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ABSTRACT

Recent advances in diffusion models for visual generation have sparked interest in
human preference alignment, similar to developments in Large Language Models.
While reward model (RM) based approaches enable trajectory-aware optimization
by evaluating intermediate timesteps, they face two critical challenges: unreliable
reward estimation on noisy latents due to pixel-level models’ sensitivity to noise
interference, and single-timestep preference evaluation across sampling trajec-
tories where single-timestep evaluations can yield inconsistent preference rank-
ings depending on the selected timestep. To address these limitations, we propose
a comprehensive framework with targeted solutions for each challenge. To achieve
noise compatibility for reliable reward estimation, we introduce the Score-based
Latent Reward Model (SLRM), which leverages the complete diffusion model as
a preference discriminator with learnable task tokens and a score enhancement
mechanism that explicitly preserves noise compatibility by augmenting prefer-
ence logits with the denoising score function. To ensure consistent preference
evaluation across trajectories, we develop Trajectory Advantages Preference Op-
timization (TAPO), which strategically performs Stochastic Differential Equations
sampling and reward evaluation at multiple timesteps to dynamically capture tra-
jectory advantages while identifying preference inconsistencies and preventing
erroneous trajectory selection. Extensive experiments on Text-to-Image and Text-
to-Video generation tasks demonstrate significant improvements on noisy latent
evaluation and alignment performance.

1 INTRODUCTION

Inspired by Reinforcement Learning from Human Feedback (RLHF) advancements in Large Lan-
guage Models (LLMs)(Schulman et al., 2017; Rafailov et al., 2023; Shao et al., 2024) and diffu-
sion models’ success in visual generation(Nichol et al., 2021; Rombach et al., 2022), numerous
works (Clark et al., 2023; Fan et al., 2023; Black et al., 2023) have emerged for human prefer-
ence alignment in diffusion models. These methods fall into two families: offline data approaches
that learn from human-annotated pairs (Wallace et al., 2024), and reward-model (RM) approaches
that enable online preference optimization by scoring candidates during training (Liu et al., 2025c;
Wang et al., 2025; Liang et al., 2025). While offline methods improve final outputs, they only
evaluate clean and fully denoised images, ignoring the noisy latents along the sampling trajectory.
This limits their ability to support trajectory-aware optimization. In contrast, RM-based methods
have gained traction for their ability to evaluate intermediate timesteps and enable such optimiza-
tion (Liang et al., 2025; Zhang et al., 2025).

Although RM-based methods can provide preference evaluation for intermediate timesteps, they
face two primary challenges. The first challenge concerns unreliable reward estimation on noisy
latents. Most existing methods (Liu et al., 2025d; Xu et al., 2024a) adapt Vision-Language Models
(VLMs) as reward models, which could be sensitive to pixel perturbation and lack principled noise
compatibility. To enhance noise compatibility, recent efforts Liang et al. (2025) inject noise to the
visual encoder inputs, with LPO Zhang et al. (2025) further leveraging the diffusion backbone to
incorporate stronger noise-aware priors. However, LPO overlooks that the diffusion model’s noise
compatibility fundamentally stems from learning a score function over the data distribution, which
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Figure 1: (a) Inconsistent reward signals evaluated from different timesteps could lead to incor-
rect trajectory preference ordering , disrupting the training in existing DPO-style diffusion model
optimization. Specific examples are shown in Appendix C.5. (b) Superior alignment through
Trajectory Advantages. Unlike existing methods (e.g., LPO) that rely on single-step noisy latent
evaluation, TAPO leverages multi-steps (n) advantage across the entire sampling trajectory to obtain
higher quality training samples, thereby achieving optimal performance.

is a fundamentally different objective from reward modeling. Therefore, when these backbones are
fine-tuned for preference discrimination, their score-learning properties degrade, resulting in poor
performance on noisy latents and unreliable reward predictions.

Another challenge involves single timestep preference evaluation. As illustrated in Fig. 1 (a),
when comparing noisy latents from two samples, the reward model may prefer the second sample
at an intermediate timestep (S(xWt ) < S(xlt)) while preferring the first sample at the other timestep
(S(xWt−1) > S(xlt−1)). Current RM-based methods (Liu et al., 2025d; Xu et al., 2024a) typically
evaluate preferences at only one specific timestep, failing to consider the full temporal context of
the sampling trajectory. Although recent work (Yang et al., 2024b) has explored dense rewards
along the trajectory, it redistributes single clean-image preference evaluation to all timesteps. This
single-timestep evaluation can yield inconsistent outcomes depending on which timestep is selected,
leading to erroneous preference rankings where trajectories with high intermediate rewards but sub-
optimal final outputs are favored.

Thus, considering trajectory-level rewards for preference evaluation is crucial to preventing mislead-
ing trajectory selection during training.

To address these challenges, we propose a comprehensive framework for human preference align-
ment applicable to diffusion-based models, encompassing both reward model training and the on-
line sampling strategy during the alignment phase. First, to achieve noise compatibility in noisy
latents, we introduce a Score-based Latent Reward Model (SLRM), which leverages the complete
diffusion model as a preference discriminator. SLRM introduces learnable task tokens, leveraging
self-attention for adaptive, multi-layer aggregation of fine-grained visual and textual features (Pee-
bles & Xie, 2023). Crucially, we incorporate a score enhancement mechanism that explicitly pre-
serves the model’s noise compatibility by augmenting the preference logits with the denoising score
function. This design ensures that SLRM maintains stable and accurate discriminative evaluations
throughout all timesteps. Building on this noise-compatible reward model, we propose Trajectory
Advantages Preference Optimization (TAPO) to establish trajectory-level preference evaluation
and ensure consistent preference rankings. TAPO strategically performs Stochastic Differential
Equations (SDE) sampling for stochastic exploration (Song et al., 2020) and reward evaluation at
selected multi-timesteps, retaining the best and worst samples at each evaluation step based on the
reward. This dynamically captures trajectory advantages while avoiding the computational over-
head of exhaustive evaluation. Moreover, in Fig. 1 (b), it efficiently identifies win-lose sampling
data with pronounced quality differences, yielding high-quality training data for more accurate pref-
erence alignment. Extensive experiments on Text-to-Image (T2I) and Text-to-Video (T2V) genera-
tion show our method substantially improves visual generation quality. SLRM achieves significant
accuracy improvements across all sampling timesteps. During alignment, TAPO demonstrates sub-
stantial generation quality improvements when applied to Stable Diffusion-3.5 (T2I) (Esser et al.,
2024) and Wan-2.1 (T2V) models (Wan et al., 2025). Our contributions are as follows:

• We introduce SLRM, a score-based noisy latent reward model that leverages the diffusion
model’s inherent score function to maintain noise compatibility throughout all timesteps,
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addressing the critical limitation of existing pixel-level reward models in evaluating inter-
mediate noisy latents.

• We propose the TAPO that strategically performs SDE sampling and reward evaluation
at multiple timesteps, dynamically capturing the trajectory advantages to generate high-
quality training data with pronounced preference differences.

• Through extensive experiments across two generation tasks (T2I and T2V), we demonstrate
the significant improvements in generation quality, establishing the broad applicability of
our approach to diverse diffusion-based models.

2 RELATED WORK

Human Preference Alignment for Diffusion Models. Motivated by RLHF’s success in LLMs
(Schulman et al., 2017; Achiam et al., 2023; Shao et al., 2024; Chen et al., 2024), extensive research
has explored preference alignment for diffusion models (Rombach et al., 2022; Nichol et al., 2021;
Ramesh et al., 2021; Saharia et al., 2022). These approaches fall into two categories: offline data
methods and reward-model (RM) based methods. Early RM-based approaches used PPO-based
policy gradients (Fan et al., 2023; Black et al., 2023), formulating denoising as a Markov decision
process, while reward-driven fine-tuning methods (Li et al., 2025a; Lee et al., 2025; Xu et al., 2023;
Wu et al., 2023; Ma et al., 2025) directly optimize diffusion models to maximize reward signals.
However, these methods suffer from reward hacking and expensive computational costs. Following
Diffusion-DPO (Wallace et al., 2024), which adapted DPO (Rafailov et al., 2023) to diffusion mod-
els, subsequent works (Liu et al., 2025d;c; Wang et al., 2024a; Zhang et al., 2024a; Lu et al., 2025;
Wu et al., 2025) have advanced preference alignment through implicit reward modeling. While
offline methods (Wallace et al., 2024) improve outputs by learning from human-annotated pairs,
they evaluate only clean images and cannot assess noisy latents along sampling trajectories. Con-
sequently, RM-based methods are increasingly adopted for trajectory-aware optimization (Liang
et al., 2025; Zhang et al., 2025), enabling online preference optimization by scoring intermediate
timesteps. However, these methods face challenges with unreliable rewards on noisy latents and
inconsistent preference evaluation across trajectories.

Reward Model for Preference Optimization. Reward models provide crucial feedback signals
for preference-based optimization in generative model alignment. Early approaches leverage pre-
trained VLMs like CLIP (Radford et al., 2021) and BLIP (Li et al., 2022) for zero-shot evaluation,
or employ fine-tuned models (Xu et al., 2023; Wu et al., 2023; Ma et al., 2025; Kirstain et al., 2023;
Zhang et al., 2024b; Li et al., 2025a) for aesthetic and preference assessment. Recently, LLM-based
reward models (Liu et al., 2025c; Wang et al., 2024b; Xu et al., 2024b) have emerged, leveraging
MLLMs’ contextual understanding for alignment evaluation. However, pixel-level reward models
face limitations when evaluating intermediate noisy latents during denoising, as most existing meth-
ods (Liu et al., 2025d; Xu et al., 2024a) could be sensitive to pixel variations and unable to handle
noise effectively. Recent attempts (Liang et al., 2025; Zhang et al., 2025) train latent reward models
on simulated noisy inputs but suffer from noise compatibility degradation due to insufficient under-
standing of the diffusion model’s score function (Song et al., 2020). These limitations motivate our
SLRM proposal, which directly incorporates the denoising score function to maintain noise com-
patibility. Furthermore, current methods determine the advantages of the whole sampling trajectory
based on a single point-wise timestep, neglecting the temporal context from the global trajectory-
level perspective. Thereby, we further propose TAPO to consider reward signals from all timesteps
when determining the win-lose trajectory.

3 METHODOLOGY

In Fig. 2, we present a comprehensive two-stage framework for human preference alignment. First,
we propose the Score-based Latent Reward Model (SLRM) in Sec. 3.2 for stable preference discrim-
ination across all timesteps. Subsequently, building upon this noise-compatible reward model, we
introduce Trajectory Advantages Preference Optimization (TAPO) in Sec. 3.3. It leverages SLRM to
evaluate samples along sampling trajectories, efficiently identifying win-lose pairs with pronounced
preference differences.
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(b) Trajectory Advantage Preference Optimization (TAPO)

Denoising Score EnhancementDiffusion Model Backbone

"𝑆!
"𝑆"Score 

Enhance

…

𝑠!!,($)
&

𝑠!!,(')
&

𝑠!!,(()
&

𝑠!!,($)
)

𝑠!!,(()
)

𝑠!!,(')
)

𝑠!",($)
&

𝑠!",(')
&

𝑠!",(()
&

𝑠!",($)
)

𝑠!",(()
)

𝑠!",(')
)

𝑥!#
"

𝑥!#
#

𝑥!$
"

𝑥!$
#

Figure 2: (a) Training Pipeline of the Score-based Latent Reward Model (SLRM). (b) TAPO sam-
pling process. At specific timesteps, win and lose latents adapt SDE sampling to get the latents
group respectively.

3.1 PRELIMINARY

Flow Matching. Suppose that x0 ∼ X0 is a data sample from target distribution and x1 ∼ X1

denotes the source distribution. Recent advanced diffusion models adopt the flow matching (Lipman
et al., 2022) to generate x0 starting from x1. Specifically, the flow matching framework defines a
continuous-time normalizing flow through an ordinary differential equation (ODE):

dxt = vtdt (1)
where the linear conditional flow defines the xt = (1− t)x0 + tx1.The core of these methods is to
train a neural network vt,θ to satisfy the velocity field by minimizing the Flow Matching objective:

LFM = Et∈[0,1],xt∼pt
∥vt(xt)− vθ(xt)∥2. (2)

where the velocity field is given by vt(xt) = x1 − x0.

Preference Optimization for Diffusion Models. Diffusion-DPO (Wallace et al., 2024) extends
DPO (Rafailov et al., 2023) to diffusion models by propagating preference orders from clean images
(xw

0 ,x
l
0) to latents in intermediate denoising steps (xw

t ,x
l
t). However, the preference orders may be

inconsistent along the all the timesteps, which has motivated subsequent work to directly evaluate the
preference orders of latents in intermediate steps (xw

t ,x
l
t). Accordingly, the optimization objective

of Diffusion-DPO is reformulated as a step-by-step preference optimization (SPO):

LSPO = −Exw
t ,xl

t∼pθ(xt|xt+1,c)

[
log σ

(
β log

pθ(x
w
t |xt+1, c)

pref (xw
t |xt+1, c)

− β log pθ(x
l
t|xt+1, c)

pref (xl
t|xt+1, c)

)]
.

(3)
where c is the input condition, β is a regularization hyperparameter, and pθ and pref denote the
optimized and reference model, respectively.

3.2 SCORE-BASED LATENT REWARD MODEL

In this section, we provide a detailed presentation of the overall Score-based Latent Reward Model
(SLRM), including the architecture, loss and the training process.

Architecture Design. To inherit the diffusion model’s capability of processing noisy inputs, our
SLRM directly initialized the complete pre-trained diffusion model as the backbone, as shown in
Fig. 3. Previous approaches that compute scores using separate visual and text encoders:

S(x∗, c) =

〈
Evis(x

∗)

∥Evis(x∗)∥2
,
Etxt(c)

∥Etxt(c)∥2

〉
, ∗ ∈ {w, l} (4)
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where the Evis and Etxt denote visual and text encoders respectively, and w, l represent winning
or losing inputs. However, computing preference scores based on visual-textual similarity primarily
measures text-image alignment rather than comprehensive quality aspects like fine-grained details
and aesthetics.

Vision Encoder
(CLIP / UNet) Text Encoder

Vision Feature

Large Language Model

Hidden State

Regression 
Head

Diffusion Model

Reward Score

Enhancement

Noisy Image Text Clean Image, Text Noisy Image, Text

Text Feature

Cosine 
Similarity

Comprehensive Evaluation
Robust Noise CompatibilityNoise Compatibility Degrade

Primarily Text-Image Align

Reward Reward Reward

Comprehensive Evaluation
Noise Incompatibility

Existing Noisy Reward Model MLLM-based Reward Model SLRM Reward Model

Denoising Score

Figure 3: Comparison of Different Reward Model Architec-
tures. SLRM maintains robust noise compatibility while enabling
comprehensive evaluation through denoising score enhancement.

Thus, we introduce specific task to-
kens (Xu et al., 2024b) to partici-
pate in the model’s self-attention pro-
cess to capture comprehensive qual-
ity aspects beyond simple text-image
alignment.

Specifically, we randomly initialize
these tokens as new embeddings s ∈
Rns×np of the text encoder. Subse-
quently, these task tokens are con-
catenated with text and visual tokens
to pass through the diffusion model
to participate in its self-attention, and
the attention features can be modified
as follows:

Q = P I
Q(x

∗
t,l)⊙ PT

Q (ψ(ct,l))⊙ PS
Q(ψ(st,l)),

K = P I
K(x∗t,l)⊙ PT

K(ψ(ct,l))⊙ PS
K(ψ(st,l)),

V = P I
V (x

∗
t,l)⊙ PT

V (ψ(ct,l))⊙ PS
V (ψ(st,l)),

(5)

where the P I
Q, P

I
K , P

I
V and PT

Q , P
T
K , P

T
V are the pre-trained linear projections for image and text

embeddings, PS
Q , P

S
K , P

S
V are the score linear projections. After processing through L layers of

the MM-DiT blocks (Esser et al., 2024) in diffusion model, we obtain st,L, which is then mapped
to the vanilla reward score via a linear layer: S(x∗t , c) = MLP(st,L). Through the self-attention
mechanism in these DiT blocks, these task tokens can adaptively select and aggregate and fuse the
multi-level semantic representations in visual and textual features.

Denoising Score Enhancement. Although our model initially inherits timestep-aware capability
from the pre-trained diffusion model, we observe a critical issue: the model’s ability to discriminate
preferences on noisy latents actually degrades as training, as illustrated in Fig. 4.

Figure 4: Impact of Score Enhancement on SLRM. It com-
pares SLRM with and without score enhancement across different
timesteps.

This degradation occurs because dif-
fusion models’ noise compatibility
stems from their original training ob-
jective of learning score functions
(Song et al., 2020) across different
noise levels. However, when we
adapt these models for preference
discrimination, the training objective
fundamentally shifts away from score
function learning to preference rank-
ing. Essentially, this results in a naive
SLRM, similar to previous works
(Liang et al., 2025; Zhang et al.,
2025; Dhariwal & Nichol, 2021) that
attempted to achieve noise compati-
bility by simply adding noise to their inputs.

To resolve the gradual degradation during preference learning in existing methods, we design the
denoising score enhancement mechanism that maintains the model’s noise compatibility by incor-
porating denoising score matching into preference evaluation. Specifically, we first compute the
denoising score matching distance Ds(x, y, s) of the diffusion model. For a DiT-based model with
flow matching, this is expressed as:

Ds(x, y, s) = Et∼U(0,1),x1∼N (0,I)[∥vθ(xt, t, c, s)− (x1 − x0)∥2] (6)
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where s is the score embeddings. For computational efficiency with individual samples, we follow
(Lee et al., 2023) and use the estimation for this expectation and modify the distance as:

D̂s(x, y, s) = e−ρ·∥vθ(xt,t,c,s)−(x1−x0)∥2

(7)
where ρ is the scale logit to ensure the score distance is scale-compatible with S(xt, c). Finally, we
use this distance to augment the score logit S(xt, c):

Ŝ(xt, c) = S(xt, c) · D̂s(xt, c, s) (8)
The reward score S(xt, c) corrected by the denoising score must not only consider the aggregated
semantic information across variant blocks, but also adapt based on the denoising viability of the
latent at its current noise level.

Training of SLRM. Building on how the denoising score enhanced the predicted reward score
as described above, we now detail the training loss of SLRM. Following prior works (Liu et al.,
2025c; Yang et al., 2024a) that train a Bradley-Terry (BT) style reward model, we adopt a contrastive
learning approach for optimization. Given a preference dataset P = {(xwi , xli, ci)}Ni=1, where xw

and xl are win-lose pair images corresponding to the same prompt c. We randomly sample random
timesteps t ∈ {1, . . . , T}, where T is the number of timesteps. The paired images are transferred
into noisy latents xwt and xlt through the scheduler. These noisy latents are then fed into Eq. 9 to
obtain the predicted scores Ŝ(xwt , c) and Ŝ(xlt, c) respectively, and the training loss of our reward
model is formulated as:

LSLRM = −Et∼U(0,T ),(xw,xl,c)∈P log
Ŝ(xwt , c)

η

Ŝ(xwt , c)
η
+ Ŝ(xlt, y)

η , (9)

3.3 TRAJECTORY ADVANTAGE SAMPLING FOR PREFERENCE OPTIMIZATION

During the alignment phase, existing optimization methods typically sample two trajectories to form
a win-lose pair (xw,xl) and determine preference order based on the reward on single intermedi-
ate timesteps. Since previous work (Liu et al., 2025a; 2024) indicates that diffusion models focus
on different dimensions at different timesteps (e.g., layout and composition in early stages, content
coherence in middle stages, and visual details in late stages), our SLRM is designed to effectively
evaluate intermediate latents along sampling paths, thereby capturing comprehensive trajectory ad-
vantages beyond single-step signals. However, fully leveraging these advantages through exhaustive
evaluation presents a critical trade-off with computational efficiency.

To balance this, we propose Trajectory Advantages Preference Optimization (TAPO), a sampling
strategy that efficiently identifies and amplifies trajectory advantages by strategically performing
multi-step evaluations and progressively pruning less preferred samples. Specifically, within the
total T sampling timesteps, we first designate n sampling steps where SDE sampling is performed to
introduce randomness for stochastic exploration. They are uniformly distributed across the sampling
trajectory, with the corresponding timestep set WT defined as:

WT = {τ1, τ2, ..., τn} ⊂ {1, 2, ..., T} and τi = tinit+⌊
(i− 1) · T

n
⌋, i ∈ {1, 2, ..., n}. (10)

where tinit denotes the initial evaluation timestep. While the remaining steps use strategy of ordi-
nary differential equation (ODE) to provide deterministic path for efficient sampling. The sampling
process can be formulated as:

xt =

{
xt+1 −

[
vθ(xt+1, t) +

σ2
t

2t (xt+1 + (1− t)vθ(xt+1, t))
]
ϕ(t) + σt

√
ϕ(t)ϵ, if t ∈WT

xt − vθ(xt, t)ϕ(t), otherwise
(11)

where ϕ(t) denotes the timestep interval determined by the scheduler, ϵ ∼ N (0, I) injects stochas-
ticity. σt is the parameter controls the level of stochasticity during generation. At each SDE sam-
pling step, we obtain their respective sets of winning latent candidates Xw

t = {xwt,(i)}
P
i=1 and losing

latent candidates Xl
t = {xlt,(i)}

P
i=1. We evaluate them using SLRM and further retaining only the

highest and lowest scoring samples:

s∗t,(i) =Ŝ(x
∗
t,(i), y, t), i ∈ {1, ..., P}, ∗ ∈ {w, l},

xwt =argmaxx∈Xw
t
swt,(i), xlt = argminx∈Xl

t
slt,(i)

(12)
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After selecting the samples produced by the SDE, the two samples are selected for the subsequent
ODE sampling phase. This process repeats iteratively, ultimately yielding the optimal and worst
samples at the end of the sampling trajectories.

Notably, the n SDE sampling steps are uniformly distributed across the trajectory, covering diverse
noise levels from early to late denoising phases. This enables progressive identification of distinct
advantages from coarse to fine-grained across generation phases. Based on this insight, we dynami-
cally capture trajectory advantages and identify win-lose pairs with pronounced quality differences
while avoiding the computational burden of exhaustive per-step evaluation. This approach provides
stronger training pair samples for preference optimization.

Following the SPO (Liang et al., 2025) framework, we then optimize the model using the win-lose
pairs have been collected:

LTAPO = −Et∈WT ,xT∼N (0,I),xw
t−1,x

l
t−1∼pθ(xt−1|c,t,xt)[

log σ

(
β log

pθ
(
xw
t−1|c, t,xt

)
pref

(
xw
t−1|c, t,xt

) − β log pθ
(
xl
t−1|c, t,xt

)
pref

(
xl
t−1|c, t,xt

))] . (13)

We summarize the training procedure of TAPO in Algorithm. 1, can be found in Appendix. B.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. For T2I, we employ SD3.5-medium (Esser et al., 2024) as our base model
for both SLRM and TAPO, while we utilize Wan2.1-1.3B (Wan et al., 2025) as our base model for
T2V. More training details and comparison methods setting can be seen in Appendix B.1. We pri-
marily validate the effectiveness of our preference alignment method on T2I, while also conducting
experiments on T2V to demonstrate the effectiveness of our approach.

Datasets. For T2I, SLRM is trained on Pick-a-Pic v1 dataset (Kirstain et al., 2023) (580k prefer-
ence pairs) and evaluated on its validation/test sets (28k) for win-lose discrimination accuracy. For
fairness, TAPO uses 4k prompts in SPO for online sampling with 20 timesteps. For T2V, due to
the lack of high-quality video preference datasets, we collected a preference dataset (10k pairs) for
SLRM training and evaluate on GenAI-Bench (1.9k samples). Dataset details are in Appendix B.2.

Evaluation Metrics. For T2I, we evaluate TAPO on (1) text-image alignment using CLIP
Score(Radford et al., 2021) and GenEval(Ghosh et al., 2023), and (2) general preference using
PickScore(Kirstain et al., 2023), HPSv2.1(Wu et al., 2023), HPSv3(Ma et al., 2025), and MPS
(Zhang et al., 2024b). All metrics are evaluated on Pick-a-Pic v1 validation set. Result of additional
benchmarks of T2I and T2V can be seen in Appendix C.2.

4.2 QUANTITATIVE EVALUATION

Comparison with SOTA Alignment Methods. Our method demonstrates substantial performance
improvements across multiple evaluation dimensions. As shown in Tab. 1, TAPO achieves state-
of-the-art performance across most evaluation metrics. Our method attains the best results on both
general preference and text-image alignment metrics. Particularly on HPSv3, the latest preference
alignment metric, TAPO outperforms the preference alignment method LPO and the latest FLUX.1
Dev by 0.79 and 0.70, respectively. It demonstrates that our method achieves the best overall perfor-
mance in visual quality and aesthetic preference. The user study is presented in the Appendix C.1.

Comparison with SOTA Reward Model. To verify the noise compatibility of our SLRM reward
model, we compare it with existing reward models at different timesteps. As shown in Tab. 2, the
results demonstrate that our method achieves significantly higher accuracy under noisy inputs and
perform better on evaluate the noisy latents. Our SLRM maintains high accuracy of 62.09% and
65.50% under these conditions. Compared to the diffusion-based LRM-3.5, SLRM achieves supe-
rior performance across all timesteps, validating the effectiveness of our proposed score-enhanced
learning strategy. Although HPSv3 and PickScore achieve higher accuracy of 72.80% and 71.93%
respectively on clean images, SLRM’s discrimination under noise input far exceeds theirs.
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TAPO (Ours)LPOSPODiffusion-DPOSD 3.5-M (Base Model) Inversion-DPO

“A little cute girl is smiling, painting style.”

“A man standing in an ancient jungle temple with mysterious glowing runes.”

“A husky wearing a chef hat and apron, cooking, stirring a pot of soup on the stove.”

DenseReward

Figure 5: Comparison with SOTA (T2I). Qualitative comparison among various preference opti-
mization methods based on SD 3.5-M (Esser et al., 2024). TAPO achieves superior overall gener-
ation quality, outperforming baseline methods (DiffusionDPO, InversionDPO, SPO, LPO) in text
alignment, visual quality, and aesthetic preference.

Table 1: Quantitative comparison results on Pick-a-Pic validation unique set.

Method General Preference T2I Alignment
HPSv2.1 (↑) HPSv3 (↑) PickScore (↑) MPS (↑) CLIP-Score ( ↑) GenEval ( ↑)

Base Model

SD-XL (Podell et al., 2023) 26.05 7.52 21.94 0.89 24.73 52.29
SD3.5-M (Esser et al., 2024) 27.15 8.29 22.15 1.00 25.18 55.34
FLUX.1 Dev (Labs, 2024) 30.08 9.19 22.72 3.29 26.08 58.20
Show-o (Xie et al., 2024) 25.17 8.05 20.96 0.83 24.32 46.92

Alignment Model

Diffusion-DPO (Wallace et al., 2024) 28.23 7.59 22.64 1.93 25.71 54.93
Inversion-DPO (Li et al., 2025b) 30.83 7.91 22.91 2.08 25.76 52.34
DenseReward (Yang et al., 2024b) 29.99 8.05 22.83 2.51 26.18 55.27
SPO (Liang et al., 2025) 31.52 8.74 22.70 2.24 24.72 52.75
LPO (Zhang et al., 2025) 31.89 9.10 22.86 3.12 26.15 59.85

TAPO (Ours) 32.01 9.89 23.03 3.07 27.07 68.93

Noisy Compatibility of SLRM. To validate SLRM’s discriminative capability across the denoising
trajectory, we compare with existing noise-compatible methods across comprehensive timesteps.
As shown in Tab. 4, our method achieves the best performance with 70.21% accuracy at t = 501,
demonstrating SLRM’s ability to assess noisy latents. This robust cross-timestep performance is
crucial for effective reward scoring in subsequent optimization.

4.3 QUALITATIVE EVALUATION

T2I. We qualitatively compare our method with the SOTA DPO-style approaches, including Dif-
fusionDPO (Wallace et al., 2024), Inversion-DPO (Li et al., 2025b), SPO (Liang et al., 2025) and
LPO (Zhang et al., 2025). While DiffusionDPO and InversionDPO improve detail and color quality,
they exhibit insufficient text alignment (3-rd row). SPO and LPO enhance text alignment, but SPO
over-emphasizes subjects (1-st row) with degraded visual quality (2-nd row), while LPO shows in-
sufficiency in aesthetic quality. Our method successfully balances text alignment, visual quality, and
aesthetic preference, generating superior overall quality across diverse scenarios.

T2V. We qualitatively compare our method with the base model Wan2.1-1.3b (Wan et al., 2025)
across diverse video generation scenarios. The base model demonstrates basic generation capa-
bilities but exhibits limitations in temporal coherence, text alignment and aesthetic preference. In
contrast, our TAPO consistently generates the videos that are more natural temporal dynamics, en-
hanced visual details, and superior text-video alignment.
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“A woman do makeup in the morning.”

“Go-kart driver drifting on sunny track, vibrant suit, dust clouds, blurred background, thrilling hyper-realistic vivid scene”

“Slowly pouring creamy sauce, in a warm rustic kitchen, soft natural lighting, cozy atmosphere, highly detailed, realistic style”

Wan2.1-1.3b (Base Model) TAPO (Ours)

Figure 6: Results of TAPO in Text-to-Video.

Table 2: Comparison with Existing Reward
Models. Accuracy comparison of VLM-based
and diffusion-based reward models at different
timesteps on Pick-a-Pic validation and test sets.

Model t ∈ [501, 1000] t ∈ [1, 500] t = 0 (Clean Image)

VLM-Based

Aesthetic 47.25 45.83 54.03
CLIP Score 46.91 44.37 61.84
VQAScore 48.12 46.55 59.16
ImageReward 49.68 47.92 62.66
HPSv2.1 49.31 52.04 65.58
HPSv3 44.26 47.26 72.80
PickScore 45.26 48.21 71.93

Diffusion-Based LRM-3.5 59.56 64.12 66.41
SLRM(Ours) 66.35 66.59 67.08

Table 3: Ablation Study. Ablation study
of SLRM and TAPO. “n” indicates the num-
ber of SDE sampling. “w/o Task Tokens”:
use image-text similarity score.“(·) s/iter ” de-
notes time for sampling a pair.

Strategy SLRM TAPO
Val-Test Accuracy MPS GenEval HPSv2.1

SLRM (w/o Score Enhanced) 62.49 1.92 54.83 26.49
SLRM (w/o Task Tokens) 65.33 2.08 55.27 28.37

SLRM 67.52 3.07 64.93 30.71

TAPO (n = 2, 3.50s/iter) - 2.27 52.39 27.39
TAPO (n = 4, 3.91s/iter) - 2.93 56.20 28.31
TAPO (n = 8, 4.52s/iter) - 3.07 68.93 32.01

TAPO (n = 16, 6.08s/iter) - 2.09 69.18 31.29

Table 4: Preference Prediction Accuracy across Timesteps. Results of SLRM’s robust perfor-
mance across detailed denoising timesteps compared to existing methods on Pick-a-Pic.

Method Variant Timestep
t = 1 t = 101 t = 201 t = 301 t = 401 t = 501 t = 601 t = 701 t = 801 t = 901

SPM 63.75 62.41 62.97 62.58 61.74 61.50 60.82 58.92 56.21 53.46
LRM-3.5 65.42 63.78 64.25 64.03 63.12 62.89 62.15 60.28 57.64 54.83

SLRM (w/o Score Enhanced) 64.27 66.15 66.37 63.58 64.94 64.07 62.47 60.17 57.64 55.25
SLRM 65.81 63.88 67.88 66.15 69.68 70.21 69.55 66.65 67.24 58.12

4.4 ABLATION STUDY

Effectiveness of SLRM. We conducted an ablation study to evaluate the effectiveness of SLRM’s
different components in Table 2. For SLRM, removing the score enhancement mechanism results in
a significant accuracy drop from 67.52% to 62.49% (5.03% decrease), demonstrating its critical role
in maintaining noise compatibility. This validates that both components are essential for effective
preference discrimination.

Influence of Evaluation Numbers in TAPO. We analysed the influence of the number of SDE
sampling and reward evaluation steps n (Eq. 10) in TAPO. In Table 3, larger steps allow the model
to explore more possibilities, increasing the quality of training sample pairs. Notably, when n = 8,
GenEval shows a significant improvement, reaching 64.93. When we attempt to sample with more
steps, there is no significant improvement in general preference, while sampling time increases sub-
stantially (4.52s/iter→ 6.08s/iter). Thus, we choose n = 8 as the setting of our main result. More
ablation study between the candidate size P and evaluation number T is presented in Appendix C.4.

5 CONCLUSION

We address two critical challenges in diffusion model preference alignment: unreliable reward es-
timation on noisy latents and inconsistent preference evaluation across sampling trajectories. Our
solution introduces SLRM, a score-based reward model that maintains noise compatibility through
denoising score enhancement, and TAPO, a trajectory-aware optimization strategy that captures
multi-timestep advantages for effective preference learning. Extensive experiments on T2I and T2V
tasks demonstrate significant improvements, with SLRM achieving superior performance in noisy
latent evaluation and TAPO attaining state-of-the-art results on HPSv3 and GenEval.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no animal experimentation was in-
volved. All datasets used, including Pick-a-pic and our collecting video preference dataset, were
sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have
taken care to avoid any biases or discriminatory outcomes in our research process. No personally
identifiable information was used, and no experiments were conducted that could raise privacy or
security concerns. We are committed to maintaining transparency and integrity throughout the re-
search process.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made the following efforts: (1) We will release our code and the
collecting dataset. Additionally, the dataset Pick-a-pic are publicly available, ensuring consistent
and reproducible evaluation results. (2) We provide experiments setup in Sec. 4 and the more details
about training process are presented in Appendix. B.1 including training steps, model configurations,
and hardware details. (3) We elaborate on our evaluation protocol in detail in Sec. 4. We believe
these measures will enable other researchers to reproduce our work and further advance the field.
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• Section B provides detailed technical details of our methods, including training parameters,
construction of the video preference dataset, and derivation of key SDE sampling.

• Section C provides extended experimental results of SLRM and TAPO, including additional
benchmark evaluations of both methods on T2I and T2V tasks, as well as ablation studies
on hyperparameters during TAPO training.

• Section D provides more visual results of our TAPO.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to aid or polish the writing of this manuscript. Specif-
ically, we used Claude-4-Sonnet solely for language polishing and grammatical refinement of the
written text. All research contributions, including the main ideas, technical approaches, experimen-
tal work, and scientific insights presented in this paper, are entirely the work of the human authors.
The LLM usage is limited to improving the clarity and readability of the already-written content
without altering the substance or meaning of our work.
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B TECHNICAL DETAILS

B.1 TRAINING DETAILS

To ensure a fair comparison, we retrained the diffusion-based reward model LRM based on SD3.5-
medium which was originally based on SDXL-base. Similarly, SPO and LPO were also retrained on
SD3.5-medium. All the hyperparameters of our training are shown in the Tab. 5. All the experiments
are conducted on 8 NVIDIA A100 GPUs. The optimizer in SLRM and TAPO are both AdamW with
default parameters: beta1=0.9, beta2=0.999, weight decay=0.01. The σt in Eq. 11 controls the level
of stochasticity is set to 0.7.

Table 5: Hyperparameters of Training. The batch size represents an batch size implemented via
gradient accumulation.

SLRM TAPO
Hyperparameter SD3.5-M Wan2.1-1.3B Hyperparameter SD3.5-M Wan2.1-1.3B

Training Resolution 512× 512 49× 832× 480 (16 FPS) Training Resolution 512× 512 81× 832× 480 (16 FPS)
Learning Rate 1× 10−5 1× 10−4 Learning Rate 1× 10−4 1× 10−4

Training Batch Size 32 16 Training Batch Size 8 8
Training Epoch 5 15 Training Epoch 5 10

Datatype BF16 BF16 Datatype FP16 BF16
ρ ln 4 ln 4 β 1000 500

LoRA Rank 64 128
Evaluation Steps (n) 8 8

SDE Latents (N ) 4 4
Sampling Timesteps (T ) 20 40

B.2 VIDEO PREFERENCE DATASET COLLECTING

To evaluate the effectiveness of our method on text-to-video, we require high-quality video prefer-
ence pair datasets for training the reward model SLRM. However, existing open-source datasets (Dai
et al., 2024) generally suffer from low quality (short duration, poor motion coherence), collected
from UNet-based models like SVD (Blattmann et al., 2023). In contrast, current video generation
models are predominantly based on DiT architectures with relatively better generation quality.

Prompt List Collection Human Annotated

…Animal City Human Car

Random Selection

Human Input:
Please generate  a caption of  Human 
follow the formula below, 1) …

A focused chef in a crisp white uniform 
and a slight sheen of sweat on his brow 
preparing a dish in a rustic kitchen.

Categories: 

Prompts Video Diffusion 
Model

Hunyuan

Video-1

Video-2

Motion 
Consistency

Text
Alignment

Visual
Quality

8
4

7
2

4
6

Human Scoring

Preference Video Generation

Figure 7: Video Preference Data Collection Pipeline.

Figure 8: Distribution of Video Preference Dataset.

We constructed a pipeline for col-
lecting paired video datasets and ob-
tained a preference-annotated dataset
of 10,141 pairs through filtering.
Specifically, as shown in Fig. 7, we
first establish a list with 8 meta ele-
ments. Subsequently, we use LLM to
extend the element category informa-
tion into prompts for specific scenar-
ios, ultimately obtaining a prompt list
of 10.1k items. And the distrubution
are shown in Fig. 8.
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We use state-of-the-art open-source video generation models, Wan2.1-14B (Wan et al., 2025) and
Hunyuan-13B (Kong et al., 2024), to generate 2 videos for each prompt. To annotate the preference
order of these videos with finer granularity, we follow Flow-DPO and establish three annotation
dimensions: Visual Quality (VQ), Motion Consistency (MC), and Text Alignment (TA), with human
annotators scoring across these three dimensions. The annotation page can be seen in Fig. 13.

B.3 DETAILS OF STOCHASTIC DIFFERENTIAL EQUATIONS SAMPLING

TAPO is a online training method that requires stochastic sampling. However, the diffusion model
that TAPO use is based on flow matching, which relies on a deterministic generative process based
on ODEs. We follow (Liu et al., 2025b) converting the deterministic ODE sampling into SDE
sampling and applying it at the selected timesteps WT . Here we further elaborate on this sampling
process in detail.

Specifically, for a deterministic probability flow ODE of the reverse process (Song et al., 2020), it
takes the following form:

dxt = [f(xt, t)−
1

2
g2(t)∇xt

log pt(xt)]dt, (14)

where f(xt, t) denotes the drift coefficient while the g(t) denotes diffusion coefficient. The pt(xt)
represents the distribution of xt in reverse process. According to the Fokker–Planck equation
(Risken, 1989), the aforementioned ODE and this probability flow SDE have the same marginal
probability density:

dxt = [f(xt, t)− g2(t)∇xt
log pt(xt)]dt+ g(t)dw, (15)

In the above equation, g(t) can be expressed as the standard deviation σt. And according to the
definition of the standard Wiener process, dw =

√
dtϵ, where ϵ ∼ N (0, I). Note that flow models

define a continuous-time normalizing flow through an ODE:

dxt = vtdt (16)

Based on this special case of Eq. 14, we have:

vt = f(xt, t)−
1

2
g2(t)∇xt

log pt(xt). (17)

Substituting into Eq. 15, we obtain:

dxt = [vt −
σ2
t

2
∇xt

log pt(xt)]dt+ σt
√
dt ϵ, (18)

The key of the equation is to establish the relationship between the score function ∇xt
log qt(xt)

and the velocity field vt. Following (Liu et al., 2025b), by leveraging the linear interpolation pat-
hand conditional expectation of E[x1|xt], we derive their connection through the marginal score
computation. Therefore, the score function is represented as:

∇ logxt
pt(xt) = −

xt

t
− 1− t

t
vt. (19)

Substituting into Eq. 18, we have the final SDE:

dxt =

⌈
vt +

σ2
t

2t
(xt + (1− t)vt)

⌉
dt+ σt

√
dt ϵ. (20)

Applying the Euler-Maruyama discretization for SDE and the prediction velocity vθ(xt, t) for vt

can yields our final SDE sampling scheme:

xt+∆t = xt +

[
vθ(xt, t) +

σ2
t

2t
(xt + (1− t)vθ(xt, t))

]
∆t+ σt

√
∆tϵ (21)

In implementation, we use a specific noise scheduler with timestep t distributed according to a logit-
normal distribution (Esser et al., 2024) sampling over [0, T ], resulting in the following sampling
scheme:

xt = xt+1 −
[
vθ(xt+1, t) +

σ2
t

2t
(xt+1 + (1− t)vθ(xt+1, t))

]
ϕ(t) + σt

√
ϕ(t)ϵ (22)

where the ϕ(t) denotes the ∆t determined by the noise scheduler.
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B.4 TRAINING ALGORITHM OF TAPO

The algorithmic procedure of TAPO is presented in Algorithm 1.

Algorithm 1 Trajectory Advantagess Preference Optimization

Require: Initial diffusion model vθ; Socre-based Latent Reward model S(·); prompt dataset Y;
total sampling steps T ; SDE sampling steps WT = {τ1, τ2, . . . , τn}

1: for training iteration k = 1 to K do
2: Sample batch prompts yb ∼ Y
3: for each prompt y ∈ yb do
4: Init the same noise x1 ∼ N (0, I)
5: for sampling timestep t = 0 to T − 1 do
6: if t ∈WT then
7: Use SDE Sampling in Eq. 11 to get win candidates Xw

t and lose candidates Xl
t.

8: Calculate Reward {swt,(i)}
P
i=1, {slt,(i)}

P
i=1 and select the best and worst samples

xwt−1, x
l
t−1 in Eq. 12

9: else
10: Use ODE Sampling to get xw

t−1 and xl
t−1 of tow branches.

11: end if
12: end for
13: Obtain win-lose trajectory latents {xwτ1 , x

l
τ1 , x

w
τ2 , x

l
τ2 , . . . , x

w
τn , x

l
τn}

14: Computing Loss LTAPO in Eq. 13
15: Update diffusion model via gradient ascent: θ ← θ + η∇θLTAPO

16: end for
17: end for

C EXTENDED EXPERIMENTAL RESULTS

C.1 USER STUDY

We provide more details on our user study implementation. Besides qualitative and quantitative
comparisons, we also conduct a user study to determine whether our method is preferred by hu-
mans. We invite 13 participants from different social backgrounds and each test session lasts about
30 minutes. During the investigation, we conducted a pairwise comparison between our method and
competitors across three key dimensions: 1) Visual Quality, 2) Text Alignment, 3) Aesthetic Prefer-
ence. For ”Visual Quality”, users were asked to select which of the two images better fine-grained
details and layout quality. For ”Text Alignment”, users evaluated which image more accurately re-
flected the target text description. For ”Aesthetic Preference”, users judged which image aligned
better with their aesthetic preferences, considering factors such as visual quality and the absence of
artifacts or distortions. This comprehensive evaluation framework ensures a thorough and objective
assessment of our method’s performance relative to existing approaches.

The results are as shown in Fig. 9, our method defeats all competitors in all dimensions, especially
in Aesthetic Preference. This highlights the powerful ability of our framework in improving more
aspects beyond text-image alignment.

Figure 9: User study. The percentages indicate the proportion of users who thinks our method wins
the competitor.
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C.2 MORE BENCHMARK EVALUATION

TAPO on T2ICompBench++ (T2I). Our method, TAPO, demonstrates state-of-the-art perfor-
mance across most evaluation dimensions. Notably, TAPO achieves the highest scores in crucial
areas such as Color (0.7837), Shape (0.5684), Texture (0.7036), and shows a particularly significant
improvement in 2D-Spatial understanding (0.2713). This consistently superior performance com-
pared to existing alignment models highlights TAPO’s effectiveness in enhancing the text-image
alignment and overall generation quality, especially for complex visual attributes and spatial ar-
rangements.

TAPO on Vench (T2V). To quantify the improvement of TAPO on text-to-video generation, we
compare against two baseline methods Hunyuan-13B and Wan2.1-14B, as well as one prefer-
ence alignment method VideoDPO (Liu et al., 2025d). From the experimental results in Tab.8,
TAPO achieves competitive performance with an overall score of 84.87, marginally outperform-
ing VideoDPO (84.70) and other methods. TAPO demonstrates clear advantages in the key dimen-
sions: Subject Consistency (98.79), which is highly sensitive to minor degradations that significantly
impact overall quality. Notably, TAPO shows substantial improvements in Spatial Relationship
(+4.62), indicating better understanding of complex spatial semantics in video generation.

Table 6: Results of SLRM on GenAI-Bench (Text-to-
Video). “w/ Ties” indicates that takes account of tied pairs
when calculating accuracy.

Method Clean Video t ∈ [1, 500] t ∈ [501, 1000]

w/ Ties w/o Ties w/ Ties w/o Ties w/ Ties w/o Ties
LiFT (Wang et al., 2024b) 37.06 58.39 - - - -
VisionRewrd (Xu et al., 2024b) 51.38 71.04 43.09 54.81 42.51 54.07
SLRM (Ours) 50.66 64.44 53.30 67.81 49.28 62.69

SLRM on GenAI-Bench(T2V). To
evaluate the performance of SLRM
on text-to-video and validate its
noise compatibility across differ-
ent timesteps, we conduct experi-
ments on GenAI-Bench and compare
against existing video reward mod-
els including LiFT and VisionRe-
ward. From the experimental results,
SLRM demonstrates superior perfor-
mance in noisy latent evaluation. While VisionReward achieves the highest scores on clean videos
(51.38 w/ Ties), SLRM consistently outperforms all baselines across intermediate timesteps, achiev-
ing 53.38 vs. 43.09 in early timesteps t [1, 500] and 49.28 vs. 42.51 in later timesteps t [501, 1000].
These consistent performance gains validate that our score enhancement mechanism effectively pre-
serves noise compatibility during preference learning, enabling reliable evaluation of intermediate
latents throughout the diffusion process.

C.3 SENSITIVITY ANALYSIS OF REGULARIZATION HYPERPARAMETER OF β

To investigate the impact of the regularization hyperparameter β in Eq.13 on our method, we conduct
hyperparameter analysis with results shown in Fig.10. The results demonstrate that appropriate reg-
ularization coefficients can prevent catastrophic forgetting and severe performance degradation. As
illustrated in the figure, extremely small β = 20) lead to suboptimal performance across all metrics,
with PickScore of 21.070, GenEval of 60.210, and HPSv2.1 of 27.050, indicating insufficient regu-
larization that may cause the model “Catastrophic forgetting” and degrade. Conversely, excessively
large β = 5000) also result in performance drops, particularly evident in PickScore (21.810) and
GenEval (63.700), suggesting over-regularization that constrains optimization effectiveness. The
optimal performance is achieved at moderate values, with β = 500 yielding the highest PickScore
(23.210) and β = 1000 achieving peak performance on GenEval (68.830) and HPSv2.1 (32.010).
Therefore, we choose β = 1000 for other experiments.

C.4 ABLATION OF EVALUATION STEPS AND CANDIDATE LATENTS

In TAPO, the two hyperparameters governing stochastic exploration are the number of SDE sam-
pling steps n, (i.e., the size of WT ), and the number of candidate latents, P , used to form win-lose
pair after each SDE sampling step (i.e., the size of Xl

t = {xlt,(i)}
P
i=1 and Xw

t = {xwt,(i)}
P
i=1). To

investigate the influence of these two hyperparameters on the quality of generated samples and com-
putational efficiency, we conduct a detailed ablation study. Higher step numbers and larger candidate
sizes mean that the alignment phase can obtain higher-quality training samples based on SLRM’s
prior.
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Figure 10: Sensitivity Analysis on the hyperparameter β in LTAPO of Eq. 13

Table 7: Result of TAPO on T2I-CompBench++ (Huang et al., 2025).

Method Color Shape Texture 2D-Spatial 3D-Spatial Numeracy Non-Spatial Complex

Base Model

SD-XL 0.5592 0.4230 0.5172 0.2009 0.3172 0.4631 0.3105 0.3409
SD3.5-M 0.6810 0.4921 0.6295 0.2293 0.3491 0.5137 0.3108 0.3513
FLUX.1 Dev 0.6971 0.5130 0.6123 0.2503 0.3416 0.5246 0.3127 0.3679

Alignment Model

Diffusion-DPO 0.6829 0.5190 0.6338 0.2322 0.3620 0.5295 0.3155 0.3663
Inversion-DPO 0.6910 0.5189 0.6405 0.2461 0.3598 0.5402 0.3161 0.3708
DenseReward 0.7012 0.5220 0.6390 0.2448 0.3721 0.5622 0.3096 0.3700
SPO 0.7296 0.5392 0.6762 0.2409 0.3703 0.5724 0.3127 0.3721
LPO 0.7460 0.5508 0.6793 0.2541 0.3822 0.5835 0.3158 0.3838

TAPO 0.7837 0.5684 0.7036 0.2713 0.4013 0.5794 0.3217 0.3961

As depicted in Fig. 11, for moderate values of P (e.g., P = 2, 3, 4), increasing the SDE steps n
(from 1 to 16) generally leads to improvements in visual quality and prompt alignment. However,
our study reveals that this benefit does not extend indefinitely. When these hyperparameters becomes
excessively large (e.g., P=5), this may lead to reward hackingmeaning the model overfits the reward
signal by generating ’win’ samples that are superficially preferred but lack genuine quality. This
suggests that while increased stochastic exploration can enhance sample quality, an overemphasis
on it can cause the reward model (SLRM) to exploit spurious patterns or artifacts in its reward
landscape, resulting in visually unappealing outputs that paradoxically achieve high reward scores.
More results can be seen in Fig. 16 and Fig. 17

C.5 ANALYSIS OF REWARD INCONSISTENCY DURING SAMPLING

As discussed in the introduction, different timesteps in diffusion models emphasize distinct aspects,
resulting in inconsistent reward signals. To intuitively demonstrate this problem, we present two
cases from the trained model’s sampling trajectories to illustrate this phenomenon. As shown in
Fig 12, in the first case, despite its overall higher quality, the ’win’ sample’s composition and layout

Table 8: Result of TAPO on VBench (Huang et al., 2024). We apply our TAPO on Text-to-
Video (T2V). “§” indicates the VideoDPO (Liu et al., 2025d) conduct on our Preference Video
Dataset (Appendix B.2). VBench consists of 16 dimensions, and we present several key dimensions
that measure video quality and semantics, along with the overall score of other dimensions. “SC”:
Subject Consistency, “AQ”: Aesthetic Quality, “MS”: Motion Smoothness, “OC”: Object Class,
“Human Action”, “SR”: Spatial Relationship.

Method Quality Score Semantic Score Overall Score
SC AQ MS OC HA SR Quality Semantic Total

Hunyuan-13B (Kong et al., 2024) 97.37 60.36 98.99 86.10 94.40 68.68 85.09 75.82 83.24
Wan2.1-14B (Wan et al., 2025) 97.52 66.07 98.30 86.28 95.40 75.39 85.59 76.11 83.69
Wan2.1-1.3B (baseline) 96.34 62.43 97.44 88.81 98.20 76.46 85.30 80.09 84.26

VideoDPO § (Liu et al., 2025d) 96.68 64.80 98.10 90.26 96.64 80.25 85.00 80.95 84.70
TAPO 98.79 67.27 98.12 89.62 98.00 81.08 85.21 82.49 84.87
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Reward Hacking Reward Hacking

“A cute young child with brown hair playing chess, cartoon illustration, 
soft background, warm lighting, children's book illustration style.”

"A group of tiny hamsters having a picnic on a giant strawberry, 
whimsical and adorable, vibrant colors, high detail"

Figure 11: Results under Different evaluation Steps n and Latent Candidates Size P . “Reward
hacking” is observed with an excessive number of evaluation steps and large latent candidate sizes.

3.1562

2.9531 3.6000 3.0862 3.3206 3.8169 2.9300 2.5312 2.7156

3.0762 2.7500 3.3231 3.6925 3.7344 3.3438 3.6252

t = 950 t = 850 t = 750 t = 650 t = 550 t = 450 t = 350 t = 250

Reward

Reward

Win
Latents

Lose
Latents

2.3750 2.5625 2.6641 2.7969 2.8203 2.8516 2.7422 2.8672Reward

2.7969 2.6875 2.6719 2.8672 2.9688 2.8750 2.6953 2.8125Reward

Win
Latents

t = 950 t = 850 t = 750 t = 650 t = 550 t = 450 t = 350 t = 250

“A floating castle above the clouds, waterfalls falling into the sky, epic fantasy landscape, cinematic lighting”

“A snowy forest, one fox in the foreground, three deer grazing in the midground, endless pine trees fading into the 
background, cold blue lighting, volumetric fog”

Lose
Latents

Figure 12: Inconsistent Reward Across Denoising Timesteps. The critical challenge of inconsis-
tent reward signals for noisy latents across different timesteps, a core motivation for our work.

are less coherent than the ’lose’ sample in early stages (t = 850, 750), leading to a lower reward
score. In contrast, in later steps (t = 250), it achieves a higher reward score due to its refined details.
A similar inconsistency is observed in Case 2. For instance, at an early timestep (t = 650), the ’win’
sample better captures the concept of ”three deer,” thus getting a higher score.
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Figure 13: Video Preference Dataset Annotation Interface.
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Figure 14: Visualization about the Influence of Score Enhancement on Reward Distributions.
‘w/o Score Enhancement’ exhibits lower overall reward scores, and the separation between win and

lose latents becomes significantly blurred when t ̸= 0, indicating reduced discriminability under
noisy latent conditions.

C.6 ANALYSIS OF THE SCORE ENHANCEMENT

To more clearly demonstrate the influence of the score enhancement mechanism on the reward score
Ŝ(xt, c) produced by SLRM, we visualize the reward distributions of 1,000 sample pairs from the
Pick-a-Pic v1 test set. For each pair, we plot the distributions of Ŝ(xwt , c) and Ŝ(xlt, c) across
different diffusion timesteps. As shown in Fig. 14, with score enhancement, the win–lose reward
distributions remain well separated across all timesteps, and the overall reward magnitude stays
high. This indicates that SLRM can consistently discriminate between high-quality and low-quality
latents, even under noisy conditions (i.e., t=0). In contrast, without score enhancement, the reward
distributions shift toward lower values, and the separation between win and lose latents becomes
significantly blurred as the timestep increases. This suggests that the model struggles to maintain
reliable reward predictions when operating on noisy latents. Overall, these results show that score
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Figure 15: Visualization about the Influence of “Training on t = 0 Only” on Reward Distribu-
tions.

enhancement substantially improves the stability and discriminability of SLRM under noisy latents,
validating its necessity for robust reward modeling throughout the diffusion trajectory.

D MORE VISUALIZATION

We present additional experimental visualization of our TAPO, including text-to-image in Fig. 18
and text-to-video in Fig. 19, which demonstrate that our method outperforms existing approaches in
human aesthetic preference, text alignment, and other aspects.
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SDE Steps

Latent Candidates

"A phoenix rising from a lake of molten gold, sparks and embers, 
high detail, dramatic lighting, fantasy realism"

Figure 16: Results under Different SDE Steps n and Latent Candidates Size P .
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n = 1 n = 2 n = 4 n = 8 n = 16

P 
= 

5

SDE Steps

Latent Candidates

"A fluffy kitten wearing a tiny wizard hat, sitting inside a teacup, 
pastel colors, soft lighting, kawaii style, ultra detailed"

Figure 17: Results under Different SDE Steps n and Latent Candidates Size P .
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AAPO (Ours)LPOSPODiffusionDPO
SD 3.5-M

(Base Model) InversionDPO

“Red Stop sign, school bus in the background, 4k, realistic.”

“An abstract painting of a dragon flying over a grass field.”

“Cinematic still of highly reflective stainless steel Bitcoin logo in the desert, at sunset”

“Charcoal drawing of a majestic black pegasus flying in a mountain landscape by jmw 
turner and bob ross and monet, charcoal.”

“A hero battling monsters, pixel art with retro 8-bit graphics, limited color palette, 
nostalgic video game vibe, chiptune-inspired environment.”

“Dark gothic style with moody atmosphere, candle-lit interiors, ornate architecture, deep 
shadows.”

Figure 18: Qualitative Comparison of Preference Pptimization Methods. Rows 1-3 show the
alignment of the subjects, and rows 4-6 show the alignment of style.
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Wan2.1-1.3b (Base Model) AAPO (Ours)

Kitchen with warm lighting, wooden countertops cluttered with fresh ingredients, lively chef chopping carrot
rapidly, simmering pots releasing steam, soft background chatter and clinking utensils

“Two people kissing under a colorful umbrella, casual raincoats, wet hair glistening with raindrops, standing on a neon-lit urban street with reflections in puddles, 
steady rainfall creating ripples, fabric swaying in the cool breeze, medium shot from a low angle focusing on their closeness, cinematic realism, moody atmosphere.”

“Red wine  swirling in glass, graceful hand movements, subtle reflections on glass surface, 
gentle ambient flickering of candlelight.”

“Two Skiers in colorful winter gear gliding along snowy mountain trails lined with evergreen trees, ski tracks in the foreground, snowflakes swirling in the wind, 
wide-angle low shot following their motion, photorealistic style with crisp lighting and vibrant colors.”

“A mystical ice palace interior with ethereal blue lighting, featuring a graceful woman in flowing white robes standing in the center, long 
silver hair, surrounded by glowing ice crystals and stalactites, floating luminous ice fragments, magical blue ambient lighting”

Figure 19: Results of TAPO in T2V.
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