age. According to the problem,
Melanie will be 18 years old in 10 years. This means that age + 10 = 18...

Proposition 1 (Answer generation). With a pretrained T-C Transformer (fT , fC , g), a prompt p,
question q and a prefix of a potential answer a1:t (empty sequence if t = 0) as input, assuming that
there exists a training sample (p, q′,a′) such that (1) F(p, q,a1:t) = F(p, q′,a′

1:t), (2) ai = a′i for
1 ≤ i ≤ t : F(ai) = T and (3) the Transformer is well-trained on the sample, then the Transformer
given the sequence (p, q,a1:t) can generate the answer a whose template tokens keep the same as
a′, i.e., aj = a′j for 1 ≤ j ≤ |a| : F(aj) = T .
The proof is provided in Appendix B.4. This proposition conceptually demonstrates that, owing to
our template-content modeling of natural language and the construction of the corresponding T-C
Transformer, the Transformer can generate an answer sequence with the “correct” template as long
as there is a training sample with the same template (but content may be different), thereby solving
complex problems.

The only condition of the proposition is the existence of the training sample. The template is
considered the invariant part for potentially infinite questions sharing the same task. The template
space is much smaller than the total answer space, which is why we can assume the existence of
a training sample with such a template that facilitates the LLM to invoke the same template when
it sees a new question. This might explain the excellent generalization and reasoning abilities of
modern LLMs. There are still some practical details such as our token-wise alignment, prompt format,
training process, and sampling strategy, and we discuss them in Appendix C.

5 HIERARCHICAL TEMPLATE-CONTENT STRUCTURE

Above, we established the presence of the template-content Transformer and its capacity for template
generation. However, we acknowledge that absolute binary T/C classification may be inadequate for
more intricate real-world tasks. Tokens can vary in their level of specificity, aligning with diverse
task segmentation granularity, ranging from the most general to the most specific. To describe the
different specificity levels, we extend the template-content structure to the hierarchical and nested
case. This extension entails content corresponding to a template at a given level being decomposable
into sub-template and sub-content at the next level. Similarly, we no longer differentiate between
prompt and question. In practical scenarios, a holistic sequence is often encountered, comprising
both the prompt and the question intertwined, providing comprehensive information at various levels
of detail. In the following, we uniformly call them “prompt”, but assume tokens have hierarchical
levels of meaning. An example is in Table 1, where we demonstrate the nesting relationship between
different levels of content by progressively expanding the content into sub-template and sub-content.
This presents a hierarchical structure from coarse- to fine-grained content generation.

The hierarchical structure can greatly generalize our framework by increasing its 1) flexibility:
the template could range from general to specific, and 2) completeness: the structure allows the
description of arbitrary complex (in)dependent logical relationships in sentences, given a sufficient
nesting depth. Below, we formally describe the hierarchical T-C model.

5.1 HIERARCHICAL TASK MODELING

We define the hierarchical template-content structure as a multi-class classification: F : N× T ∗ →
{T1, T2, . . . , Tn}. For simplicity, we denote the set {T1, . . . , Tk} as T≤k, and T≥k likewise. The
Tk+1 can be seen as part of the content of T≤k (lower-levels) as well as part of the template of
T≥k+2 (higher levels). We also give tokens in the prompt the same hierarchical T/C classification,
dividing the prompt into tokens of {T1, T2, . . . , Tn} and the different parts provide different levels
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Q: There were 28 bales of hay in the barn. Tim stacked more bales in
the barn today. There are now 54 bales of hay in the barn. How many
bales did he store in the barn?
A: Let's think step by step. First, we need to find out how many bales
Tim added to the barn. We can do this by subtracting the original
number of bales from the current number of bales: 54 - 28 = 26.
So Tim added 26 bales to the barn. Therefore, the answer (arabic
number) is 26.

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇4 𝑇𝑇5 𝑇𝑇6

(a)

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6

(b)

Q: There were 28 bales of hay in the barn. Tim stacked more bales in the barn today. There are now 54 bales
of hay in the barn. How many bales did he store in the barn?
A: Let's think step by step. First, we need to find out how many bales Tim added to the barn. We can do this
by subtracting the original number of bales from the current number of bales: 54 - 28 = 26.
So Tim added 26 bales to the barn. Therefore, the answer (arabic number) is 26.

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇4 𝑇𝑇5 𝑇𝑇6

(c)
Figure 3: Sparsity of the dependency matrix. (a) The sequence is divided into 6 levels: T1, T2, T3,
T4, T5, T6. (b) The dependency structure diagram for the full dependency of 6 levels templates. (c)
The practical dependency structure for the sequence in (a), which is much sparser than (b).

of information to the corresponding levels of templates or content in the answer. For example, in
Table 1, the prompt sequence “will be . . . years old in . . . years” (T2) corresponds to the sub-template
“. . . + . . . = . . . ” (T2) and sub-content “age”, “10”,“18” (T3) in the answer which together serve as
a content <write in equation>of the parent template T1. To enable a unified view and simpler
notation, we merge the prompt into the beginning of the answer sequence a.

The definition of groundtruth classification and T-C model parallels that in non-hierarchical setting.
That is, identical T/C classification and ≤ k-level template tokens yield identical T/C classification
of the next position, including the token if it is a T≤k token. The formal definition is presented in
Appendix B.5. Similar to Section 4, subsequent mentions of the classification function F and model
M are references to the groundtruth function and the T-C model respectively. The existence of the
corresponding T-C Transformer (fT1

, . . . , fTn
, g) is the same as in the non-hierarchical situation and

the proof is not reiterated here. The generating process of the T-C model (or the Transformer) can be
represented as follows.

HTk,1:t = fTk
(a1:t), k = 1, 2, . . . , n, at+1 = g (HT1,1:t, . . . ,HTn,1:t) , (1)

where the function fTk
should only depend on the corresponding levels of tokens and at+1 should

only depend on HT1,1:t, . . . ,HTk,1:t if F(at+1) = Tk.3 In other words, a Tk token at+1 only
depends on preceding lower- or same-level tokens T≤k, but not on higher-level tokens T≥k+1.

Sparse dependency in the hierarchical T-C model In the hierarchical case, the dependence
relationship could be refined. Notice that it is not necessary that the k-level tokens Tk entirely depend
on all the lower-level tokens T≤k−1. A small number of levels may be sufficient to provide enough
information to determine the generation. An example is in Figure 3: solving an arithmetic problem
in SingleEQ (Koncel-Kedziorski et al., 2015) dataset. In this example, the sequence (including the
prompt and the generated answer) is segregated into six levels and its dependency is significantly
sparser than the full dependency. For instance, the T5 (brown) token “26” only depends on the T4

(red) tokens “54 − 28 =”, regardless of any information provided by other lower-level templates,
such as where the equation appears (T1) or the object bales (T3) and so on. We call the phenomenon
as sparse dependency and give it a formal definition in Appendix B.6. Dependency practically
tends to be sparser than the full ones. This phenomenon prevents deeply nested T/C structures from
imposing excessive constraints on higher levels (as in the case of full dependency, where the Tn

depends on all n− 1 levels), enabling the model to learn deeper and more complex structures.

5.2 THE GENERALIZATION POWER OF THE HIERARCHICAL TEMPLATE-CONTENT MODELING

Generalizing the template-content structure to the hierarchical version can enable modeling arbitrarily
complex tasks that may involve multiple levels of sub-tasks. We can get a similar but more general
proposition with Proposition 1, which is the n-level hierarchical T-C models have the ability to
generate answer from n different samples, further explaining the generalization of the models.
Considering space constraints, we defer the detailed discussion in the Appendix A. We define the
label and label consistency as the conditions to combine different sentences in Appendix A.1 and
give the formal discussion of the hierarchical answer generation ability in Appendix A.2. Here an
informal description of the proposition is as follows:
Proposition 2 (hierarchical answer generation, informal). Given n samples with label consistency on
which a hierarchical T-C Transformer is well-trained, this model can generate the combined answer
with the same Tk tokens as the k-th sample.

3The formal definition of “depend on” can be analogized similarly to what we did in Section 4.3, where the
function always has the same output with identical T/C classification and Tk tokens.
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[Prompt]: Concatenate the last letters of the given words: <word1>, 
<word2>, <word3>, <word4>. Let’s think step by step.
[Answer]:
1. The last letter of <word1> is <letter1>
(2,3,4 …)
5. Concatenating these letters together, we get <answer>.
Therefore, the answer is <answer>.

<word1>

pit
publicity
market

…

<word2>

bird
sunset
exhaust

…

<word3>

insight
ongoing

key
…

<word4>

trial
damage
failure

…

<answer>

tdtl
ytge
ttye
…

=

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Left: The concatenate-last-letter dataset. The task is to concatenate the last letters of several
words together. Here the template tokens are generated by GPT-4 and fixed, while all the content
words (<word>,<letter>,<answer>) varies. Right: The variance of the output distributions at
each position. X-axis: index of the tokens, y-axis: variance. Ten Blue bars: content tokens; Other
green bars: template tokens. From top to bottom: GPT2-xl(1.5b), OPT-30b and Llama2-70b. Some
green bars are too short to see.

6 EXPERIMENTS

Above, we propose the template-content structure framework and prove a T-C model (or Transformer)
can achieve the generation with the T-C structure thereby solving complex tasks. In this section, we
want to give some empirical evidence that the practical models exhibit similar behavior of our T-C
models and therefore, our framework can be used to explain the reasoning ability of practical models.

6.1 VARIANCE OF THE OUTPUT

Reviewing the T-C model we defined in Section 4.2 and Appendix B.2, it requires an autoregressive
model to identify the T/C classification of the next position given the preceding T-C classification
and the template tokens. It should also generate results that are independent to content when the next
position is template. To test if the real-word models align with it, we create a T-C dataset. Using
GPT-4 (OpenAI, 2023) for the concatenate-last-letter task (Wei et al., 2022), we obtained an answer
sequence. We labeled the letters and words as content and the rest as template. We use our manually-
labeled T/C classification as the groundtruth. It is quite natural because of the relatively clear T/C
classification in this task. After replacing content with other words and letters, we acquire sequences
with aligned T/C classification and the same template tokens. In our experiments, we use more
realistic word-level T/C alignment since different words can split into varying tokens by different
models. We re-merging sub-word tokens and test on the first token for each word (details refers to
Appendix D.3.1). This approach helps us compare sequences even when they have different token
numbers and tokenizers. The dataset is illustrated in Figure 4 left with details are in Appendix D.1.

We input these sentences into various open-source models and measure the variance of the output
distributions at each position. The output distribution is a vector with a dimension equal to the
vocabulary size. We calculate the variance for each dimension and then average them. According to
our definition, a T-C model should show lower variance for template tokens (given replacement only
affects content, the template remains consistent for each input) and higher variance for contents.

The results of models GPT2-xl(1.5b: 1.5 billion parameters) (Radford et al., 2019), OPT-30b (Zhang
et al., 2022) and Llama2-70b (Touvron et al., 2023) are displayed in Figure 4 right, where shorter
template green bars compared to 10 content blue bars (4 words, 4 letters and 2 answers, see Figure 4
left) indicate significant less variance on the template positions. The results suggests that real-world
models behave as the T-C model defines. In other word, our T-C structure can be applied to real-world
models.

Interestingly, a model’s ability to differentiate between T/C seems to correlate with its size and
reasoning capabilities. The most powerful Llama2-70b with reasoning capabilities comparable to
GPT-3.5, exhibits the clearest T/C distinction, while GPT2, struggling with this task with little CoT
capacity (Kojima et al., 2022), also exhibits the least distinction. The results consistent with our
theory: clear T/C distinction indicates better reasoning ability. And it also gives us confidence that
(1) the ability to clearly differentiate T/C can serve as a criterion for judging a model’s reasoning

8
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[Prompt]: Concatenate the last letters of the given words: publicity,
sunset, ongoing, damage. Let's think step by step.

[Answer]:

1. The last letter of publicity is y.

2. The last letter of sunset is t.

3. The last letter of ongoing is g.

4. The last letter of damage is e.

5. Concatenating these letters together, we get the answer: ytge.

Therefore, the answer is ytge.

[Prompt]: Solve the arithmetic problem. Question: John found 70 seashells on the beach. 

she gave Sam some of her seashells. She has 27 seashells left. How many seashells did 
she give to Sam? Let's think step by step.

[Answer]:

1. We know that John found 70 seashells on the beach.

2. She gave Sam some of her seashells.

3. She has 27 seashells left.

We need to find out how many seashells John gave to Sam. To do this, we'll subtract the 

number of seashells she has left from the initial number of seashells she found:

70 - 27 = 43

John gave 43 seashells to Sam.

Figure 5: The T/C classification generated by the autoregressive classifier based on a Llama-2-70b
model. Template: yellow, content: blue. Left: concatenate-last-letter. Right: Arithmetic problem
from SingleEQ. We mark the token whose classification conflicts with the human intuition as red.

capability and (2) our framework will likely fit future powerful LLMs. Further results with different
templates and models are in Appendix D.2 as well as the AUC-ROC report.

6.2 VARIANCE-BASED AUTOREGRESSIVE T/C CLASSIFIER

To better illustrate the differentiated behavior, we introduce an autoregressive T/C classifier based on
the variance. The main method is similar to the previous section. However, unlike the experiments in
Section 6.1 which requires manually labeling and write the content list for the whole sentences, we
now only do so for the prompt. For any sentence, starting from the word right after the prompt, we
iteratively predict the T/C classification word-by-word. For each position, by inputting the preceding
partial sentences with several different content replacements, we measure the output variance at
the current position. If the variance surpasses a predefined threshold, it is categorized as content,
and we record the model’s generation as the replacing tokens for it. Otherwise, we classify it as a
template and directly add the original word to all perturbed sentences to ensure the same template.
This process is repeated until the sentence is fully classified. A detailed pseudo-code is available
in Appendix D.3.2. It is more practical as it eliminates the need to pre-label every sentence. But
it is also challenging due to the autoregressive nature: any misclassification can negatively impact
subsequent classifying. So we employ the powerful Llama-2-70b (Touvron et al., 2023).

We test a sentence derived from the aforementioned dataset (concatenate-last-letter task). The
result is shown in Figure 5 left. For the concatenate-last-letter sentence where the structure of the
sentence is clear, the result perfectly aligns with human intuition (which we believe is a very close
approximation of the “groundtruth”), which means in this sentence, the Llama-2 model exhibits
typical T-C behavior. To test on a more complex sentence, we choose a problem from an arithmetic
dataset SingleEQ (Koncel-Kedziorski et al., 2015) and then generate an answer sequence by GPT-
4, which leads to a longer sentence with a more complex structure than the above one from the
concatenate-last-letter task. We choose the most typical content as C including the names, objections,
and Arabic numbers. The result is shown in Figure 5 right. The result is also consistent with
our intuition at most positions even in this more complex setting, which supports our theoretical
framework. Results on other sentences and the details of this classifier can be found in Appendix D.3.

7 CONCLUSIONS AND LIMITATIONS

In this study, we propose a novel framework termed the template-content structure for modeling
autoregressive generation in neural language. We demonstrated that with the template invariance, this
framework can elucidate the ability of autoregressive models to tackle complex tasks. According to
our construction, there exists a Transformer that can implement the generation with template-content
structure and the natural corollary is its ability for complex reasoning. Furthermore, the hierarchical
extension of our template-content framework explains the generalizing power of the models. We
also provided some empirical evidence that practical models indeed exhibit distinct tendencies with
regard to template and content separately.

There are still some limitations of this work. For our modeling, there is still some gap between our
framework and the practical application, such as the alignment, sampling and so on. Despite some
explanation and discussion in Appendix C, we acknowledge that further refinement of our framework
is necessary, particularly in formalizing these discussions. This will be a pivotal focus of our future
work. For our experiment, we acknowledge that our experiments rely on limited datasets and models.
In addition, our experiments mostly focus on the output behavior, without more visualization of the
inner behavior of these models. However, how to visualize the model behavior in a larger model is
still an open question. This will also be our further work and we hope more visualization methods
can help us to validate whether the models’ behavior is consistent with our theoretical framework.
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REPRODUCIBILITY

We attach great importance to the reproducibility of our work. As a work that focuses on theoretical
analysis, we give the assumptions and proofs of each theorem as formally and as detailedly as possible
— the formal framework is the goal of our work in itself. Although limited by space and coherence,
much of the more formal presentation has been added to the Appendix (see Appendix B). Regarding
the algorithm used in the experiment, we describe in detail all the details including the generation of
the data set and the implementation of the algorithm (see Appendix D). At the same time, we also
provide codes in the supplementary materials, through which the experimental results in the article
can be directly reproduced.
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A HIERARCHICAL GENERATION

A.1 HOW CAN WE COMBINE DIFFERENT SAMPLES INTO ONE SEQUENCE?

Generalizing the template-content structure to the hierarchical version can enable modeling arbitrarily
complex tasks that may involve multiple levels of sub-tasks. However, the answer space also grows
exponentially. Looking for a single training sample containing all levels of template guidance may
not be realistic for the amount of data required, even for an Internet-scale training set. Fortunately, in
this section, we show that it is feasible to combine different-level templates from different training
samples. That is, we can learn a combinatorially complex hierarchical template from different training
samples, each providing only a certain template, leading to also exponentially increased combinatorial
power in the answer generation, which explains the generalization ability of our model.

To formally incorporate the “combination of different samples” into our T-C structure, we need to
describe under what conditions these samples can be combined together to form a new sequence. We
first define label. In Figure 1, we have already used some blue symbols such as <obj1>, <obj2>and
<value1>to denote the labels for the content tokens, which then transforms into concrete tokens
such as “corrects”, “wrongs” and “35”. We can think of a label as sufficient and necessary
information from the template to generate the corresponding content, which means that any mod-
ification to the template without altering the label will not influence the generation of the content.
For example, “based on the formula <equ>” and “according to the equation <equ>”
are two template-content structures with different templates (“based on the formula” vs. “according
to the equation”) but the same label (“<equ>”). This label will generate exactly the same content
(concrete equations) with the same preceding content information (the same arithmetic problem) for
these two different templates. The formal definition is shown in Appendix B.7. If a′ is in the label set
of a, we say the two sequences a and a′ have label consistency. Intuitively, it means we can merge
the template part of a and the content part of a′ together to make a new sentence. And if these two
sentences can be generated by an (ideal) T-C model separately, this combined sentence can be also
generated by the model.

The concept of label consistency can be extended to n samples and used to explain how the combina-
tion of n samples can yield the hierarchical templates. Specifically, we have n samples a1, . . . ,an

with the aligned n-level T/C classification and want to merge them into one sequence by taking the
k-th level tokens from the k-th sentences. When we have merged T<k levels from their respective
samples, we can combine the k-th sample if the label of the k-th sample at the k-th level matches
the combined sequence. We say these n samples have label consistency if, for any 1 ≤ k ≤ n, the
label of k-th sample at the k-th level matches the combined sequence. In this situation, we denote the
combined sequence as â. Similar to the case of two sentences, this property ensures that as long as
each sentence can be generated by a T-C model, the combined sentence can also be generated. The
formal definition is shown in Appendix B.7.

A.2 THE GENERALIZATION POWER OF THE HIERARCHICAL TEMPLATE-CONTENT MODELING

Above, the “label” and “label consistency” describe the conditions that several samples could be
composed together into a new answer sequence. To achieve the combinatorial generation ability,
another issue that needs to be addressed is content generation. Tokens can simultaneously serve as
the content for lower-level tokens and the template for higher-level ones. The generation of tokens
could either follow a content-like pointing approach or a template-like continuing writing strategy.
For example in Figure 3, the token 54 and 28 should be produced by pointing whereas the resultant
subsection 26 is likely learned from a training sample containing the same calculation. As we
mentioned in Section 4.1, we focus on the template generating learned from training samples and
assume the models have the content-generating ability. For the sake of brevity within our framework,
we introduce the concept of virtual training samples to consolidate these two abilities. Provided a
sequence can be autoregressively generated, meeting the criteria in Definition 4, we will treat it as a
training sample. The sequence’s actual presence in the training sample set, or its status as a virtual
training sample capable of being generated because of assumed generalization ability (for example,
generating content disparate from actual training samples), is inconsequential. This approach allows
us to uniformly model answer generation within the sample-based continuous generation ability.
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With our discussion of the condition that n samples can be combined to provide corresponding-level
templates, i.e., the label consistency, and the assumption about the content generation, we can now
proceed to provide a proposition similar to Proposition 1 in the hierarchical structure.
Proposition 3 (hierarchical answer generation, informal). Given k samples with label-consistency,
which a T-C Transformer is well-trained on them, this model can generate the combined answer â
with the same k-level tokens as the sample a(k).
The formal description and the proof will be shown in Appendix B.8. The proposition demonstrates
the model’s capability to combine information from different training samples a(i). This capac-
ity leads to exponentially increased combinatorial power in the answer generation as well as the
generalization ability.

B FORMAL DEFINITION, PROPOSITION AND PROOF

B.1 THE UNIVERSAL APPROXIMATION THEOREM

The formal description of the original UAT in Yun et al. (2020) is as follows:
Theorem 2 (Universal approximation theorem, UAT). For any continuous distribution P defined
on a compact support D ⊆ Rn×d, any 1 ≤ p < +∞, ε > 0, the context window n and the target
continuous sequence-to-sequence function f : D → Rn×d, there exist a Transformer g with l layers,
such that

PX∼P

[
∥f(X)− g(X)∥p < ε

]
≥ 1− ε. (2)

where the norm is entry-wise lp norm.4

The proof of our modified theorem is as follows.

Proof. Here, we follow the proof in Yun et al. (2020) (Theorem 3 in that paper). Notice that the
only difference between the causal Transformer and the original Transformers is the mask in the
self-attention. So we only need to modify the parts of the proof that related to self-attention.

The proof in Yun et al. (2020) can be divided into three steps:

1. Any continuous function defined on a compact support can be approximated by a piece-wise
constant function on the δ-grid Gδ = {0, δ, . . . , 1− δ}n×d

2. Any piece-wise constant function can be approximated by a modified Transformers. Here,
modified means that the softmax function in the self-attention is replaced by a hardmax
function and the activation function can be any piece-wise linear function with at most three
pieces.

3. The modified Transformers can be approximated by the original Transformers.

To modify the proof to the causal setting, the first step can be applied directly, as it is not contingent
upon the specific structure of the Transformers. Similarly, the third step, which is proofed by
approximating the hardmax through the softmax as the temperature approaches infinity, can be also
applied directly. The only difference is the second step, the key part of the proof. The basic idea of
the second step is several Transformer layers can be used to learn each input vector with its position
and context to a unique representation like a hash function. Then, with the distinct representation
and the universal approximating ability of feed-forward networks, expressive power can be achieved
by the following feed-forward functions. Specifically, the part of the proof consists of three-step
construction:

1. Discretization: A series of feed-forward layers in the modified Transformers network
can quantize the continuous input X ∈ Rn×d into an element L on the extended grid
G+

δ = {−δ−nd, 0, δ, . . . , 1− δ}n×d. This step is to prepare the unique representation for
the inputs.

4Here, we have slightly modified the form of the original theorem, such as the type of convergence.
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2. Unique Representation: a series of self-attention layers can learn the unique representation
q(Li;L), where Li is the input vector and L is the context. The representation is the same
only if the input vector and the context are both the same.

3. Value Mapping: a series of feed-forward layers can map the unique representation to the
desired output value.

The discretization and value mapping only involve the feed-forward layers and the proof can be
applied directly. So we only need to modify the unique representation part. Specifically, modify the
global context L to causal context L1:i for the input Li.

As the claim in Appendix C in (Yun et al., 2020), the proof with position embedding only needs
Category 1 in Appendix B.5.1. So we only need to modify this part to fit the causal setting. Here we
claim:

1. With two additional dimensions in the hidden states to learn a position embedding, one
self-attention layer with two (hardmax) heads can achieve the mapping from the column id5

l
(t)
k into the difference between the current position and the last position δ−2d(l

(t)
k − l

(t)
k−1)

2. With t stacks of such layers, the output at t-th position is the bijection mapping from the
causal context L1:t.

The first claim: for the hardmax attention Attnh(X) = σH(XWQ(XWK)T )(WV X).

First, we can use additional two dimensions in the hidden states to store the position embedding
(cos(tθn), sin(tθn)) where θn = 2π

n . With the residual connection between each block, we just need
to ensure the output of the attention blocks and feed-forward blocks in these dimensions are all zero
so the position encoding will not change through different layers. We denote the extended input as
L+ ∈ G+

δ × Rn×2.

Then let WQ ∈ R(d+2)×2 = (0,R(−θn)) where R is the rotation matrix in the 2-dimension
plain and WK ∈ R(d+2)×2 = (0, I2). So the qt = (cos((t − 1)θn), sin((t − 1)θn)) and kt =
(cos(tθn), sin(tθn)) so that the hardmax at position t always return the index t− 1 (with additionally
defining v0 = v1). As for Wv, we just use the construction in the original proof, which means
Wv ∈ R(d+2)×1 = (1, δ−1, . . . , δ−d+1, 0, 0). This head returns the column index lt−1 at the position
t− 1. Let another head returns lt and the Wh = δ−2d(1,−1), so that after one self-attention layer,
the value vt at position t is lt + δ−2d(lt − lt−1). Then we repeat the layer n times, we can easily
prove that the value vt at position t is

l
(n)
t =

n∑
i=0

δ−2id
i∑

k=0

((
i

k

)
(−1)klt−k

)
, (3)

where we use the convention that lt = l1 if t ≤ 0. Now let us show why the value l(n)t is the bijection
mapping from the causal context L1:t. Note that |

∑i
k=0(

(
i
k

)
(−1)klt−k)| ≤ 2i(δ−d+1 − δ) ≤

(δ−d − 1) if we set δ ≤ 1/2n. So if we have l
(n)
t = l

(n)′

t , denote ci =
∑i

k=0

((
i
k

)
(−1)klt−k

)
, then

we must have
n∑

i=0

δ−2id(ci − c′i) = 0, where − (δ−d − 1) ≤ ci ≤ (δ−d − 1), (4)

and
|ci − c′i| ≥ δ or ci = c′i. (5)

because the each li differ at least δ after the discretization and with the special construction of Wv .

If cn ̸= c′n, we have

|
n−1∑
i=0

δ−2id(ci−c′i)| ≤
n−1∑
i=0

2δ−2id(δ−d−1) ≤ 2(δ−2nd−1)/(δ−d+1) < δ−2nd+1 ≤ δ−2nd|ci−c′i|,

(6)
5The column id is a unique representation of the input vector. See Appendix B.5 of the original paper.
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but at the same time,

|
n−1∑
i=0

δ−2id(ci − c′i)| = |δ−2nd(ci − c′i)| = δ−2nd|ci − c′i|, (7)

because of the sum in Equation (4) is zero, there is a conflict. So we must have cn = c′n. And
similarly, we can recursively prove each ci and c′i are equal. Note that c0 = c′0 implies lt = l′t, and
c1 = c′1 implies (lt − lt−1) = (l′t − l′t−1) so that lt−1 = l′t−1. We can recursively prove that li = l′i
for any i = 1, . . . , t. Combining with the bijection of Li to lt (proofed in the original paper), it means
the mapping from L1:t to l

(n)
t is a bijection. Because our results are still bounded, the properties 6.3

and 6.4 can be satisfied with slight modification. This finishes the proof.

B.2 THE GROUNDTRUTH CLASSIFICATION AND THE TEMPLATE-CONTENT GENERATION
MODEL

Definition 5 (The groundtruth classification and the template-content generation model, formal).
If a T/C classification function F and an autoregressive generation modelM satisfy the following
requirements, we call the function F as a groundtruth T/C classification and the modelM as a
template-content (T-C) model. The requirements are: for any prompt p, question q and q′, partial
answer a1:t and a′

1:t, (1) if F(p, q,a1:t) = F(p, q′,a′
1:t) (T/C alignment) and as = a′s for all

1 ≤ s ≤ t such that F(as) = T (the same template), then the T/C classification of the next token is
the same:

F (M(p, q,a1:t)) = F (M(p, q′,a′
1:t)) , (8a)

and (2) if F(p, q,a1:t) = F(p, q′,a′
1:t) (T/C alignment), as = a′s for all 1 ≤ s ≤ t such that

F(as) = T (the same template), and further F (M(p, q,a1:t)) = F (M(p, q′,a′
1:t)) = T , then

M(p, q,a1:t) =M(p, q′,a′
1:t). (8b)

B.3 THE EXISTENCE OF THE T-C TRANSFORMERS

Here, we consider an ideal T-C modelMI and the corresponding groundtruth T/C classification F .
We need to construct a Transformer to fit the modelMI .

We first rewrite the generation process of the T-C modelMI in Equation (??) as follows:

at+1 =MI(p, q,a1:t) = gI(fT,I(p, q,a1:t), fC,I(p, q,a1:t)) (9)

where fT,I and fC,I are causal functions that map an input sequence to a sequence with the same
length in a certain representation space, and gI is a causal function to output the next token prediction.
The fT,I is the function to extract the template information independent of any content token.
Specifically, it means fT,I(p, q,a1:t) = fT,I(p, q

′,a′
1:t) if F(p, q,a1:t) = F(p, q′,a′

1:t) (T/C
alignment), and as = a′s, ∀1 ≤ s ≤ t : F(as) = T (same template). The fC,I is similarly defined as
the content representation only depending on the preceding content tokens and being independent
of any template token. That is, fC,I(p, q,a1:t) = fC,I(p

′, q,a′
1:t) if F(p, q,a1:t) = F(p′, q,a′

1:t)
(T/C alignment), and as = a′s, ∀1 ≤ s ≤ t : F(as) = C (same content). To ensure that template
token only depends on preceding template tokens, we also have when F(at+1) = T , the value of
function gI should only depend on the output of fT,I while being invariant to changes of fC,I .

Considering that the vocabulary is finite, we can set the representation space of fT,I and fC,I as Rd

where for a sufficiently large d, the capacity is guaranteed to be adequate. In this situation, the value
of fT,I and fC,I are two tensors shaped as (|p|+ |q|+ t)× d (denoted as HT,I and HC,I ), and we
can concatenate these two tensors in the second dimension as the input of gI . Notice that we can
require fT,I , fC,I and gI to be causal functions6 because of the autoregressive generation. According
to Theorem 1, there exist three causal Transformers that can approximate these function fT,I , fC,I

and gI arbitrarily well and we denote them as fT , fC and g.

6To be more precise, we can construct a function ĝI that generates a sequence (p2:|p|, q,a1:t+1), where this
function is causal. Then, the gI takes the last element of the output of ĝ.
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Finally, we need to show that these three Transformers can be combined into one (through concatena-
tion and stacking). By combining the heads in each layer of fT and fC together, the output of the
combined layer is the concatenation of the output of fT and fC . We can keep their independence
property by ensuring that the feed-forward layer is block diagonal. As in other theoretical analyses,
we ignore the layer norm. After l = max(num_layer(fT ), num_layer(fC)) layers, the output of
the combined Transformer is the concatenation of HT and HC . Then it just needs to add a Trans-
former g after the combined fT and fC . As a summary, the constructed Transformers is as shown in
Figure 2. Namely, fT , fC compose the first few layers of the combined Transformer, their output
tensors HT ,HC are the hidden representations after these layers, and finally g takes these hidden
representations to output the next token.

B.4 THE PROOF OF PROPOSITION 1

The proof of Proposition 1 is shown as follows:

Proof. Given the prefix a1:t and a′
1:t, we considering the generation of the next token at+1. Because

the Transformer is well-trained on the training sample p, q′,a′, according to the Definition 4 (well-
trained model), we have

a′t+1 =M(p, q′,a′
1:t), (10)

We denoteM(p, q,a1:t) as at+1. According to the Equation (8a), we have F(at+1) = F(a′t+1). If
the generated token is a content token, it has satisfied the requirement of the proposition, because
the proposition only claims the same template tokens. If the generated token is a template token,
according to the Equation (8b), we have

at+1 =M(p, q,a1:t) =M(p, q′,a′
1:t) = a′t+1, (11)

which satisfies the claim. Finally, we need to check whether the conditions of the proposition have
been satisfied for the new sequence concatenated with the generated token at+1. If the conditions
are still satisfied, we can finish the proof recursively. For the first condition (T/C alignment),
we have F(at+1) = F(a′t+1) and F(p, q,a1:t) = F(p, q′,a′

1:t). Because the function F is
a causal function and the newly appended token does not affect the preceding value, we have
F(p, q,a1:t+1) = F(p, q′,a′

1:t+1). The second condition (the same template tokens) is obviously
satisfied.

B.5 THE FORMAL DEFINITION OF HIERARCHICAL TEMPLATE INDEPENDENCE

Here, we give the generalization of the Definition 5 in the hierarchical situation. First, we need to
generalize the conditions as follows:
Definition 6 (k-th level alignment). With a n level hierarchical classification function F , two
sequences a and a′ with same length are called k-th level aligned, if and only if for any 1 ≤ t ≤ |a|,
at least one of the following conditions is satisfied:

F(at) = F(a′t) and at = a′t, (12)

or
F(at) ∈ T≥k+1 and F(a′t) ∈ T≥k+1. (13)

To show that the definition is the generalization about the T/C alignment and fixed template tokens,
notice that if we set n = 2 and k = 1, the second condition says that both the tokens are content
tokens while the first condition says that both are template tokens and the same. In this situation,
the condition is the same as the ones that we use in Definition 5 and Proposition 1, i.e., the T/C
classification is aligned and the template tokens are the same. Then, the generalization of the
Definition 5 is as follows:

Definition 7 (The groundtruth classification and the template-content generation model, hierarchical).
For a hierarchical T/C classification function F with n level and an autoregressive generation model
M, for any 1 ≤ k ≤ n, given the k-th level aligned prefix sequences a1:t−1 and a′

1:t−1, if the
generated (next) token is also k-th level aligned during the autoregressive generation, we call the
function F as a groundtruth T/C classification and the modelM is a T-C model. It means for all
sequences a and a′ with the same length, and for all 1 ≤ t ≤ |a|, at least one of the following
equations should be satisfied:

F (M(a1:t−1)) = F
(
M(a′

1:t−1)
)

andM(a1:t−1) =M(a′
1:t−1), (14)
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or
F (M(a1:t−1)) ∈ T≥k+1, and F

(
M(a′

1:t−1)
)
∈ T≥k+1, (15)

if the prefix sequences a1:t−1 and a′
1:t−1 are k-th level aligned.

B.6 THE FORMAL DEFINITION OF DEPENDENCY MATRIX

Formally, for a given sentence a, when the next token is Tk, there is a support set Dk ∈ {0, 1}k
such that

g(fT1(a), . . . , fTk
(a)) = g(fT1(a

(1)), . . . , fTk
(a(k))),∀a(s) ∈ S(s), s = 1, 2, . . . , k,

where S(s) is a one-point set {a} if the s-th element of Dk (denoted as dks) is 1, otherwise S(s) is
the full space of the sequence with the same length. In this situation, we refer to the k-th level as
(conditional) independent of the s-th levels if dks = 0. The support set must exist because if we set
it as (1, 1, . . . , 1), it says nothing about the function g. Then We define the dependency matrix as a
lower-triangle matrix where Dk,1:k = Dk.

B.7 THE FORMAL DEFINITION OF LABEL

Formally, we define
Definition 8 (Label). For the given modelM = (fT1

, . . . , fTn
, g), a sequence a1:t and its depen-

dency matrix D, when the next token to be generated at+1 satisfies F(at+1) = Tk, the k-th level
label of a1:t (denoted as Lk(a1:t)) is defined as the set of sequences {a′

1:t}:

1. The T/C classification is aligned, i.e., F(a′
1:t) = F(a1:t).

2. The combined sequence â1:t is constructed by replacing all the ≤ (k − 1)-level tokens in a1:t

with those in a′
1:t. The replacement does not affect

(a) the T/C classification of the next token, which means

F(M(â1:t)) = F(M(a1:t))

(b) the generation of the next token, which means

g(fT1
(a′

1:t), . . . , fTk−1
(a′

1:t), fTk
(a1:t)) = g(fT1

(a1:t), . . . , fTk
(a1:t));

(c) the dependency matrix, which means the dependency matrix D of the sequence a1:t is also
the dependency matrix of sequence â.

With the statement 2a, 2b in the definition, we can rewrite the generation as at+1 =
g(fT1

(Lk(a1:t)), . . . , fTk−1
(Lk(a1:t)),fTk

(a1:t)), if F(at+1) = Tk. It is worth noting the simi-
larity between this definition and the definition of T-C model (Definition 5 and 7 in Appendix). To
ensure the same next token generation, the “having the same label” condition is a relaxation of the
“having the same ≤ Tk−1 token” condition, whereby the exact template can be substituted with
equivalent sequences. For the sequence a′ in the label set Lk(a), the information from the dependent-
level template tokens of a′ is equivalent to those of a. It enables the possibility of combining two
sequences from different sources during the “continuation” generation of the T-C model. That is, the
k-level template part from the original sequence a can be combined with the lower-level template
part from another sequence a′, which does not impact the generation of Tk tokens, just like we
can combine the template “according to the equation” with the content in “based on
the formula <equ>” to generate an appropriate sentence “according to the equation <equ>”.

With the statement 2c, it further claims the replacement does not introduce additional inter-level
dependency. When the support set describes the dependency of the original sequence a, the sequence
can be replaced solely on these dependent levels, while the arbitrariness of other independent levels
can still be maintained. For example, when we replace “based on the formula <equ>” with
“according to the equation”, the replacing sequence keeps the independence of further
lower-level templates and therefore we can combine them.

We formally define label consistency as follows:
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Definition 9 (Label consistency). For a set of sequences {a(k) | k = 1, . . . , n} with n levels of
template, they have label consistency if and only if the following requirements are satisfied.

1. The T/C classification of these sequences is aligned.

F(a(i)) = F(a(j)), ∀i, j ∈ {1, . . . , n}. (16a)

2. We construct the combined sequence â which takes the Tk tokens from the corresponding
sequence a(k), i.e., ât = a

(k)
t if F(a(i)t ) = Tk,∀i. For any 0 ≤ t ≤ |â| − 1, and

F(ât+1) = Tk,
â1:t ∈ Lk(a

(k)
1:t ). (16b)

The first requirement (Equation (16a)) serves the purpose of constructing the combined sequence â.
As the key requirement, the second one (Equation (16b)) ensures that the k-th sample can be merged
with the 1st to (k−1)-th samples “appropriately”, collectively forming the k-th template, by requiring
its k-th level label should match the combined sequence â. Here, when we say “appropriately”,
intuitively, it means that the combined sentence remains coherent and reasonable and, thus, for an
ideal T-C autoregressive model, it can still generate the same k-level tokens. At the same time, this
requirement also determines the dependency matrix of the sequence â. Specifically, the k-th row of
the dependency matrix is the same as the k-th row of the dependency matrix for the k-th sample.

B.8 THE PROOF OF PROPOSITION 3

The formal description of the Proposition 3.
Proposition 4 (Hierarchical answer generation, formal). Given a partial answer a1:t as the input
and an n-level hierarchical template-content classification function F , and a T-C Transformer model
(fT1

, . . . , fTn
, g), we assume that there exist a set of training samples {a(k)|k = 1, . . . , n} that has

label consistency (with denoting the combined sequence as â), and the partial sequence â1:t = a1:t

and the modelM is well-trained on them. We have the model can generate the answer a from a1:t

autoregressively as the same tokens as the combined sequence â, i.e., with the same k-level tokens as
the training sample a(k) for any k from 1 to n. Here, we require that each prompt of each sample
p(k) should be contained in the partial sequence a1:t or be generated as a part of T≤k−1.

Proof. Here, we prove that if the assumption â1:t+s = at+s holds for any the partial answer at+s

where s takes value from 0 to l − t− 1, then â1:t+s+1 = at+s+1 also holds, where we use at+s to
denote the generated partial sequence with length t+ s.

Without loss of generality, we assume the next token â1:t+s+1 is a Tk token. Because the training
samples have label consistency, we have the T/C classification of the generating token a1:t+s+1 is
also a Tk token, i.e.,

F(at+s+1) = F(ât+s+1) = Tk (17)
Therefore, the token can be generated by

at+s+1 = g(fT1(a1:t+s), . . . , fTk
(a1:t+s)). (18)

And we have the assumption â1:t+s = at+s, so we have

at+s+1 = g(fT1
(â1:t+s), . . . , fTk

(â1:t+s)). (19)

Because the label consistency, we have â1:t+s ∈ Lk(a
(k)
1:t+s) and notice that fTk

(a
(k)
1:t+s)) =

fTk
(â1:t+s)) because the combined sequence has the same Tk tokens as the k-th sample a(k),

so we have

g(fT1
(â1:t+s), . . . , fTk

(â1:t+s)) = g(fT1
(a

(k)
1:t+s), . . . , fTk

(a
(k)
1:t+s)). (20)

At the same time, according to the assumption of well-training and the prompt, we have that the
model can generate the token a

(k)
t+s+1 given the sequence a

(k)
1:t+s, so we have

at+s+1 = a
(k)
t+s+1. (21)

According to the definition of the combined sequence â, ât+s+1 takes value from a
(k)
t+s+1. So we

finally prove that at+s+1 = ât+s+1.
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C DISCUSSION OF THE TEMPLATE-CONTENT FRAMEWORK

Remark 1 (Practical training process). In our assumption, training samples should be in the format as
the (prompt, question, answer) triplets while the Internet corpus may not be primarily presented in
such a format. We point out that this alignment could be achieved in the crucial finetuning process i.e.
RLHF or similar finetuning phase. In this phase, the model can realign previously learned corpus into
the triplet format.
Remark 2 (format of the prompt). There are two primary prompt types: zero-shot instruction and
few-shot exemplars and our template-content structure is applicable to both. Zero-shot prompts
aid the model in recalling the templates learned during training, while few-shot prompts can also
provide explicit templates. By utilizing these few-shot exemplars, models can generate templates
based on the exemplars and also leverage the knowledge from similar templates, while the content
information should not be directly used in answer generation. This observation also explains why
zero-shot learning is more challenging than few-shot learning, as zero-shot learning necessitates the
model to independently generate templates. This concept aligns with the findings in Min et al. (2022),
demonstrating that the primary performance improvement of few-shot prompt stems from describing
the space of questions and answers rather than direct Q&A mapping.
Remark 3 (Alignment of position). We claim semantic alignment is a more realistic setting for our
T-C framework. However, employing semantic alignment introduces several challenges, such as
describing position correspondence and considering the variations in position encoding. Nevertheless,
we find it reasonable to embrace token-wise alignment, as we believe that a well-trained model can
automatically bridge the gap between these two settings during training. By disregarding position
offsets irrelevant to semantics, token-wise alignment can be achieved for semantically aligned samples
through the introduction of blank characters.

From a training point of view, the model may be able to quickly learn to what extent the position
offset is irrelevant to semantics, such as an additional space, so it does not affect any representation
and generation. With this ability, if the model fits well on one training sample, it can also fit well
on another sample, which is only different in some position offsets. Based on the observation, we
can assume the existence of the latter sample (i.e., the sample with the position offsets) and use the
token-wise alignment assumption.

As an additional explanation for this ability, we believe that the semantic and position information are
disentangled in the Transformer. From a simple test, it is easy to test that the semantic embedding and
position embedding are roughly orthogonal for most open-source models and therefore disentangled,
which means the model can capture the semantic information and position information separately.
Second, some results are also shown that the semantic information and the position information can
be learned by different heads. See the analysis in Voita et al. (2019).
Remark 4 (Output probability and diversity). Another simplification in our theoretical framework
pertains to the sampling scheme. We assume there is one standard token at each position while a
more realistic setting involves the model’s output being a probability distribution over the vocabulary
and the output token is then sampled from the distribution. With random sampling, the model can
generate diverse output with the same input.

Fortunately, our framework readily accommodates this sampling approach with simple modifications.
We posit the existence of a distribution over the sequence space, which can be learned from a
sufficiently large corpus. Given the prompt, question, and partial sequence, the distribution is
projected into a conditional probability, describing the probability of the subsequent tokens. By
replacing the individual training sample (or the sample set, if considering the hierarchical template)
with this distribution, our framework seamlessly adapts to this setting. Formulating the sampling
process into our framework will be our future work.

D EXPERIMENTS DETAILS AND MORE RESULTS

D.1 CONCATENATE-LAST-LETTER DATASET

The template of the concatenate-last-letter dataset is:
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Figure 6: More results of the variance of the output distributions at template and content positions.
X-axis: index of the tokens, y-axis: coefficient of variation. Blue bars: content tokens, a total of 10;
green bars: template tokens.

Concatenate the last letters of the given words: <word1>, <word2>, <word3>, <word4>.
Let’s think step by step.
1. The last letter of <word1> is <letter1>.
2. The last letter of <word2> is <letter2>.
3. The last letter of <word3> is <letter3>.
4. The last letter of <word4> is <letter4>.
5. Concatenating these letters together, we get <answer>.
Therefore, the answer is <answer>.

We produce the dataset by: (1) We collect the top 5,000 most commonly occurring English words
from wiktionary7. (2) Randomly sample words as <word> and extract the corresponding letters and
results.

D.2 VARIANCE OF OUTPUT

More results of the coefficient of variance are shown in Figure 6. Here all of Llama-2 models we
used are fine-tuned by chat data, i.e., the Llama-2-xxb-chat-hf model proposed by Huggingface. The
CV of content (blue) is almost larger than template (green). The ROC curve is shown in Figure 7.

We also test on some other answer sequences generated by GPT-4 on the concatenate-last-letter task
and follow the same process (labeling the content, replacing words and letters). These datasets differ
in the specific template and content list but follows the same generating process. These templates are
as follows:

Concatenate the last letters of the given words: <word1>, <word2>, <word3>, <word4>.
Let’s think step by step.
1. Word: <word1>, last letter: <letter1>.
2. Word: <word2>, last letter: <letter2>.
3. Word: <word3>, last letter: <letter3>.
4. Word: <word4>, last letter: <letter4>.
Now, let us concatenate the last letters of each word: <letter1> + <letter2> + <letter3>
+ <letter4> = <answer>. Therefore, the concatenated result is <answer>.

The results are shown in Figure 8 and 9. The conclusion is the same as we shown in Figure 6 and in
Section 6.1.

7https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/English/Wikipedia_(2016)
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Figure 7: Receiver Operating Characteristic (ROC) of template tokens and content tokens.
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Figure 8: More results of the variance of the output distributions at template and content positions
with another template. X-axis: index of the tokens, y-axis: coefficient of variation. Blue bars:
content tokens, a total of 14; green bars: template tokens.
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Figure 9: Receiver Operating Characteristic (ROC) of template tokens and content tokens with
another template.

D.3 VARIANCE-BASED T/C CLASSIFICATION

Here we exhibit some details of our variance-based T/C classifier.

D.3.1 WORD-LEVEL ANALYZER

As mentioned in Section 6.1, we need a word-level analyzer to address the issue of token-level
alignment that cannot be performed on real datasets. With this analyzer, we define “words” and
ensure that the tokenizers used by the practical models adhere to the “sub-word” assumption,
meaning that there is no token spanning across two “words”. In practice, we found that GPT-4 uses
the coarsest-grained tokenizer. So, we first use GPT-4’s tokenizer to divide sentences into different
tokens. For each token, we check whether its first position is a whitespace or some punctuation,
including periods, commas, colons, and semicolons. If it is, we keep it as a single token; otherwise,
we concatenate it with the preceding token. This process gives us a word-level analyzer, guaranteeing
that each token (generated by a tokenizer of a practical model such as Llama-2 or GPT-3) corresponds
to a single “word” (defined by our word-level analyzer). When we say “word”, we always mean a
token split by our word-level analyzer.

D.3.2 ALGORITHM

The pseudo-code of the autoregressive T-C Classifier based on variance is shown in Algorithm 1.

D.3.3 FIRST-TOKEN-BASED CLASSIFICATION

We measure variance only on the first token for the T/C classification, and use it to represent the
entire word. In most cases, determining the start of a word is sufficient to predict the entire word
generation. However, in some cases, this may lead to the incorrect identification of C as T . For
example, when the generated content includes a pair of quotation marks and the tokenizer treats a
single quotation mark as a separate token, the model recognizes the word as content (so the variance
should have been higher) while the generation at the first position is fixed (a quotation mark) and
the variance is low. It should be noted that simply splitting it into different words might violate
the sub-word assumption mentioned above. Therefore, we choose to filter out some meaningless
tokens from the output probabilities. Specifically, in the concatenate-last-letter dataset, we remove
single whitespaces, line breaks \n, and a space-prefixed left quotation mark. In the SingleEQ dataset,
we additionally remove space-prefixed dollar signs $ which are used to represent numbers in some
training samples. For these tokens to be removed, we consider two methods. The first is to simply set
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Algorithm 1 Autoregressive T-C Classifier based on variance

Require: sentence s with prompt p as the beginning part, autoregressive model M , threshold θ,
replacing times N

Ensure: Classified sentence
1: Initialize empty lists: T , C
2: Initialize empty set for sequences with content replacement: S ← ((), . . . , ()) (N empty se-

quences.)
3: for each word w in prompt p do
4: Manually determine whether w belongs to T or C.
5: for s′ ∈ S do
6: if w belongs to T then
7: s′ ← s′ + w
8: else
9: Manually write the replaced content replaceContent

10: s′ ← s′ + replaceContent
11: end if
12: end for
13: end for
14: s← s− p
15: while s is not empty do
16: w ← s[0], P ← {}
17: for each sentences s′ in S do
18: Record the output distribution: P.add(M(s′))
19: end for
20: variance← measure the variance in the distribution set P .
21: if variance > θ then
22: Classify w as content: C.add(w)
23: for each sentences s′ in S do
24: replaceContent← ArgMax(M(s′))
25: s′ ← s+ replaceContent′

26: end for
27: else
28: Classify w as template: T.add(w)
29: Add w to each sentences in S.
30: end if
31: s← s[1 :]
32: end while
33: return T , C
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[Prompt]: Concatenate the last letters of the given words: exception,
currency, t-shirt, symbolic. Let’s think step by step.

[Answer]:

1. Word: exception, last letter: n.

2. Word: currency, last letter: y.

3. Word: t-shirt, last letter: t.

4. Word: symbolic, last letter: c.

5. Now, let us concatenate the last letters of each word: n + y + t + c = nytc.

together, we get the answer: nytc. Therefore, the concatenated result is ytge.

Figure 10: The classification results of the concatenate-last-letter dataset. Threshold: 0.4. Template:
yellow, content: blue. We mark the token whose classification conflicts with the human intuition as
red.

their value to a very small number and then re-normalize through the softmax function. The second is
to continue considering the generation at the next position: we first set the probability (after softmax)
of these filtered tokens as zero. Then we just set the current position’s output as one of the tokens
to be removed and get the generation distribution at the next position. We multiply this output’s
probability distribution by the probability of this token in the original output and then add it to the
original distribution. For example, if we want to remove whitespace’s probability from the current
probability, denoted as P , we first set its probability to zero, denoted it as P̂ . And then we assume
the current output is just the whitespace and make the model generate the output probability at the
next position, denoted as P ′. Then we multiply this distribution by the probability of the whitespace
P (whitespace) · P ′ and add it to P̂ . It is easy to check the sum of the new distribution is still one.
This procession is just like skipping the whitespace and replacing the next token in the current place.
The latter method is more accurate in practice, preventing the filtered tokens from dominating the
probabilities, but it significantly reduces inference speed. We only use the latter method in “SingleEQ”
and we also set a threshold (1%) to pass this procession when the probability of the filtered token
does not exceed a certain value.

D.3.4 CONTENT GENERATION

Another issue is content generation. Since we no longer use human annotations and instead rely on
the model’s judgment of when to generate content, we use the model itself to generate tokens that
should be filled in under different content replacements. The challenge here is how to determine
whether content generation has finished. For example, in the concatenate-last-letters dataset, when
the model detects the next token after “3. The last letter of” should be content, the model should
generate some tokens that will be used to fill in this position while detecting the subsequent positions.
However, the generated <word3> could be tokenized into several tokens and cannot be generated in
one step. So we need a criterion to detect whether the generation has finished. Here, we assume one
content consists of a single word. We use the same criterion as our word-level analyzer mentioned
above, which is to keep adding generated tokens until a token with a space (or punctuation, line break,
etc.) is generated. At this point, all previously generated tokens can be combined into a “word” and
used as a replacement for the current content.

D.3.5 MORE RESULTS

More results of the T/C classification are shown in Figure 10, 11 and 12.
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[Prompt]: Concatenate the last letters of the given words: electric, plain,
apartment, brain. Let’s think step by step.

[Answer]:

1. Extract the last letters of each word: electric: c, plain: n, apartment: t,

brain: n.

2. Concatenate the extracted letters: c + n + t + n = cntn. together, we get 

the answer: cntn. Therefore, the concatenated result is cntn.

Figure 11: The classification results of the concatenate-last-letter dataset. Threshold: 0.3. Template:
yellow, content: blue. We mark the token whose classification conflicts with the human intuition as
red.

[Prompt]: Solve the arithmetic problem. Question: There were 6 roses in the vase. Mary 

cut some more roses from her flower garden. There are now 16 roses in the vase. How
many roses did she cut ? Let's think step by step.

[Answer]:

1. Start with the number of roses in the vase before Mary cut any: 6.

2. We wonder how many roses Mary cut from her garden. Let's call this number "x".

3. Add the number of roses Mary cut to the original number in the vase: 6 + x.

4. This equals the total number of roses in the vase after Mary cut some: 16.

5. So we can set up an equation: 6 + x = 16.

6. To solve for x, we need to isolate it on one side of the equation. We can do this by 

subtracting 6 from both sides: x = 16 - 6 = 10.

7. Therefore, Mary cut 10 roses from her garden. Therefore, the answer (arabic number) 

is 10.

Figure 12: The classification results of the SingleEQ dataset. Threshold: 0.35. Template: yellow,
content: blue. We mark the token whose classification conflicts with the human intuition as red.
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