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Abstract

A major reason behind the recent success of001
large language models (LLMs) is their in-002
context learning capability, which makes it pos-003
sible to rapidly adapt them to downstream text-004
based tasks by prompting them with a small005
number of relevant demonstrations. While006
large vision-language models (VLMs) have re-007
cently been developed for tasks requiring both008
text and images, they largely lack in-context009
learning over visual information, especially010
in understanding and generating text about011
videos. In this work, we implement Emergent012
In-context Learning on Videos (EILeV), a013
novel training paradigm that induces in-context014
learning over video and text by capturing key015
properties of pre-training data found by prior016
work to be essential for in-context learning in017
transformers. In our experiments, we show018
that EILeV-trained models outperform other019
off-the-shelf VLMs in few-shot video narra-020
tion for novel, rare actions. Furthermore, we021
demonstrate that these key properties of bursty022
distributions, skewed marginal distributions,023
and dynamic meaning each contribute to vary-024
ing degrees to VLMs’ in-context learning ca-025
pability in narrating procedural videos. Our026
results, analysis, and EILeV-trained models027
yield numerous insights about the emergence028
of in-context learning over video and text, cre-029
ating a foundation for future work to optimize030
and scale VLMs for open-domain video under-031
standing and reasoning.032

1 Introduction033

In recent years, the advent of transformer-034

based (Vaswani et al., 2017) large language mod-035

els (LLMs) has garnered significant attention in036

and beyond the AI research community. A central037

reason for this is their in-context learning capabil-038

ity (Brown et al., 2020), which makes it possible039

to rapidly adapt LLMs to novel tasks by simply040

prompting them with a few demonstrations. This041

capability removes the need for the expensive and042

arduous task-specific fine-tuning required by ear- 043

lier language modeling approaches. 044

While in-context learning has been extensively 045

studied and utilized in purely text-based problems 046

in language understanding, reasoning, and gener- 047

ation, there are myriad potential applications for 048

this rapid post-deployment adaptation in processing 049

video. For example, in embodied and task-oriented 050

AI, a major challenge is to recognize novel, rare 051

human actions from video that cannot possibly be 052

completely covered in training data (Perrett et al., 053

2023; Du et al., 2023; Bao et al., 2023). A vision- 054

language model (VLM) capable of in-context learn- 055

ing over video could address this challenge, as it 056

would only require a few related videos of actions 057

as few-shot, in-context examples to recognize and 058

reason about these novel, rare actions. However, 059

while large VLMs for jointly processing text and 060

images have been developed (Li et al., 2022, 2023c; 061

Dai et al., 2023; Zhu et al., 2023a; Peng et al., 2023; 062

Liu et al., 2023), they are typically not optimized 063

for reasoning over multiple images (i.e., frames), 064

crucial for understanding videos. Meanwhile, a 065

handful of open-source VLMs have recently been 066

developed for video understanding (Zellers et al., 067

2022; Li et al., 2023b; Zhang et al., 2023; Lin et al., 068

2023), but they lack in-context learning. 069

In-context learning in text-only, transformer- 070

based LLMs was initially observed to improve with 071

increased model size, along with the size and di- 072

versity of training data (Brown et al., 2020). Later, 073

Chan et al. (2022) identified several distributional 074

properties of the training data as causes for this 075

emergent behavior in transformer-based models: 076

(1) bursty distributions with entities that tend to 077

appear in clusters, (2) skewed marginal distribu- 078

tions with a long tail of infrequent items, and (3) 079

dynamic meaning with label multiplicity. However, 080

as their experiments relied on small transformer- 081

based models trained on synthetic image classifica- 082

tion data, it remains unclear whether their findings 083
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hold true for VLMs trained on video and text at084

scale.085

In this work, we address this question by con-086

ducting systematic empirical experiments to investi-087

gate whether these training data distributional prop-088

erties also elicit in-context learning capabilities in089

VLMs for video. Specifically, we use various text090

annotations from Ego4D (Grauman et al., 2022),091

a popular video dataset, to implement Emergent092

In-context Learning on Videos (EILeV), a novel093

VLM training method that satisfies all three prop-094

erties and successfully elicits in-context learning095

over video and text. In our experiments, we ob-096

serve that the EILeV-trained models outperform097

other off-the-shelf VLMs in few-shot video nar-098

ration on rare actions, and that, through careful099

ablation studies, each property indeed contributes100

to this in-context learning capability. Furthermore,101

our analysis yields a host of new insights around102

the importance of each property in in-context learn-103

ing for video.104

The contributions of our work are as follows:105

(1) we propose EILeV, a novel training method106

that can elicit in-context learning capabilities in107

VLMs for video and text, (2) we validate through108

systematic ablation experiments that the same data109

distributional properties that elicit in-context learn-110

ing in small transformer-based models also apply111

to VLMs for videos, and (3) we release a set of112

EILeV-trained VLMs with in-context learning ca-113

pabilities optimized for egocentric videos.114

2 Related Work115

2.1 In-Context Learning116

Brown et al. (2020) discovered in-context learning117

in LLMs when creating GPT-3. This was a sig-118

nificant departure from fine-tuning which involves119

parameter updates to adapt LLMs to downstream120

tasks. Instead, in-context learning enables LLMs to121

be adapted without parameter updates by prompt-122

ing them with a few examples of a task as part123

of the input context for text generation. The size124

of the model and training data were thought to be125

key to training a model with in-context learning126

capabilities.127

More recently, there has been more research on128

the exact causes of in-context learning. Min et al.129

(2022) proposed MetaICL, a meta-training frame-130

work to elicit in-context learning capabilities in131

text-only language models. MetaICL conditions132

each example with related in-context examples dur-133

ing training. Chan et al. (2022) investigated the dis- 134

tributional properties of training data for in-context 135

learning. Their findings showed that there are cer- 136

tain properties that encourage in-context learning in 137

transformer-based models, and massive textual data 138

from the web used to train LLMs naturally have 139

those properties. Furthermore, Reddy (2023) found 140

that in-context learning is driven by the abrupt 141

emergence of an induction head. There have also 142

been works with findings about in-context learning 143

in VLMs. Notably, training large generative VLMs 144

with image-text interleaved data has been shown 145

to be an effective technique to improve model per- 146

formance, especially in tasks involving in-context 147

learning (Alayrac et al., 2022; McKinzie et al., 148

2024; Wang et al., 2024). Our work combines 149

these insights from prior work around the cause of 150

in-context learning to propose a new VLM training 151

paradigm for video and text, and carefully investi- 152

gates how they contribute to in-context learning. 153

2.2 Vision-Language Models (VLMs) 154

With the recent success of text-only LLMs, there 155

have been various efforts to replicate their success 156

in multimodal settings, especially vision and lan- 157

guage. Two different types of approaches in train- 158

ing generative VLMs have been proposed. The first 159

is to train them from scratch using large text and 160

paired image and text datasets (Hao et al., 2022; 161

Huang et al., 2024; Peng et al., 2023; Lu et al., 162

2023). This approach allows the most controlla- 163

bility and flexibility as the resulting VLM is not 164

dependent on other pre-trained models that may 165

have undesirable behaviors, but it requires a mas- 166

sive amount of compute and data. In order to ad- 167

dress these challenges, a number of approaches 168

have been proposed to create VLMs by learning a 169

mapping from a frozen pre-trained vision encoder 170

to the input space of a frozen pre-trained LLM 171

(Alayrac et al., 2022; Li et al., 2023b; Zhao et al., 172

2023; Li et al., 2022, 2023c; Dai et al., 2023; Liu 173

et al., 2023; Zhang et al., 2023; Lin et al., 2023; 174

Yang et al., 2022; Li et al., 2023d; Zhu et al., 2023a; 175

Laurençon et al., 2023; Maaz et al., 2023; Ye et al., 176

2023; Gong et al., 2023; Zhang et al., 2024). 177

Some of these approaches enable the result- 178

ing VLMs to process videos by representing 179

them as sequences of still frames; however, only 180

Flamingo (Alayrac et al., 2022), Otter (Li et al., 181

2023b) and Kosmos-2 (Peng et al., 2023) support 182

in-context learning over video and text as a by- 183

product of their large-scale pre-training. In this 184
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work, we conduct thorough investigation of how185

key properties of training data achieve in-context186

learning beyond just as a by-product of large-scale187

training.188

3 Three Distributional Properties for189

In-Context Learning190

Since Brown et al. (2020) discovered in-context191

learning in text-only LLMs, there has been much192

research into the cause for in-context learning. In193

particular, Chan et al. (2022) found that three char-194

acteristics of the training data are important in elic-195

iting in-context learning in transformer-based mod-196

els, each of which is abundant in both natural lan-197

guage and video data: bursty distributions, skewed198

marginal distributions, and dynamic meaning.199

Bursty Distributions In-context learning relies200

on data where entities appear in clusters, or non-201

uniformly depending on the context. Groups of re-202

lated entities may be mentioned frequently in some203

contexts, but much more rarely in other contexts.204

Skewed Marginal Distributions In-context205

learning also relies on data of skewed marginal206

distributions with a long tail of infrequent items207

(i.e., a Zipfian distribution). This phenomenon is a208

long-standing challenge in representing language209

and images, and has long been observed in text,210

image, and video datasets collected for research.211

Dynamic Meaning Lastly, in-context learning212

relies on dynamic meaning, where a single entity213

can have multiple possible interpretations, and mul-214

tiple entities can map to the same interpretation. In215

natural language, we observe this property in word216

senses, homonyms, and synonyms. In the visual217

world, a particular object may be described in multi-218

ple valid ways, e.g., synonyms, physical properties,219

and hypernyms. Meanwhile, many distinct objects220

may be grouped based on various descriptors.221

4 Problem & Methods222

In this section, we first introduce the target prob-223

lem and dataset for our evaluations of in-context224

learning. Next, we introduce EILeV, our training225

paradigm which captures all three distributional226

properties thought to elicit in-context learning, as227

well as the ablations we use to validate the im-228

portance of each property in enabling in-context229

learning over video and text. We then introduce230

the model architecture we apply this paradigm to,231

and lastly discuss how we evaluate the in-context 232

learning capability of VLMs trained on video and 233

text. 234

4.1 Problem Definition 235

We target the task of few-shot video narration using 236

the Ego4D dataset (Grauman et al., 2022). 237

Few-Shot Video Narration Video narration is a 238

captioning task where given a video, a system must 239

generate a text description of the events occurring 240

in the video. Here, few-shot video narration refers 241

to the implementation of this task where a VLM 242

(pre-trained on large-scale video and text data) is 243

conditioned with one or more example videos and 244

narrations before being prompted to generate a nar- 245

ration for a held-out video clip. If conditioning 246

such a VLM on several example videos and narra- 247

tions improves the quality of narration, this implies 248

that the VLM is indeed capable of in-context learn- 249

ing over video and text. 250

Ego4D Ego4D is a popular large-scale dataset of 251

egocentric videos that have been densely annotated 252

with human-written English narrations, ideal for 253

our task. Beyond narrations, the dataset includes 254

higher-level class labels for the verbs and nouns 255

associated with each narrated video clip. These an- 256

notations enable systematic ablations for all three 257

distributional properties of training data discovered 258

by Chan et al. (2022) to facilitate in-context learn- 259

ing, enabling a systematic study of in-context learn- 260

ing over video and text in VLMs. These ablations 261

are introduced in Section 4.2. 262

4.2 Training Paradigm & Ablations 263

Using Ego4D’s “Forecasting Hands & Objects 264

Master File”, we construct a dataset of interleaved 265

text and video that satisfies these properties, and 266

use it to train and evaluate VLMs. We call this 267

training procedure Emergent In-context Learning 268

on Videos (EILeV). EILeV uses the video and 269

text data provided by Ego4D to implement all three 270

distributional properties necessary for in-context 271

learning: bursty distributions, skewed marginal dis- 272

tributions, and dynamic meaning. To demonstrate 273

the importance of each distributional property cap- 274

tured in EILeV, we use Ego4D’s detailed annota- 275

tions to carefully ablate each property as illustrated 276

in Figure 1. 277

For all experiments, each training data point con- 278

sists of a context with 16 video-narration pairs, 279

and a query with a single video-narration pair. We 280
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EILeV

cut/carrot peel/onion cut/onion

(a) Bursty distributions (c) Dynamic meaning

AblationEILeV

The camera wearer wraps the 
mortar with sand together.

The camera wearer passes the 
tissue paper to his left.

The camera wearer rolls the 
cement.

The camera wearer moves the 
napkin.

Ablation

play/guitar remove/clamp cut/onion

(b) Skewed marginal distributions
Action (Verb/Noun)

Fr
eq

u
en

cy

103

102

verb

verb

verb class

verb class
noun

noun noun class

noun class

Figure 1: In our proposed training procedure EILeV, we ensure that the training data satisfy the following three
properties: (a) bursty distributions, (b) skewed marginal distributions, and (c) dynamic meanings. Then, we ablate
each property to demonstrate its importance. We ablate property (a) by randomly sampling in-context examples;
we ablate property (b) by varying the number of common actions in the training data; we ablate property (c) by
canonicalizing verbs and nouns using their corresponding verb and noun classes.

convert the action narrations into question-answer281

pairs where the narrations are the answers, e.g., e.g.,282

What is the camera wearer doing? The camera283

wearer cuts a carrot. We vary the syntactic form284

of questions using a set of templates (Appendix C).285

The training objective is to maximize the likelihood286

of the sequence of tokens in the ground-truth action287

narration, conditioned on the context and video clip288

from the query.289

Next, we discuss how each distributional prop-290

erty was incorporated and ablated in EILeV.291

Bursty Distributions In order to implement292

bursty distributions in EILeV, we take advantage293

of the annotations in Ego4D, where each video clip294

is annotated with a verb class and a noun class295

based on the main action portrayed in the clip.296

Specifically, we sample video clips and action nar-297

rations that share the same verb class as the query298

for half of the context, and we sample those with299

the same noun class for the other half. We further300

ensure that none of the sampled video clips and ac-301

tion narrations match both the verb class and noun302

class of the query simultaneously. This ensures that303

the context, while comprising a “burst” of similar304

concepts, only provides partial information regard-305

ing the query. This property can then be ablated306

by randomly sampling video clips and action narra-307

tions without regard to their verb and noun classes.308

Figure 1 (a) illustrates the two sampling strategies.309

We can measure the impact of bursty distributions310

by training VLMs with each type of context and 311

comparing their in-context learning capabilities. 312

Skewed Marginal Distributions Like most nat- 313

ural datasets, Ego4D’s verb and noun class labels 314

have a skewed marginal distribution with a long tail 315

of verb-noun pairs, making it ideal for our study. 316

To study how the skewed marginal distributions of 317

training data affect the in-context learning capa- 318

bility of trained models, we first use the verb and 319

noun class annotations from Ego4D to designate 320

the most frequent 80% verb-noun pairs as common 321

actions for training, and the remaining 20% as rare 322

actions only for evaluation. It is important to note 323

that while none of the rare actions are part of the 324

common action training data, they may still share 325

either verb or noun classes with common actions. 326

For example, if the training data contain common 327

actions (put, key) and (sit, bench), there may exist 328

a rare action (put, bench) in the evaluation data. 329

To measure how the skewness of marginal distri- 330

butions in the training data impacts models’ capa- 331

bility to generalize to these novel held-out actions, 332

we then vary the number of common actions in the 333

training data through three experiments. Specifi- 334

cally, we construct a training dataset with only the 335

top 100 common actions (little skewness without 336

a long tail of infrequent actions), one with the top 337

500 common actions (moderate skewness with a 338

short tail of infrequent actions) and another with 339

all the common actions (highly skewed with a long 340
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tail of infrequent items). We uniformly upsample341

the datasets with top 100 and top 500 common ac-342

tions to keep all three training datasets to be the343

same size. Figure 1 (b) shows how these training344

datasets with different marginal distributions are345

constructed. Given these curated training datasets,346

we can measure the impact of the skewness of347

the marginal distributions of the training data on348

trained models’ in-context learning capability.349

Dynamic Meaning For dynamic meaning, we350

rely on the fact that Ego4D’s natural language ac-351

tion narrations contain words of multiple senses,352

homonyms, and synonyms. To ablate this dynamic353

meaning property in EILeV, we canonicalize verbs354

and their corresponding objects in the action narra-355

tions. Specifically, we prompt an LLM (Llama-2-356

Chat 7B; Touvron et al., 2023) to replace the verb357

and its corresponding object of each action narra-358

tion with their verb and noun class. Figure 1 (c)359

shows the canonicalization process. We can then360

measure the impact of dynamic meaning by com-361

paring the in-context learning capability of VLMs362

trained on data with and without this property.363

4.3 Model364

To experiment with EILeV as discussed above, we365

adopt a VLM architecture capable of processing se-366

quential data interleaved with both video clips and367

texts, making it possible to infer patterns and rela-368

tionships among them and thus support the emer-369

gence of in-context learning over them. We ini-370

tialize our model with BLIP-2 (Li et al., 2023c), a371

VLM created by learning a transformer-based pro-372

jection (called a querying transformer or Q-Former)373

from a frozen pre-trained vision encoder into the374

input space of a frozen LLM. Since BLIP-2’s origi-375

nal implementation is not able to handle data inter-376

leaved with video clips and texts, we follow Hao377

et al. (2022) to perform simple modifications to378

enable its frozen language model to serve as a uni-379

versal interface for video clips and texts.1 Specif-380

ically, we first encode all the video clips by inde-381

pendently encoding sampled frames with BLIP-2’s382

frozen Vision Transformer (ViT)-based (Dosovit-383

skiy et al., 2021) vision encoder to produce a se-384

quence of vision tokens for each video clip. The385

sequence of vision tokens is then compressed by386

1While there exist VLMs that already natively support
interleaved video and text (Alayrac et al., 2022; Awadalla et al.,
2023; Li et al., 2023b), we intentionally chose a VLM that did
not to isolate the impact of our EILeV training paradigm on
VLMs’ in-context learning capability.

BLIP-2’s Q-Former into a fixed-length sequence. 387

The fixed-length sequence is further projected to 388

the word embedding space of the frozen language 389

model of BLIP-2 by a linear layer. It is then inter- 390

leaved with the text tokens according to the order 391

in which video clips and texts appear in the inter- 392

leaved data to form the input to the frozen language 393

model. Following the fine-tuning procedure of Li 394

et al. (2023c), we freeze the vision encoder and lan- 395

guage model of the BLIP-2 models during training. 396

For all of our experiments, we use BLIP-2 with 2.7 397

billion parameter OPT (Zhang et al., 2022) as its 398

frozen language model (BLIP-2 OPT-2.7B), and 399

BLIP-2 with XL-size Flan-T5 (Wei et al., 2022) as 400

its frozen language model (BLIP-2 Flan-T5-xl). 401

4.4 Evaluation 402

To evaluate our various model ablations, we need a 403

means to measure the quality of action narrations 404

generated by models, and the degree to which in- 405

context learning supports this generation. 406

4.4.1 Action Narration Generation 407

One major difficulty in evaluating generative mod- 408

els for the action narration generation task is that 409

there is no single correct way to describe the action 410

in a video clip. In an ideal world, we would rely on 411

human annotators to rate how close a generated ac- 412

tion narration is to the ground truth, but the cost to 413

do so would be prohibitive. In order to address this 414

challenge, a number of semantic-similarity-based 415

metrics (Zhang et al., 2019; Reimers and Gurevych, 416

2019) that correlate closely with human judgment 417

have been proposed, and we take advantage of them 418

in our evaluations. Specifically, we report the per- 419

formance along semantic similarity-based scores 420

produced by Siamese Sentence-BERT Bi-Encoder 421

(STS-BE; Reimers and Gurevych, 2019). For com- 422

pleteness, we also report ROUGE-L (Lin, 2004), a 423

lexical-based text generation metric. 424

4.4.2 In-Context Learning Capability 425

To evaluate the in-context learning capability of 426

trained models for action narration, we vary the 427

number of in-context examples in context-query 428

instances (different numbers of “shots”) and calcu- 429

late the above text generation metrics for generated 430

action narrations on the test set. If adding more 431

shots improves narration quality under these met- 432

rics, this suggests that the VLM is successfully 433

using in-context learning to adapt to the action nar- 434

ration generation task. Within a single experiment 435
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setting, we use the same pre-sampled in-context436

examples to ensure fair comparison.437

5 Experimental Results438

In our experiments, we find that the performance439

of both EILeV-trained models strictly increases440

as more in-context examples (shots) are provided,441

indicating that our models successfully acquired442

in-context learning capabilities during training.443

First, in Section 5.1, we establish the in-context444

learning capability of our models by measuring445

their performance on rare actions they were not446

trained on (the key challenge motivating this work),447

and compare their performance to that of off-the-448

shelf VLMs. In Sections 5.2, 5.3, and 5.4, we com-449

pare their performance to that of models trained450

on datasets with each key distributional property451

ablated (as described in Section 4.2) to explore452

the impact of these training data properties on in-453

context learning for video and text in VLMs.454

5.1 Generalization to Rare Actions455

We first compare our EILeV-trained models with456

existing off-the-shelf VLMs in the challenging457

practical setting that motivated this work: adap-458

tation to rare actions. Specifically, we evaluate our459

models, Kosmos-2 (Peng et al., 2023), and Otter (Li460

et al., 2023b) on the evaluation set of held-out rare461

action videos from Ego4D described in Section462

4.2.2 We choose these two models as they are the463

only open-source large VLMs that support video464

input and in-context-learning out-of-the-box at the465

time of writing. Compared to our EILeV-trained466

models, these models have been trained on far more467

multi-modal interleaved (MMI) data directly re-468

lated to in-context learning over video (Table 1),469

as well as other naturalistic multi-modal and text470

data from the Internet. They also have far more471

trainable parameters: Kosmos-2 has 1.6 billion and472

Otter has 1.3 billion, while our models have 188473

million (the same number as BLIP-2). Further, un-474

like our architectural modification that represents475

each video with a fixed-length sequence, Kosmos-476

2 and Otter both treat each video as a sequence477

of images. For an evaluation representative of the478

practical usage of VLMs, we do not fine-tune mod-479

els (which requires prohibitive computing power).480

2Our models were not trained on these rare actions, and
Kosmos-2 was not trained on Ego4D. While Otter was trained
on Ego4D, the video-text training data was not interleaved as
proposed for EILeV-trained models, and the low frequency
of these actions nevertheless poses a significant challenge.
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Figure 2: Performance of off-the-shelf VLMs (Kosmos-
2 and Otter) on the evaluation set of rare actions for the
skewed marginal distributions ablation experiment.

Model MMI Dataset Size

EILeV BLIP-2
OPT-2.7B &
Flan-T5-xl

115K context-query
instances

Kosmos-2 71M image-text
webpages (Huang et al., 2023)

101.2M image-text
webpages (Zhu et al., 2023b) &
2.8M context-query
instances (Li et al., 2023a)

Otter

Table 1: Off-the-shelf and EILeV-trained VLMs and
their multi-modal interleaved (MMI) dataset sizes.

Instead, we rely solely on models’ in-context learn- 481

ing capability to adapt to these rare actions. 482

Figure 2 shows the results of this evaluation.3 483

While the zero-shot performance of our EILeV- 484

trained models is similar to Kosmos-2 and Otter, 485

as we provide in-context examples, the perfor- 486

mance of our models increases while that of 487

off-the-shelf VLMs does not. Consequently, our 488

EILeV-trained VLMs significantly outperform 489

off-the-shelf VLMs. While Kosmos-2 and Otter 490

have not been fine-tuned on this exact data, they 491

are much larger models trained on an enormous 492

amount of naturalistic data, and their in-context 493

learning capability is a main selling point thought 494

to remove the need for task-specific fine-tuning. 495

Therefore, it is reasonable to expect their perfor- 496

mance to improve with more in-context examples 497

3We can only perform evaluations up to 2-shot with
Kosmos-2, as it runs out of its context window beyond 2-shot.
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or even outperform our models. This observation498

underscores that training smaller VLMs with a fo-499

cused approach like EILeV can be advantageous500

for certain use-cases, such as generating narrations501

for novel, rare actions, than training large, general-502

ist VLMs on huge naturalistic datasets.503
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Figure 3: Results for the bursty distributions ablation
experiment.

5.2 Bursty Distributions Ablation504

Figure 3 shows the results of the bursty distribu-505

tions ablation experiment. To maintain the same506

action distributions in both the training and test sets,507

we use a random train-test split with a ratio of 75/25508

for this experiment. Unlike the EILeV-trained509

models, the performance of the models trained on510

randomly sampled in-context examples (ablation)511

initially improves from 0-shot to 4-shot, but tapers512

or even decreases as more examples are provided.513

This indicates that they failed to acquire in-context514

learning capabilities during training, suggesting515

that bursty distributions are indeed necessary516

for in-context learning on video and text. We517

hypothesize that the initial improvement in perfor-518

mance from 0-shot to 4-shot is mainly due to the519

fact that ablation models have learned to mimic520

lexical characteristics from in-context examples.521

However, as they have failed to learn to exploit522

the semantic information from in-context examples523

due to the lack of bursty distributions in training524

data, they do not benefit from additional in-context525

examples.526
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Figure 4: Results for the skewed marginal distributions
ablation experiment using a training dataset with top
100 common actions (T100).

5.3 Skewed Marginal Distributions Ablation 527

Figures 4 and 5 show the results of the skewed 528

marginal distribution ablation experiment. The 529

T100 models trained on data with only the top 100 530

common actions (little skewness without a long tail 531

of infrequent actions) show a noticeably inferior in- 532

context learning performance to the EILeV-trained 533

models that were trained on the training dataset 534

with all the common actions (highly skewed with 535

a long tail of infrequent items). On the other hand, 536

the T500 models trained on data with the top 500 537

common actions (moderate skewness with a short 538

tail of infrequent actions) show an in-context learn- 539

ing performance that is only slightly worse than 540

the EILeV-trained models, indicating that an in- 541

creased amount of skewness with a long tail of in- 542

frequent items makes in-context learning more 543

likely to appear in VLMs. Further, we observe 544

that the T500 models outperform their respective 545

EILeV-trained models in the 0-shot setting. This is 546

an instance of in-context versus in-weights learning 547

tradeoff (also studied in Chan et al., 2022), a phe- 548

nomenon where in-context learning capability can 549

reduce pre-trained models’ ability to utilize knowl- 550

edge encoded in their weights during pre-training. 551

Interestingly, we do not observe this pattern with 552

the T100 models, perhaps because the less diverse 553

training data is not representative enough for mod- 554

els to gain sufficient in-weights knowledge. 555
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Figure 5: Results for the skewed marginal distributions
ablation experiment using a training dataset with top
500 common actions (T500).

5.4 Dynamic Meaning Ablation556

Figure 6 shows the results of the dynamic meaning557

ablation experiment. We use a random train-test558

split with a ratio of 75/25 for this experiment to559

maintain the same action distributions in both the560

training and test sets. The ablation models trained561

on data with verbs and their corresponding objects562

canonicalized surprisingly acquire some in-context563

learning capabilities, but the EILeV-trained mod-564

els mostly outperform them. Since the performance565

gaps under this ablation are smaller than that of566

the previous ablations, this suggests that while dy-567

namic meaning plays a role in the in-context568

capabilities of a VLM, it contributes less than569

bursty and skewed marginal distributions do. In-570

terestingly, however, the performance gap is much571

more pronounced for STS-BE (semantic similar-572

ity metric) than ROUGE-L (lexical metric), sug-573

gesting that dynamic meaning contributes more to574

the model’s ability to extract semantic information575

from in-context examples than lexical information.576

6 Conclusion577

In this work, we conducted a first-of-its-kind578

systematic investigation of in-context learning in579

vision-language models (VLMs) trained on videos580

and text. Specifically, we implemented Emergent581

In-context Learning on Videos (EILeV), a novel582

training paradigm capturing three key properties of583
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Figure 6: Results for the dynamic meaning ablation
experiment.

training data found to induce in-context learning 584

in transformers (Chan et al., 2022): bursty distribu- 585

tions, skewed marginal distributions, and dynamic 586

meaning. In our experiments, we showed that our 587

EILeV-trained models exhibit in-context learning 588

capabilities superior to that of off-the-shelf VLMs, 589

as they were significantly more adaptable to novel, 590

rare actions. We demonstrated that all three of 591

these properties are indeed important to optimize 592

the in-context learning capabilities of these models 593

on narrating actions in videos, especially bursty 594

and skewed marginal distributions. 595

Our work yields new insights about the nature 596

of in-context learning in video and text. For exam- 597

ple, we observed that while reducing the skewness 598

of the training data distribution compromised in- 599

context learning capability, it improved in-weights 600

learning in trained models (Chan et al., 2022). We 601

also found that dynamic meaning had a bigger 602

impact on semantic similarity metrics for gener- 603

ated narrations than lexical metrics, suggesting this 604

property is particularly important for acquiring se- 605

mantic information through in-context learning. 606

While we focused on action narration in Ego4D 607

(Grauman et al., 2022) as a proof-of-concept, 608

EILeV serves as a foundation for the community 609

to build VLMs capable of in-context learning on 610

video and text in broader tasks and domains. We 611

release our EILeV-trained models as a resource for 612

future work in egocentric video narration. 613
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7 Limitations614

Since our EILeV-trained models are optimized and615

evaluated for action narration generation on ego-616

centric video using in-context learning, their ability617

to generalize to diverse, real-world scenarios may618

be limited. However, this focus was by design and619

necessity. The primary goal of this work was to620

verify that the three distributional properties iden-621

tified by Chan et al. (2022) also elicit in-context622

learning capabilities in VLMs for videos. To that623

end, we intentionally chose to use Ego4D, a dataset624

with sufficient annotations to enable our systematic625

ablation experiments as a proof of concept. Despite626

this limitation, EILeV-trained models may retain627

some capability to answer other types of questions628

due to the use of a frozen language model. Further-629

more, EILeV is a general training method that can630

be applied to other tasks given the appropriate data.631

Additionally, our models may inherit biases from632

their frozen language models, making it possible633

that they could generate harmful content. Before634

deploying such a system for real-world applica-635

tions, safety measures like guardrails and training636

data sanitization are crucial to minimize potential637

negative impact. On the other hand, since we used638

the diverse and global data from Ego4D to train our639

models, this may mitigate possible socio-economic640

bias found in pre-trained visual representations641

(Nwatu et al., 2023).642
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A Additional Experiments 928

A.1 Additional Baselines 929

We report the performance of three additional base- 930

lines on the Ego4D-based dataset used in the main 931

ablation experiments, as well as another dataset 932

constructed from EPIC-KITCHENS-100 (Damen 933

et al., 2022). The first is a naive action classifi- 934

cation baseline (“VideoMAE”). Specifically, we 935

fine-tune the “videomae-huge-finetuned-kinetics” 936

variant of VideoMAE (Tong et al., 2022) using the 937

verb and noun class annotations to produce a verb 938

and a noun classifier. The predicted verb and noun 939

classes are then transformed into action narrations 940

using an off-the-shelf LLM (7 billion parameter 941

Llama-2-Chat (Touvron et al., 2023)). Note that 942
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this baseline only uses videos as its input, and can-943

not perform in-context learning. The second are944

off-the-shelf BLIP-2 models with the architectural945

modifications from Section 4.3 for interleaved data946

support (“BLIP-2 OPT-2.7B & Flan-T5-xl”). The947

third are EILeV-trained models with in-context ex-948

amples ablated, and fine-tune solely on the query949

(“FT BLIP-2 OPT-2.7B & Flan-T5-xl”).950

A.1.1 Results on Ego4D951
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Figure 7: Performance of additional baselines on the
Ego4D-based dataset.

Figure 7 reports the performance of the three952

additional baselines on the Ego4D-based dataset.953

We use a random train-test split with a ratio of954

75/25 for this experiment to maintain the same ac-955

tion distributions in both the training and test sets.956

The EILeV-trained BLIP-2 models demonstrate957

superior in-context learning capabilities, as their958

performance improves with an increasing number959

of shots, ultimately outperforming all baseline mod-960

els. This is a further indication that EILeV has suc-961

cessfully elicited in-context-learning capabilities962

in them. The VideoMAE and FT BLIP-2 models963

exhibit the best performance at 0-shot, suggesting 964

they have the most amount of in-weights knowl- 965

edge due to their fine-tuning. However, VideoMAE 966

cannot process in-context examples, and its 0-shot 967

performance is quickly outperformed by EILeV- 968

trained models with only one in-context example. 969

The performance of FT BLIP-2 models stagnates 970

or even declines as the number of shots increases, 971

highlighting their lack of in-context learning ca- 972

pabilities and the importance of the training data 973

design discussed in Section 4.2. These findings 974

about the performance of different models at 0-shot 975

and subsequent shots align with Chan et al. (2022) 976

observations regarding the “tradeoff between in- 977

context learning and in-weights learning,” where no 978

models could maintain both in their experiments. In 979

our experiment, the EILeV-trained BLIP-2 models 980

are optimized for in-context learning, as evidenced 981

by their subpar performance at 0-shot and superior 982

performance with additional shots, whereas the FT 983

BLIP-2 models show the opposite trend. We leave 984

designing training data to find the right balance for 985

future work. 986

A.1.2 Results on EPIC-KITCHENS-100 987

Next, we test if EILeV-trained BLIP-2 models 988

trained solely on Ego4D can generalize to out-of- 989

distribution actions via in-context learning. Specif- 990

ically, we evaluate them on the validation split 991

of a different egocentric video dataset, EPIC- 992

KITCHENS-100, without further fine-tuning. Note 993

that there is a significant distributional shift be- 994

tween Ego4D and EPIC-KITCHENS-100 even 995

though they both contain egocentric videos in 996

the kitchen setting as evidenced by the t-SNE 997

plot in Figure 9. All the experimental setups 998

are same as the experiments on the Ego4D-based 999

dataset except evaluation context-query instances 1000

are formed by sampling both the context and the 1001

query from the validation set of EPIC-KITCHENS- 1002

100. Unlike Ego4D, the action narrations from 1003

EPIC-KITCHENS-100 are not full sentences, but 1004

simple verb-noun phrases. Therefore, we use an 1005

LLM (7 billion parameter Llama-2-Chat (Touvron 1006

et al., 2023)) to turn the simple verb-noun phrases 1007

into full sentences with “the camera wearer” as the 1008

subject. 1009

Figure 8 reports the evaluation results. The per- 1010

formance of the EILeV-trained BLIP-2 models im- 1011

proves with an increasing number of in-context ex- 1012

amples and ultimately outperforms all the baselines. 1013

This indicates that these models can generalize to 1014
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Figure 8: Performance of additional baselines on the
EPIC-KITCHENS-100-based dataset

out-of-distribution actions via in-context learning.1015

All the baseline models exhibit similar trends as1016

on the Ego4D-based dataset: they demonstrate the1017

best performance at 0-shot but fail to benefit from1018

the in-context examples.1019

A.2 In-Context or In-Weights Learning1020

We now aim to validate that the source of the gener-1021

alization capabilities demonstrated by the EILeV-1022

trained models in Section 5.1 is indeed from in-1023

context learning, not in-weights learning. This is1024

to further reinforce our claim that EILeV-trained1025

models can generalize to actions that they have not1026

seen during training, i.e., actions of which they1027

have no direct in-weights knowledge. To that end,1028

we use the frequency of each verb/noun class in1029

the common action training data as the proxy for1030

the knowledge about the verb/noun class encoded1031

into the weights of the model (in-weights learning),1032

and the difference in model performance between1033

16-shot and 0-shot settings for a particular rare1034

action as the proxy for in-context learning perfor-1035

mance. If the model relies on in-weights learning 1036

for a particular novel, rare action, the difference in 1037

performance for that action between 16-shot and 1038

0-shot settings would be correlated to the frequency 1039

of the corresponding verb/noun class in the training 1040

data. This outcome is not desired, as we want the 1041

model to rely on in-context learning for generating 1042

accurate narrations of novel, rare actions unseen 1043

during training. 1044

Figure 10 shows the scatter plots between the log 1045

verb/noun class frequency in the training data and 1046

the difference in STS-BE for the corresponding rare 1047

action between 16-shot and 0-shot settings for the 1048

EILeV-trained models. For example, given a rare 1049

action (“put”, “bench”), a point on the scatter plot 1050

may refer to the log frequency of “put” in the com- 1051

mon action training data in the x-axis and the differ- 1052

ence in the STS-BE performance of EILeV BLIP-2 1053

OPT-2.7B on (“put”, “bench”) between 16-shot and 1054

0-shot. As the scatter plots and their corresponding 1055

R2 values show, there is a minimal linear correla- 1056

tion between the log verb/noun class frequency in 1057

the training data and the difference in STS-BE for 1058

the corresponding action from in-context learning. 1059

This suggests that the EILeV-trained models gen- 1060

erate accurate narrations for novel, rare actions via 1061

in-context learning rather than in-weights learning, 1062

as the linear model does not significantly account 1063

for the variance in the observed data. 1064

A.3 Context Modeling and In-Context 1065

Learning 1066

In this evaluation, we seek to investigate if the 1067

EILeV-trained models perform correct context 1068

modeling by incorporating the relationships be- 1069

tween video clips and narrations. To that end, we 1070

evaluate the EILeV-trained models and the off-the- 1071

shelf BLIP-2 baseline models from Section A.1 on 1072

shuffled in-context examples where video clips no 1073

longer match the action narrations. We then com- 1074

pare their performance from shuffled in-context 1075

examples (the treatment group) to the one from un- 1076

shuffled in-context examples as the control group. 1077

If the performance remains unchanged, it implies 1078

that the model does not consider the relationships 1079

between in-context video clips and action narra- 1080

tions. On the other hand, if the performance de- 1081

creases, it implies that the model does take the rela- 1082

tionships between video clips and action narrations 1083

into account, and the mismatch adversely affects 1084

its performance. We do not report the results at 0 1085

and 1-shot since shuffling of the in-context video 1086
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Random 40K Subset Turn On Tap Turn Off Tap Open Cupboard

Figure 9: t-SNE plots of the video embeddings from the frozen vision encoder of BLIP-2 OPT-2.7B. Ego4D videos
are in red, and EPIC-KITCHENS-100 videos are in blue. Plots for a randomly sampled subset of 40k videos from
both and three most common actions from EPIC-KITCHENS-100 are shown. We manually map Ego4D actions to
the EPIC-KITCHENS-100 actions.
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Figure 10: Scatter plots with trend lines and R2 values between the log verb/noun class frequency in the training
data with common actions and the difference in STS-BE (∆ STS-BE) for the corresponding rare action between
16-shot and 0-shot settings for the EILeV-trained models.

clips would not have any impact at those settings.1087
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Figure 11: Percentage difference plots between the treat-
ment group with shuffled in-context video clips and the
control group. A negative value below the dotted zero
line means the STS-BE performance of the treatment
group is worse than the control group.

Figure 11 shows the percentage differences in1088

STS-BE from 16-shot to 0-shot between the treat-1089

ment group and the control group for the EILeV-1090

trained models and the off-the-self BLIP-2 models.1091

For the off-the-shelf BLIP-2 models, the percent-1092

age differences are small across all shots. This1093

indicates that they rely mostly on the context as1094

a whole rather than the semantic details from the1095

relationships between video clips and action nar-1096

rations when performing in-context learning. We 1097

hypothesize that our proposed architectural modifi- 1098

cations (Section 4.3 allow the off-the-shelf BLIP-2 1099

models to tap into the text-only in-context learn- 1100

ing capabilities of their frozen language models, 1101

which lack the ability to extract semantic details 1102

from the relationships between video clips and ac- 1103

tion narrations. This hypothesis is supported by 1104

their subpar in-context learning capabilities from 1105

Section A.1, which speaks to the importance of our 1106

modifications to the training data. On the other 1107

hand, there is a clear drop in performance for the 1108

EILeV-trained models in terms of the semantic- 1109

similarity-based metric STS-BE. This indicates that 1110

the EILeV-trained models extract detailed seman- 1111

tic information from the correspondence between 1112

in-context video clips and action narrations. 1113

B Training Details 1114

In all of our experiments, each video clip is cre- 1115

ated by taking the four seconds before and after 1116

its action narration timestamp, and 8 frames are 1117

sampled uniformly from each video clip. The to- 1118

tal training batch size is 128 and the optimizer is 1119

AdamW (Loshchilov and Hutter, 2018) with the 1120
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initial learning rate of 1 × 10−5, weight decay of1121

0.05 and a linear scheduler. We train for 5 epochs1122

on 8 NVIDIA A40 GPUs using distributed data1123

parallel. We evaluate every 200 steps and select the1124

model with the lowest loss. The training time is1125

about a day and a half.1126

C Question Templates1127

Table 2 shows the question-answer pair templates1128

we use in our experiments. They are based on the1129

instruction templates proposed by Dai et al. (2023).1130
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Table 2: List of question-answer pair templates.

What is the camera wearer doing? {narration}

Question: What is the camera wearer doing? {narration}

What is the camera wearer doing? An answer to the question is {narration}

Q: What is the camera wearer doing? A: {narration}

Given the video, answer the following question.
What is the camera wearer doing? {narration}

Based on the video, respond to this question:
What is the camera wearer doing? Answer: {narration}

Use the provided video to answer the question:
What is the camera wearer doing? {narration}

What is the answer to the following question?
"What is the camera wearer doing?" {narration}

The question "What is the camera wearer doing?" can be answered using the video.
The answer is {narration}
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