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RicciNet: Deep Clustering via A Riemannian Generative Model
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ABSTRACT

In recent years, deep clustering has achieved encouraging results.
However, existing deep clustering methods work with the tradi-
tional Euclidean space and thus present deficiency on clustering
complex structures. On the contrary, Riemannian geometry pro-
vides an elegant framework to model complex structures as well as
a powerful tool for clustering, i.e., the Ricci flow. In this paper, we
rethink the problem of deep clustering, and introduce the Riemann-
ian geometry to deep clustering for the first time. Deep clustering in
Riemannian manifold still faces significant challenges: (1) Ricci flow
itself is unaware of cluster membership, (2) Ricci curvature prevents
the gradient backpropagation, and (3) learning the flow largely re-
mains open in the manifold. To bridge these gaps, we propose a
novel Riemannian generative model (RicciNet)1, a neural Ricci
flow with several theoretical guarantees. The novelty is that we
model the dynamic self-clustering process of Ricci flow: data points
move to the respective clusters in the manifold, influenced by Ricci
curvatures. The point’s trajectory is characterized by a parametric
velocity, taking the form of Ordinary Differential Equation (ODE).
Specifically, we encode data points as samples of Guassian mixture
in the manifold where we propose two types of reparameterization
approaches: Gumbel reparameterization, and geometric trick. We
formulate a differentiable Ricci curvature parameterized by a Rie-
mannian graph convolution. Thereafter, we propose a geometric
learning approach in which we study the geometric regularity of
the point’s trajectory, and learn the flow via distance matching and
velocity matching. Consequently, data points go along the shortest

Ricci flow to complete clustering. Extensive empirical results show
RicciNet outperforms Euclidean deep methods.

CCS CONCEPTS

• Computing methodologies → Unsupervised learning; Neu-
ral networks; • Information systems→ Clustering.
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(a) Pathbased: Results (b) Pathbased: Groundtruth

(c) Compound: Results (d) Compound: Groundtruth

Figure 1:Motivated Example.We show the clustering results

of a Euclidean deep method, DEC [50]. Groundtruth is on

the right. Different colors denote different clusters.

Relevance. Clustering, aiming to group similar samples into the
same cluster, is one of the most fundamental tasks in web mining
and content analysis. Over the past decades, clustering routinely
finds itself in a wide spectrum of applications, ranging from topic
discovery of web contents [32] to interest groups mining for recom-
mendation and online advertisement on theWorldWideWeb [2, 44].
In this paper, we study deep clustering from a fresh perspective of
Riemannian geometry, and propose a neural Ricci flow.

1 INTRODUCTION

Deep learning methods are becoming the dominant solution for
clustering, e.g., variational autoencoders (VAE) [20, 56], genera-
tive adversarial nets [33] and the recent contrastive clustering [36].
So far, existing deep clustering methods are in the traditional Eu-
clidean space. Nevertheless, modeling data in Euclidean space is
limited. It often falls short of capturing the complexity of real-world
scenarios where the data distribution can be highly complicated,
especially for the contents on theWeb [43, 47]. A primary shortcom-
ing of Euclidean solutions is the deficiency on clustering complex

structures. For instance, density-based methods usually struggle
in segmenting overlapped clusters [53], while VAEs with Gaussian
mixture [20] face the difficulty to distinguish the clusters of com-
plex topology. We give a motivated example in Figure 1. A natural
question arises: Is there an effective deep method for more generic

clustering, especially for the complex structures?

In this paper, we study deep clustering from a fundamentally dif-
ferent perspective of Riemannian geometry. Riemannian geome-

try shows better expressiveness for modeling complex structures
[13, 26], e.g., hyperbolic space is well alignedwith hierarchical struc-
tures [42] while hyperspherical space is suitable for cyclic topology

1
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[1]. Indeed, Riemannian geometry also provides a powerful tool
for clustering, i.e., Ricci flow. Stemming from the thermodynamic
equation, Ricci flow demonstrates that particles in the manifold
tend to aggregate into several submanifolds, influenced by the Ricci
curvature [17]. While the physical phenomenon of Ricci flow aligns
with clustering, it has not yet been introduced to deep clustering
due to several significant challenges.

The first challenge lies inmodeling clustermembership. Clus-
tering aims to identify cluster membership of each data sample.
On the contrary, Ricci flow itself demonstrates the trend of clus-
tering but does not specify the cluster membership as mentioned
above [17]. Also, most flow-based models, also known as normal-
izing flows, reshape a Gaussian for generation and, as a result,
cannot support clustering. The second challenge is computing

Ricci curvature. The process of Ricci flow is triggered by the Ricci
curvature, but computing Ricci curvature is problematic. In the lit-
erature, Ricci curvature is well defined with calculatingWasserstein
distance between mass distributions [35] or enumerating geodesics
triangles in the manifold [12]. The discrete optimization nested
within Ricci curvature blocks the gradient backpropagation, thus
posing a fundamental challenge to deep clustering. It is not until
very recently that a few works [29, 34, 46] investigate on Ricci cur-
vature. Unfortunately, all of them consider the discrete settings, and
the formulations cannot be applied to deep clustering. The third
challenge is learning a flow in Riemannian manifold. Most
normalizing flows [38, 39, 49] live in the Euclidean space, and learn-
ing the flow is nontrivial. For the discrete flows, the log-determinant
of the Jacobian is typically involved and thus results in a cubic com-
plexity, while the recent continuous normalizing flow also requires
a costing trace term [22]. In fact, computing distribution density
in a Riemannian manifold is rather expensive [42], and it is even
more challenging to pushforward the distribution using the flow
[30, 31]. We notice that [27, 28] introduce intuitive and efficient
ways of flowmatching very recently. They focus on data generation
in Euclidean space, and are still far from clustering in Riemannian
manifold.

To bridge the gaps, we propose a novel neural Ricci flow, Ric-
ciNet. The novelty is that we model the dynamic self-clustering
process of Ricci flow: data points move to the respective clusters
in the manifold, influenced by Ricci curvatures. In a nutshell, the
trajectory of points’ movement is characterized by a parametric ve-
locity, taking the form of Ordinary Differential Equation (ODE), and
we analyze geometric regularities of the trajectory to learn the flow.
Concretely, for challenge one, we consider a Gaussian mixture in
the manifold to identify cluster membership. We propose two types
of reparameterization approaches: Gumbel reparameterization and
geometric trick. The former is a generative process with wrapped
Gaussian in the manifold. The latter is formulated with a linear op-
eration, which is proved to be the manifold-preserving Riemannian
operator (Proposition Two). For challenge two, we derive a dif-
ferentiable formulation with Kantorovich-Rubinstein duality [15],
termed as convolutional Ricci curvature. It is parameterized by
a Riemannian graph convolution on the k-NN graph, modeling the
structural information in the meanwhile. Theoretically, we prove
that the convolutional Ricci curvature is the upper bound of Ol-
livier’s Ricci curvature (Proposition Three), and thus is regarded as
its differentiable alternative. For challenge three, we propose a new

geometric learning approach. Instead of explicitly optimizing
the likelihood [30, 31], we learn the flow by studying geometric
regularity at sample-level thanks to reparameterization. At any
time in the process, distances among data points are encouraged
to match the ideal distance derived from Ricci flow ODE (distance
matching), and the velocity of each point matches the velocity of
the shortest path (velocity matching). Consequently, data points go
along the shortest Ricci flow to the respective clusters.

Contribution Highlights. In summary, main contributions are
three-fold: (1) Deep Clustering via Riemannian Manifold.We
rethink the problem of deep clustering and, to the best of our knowl-
edge, make the first attempt to introduce Riemannian geometry to
deep clustering for more generic scenario, especially for clustering
complex structures. (2) Neural Ricci Flow. We propose a novel
Riemannian generative RicciNet, a neural Ricci flow with several
theoretical guarantees. In particular, we introduce two strategies to
reparameterize Gaussian mixture in the manifold, a convolutional
Ricci curvature, and a new geometric learning approach to learn
the shortest Ricci flow for clustering. (3) Extensive Experiments.

We evaluate the superiority of RicciNet with 8 strong competitors
on 7 datasets, examine the proposed components by ablation study,
and further discuss the Ricci flow via visualization.

2 PRELIMINARIES

This section first formally reviews the basic concepts of Ricci flow
and continuous normalizing flow, and then formulates the studied
problem. Important notations are summarized in Appendix A.
2.1 Riemannian Geometry

Riemannian manifold is a smooth manifoldM endowed with a Rie-
mannian metric g. Each point x in the manifold is associated with a
tangent space TxM. The transform between manifold and tangent
space is done via exponential/logarithmic map, while the transform
between two tangent spaces is done via parallel transport. Constant
curvature κ is a global geometric property of the manifold as a
whole, and there exists three types of constant curvature manifold:
hyperbolic space with negative κ, hyperspherical space with posi-
tive κ, and Euclidean space, a special case of zero curvature. Ricci
curvature is a local geometric property of a curve connecting two
points in the manifold. A classic definition of Ricci curvature is
given by Ollivier [35]. Given two points x,y and mass distributions
mx ,my surrounding them, Ollivier’s formulation is given as

Ric(x,y) = 1 −
W1(mx ,my )

d(x,y)
, (1)

whereW1 denotes the Wasserstein-1 distance between two distribu-
tions, and d is the distance in the manifold. In the literature, Forman
gives an alternative definition by enumerating geodesic triangles
in the manifold [12]. Note that, both definitions prevent the gradient

backpropagation for deep clustering (Challenge One).Considering the
“heat flow” in the manifold, Hamilton introduces the Ricci flow of a
differential equation system that characterizes the self-clustering
process [17]. In the thermodynamic system, distances among the
points are controlled by Ricci curvature [35],

∂

∂t
dt (x,y) = −dt (x,y)Ric(x,y). (2)

Unfortunately, the Ricci flow in Eq. (2) does not specify the cluster

membership (Challenge Two).

2
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Figure 2:RicciNet.We consider a dynamic process in themanifold. In the encoding process, data pointsmove to the respective

clusters, and encodings are reparameterized with the parameters of Gaussian mixture in (1) to learn the cluster membership.

In the decoding process, points’ movement trajectories over time are geometrically regulated by (2), in which a differentiable

Ricci curvature in (3) is required to learn the flow. (4) shows the vector field when the points arrive at the Gaussian mixture.

2.2 Continuous Normalizing Flow

Continuous normalizing flow (CNF) formulates the vector field of
the flow via an Ordinary Differential Equation (ODE) [9], trans-
forming a simple distribution p0 to a complicated one p1. A CNF
considers the flowϕt as a function over the coordinate of x and time
t ∈ [0, 1], and parameterizes the vector fieldvt as a nerual network:
∂
∂t ϕt (x) = vt (ϕt (x)). A probability path pt is a time-dependent
probability density function, i.e.,

∫
pt (x)dx = 1,∀t ∈ [0, 1], and pt

is given by a pushforward from p0 for all t ∈ [0, 1],

pt (x) = [ϕt ]⋆p0(x) = p0(ϕ
−1
t (x)) det

[
∂

∂x
ϕ−1t (x)

]
, (3)

where [ϕt ]⋆ denotes the pushforward along the flowϕt , det denotes
the determinant of a matrix, and ∂

∂x ϕ
−1
t (x) is the Jacobian matrix.

Learning CNF via Eq. (3) in Euclidean space is nontrivial, and is

tougher in Riemannian manifold (Challenge Three).

2.3 Problem Formulation

In this paper, we consider soft clustering. A dataset D = {x i }Ni=1
consists of N unlabelled samples x i ∈ RD from K clusters. We
aim to assign each sample x i with the cluster membership vector
ai ∈ RK . The membership is a stochastic vector adding up to 1,
whose kth element is the probability of x i belonging to cluster k .

Problem Definition (Deep Clustering in Riemannian Man-
ifold). Given the dataset D, the problem is to seek a bijection Φ :
x → a in the Riemannian manifoldM, so that each data point x is

mapped to the cluster membership a.

Fundamentally different from existing solutions, we approach deep
clustering from a fresh perspective rooted in Riemannian geometry.

3 RICCINET: A NEURAL RICCI FLOW

We propose a neural Ricci flow (RicciNet), enjoying the expres-
siveness of a generic manifold and transformation capacity of a
flow. Our novelty lies in that, instead of seeking cluster boundary,
we study a dynamic self-clustering process, illustrated in Figure 2.
In particular, we model the thermodynamics of Ricci flow: data points

move to the respective clusters in the manifold, characterized by Ricci

curvatures as shown in Fig. 2(4). The trajectories of data points is

given by a Riemannian neural ODE (Sec. 3.1). To identify cluster
membership, we consider data encodings as samples of a Gaussian
mixture, and provide two types of reparameterization tricks in Sec.
3.2. With a differentiable Ricci curvature formulated in Sec. 3.3,
we study the geometric regularity of the points’ trajectories, and
introduce distance/velocity matching to learn the flow (Sec. 3.4).
3.1 Riemannian Continuous Normalizing Flow

We consider the data points x in Riemannian manifold, and thus
firstly introduce important notions of CNF in the manifold. A vector

field vt over the manifold is a smooth functionvt : [0, 1]×M→ TM
which maps (t,x) to the tangent bundle TM = ∪x ∈M{x} × TxM.
(In other words, vt (x) lies in the tangent space of x .) A Riemannian

probability density is a nonnegative function p : M→ R+ satisfying∫
p(x)d volx = 1, where d volx is the volume element. A probability

path is time-dependent and gives the Riemannian density at t .
RicciNet models the points’ movement trajectories from a base

distribution p0(x) to the observed distribution p1(x), and the tra-
jectory is described by the velocity vector with an ODE as follows,

∂

∂t
ϕt (x) = vt (ϕt (x);θ ) ∈ TM, ϕ0(x) = x ∈ M, (4)

ϕ0(x) gives the initial state of ODE. In RicciNet, we define p0(x)
as the Gaussian mixture in Riemannian manifold,

p0(x) =
∑

k
πkN

M(x |µk ,σk ), (5)
where πk , µk and σk denote the mixture coefficient, mean and vari-
ance of the kth component Riemannian GaussianNM, respectively.
Given the probability density path pt in the Riemannian manifold,
ϕt pushforwards p0 to pt = [ϕt ]⋆p0, and we have

log (([ϕt ]⋆p0)(x)) = log(p0(x ′)) −

∫ t

0
divg(vs (ϕs (x ′)))ds, (6)

where divg denotes the Riemannian divergence, and x ′ = ϕ−1t (x).
A key ingredient of RicciNet is parametric vector field vt . Given
the vectors lie in the tangent bundle, vt is designed as a multilayer
perceptron (MLP), whose input layer includes a logarithmic map
that project manifold-valued data point to the tangent space.
Diffeomorphism. From the perspective of differential geometry,
we have the following proposition hold.

3
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Proposition 1 (Diffeomorphism). The RicciNet in Eqs. (2) and

(3) constructs a diffeomorphism between the Riemannian manifolds

of Gaussian mixture and data distribution.

Proof. Please refer to Appendix E. □

κ-stereographical Model. We instantiate RicciNet with the κ-
stereographical model Gdκ [37], as it unifies constant curvature
manifold with the gyrovector formalism, and has closed-form ex-
pression of Riemannian operators. In particular, the manifold Gdκ
of constant curvature κ and dimension d is defined on a smooth
gyrovector ball

{
x ∈ Rd | −κ∥x ∥2 < 1

}
with distance metric of

d(x,y) = 2√
|κ |

tan−1κ
(√

|κ |∥ − x ⊕κ y∥
)
. Gyrovector addition ⊕κ ,

scaling ⊗κ , curvature trigonometry e.g. tan−1κ , exponential map
expκx , logarithmic map logκx , parallel transport PTκ0→µ and other
operators are summarized in Appendix B. Note that, Gdκ is hyper-
spherical with positive κ, and hyperbolic with negative κ.
3.2 Gaussian Mixture in the Manifold

In RicciNet, we consider a Gaussian mixture as the base distri-
bution to address membership unawareness. In other words, data
point x1 will move to and finally arrive at x0 of a Gaussian mix-
ture in the encoding process. We need to rewrite the encoding x0

as a function of Gaussian mixture parameters (mean µk ∈ Gdκ ,
covariance σk ∈ Rd , and mixture coefficients π ∈ RK ) to learn
cluster membership with the mixture. First, we derive a soft assign-
ment to each cluster a with solution of Riemannian neural ODE.
Given z = SolveODE(x1, [0, 1],vt ), the assignment is defined as
a = Normalize(f (z,π ,σ1, · · · ,σK )), where we use softmax nor-
malizer and f is a neural network. Second, we obtain a Gaussian
mixture sample x0 from the soft assignment via reparameterization.
In particular, we provide two types of novel reparameterization:
gumbel reparameterization and geometric trick as in Fig 2(1).
3.2.1 Gumbel Reparameterization. We consider the genera-
tive process of Gaussian mixture in the manifold: First, a compo-
nent Gaussian is selected from categorical distribution (Cat), and
then a data point is sampled from Riemannian Gaussian. Note that,
categorical distribution is problematic as it is not differentiable. To
resolve this issue, the first step of our approach is to leverage the
differentiable version of Cat (gumbel-softmax [19]) to sharpen a,

qi = so f tmaxi ∈(1,K )(
log(ai ) + дi

τ
), (7)

where τ is a temperature parameter. д is drawn from Gumbel distri-
bution, i.e., д = − log(− log(ϵ)) with ϵ from a uniform distribution,
ϵ ∼ Uniform(0, 1). Eq. (7) is differentiable over the mixture coef-
ficient. The second step is to instantiate a Riemannian Gaussian
via a pushforward in the manifold. In particular, we sample from
a standard Gaussian in Euclidean space, v ∼ N(0, I), v ′ = σ ⊙ v ,
and then conduct the following transform,

u = PTκ0→µ (v
′) ∈ T0M, x0 = expκµ (u) ∈ M, (8)

where PTκ and expκ denote parallel transport and exponential map.
µ and σ are the mean and covariance of the Gaussian selected by q,
e.g., µ = q⊤[µ1, · · · , µK ]⊤. As a result, the pushforward is given as
h = PTκ0→µ · expκµ , yielding the wrapped Gaussian in the manifold,
and it is differentiable over the parameters. We provide the detailed
algorithm (Algo. 1) and density function in Appendix C and D.

3.2.2 Geometric Trick. We follow the geometric intuition that
a data point from Gaussian mixture can be expressed as a linear
aggregation of the means of component Gaussian in the manifold,
and thus uncertainty is given by the weights of aggregation,

Linear (µ1, · · · , µK ,w) = w[µ1, · · · , µK ]
⊤ (9)

where the weight w is a vector-valued function over assignment
a and ϵ uniformly sampled from the ball. Note that, formulating
a linear aggregation is challenging in the manifold, owing to the
constraint of manifold preserving [37]. Accordingly, we have a
stochastic vector a′ = a ⊙ ϵ and derive the weight function as

w(a′ |µ1, · · · , µK ) =
λκµi∑K

j=1 a
′
j (λ

κ
µ j

− 1)
a′, λκµ =

2
1 + κ∥µ∥2

, (10)

where we use L2 norm, and λ is indeed the conformal factor. Conse-
quently, we obtain a differentiable relaxation of Gaussian mixture
regarding the parameters of mixture coefficient, mean and variance.

Theoretically, we prove that the formulated linear aggregation
is a manifold-preserving Riemannian operator.

Proposition 2 (Manifold Preserving). Given a set of centroids
in the manifold µ ∈ Gdκ , we have Linear (µ1, · · · , µK ,w) ∈ Gdκ hold

for any set of weightsw ∈ R.

Proof. We sketch the proof with key ideas, and present further
details in Appendix E. Let x = Linear (µ1, · · · , µK ,w). We are to
check that −κ∥x ∥ < 1 holds, given µ ∈ Gdκ . However, tackling
inequality is troublesome mathematically, and the equality is pre-
ferred. Thus, the key is to leverage the inverse of κ-stereographical
projection Γ, and investigate the equivalent Lorentz/spherical model
of the manifold. (Note that, Lorentz/spherical model Ldκ is de-
fined on the domain expressed by the equality of Ldκ = {z ∈

Rd+1 |κ⟨z, z⟩κ = 1}, where ⟨·, ·⟩κ is the metric inner product.)
First, applying Γ, we have µ′,x ′ ∈ Ldκ . Second, we check that
κ⟨x ′,x ′⟩κ = 1 holds for any set ofw ∈ R, completing the proof. □

The geometric trick is able to strictly recover the density of Gaussian
mixture in the manifold by training the neural network f . However,
it is not our focus to recover the density, and more importantly, we
will show that the geometric trick achieves competitive and even
better clustering results with respect to Gumbel reparameterization.
Remark 1. A few studies [18, 49] consider the Discrete NF with
Gaussian mixture in the Euclidean counterpart. However, it has not
yet been explored on CNF in the manifold to our best knowledge.

3.3 Convolutional Ricci Curvature

A Ricci flow is influenced by Ricci curvature. However, its typical
definition is given by the discrete optimization and thus blocks the
gradient backpropagation, posing a fundamental challenge for deep
clustering. To address this challenge, we formulate a differentiable
Ricci curvature parameterized by a Riemannian graph convolution,
termed as convolutional Ricci curvature, and prove that our formu-
lation is the upper bound of Ollivier’s Ricci curvature, and thus is
regarded as its differentiable approximation.
3.3.1 Formulation. Wederive the Ricci curvature on the k-nearest
neighbor (k-NN) graph of the data. First, we feed data points col-
lected in X to Riemannian graph convolution on Laplacian Lα ,

Y α = δ
(
Lα (X ⊗κ W )

)
, Lα = αI + (1 − α)D−1A (11)

where ⊗κ denotes κ-right multiplication,W is the weight matrix,
4
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and δ is an identity map. A is the adjacency matrix of k-NN graph,
and D is the degree matrix of A. Then, Ricci curvature Ric(i, j)
between two points x i and x j is derived as follows,

Ricα (i, j) = 1 − (||yi | |0 − ||y j | |0)/d(x i ,x j ), (12)

where the zero-norm is defined as ∥y∥ = y1, and d is the distance.
As a result, our formulation of Ricci curvature in Eq. (12) is differ-
entiable with respect to x . Note that, computing the k-NN graph
can be boosted by lots of off-the-shelf method [54].
3.3.2 Theory. Here, we elaborate on why our convolutional Ricci
curvature is an approximation of Ollivier’s Ricci curvature.

Proposition 3 (Upper Bound). The differentiable Ricci curvature
in Eq. 12 is the upper bound of Ollivier’s Ricci curvature (Eq. 11) in

the k-NN graph with the mass distribution given as

mα
i (x) =


α, x = i,

(1 − α) 1
Deдr eei , x ∈ Ni ,

0, Otherwise,

(13)

where Ni denotes the neighboring points in the k-NN graph.

Proof. Recall Eq. (11). With Kantorovich-Rubinstein duality
[15], Wasserstein distance between two distributions is rewritten
as

W1(p,q) = sup∥f ∥L ≤1 Ez∼p [f (z)] − Ez∼q [f (z)], (14)
where f is 1−Lipschitz. With Eqs. (10), (13) and (15),

W1(m
α
i ,m

α
j ) = sup

∥f ∥L ≤1

∑
x ∈D

f (x)mα
i (x) −

∑
x ∈D

f (x)mα
j (x)

= sup
∥f ∥L ≤1

[Lα f (X )]i − [Lα f (X )]j ,
(15)

where f (X ) = (X ⊗κ W )1. The operation of ⊗κ is indeed an affine
transform [1], and thus f is 1−Lipschitz with proper scaling accord-
ing to Cauchy-Schwartz inequality. The supremum holds for any
feasible f , completing the proof. (Details are in Appendix E.) □

Another merit is that our formulation incorporates the structural
information for clustering.
3.4 Learning the Shortest Ricci Flow

We discuss the challenge of learning the flow in the manifold, and
present a fresh idea from a geometric perspective to learn the flow
by studying points’ movement trajectories in the decoding process.
3.4.1 Optimizing the Log-likelihood. A naïve method of learn-
ing Ricci flow is explicitly optimizing the log-likelihood, where we
need to specify the probability path. (1) On the one hand, in Rie-
mannian geometry, there exists no closed-form expression of the
probability path of Ricci flow, to the best of our knowledge. More
importantly, the probability path of original Ricci flow is not re-
lated to Gaussian mixture, and thus does not support identifying
cluster membership. (2) On the other hand, from the point view of
CNF, the probability path is expressed as an integral of Riemannian
divergence divg (Eq. 6). With the Liouville equation [37], we have

divg(vt (ϕt (x))) =
√
detG(ϕt (x))tr (

∂
√
detG(ϕt (x))vt (ϕt (x))

∂ϕt (x)
),

(16)
where G(z) is the matrix of Riemannian metric. Even though κ-
stereographical model has a closed-form metric (G(z) = 2

1+κ ∥z ∥2 ID
and ID is a D−dimensional identity matrix), computing the path

is rather complicated and expensive. In particular, computing divg
needs the trace operator where the full Jacobian matrix is required,
and it is still nontrivial even with Hutchinson’s trace estimator [31].
That is, optimizing the log-likelihood is inferior to learn Ricci flow.
3.4.2 A Novel Geometric Approach. To bridge this gap, we
propose a novel geometric approach as in Fig 2 (2). Our insight is
to investigate the geometric regularity (i.e., distance and velocity)
of movement trajectories throughout the entire decoding process,
during which x0 of Gaussian mixture returns to x1 in the manifold.
Thanks to the reparameterization proposed in Sec. 3.2, we are able
to study the per-sample behavior in the decoding process, instead
of the distribution level in terms of probability path. A detailed
algorithm of the geometric approach is in Algo. 2 of Appendix C.
Distance Matching. We study distances among data points in the
decoding process. At any time t , the ideal distance among xt in
Ricci flow is specified by the differential equation as follows,

∂

∂t
d(xti ,x

t
j ) = d(x

t
i ,x

t
j )Ric

α (i, j), (17)

where Ricα (i, j) is given by our differentiable formulation (Sec 3.3).
By solving the differential equation, we obtain a close-form solution
of the distance over time

d̂(xti ,x
t
j ) = d(x

1
i ,x

1
j ) exp((1 − t)Ricα (i, j)). (18)

Thus, for any two samples of data distributionp1 (saying x1i ,x
1
j ), we

first obtain the corresponding x0 via the encoding process. Then,
during the decoding process, we encourage the distance between
them to match the ideal distance given in Eq. (18). Accordingly, the
loss of distance matching is formulated as follows

LDistance = Et ,x i ,x j

[
(d(ϕt (x i ),ϕt (x j )) − d̂(xti ,x

t
j ))

2
]
, (19)

where ϕt (xi ) ∈ M is the location of x i at time t in the flow, and it
is obtained by solving the ODE given in Eq. (4), t ∼ Uniform(0, 1).
Velocity Matching. Furthermore, we encourage the data points
to go along a shorter path in the neural flow, and we utilize the
following fact in Riemannian geometry.

Lemma (Shortest Path). In a Riemannian manifold, the shortest

path connecting the points x0, x1 ∈ Gdκ is the geodesics with the curve

equation of xt = expκx 0 (t log
κ
x 0
(x1)), t ∈ [0, 1].

In velocity matching, we suggest that the velocity of the flow from
x0 to x1 matches that of geodesics connecting the two points, so as
to obtain a shorter and more direct flow. Thus, the loss is given as

LVelocity = Et ,x

[
∥v(ϕt (x);θ ) −

∂

∂t
xt ∥

2
]
, (20)

for any t ∼ Uniform(0, 1) and x i ∼ p1, where we leverage the L2
norm, since velocity vectors are in the Euclidean tangent bundle.
The overall loss is formulated with a balancing weight β as follows,

JRicciNet = LDistance + βLVelocity, (21)

The computational complexity to train RicciNet via Eq. (21) is
O(NT |D|), where |D|, N and T denote the size of dataset, number
of data samples and number of sampled time points, respectively.
Remark 2. CNF conducts an encoding-decoding process, and thus
often relates to variational autoencoders (VAE) [22]. Different from
VAEs, we regulate the entire decoding process rather than decoding
results with Riemannian geometry, so that data points move to

the respective clusters in the manifold along the Ricci flow.
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Table 1: Clustering results on Cora, Citeseer, USPS, MNIST, Reuters, Pathbased, and Compound (denoted as Path and Compo

for short) datasets in terms of ACC(%), NMI(%) and ARI(%). The best results are in boldfaced and the runner up underlined.

Dataset DEC [50] SDCN [4] DFCN [48] DEKM [16] CGC [36] DRL [53] ESC [6] GCF [49] RicciNetG RicciNetL

Co
ra NMI 41.67±0.24 37.38±0.39 51.30±0.41 25.09±0.07 57.03±0.86 52.17±0.13 21.79±0.06 62.10±1.30 63.70±0.36 62.86±0.11

ARI 16.98±0.29 13.63±0.27 24.46±0.48 17.67±0.13 49.27±1.22 26.91±1.05 16.12±0.02 63.11±0.80 63.55±0.26 64.20±0.40

ACC 31.92±0.45 26.67±0.40 37.51±0.81 42.39±0.19 73.07±2.05 19.05±0.61 43.95±0.02 73.40±0.63 73.95±0.28 75.02±0.95

Ci
te
se
er NMI 28.34±0.30 38.71±0.32 43.90±0.20 14.94±0.03 44.60±0.60 44.23±0.15 17.52±0.05 40.41±1.30 49.11±0.16 50.02±0.52

ARI 28.12±0.36 40.17±0.43 45.51±0.33 12.54±0.02 46.02±0.55 15.50±2.12 13.02±0.03 42.60±1.21 48.06±1.03 47.15±0.33
ACC 55.89±0.20 65.96±0.31 69.52±0.26 36.80±0.01 66.16±1.20 20.48±0.67 41.75±0.05 53.82±2.20 67.24±0.50 67.96±0.17

M
N
IS
T NMI 77.16±0.23 80.90±0.26 78.87±0.34 89.56±1.05 82.21±0.12 36.12±1.60 86.15±0.81 83.07±0.12 91.07±1.11 91.24±0.20

ARI 74.14±0.18 72.12±0.14 72.62±0.24 69.16±0.08 71.33±0.25 24.56±0.07 71.38±0.56 67.24±0.31 76.52±0.49 75.80±0.22
ACC 84.30±0.30 84.33±0.23 84.67±0.33 94.65±1.30 87.16±0.04 20.27±3.01 90.16±1.13 85.89±0.29 92.60±0.25 91.56±1.07

U
SP

S NMI 65.58±0.34 79.15±0.27 80.81±0.30 78.01±0.04 78.15±0.13 58.44±0.14 69.30±0.59 77.52±0.12 82.35±0.10 82.10±0.22
ARI 63.70±0.27 71.84±0.24 75.30±0.22 69.70±0.04 74.23±0.19 29.07±0.23 54.66±0.56 70.15±0.20 76.63±0.24 76.59±0.63
ACC 70.71±0.17 78.08±0.19 79.52±0.24 76.93±0.01 80.71±0.11 18.52±1.22 73.64±0.28 78.51±0.60 81.02±0.16 81.15±0.09

Re
ut
er
s NMI 47.50±0.34 50.82±0.21 59.93±0.45 54.13±0.06 60.51±0.15 32.83±0.08 48.25±0.14 64.18±0.33 66.35±0.13 67.23±0.68

ARI 48.44±0.14 55.36±0.37 59.79±0.36 59.80±0.09 61.62±0.81 17.05±0.63 49.46±0.17 53.12±1.01 63.92±0.51 64.22±1.01

ACC 73.58±0.13 77.15±0.21 77.70±0.20 73.86±0.02 77.14±0.60 42.28±1.05 74.25±0.05 78.04±0.10 80.25±0.85 78.95±0.20

Pa
th

NMI 34.05±0.28 35.65±3.30 30.04±0.15 30.63±0.06 36.05±0.57 83.88±0.10 34.09±0.18 33.15±0.23 84.22±0.56 85.01±0.60

ARI 30.24±0.12 29.55±4.09 32.35±2.12 26.43±0.13 26.60±1.24 86.93±1.02 30.57±0.23 24.68±0.71 87.15±0.41 87.20±0.22

ACC 58.33±0.14 59.18±5.74 59.30±1.25 62.55±0.13 63.15±0.93 21.06±0.33 60.95±0.21 65.12±0.60 69.03±1.17 71.65±0.31

Co
m
po NMI 54.35±0.24 56.76±1.00 73.70±0.72 43.09±0.02 55.23±1.09 83.12±0.16 34.76±0.51 49.10±0.21 85.10±0.15 85.26±0.60

ARI 34.84±0.14 37.38±0.64 37.83±0.56 23.22±0.09 31.03±0.37 73.63±0.22 15.36±0.23 36.67±0.49 75.27±0.23 74.51±1.02
ACC 60.62±0.05 58.65±3.14 59.90±0.40 53.29±0.18 61.17±1.10 28.24±0.03 49.15±3.01 51.24±0.10 63.51±1.02 65.11±0.36

Remark 3. We notice that, very recently, [27] adopts the idea of
flow matching in Euclidean space. In Riemannian manifold, [8]
pushforwards a Gaussian for generation, while we consider a Gauss-
ianmixture for clustering. In other words, all of them are in different
settings to ours, and thus are not applicable to our learning task.

4 EXPERIMENT

In this section, we conduct extensive experiment with 8 strong
baselines on 7 datasets to (1) evaluate the effectiveness of RicciNet
(Sec. 4.2), (2) investigate on the effect of the proposed component
of RicciNet (Sec. 4.3), and (3) discuss the curvature of Riemannian
manifold and visualize the Ricci flow as a case study (Sec. 4.4).
4.1 Experimental Setups

4.1.1 Datasets. Without loss of generality, we evaluate our model
on a variety of datasets. Concretely, we choose 2 popular image
datasets (MINIST and USPS [48]), a text dataset (Reuters [4]), 2
graph datasets (Cora and Citeseer [49]) and 2 challenging artificial
datasets of complex structures (Path-based and Compound [53]).
The statistics of the datasets is listed in Appendix B.
4.1.2 Baselines & Evaluation Metrics. We focus on deep clustering
in this paper, and thus we primarily compare our RicciNet with
the deep methods. Specifically, we employ 8 strong baselines, in-
cluding DEC [50], SDCN [4], DFCN [48], DEKM [16], ESC [6], a
reinforcement learning model for clustering complex structures
(DRL) [53], a contrastive learning model (CGC) [36], and a very
recent graph clustering model with normalizing flow (GCF) [49].
Note that, existing deep clustering models are Euclidean. There
exists few Riemannian model to the best of our knowledge, and
the proposed RicciNet is aimed to bridge this gap. In particular,
two instantiations of RicciNet are provided, and RicciNet with
Gumbel reparameterizeation and geometric trick are referred to
as RicciNetG and RicciNetL , respectively. Three popular metrics

are utilized: Normalized Mutual Information (NMI), Adjusted Rand
Index (ARI) and Clustering Accuracy (ACC).
4.1.3 Clustering Euclidean Data. RicciNet clusters data in the
Riemannian manifold. For Euclidean data, we map data points to
the manifold, before feeding into RicciNet. One can apply a re-
scaling to fit the data in the manifold domain [1]. In our design, we
opt for applying an exponential map with the reference point of
gyrovector ball origin. Thereafter, we employ the matrix κ-right-
multiplication to reduce feature dimension in the manifolds.
4.1.4 Reproducibility. To enhance reproducibility, we first specify
the neural architecture of RicciNet. The multi-layer perception
(MLP) of velocity vt has three hidden layers. In the reparameteriza-
tion, f is implemented as another MLP with two hidden layers to
output soft assignment. Second, on pretraining and initialization,
we suggest to first pretrain the vector field vt via distance match-
ing at t = 0 guided by the ideal Ricci flow, and then initialize the
Gaussian mixture accordingly. Third, on parameter configuration,
α for Ricci curvature is set as 0.5 following the convention [29, 34].
Scalar curvature of the manifold is a learnable parameter which
will be discussed in Sec. 4.4. The means lie in the manifold and thus
are optimized by Riemannian Adam [5], while other parameters
are optimized by Adam [21]. All the datasets are publicly available.
Further details on reproducibility are provided in Appendix F.
4.1.5 Hardware & Software. All experiments are done on a serve
with GPUs of NVIDIA Tesla V100 and CPUs of Intel i9-10980XE. Our
model is built upon PyTorch and GeoOpt [3]. Codes are available
at https://anonymous.4open.science/r/RicciNet/

4.2 Clustering Results

We show the clustering results in Table 1, and review the motivated
example in Fig. 1. As for the clustering results, we conduct 10
independent runs for each model, and report the mean value with
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Table 2: Ablation study on Cora, USPS and Reuters datasets in terms of NMI(%), ARI(%) and ACC(%). The results of the best

variants are boldfaced and the runner up underlined.

Variant

Cora USPS Reuters

NMI ARI ACC NMI ARI ACC NMI ARI ACC
RicciNetG 63.70±0.36 63.55±0.26 73.95±0.28 82.35±0.10 76.63±0.24 81.02±0.16 66.35±0.13 63.92±0.51 80.25±0.85
RicciNetL 62.86±0.11 64.20±0.40 75.02±0.95 82.10±0.22 76.59±0.63 81.15±0.09 67.23±0.68 64.22±1.01 78.95±0.20
w/oReparameter 62.15±0.22 62.70±0.12 72.95±0.23 82.03±0.09 76.18±0.08 80.96±0.36 65.01±0.50 62.92±0.32 78.06±0.17
w/oVelocity 60.82±0.30 61.05±0.22 73.18±0.07 80.15±0.12 75.24±0.33 78.11±0.20 65.53±0.13 62.06±0.20 77.67±0.16
w/oDistance 58.91±0.10 57.33±0.16 67.92±0.59 78.32±0.11 73.52±0.60 78.53±0.22 62.29±0.36 59.33±0.19 74.52±0.20
w/oManifold 58.66±0.31 59.70±1.09 68.43±0.25 76.12±0.18 72.01±0.15 75.64±0.10 60.16±0.19 57.03±0.25 71.42±0.18

(a) Pathbased Dataset (b) Compound Dataset

Figure 3: Visualization of clustering results.

Cora Citeseer USPS Reuters Pathbased
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Figure 4: Clustering results with different curvature in ARI.

the standard derivation for fair comparison. The empirical results of
8 baselines on all the 7 datasets are summarized in Table 1 in terms
of NMI, ARI and ACC. In particular, for graph-based models, we
compute the k-NN graph of the dataset in which Euclidean distance
is employed to construct the graph. For typical deep clustering
models, we neglect the structural information of the graph datasets,
i.e., Cora and Citeseer, and utilize the node feature as model input.
Note that, our RicciNet consistently achieve the best results in
terms of both NMI and ARI, and outperforms the competitors in
terms of ACC except two cases.

Next, we zoom in Path-based and Compound datasets of the
motivated example in Fig. 1. We visualize the clustering results
of RicciNetL in Fig. 3, where different clusters are marked by
different colors. It shows that our model successfully recovers the
cluster structure of the datasets except a few mistakes at the cluster
borders. In contrast, clustering results of the advanced deep models
are generally undesirable as shown in Table 1 and Fig. 1. Given
all of the deep models are Euclidean, we argue that traditional
Euclidean metric is limited for clustering, especially for clustering
the complex structures. The observations above motivate us to seek
for a manifold of better expressiveness, i.e., Riemannian manifold.
4.3 Ablation Study

Here, we evaluate the effect of the proposed components of Ric-
ciNet: (1) the reparameterization approach, (2) distance matching,

Table 3: Clustering results of RicciNetL with different cur-

vature settings in term of NMI (%).

Variant Cora Citeseer USPS Reuters Path
E 58.66±0.31 42.50±0.67 76.12±0.18 60.16±0.19 39.20±2.04
H 61.50±0.11 47.16±0.10 78.06±0.49 65.72±0.21 67.18±0.21
S 59.11±0.23 43.22±0.39 81.61±0.15 62.91±0.60 83.61±0.51
M 62.86±0.11 50.02±0.52 82.10±0.22 67.23±0.68 85.01±0.60

M0 63.06±0.31 49.88±0.25 · · ·

(3) velocity matching, and (4) Riemannian manifold. To this end,
we design four kinds of variants as follows:
1) w/oReparameter. In this variant, we replace the loss of differ-
ential geometric learning with the naïve method of optimizing the
log-likelihood. The likelihood is computed via Eqs. (6) and (16).
2) w/oDistance. To examine the effect of distance matching, we
instantiate RicciNetwith the reparameterization of geometric trick
(RicciNetL), and train the model by velocity matching loss only.
3) w/oVelocity. We disable velocity matching loss of RicciNetL .
4) w/oManifold. To evaluate the effect of introducing Riemannian
manifold, we design the proposed model in the Euclidean counter-
part. Note that, Ricci flow cannot work for the flat Euclidean space,
and thus Euclidean model cannot receive guidance from distance
matching. As an alternative, the variant of w/oManifold is designed
as the Euclidean version of w/oReparameter, where we leverage
the probability path in Euclidean space.

In Table 2, we summarize the clustering results on Cora, USPS
and Reuters datasets. (1) Comparing the counterpart variants of
w/oReparameter and w/oManifold, it shows that Riemannian model
achieves better results than the Euclidean counterpart. A reason is
that Riemannian geometry has superior expressiveness to tackle
with complex structures [13, 26]. It verifies the motivation of our
study, and explains our superiority. (2) Comparing RicciNetG , Ric-
ciNetL and w/oReparameter, it shows that re-parameterized model
outperforms directly optimizing the likelihood. The reparameteri-
zation proposed in Sec. 4.2 involves relaxation, but is shown to be
effective for clustering. On the contrary, the probability path in the
manifold is grounded on the theory of differential geometry. How-
ever, accuracy loss tends to occur in the estimation of Riemannian
divergence or integral. (3) Comparing RicciNetL , w/oDistance and
w/oVelocity, we observe that w/oDistance variant consistently has
larger performance loss than w/oVelocity except ACC on USPS. It
suggests that, the distance regularity of Ricci flow has the dominant

effect on revealing data clusters, which is a key insight of our work.

4.4 Discussion & Visualization

Furthermore, we discuss the effect of constant curvature, and visu-
alize the running example of Path and Compound datasets.
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Figure 5: Visualization of clustering results.

To study the constant curvature, we instantiate RicciNetL with
(1) Euclidean space E, (1) standard hyperbolic manifold H (κ = −1),
(2) standard hyperspherical manifold S (κ = 1), (3) a generic mani-
foldM of learnable curvature, and (4) the manifoldM0 of predefined
curvature. For E variant, we employ the w/oManifold in the ab-
lation study. For M0 variant, we employ a recent algorithm [13]
to estimate the constant curvature for graphs (Cora and Citeseer).
Unfortunately, it still remains open to study the constant curvature
of data without structural information. (Note that, we cannot es-
timate curvature with the k-NN graph of pairwise distance, since
computing distance also requires the constant curvature). In other
words, predefining curvature is not applicable for generic scenario.
NMI and ARI of E, H, S,M andM0 variants are collected in Table 3
and Fig. 4, respectively. It suggests that it is necessary to fit datasets
with learnable curvature as in RicciNet. Also, on Cora and Citeseer,
we observe that the learnt curvature achieves competitive results
to the predefined curvature, explicitly estimated with [13].

As a case study, we visualize the clustering process of RicciNetG
on Path and Compound datasets. In particular, the (gyrovector) man-
ifold is set to as 2D-ball for the ease of visualization, and the con-
stant curvature is jointly learnt with the model. We run RicciNetG ,
and plot data points in balls where the lighter color represents the
denser data distribution. Taking Path dataset for instance, Fig. 5
(a) is the initial ball showing the original data distribution on the
manifold, while Fig 5 (b) shows the clustering results at the final
state. As shown in Fig. 5, data points flow to the respective clusters

on the manifold, according to the guidance of our neural Ricci flow.

5 RELATEDWORK

Deep Clustering. Clustering is unsupervised by nature, and thus
deep clustering frequently revisits neural architectures as follows:
(1) autoencoder [50], (2) variational autoencoder (VAE) [20, 24], and
(3) generative adversarial nets (GAN) [33]. (4) Graph neural net-
works (GNN) are leveraged to capture the structural information of
the data for boosting clustering performances [4]. (5) Contrastive
clustering explores the similarity of the data themselves, and is
receiving increasing attention recently [25, 36]. (6) As for the nor-
malizing flow (NF), some consider a variational mixture of flows
[38], while others study the flow based on Gaussianmixture for clus-
tering [18]. A more detailed survey is given in [55]. Very recently,
DRL [53] introduces reinforcement learning to density based clus-
tering. GCF [49] is presented as a discrete NF on Euclidean space for
clustering graph data. In contrast, we study the continuous NF on

the manifold for generic clustering. To the best of our knowledge,
existing deep methods lie in Euclidean space, and we are the first
to introduce Riemannian geometry to deep clustering.
Riemannian Machine Learning. Euclidean space has been the
workhorse for machine learning for decades, and Riemannian mani-
folds emerge as an exciting alternative, e.g., hyperbolic space shows
superiority in hierarchical structures [52], while hyperspherical
space is suitable for cyclic ones [1]. In recent years, researchers
investigate various manifold types [23, 51] and neural architectures
[14, 41], and successfully conduct classification on texts, images
and graphs [7, 45]. Surprisingly, clustering has been rarely explored
in the manifolds. In the literature, [10] extends a variant of k-means
on the manifold. [11] optimizes over a matrix manifold for cluster-
ing graph data specially. None of them consider deep clustering for
general purpose. Also, we notice that Ricci curvature is receiving
research attention recently, and [29, 34, 46] introduce Ricci curva-
ture to address the over-squashing of graph neural networks. On
the contrary, Ricci flow is still under explored yet, and we make an
attempt to design a neural Ricci flow for clustering.
Continuous Normalizing Flow. Normalizing flow is a family of
generative methods that reshape data distribution through a series
of invertible mappings [39], and we focus on the continuous nor-
malizing flow (CNF) in this paper. The vast majority of CNFs work
with Euclidean space [22], and it is not until recently that a few
CNFs are designed in Riemannian manifold. Concretely, [30, 31]
study the probability path in the manifold, while [8, 40] present
geometric methods to learn the flow. However, they focus on push-
forwarding a Gaussian for data generation, while we consider a
Gaussian mixture on the manifold for clustering.

6 CONCLUSION

In this paper, we study deep clustering from a fundamentally dif-
ferent perspective of Riemannian geometry, and propose a novel
generative neural Ricci flow (RicciNet), which bridges the data
observations and a Gaussian mixture for clustering. In particular,
we encode data point as a sample of Gaussian mixture in which we
propose two types of reparameterization approaches. In the whole
decoding process, per-sample behavior is geometrically regulated
by velocity matching and distance matching based on differentiable
Ricci curvature, which is formulated as a Riemannian graph convo-
lution. As a result, the data points move to the respective clusters
on the manifold along the shortest Ricci flow. Extensive empirical
results show the superiority of RicciNet on a variety of datasets.
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Table 1: Glossary of Important Notations

Symbol Description
H, S,M Hyperbolic, hyperspherical and generic manifold
Gdκ κ−stereographical model of Riemannian manifold
κ,d Constant curvature and dimension, respectively
λκx Conformal factor of the point x in manifold Gdκ

Ric(x,y) Ricci curvature between points x and y
NM Gaussian distribution in Riemannian manifold

νk ,σk The mean in the manifold and covariance of NM
π Mixture coefficients of the Gaussian mixture

Uniform(0, 1) Uniform distribution
TxM, TM Tangent space of x , Tangent bundle

pt Probability path in the manifold, t ∈ [0, 1]
ϕt (x) Flow of the point x , ϕt (x) ∈ M

vt (ϕt (x);θ ) Parametric vector field, vt (ϕt (x);θ ) ∈ TM

Table 2: Statistics of datasets

Data Type Datapoint Cluster Feature Link
Cora Graph 2708 7 1433 5429

Citeseer Graph 3327 6 3703 4732
MNIST Image 70000 10 28×28 -
USPS Image 9298 10 16×16 -
Reuters Text 10000 4 2000 -
Path Artificial 300 3 2 -

Compound Artificial 788 7 2 -

A NOTATIONS

We summarize important notations of this paper in Table 1.

B DATASETS & BASELINES

To evaluate our model, we choose 7 datasets of texts, images and
graphs, and the statistics are detailed in Table 2. We include 8 strong
baselines, introduced as follows,

• DEC [50] trains an autoencoder to learn the deep represen-
tations for clustering.

• SDCN [4] considers structural information among the data
by integrating a GCN to an autoencoder.

• DFCN [48] is equipped with a structure and attribute infor-
mation fusion (SALF) module for boosting clustering.

• DEKM [16] alternately optimizes representation learning
and clustering via a greedy method.

• CGC [36] conducts contrastive learning at different levels
for end-to-end graph clustering2.

• DRL [53] learns the optimal search strategy of clustering
parameters for data distributions via reinforcement learning.

• ESC [6] analyzes the special behavior of Wasserstein center
of gravity in clustering probability distribution and proposes
a distance-based K-means algorithm.

• GCF [49] integrates GCN and the discrete NF based on
Gaussian mixture for graph clustering.

Note that, CGC and GCF are originally designed for clustering
graph data, and thus we apply them on a k-NN graph of the data.
Existing deep clustering methods work with Euclidean space.
2The static version of CGC is included for comparison as the datasets do not provide
temporal information

Algorithm 1 Gumbel Reparameterization of Gaussian Mixture in
the Manifold
Input: Soft assignment σ of a sample x0, K Gaussian components

with mean µ ∈ M and covariance σ ;
Output: Rewritten x with parameters of the Gaussian mixture;
1: Sample ϵ ∼ Uniform(0, 1);
2: Compute д = − log(− log(ϵ));
3: q = GumbelSoftmax(a,д);
4: Select a component Gaussian with µ,σ via category q;
5: Samplev ∼ N(0, I) in Euclidean space;
6: Scalev according to the covariance:v ′ = σ ⊙ v ;
7: Parallel transportv ′ to u in the tangent space of the mean;
8: Project u to the manifold via exponential map expκµ ;
9: return Reparameterized x0 as a differentiable function over

mixture coefficient, mean and covariance.

Algorithm 2 Procedure of Geometrically Learning RicciNet
Input: DatasetX with optional structureG, Parametric vector field

vt , The number of clusters K ; The type of reparameterization;
Output: Parameters of RicciNet;
1: if Graph data then
2: A = G and do not compute k-NN graph;
3: else
4: A = kNN-Graph(X) with distance metric in the manifold;
5: end if

6: Pretain vt and initialize Gaussian mixture;
7: while not converged do

8: for each data point in X do

9: Obtain N samples for each data point;
10: Encode a sample by SolveODE(x1, [0, 1],vt );
11: Compute the soft assignment a of the sample;
12: if Gumbel Reparameterization then

13: Call Algo. 1 to obtain reparameterized x0;
14: else

15: Obtain reparameterized x0 via a linear operator;
16: end if

17: Sample a set of time points t ∼ Uniform(0, 1);
18: Decode x0 and obtain xt = SolveODE(x0, [0, t],vt );
19: Derive convolutional Ricci curvature with A;
20: Compute ideal distance d̂ of Ricci flow;
21: Compute distance between xt , and LDistance;
22: Derive the geodesics connecting x0 and x1;
23: Compute partial derivative of the geodesics;
24: Compute vt and LVelocity;
25: Optimize parameters by minLDistance + βLVelocity
26: end for

27: end while

C ALGORITHMS

The proposed Gumbel reparameterization is summarized in Algo. 1.
The overall procedure of our geometric learning approach is given
in Algo. 2. The computational complexity of Algo. 2 is O(NT |X|),
where |X|, N and T denote the size of dataset, number of data sam-
ples and number of sampled time points, respectively. Computing
k-NN graph is a pre-processing, and can be boosted via [54]. In Line

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

RicciNet: Deep Clustering via A Riemannian Generative Model WWW’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 3: Summary of the operations with unified formalism.

Operation Unified gyrovector formalism in Gdκ Euclidean counterpart

Distance Metric dκ
M

(x, y) = 2√
|κ |

tan−1κ
(√

|κ | ∥−x ⊕k y∥2
)

d (x, y) = | |x − y| |2

Gyrovector Addition x ⊕κ y = (1−2κ ⟨x,y⟩−κ ∥y∥22)x+(1+κ ∥x∥
2
2)y

1−2κ ⟨x,y⟩+κ2 ∥x∥22 ∥y∥
2
2

x ⊕κ y = x + y

Gyrovector Scaling r ⊗κ x = 1√
κ
tanh

(
κ tanh−1(

√
κ∥x∥2)

)
x

∥x∥2
r ⊗κ x = rx

Matrix-Vector Multiplication M ⊗κ x = (1/
√
κ) tanh

(
∥M x∥2
∥x∥2

tanh−1(
√
κ∥x∥2)

)
M x

∥M x∥2
M ⊗κ x = Mx

κ-Right-Multiplication X ⊗κ W = expκ0 (log
κ
0 (X )W ) X ⊗κ W = XW

Exponential Map expκx (v) = x ⊕κ

(
tanκ

(√
|κ |

λκx ∥v∥2
2

)
v

∥v∥2

)
expκx (v) = x + v

Logarithmic Map logκx (y) =
2

λκx
√
|κ |

tan−1κ ∥−x ⊕κ y∥2
−x⊕κy

∥−x⊕ky∥2
logκx (y) = x − y

Parallel Transport PTκx→y(v) = −
λκx
λκy

(y ⊕κ −x) ⊕κ (y ⊕κ (−x ⊕κ v)) PTκx→y(v) = v − x + y

tanκ (x) =

{
tanh (x) , κ < 0,
tan (x) , κ > 0.

tan(x)

Curvature Trigonometry cosκ (x) =

{
cosh (x) , κ < 0,
cos (x) , κ > 0.

cos(x)

sinκ (x) =

{
sinh (x) , κ < 0,
sin (x) , κ > 0.

sin(x)

Applying Function f ⊗κ (x) = expκo
(
f

(
logκo (x)

) )
f (x)

6 of Algo. 2, we suggest to pretrain the vector field vt via distance
matching. In particular, we have x0 = SolveODE(x1, [0, 1],vt ) by
solving the ODE. We first pretrian vt by matching the distance
among x0 to that given by ideal Ricci flow at t = 0, and then
initialize the parameters of Gaussian mixture accordingly. Note
that, solving ODEs as well as backpropagating the gradient is well
studied [9], and the ODE is endowed with Riemannian manifold
via exponential/logarithmic map. All Riemannian operators are
closed-formed, and given in the next Sec.

D RIEMANNIAN GEOMETRY

We formally review the operators in the manifold, and specify the
density of wrapped Gaussian.

A Riemannianmanifold (M,д) is a smoothmanifoldM endowed
with a Riemannian metricд. Every point x ∈ M is associated with a
Euclidean-like tangent space TxM on which the metric д is defined
to shape the manifold. The collection of tangent spaces over the
manifold is said to be tangent bundle, denoted as TM. Given a
point in the manifold x ∈ M, the exponential map projects a vector
v in the tangent space at x to the manifold expx(v) : TxM →

M. The logarithmic map projects a point y in the manifold to the
tangent space of x, loдx(y) : M → TxM, serving as the inverse of
exponential map. Both exponential and logarithmic maps are locally
defined with a reference point x. The parallel transport carries
the vector in one tangent space to another along the geodesic
PTx→y(v) : TxM → TyM. The geodesic is the shortest curve
connecting two points in the manifold. In particular, given the
curve as the function of manifold-valued coordinates with respect
to time xt : [a,b] → M, the geodesic is found by solving the
optimization of xt = argminx t

1
2
∫ a
b x ′

t
⊤G(x ′

t )x
′
tdt , where G(x

′
t )

is the matrix of Riemannian metric. x ′
t , the first-order derivative,

is the velocity of xt lying in the tangent space of xt . The integral
in the optimization is indeed the square of curve length. With the

notions above, we have the description as follows. In RicciNet, the

Flow of a point is curve of a point’s trajectory in the manifold, and

is characterized by an ODE endowed with manifold metric. Thus,

the velocity/vector field of the flow lies in the tangent bundle of the

manifold. (For further facts on Riemannian geometry, refer to [37].)
In the literature, there are several model to work with Riemann-

ian manifold, such as Klein model, κ-stereographical model and
Lorentz model [1, 41]. In RicciNet, we opt for κ-stereographical
model in which the exponential map, logarithmic map and parallel
transport has closed-form expression. In addition,κ-stereographical
model is defined on a gyrovector space, and thus supports Euclidean-
like vector operations, such as addition, scaling and matrix-vector
multiplication. We summarize the important operators in Table 3.
Gyrovector operations converges to the Euclidean counterpart in
the limit of zero curvature. On curvature trigonometry, arcsinκ ,
arccosκ , and arctanκ are curvature aware as sinκ , cosκ , and tanκ .

In the manifold, a wrapped Gaussian is given by Line 5-8 in Algo.
2. Accordingly, the density of wrapped Gaussian NM is derived by
a pushforward f from a standard Gaussian N .

logNM(z; µ,σ ) = logN(v ; µ0,σ ) − log det(
∂ f

∂v
), (1)

where det denotes the determinant and ∂f
∂v is the Jacobian. In

particular, the pushforward is given as f = expµ ◦PTµ0→µ with is
the reverse procedure of

u = logµ (z) ∈ TµM, v = PTµ→µ0 (u) ∈ Tµ0M . (2)
In κ-stereographical model, we are able to get a clean closed-form
determinant of the Jacobian. Another important property is that
the density of Eq. (1) converges the that of standard Gaussian when
the constant curvature approaches to zero [42].

E PROOFS

Here, we detail the proofs of the three propositions proposed in
this paper. We rewrite the propositions to be self-contained.
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Proposition 1 (Diffeomorphism). The RicciNet in Eqs. (2) and

(3) constructs a diffeomorphism between the Riemannian manifolds

of Gaussian mixture and data distribution.

Proof. First, we introduce the definition of diffeomorphism in
differential geometry. Given two manifolds M0 and M1, a smooth
map φ : M0 → M1 is referred to as a diffeomorphism if φ is
bijective and its inverse φ−1 is also smooth.M0 andM1 are said
to be diffeomorphic and denoted as M0 ≃ M1 if there exists a φ.
In other words, the proposition holds if and only if there exists
a bijection φ and φ−1. Second, we specify the invertible bijection
implicitly given in the ODE of RicciNet. It takes the form as follows,

φ(x0) = SolveODE(x1, [0, 1],vt ) ∈ M1, (3)

φ−1(x1) = SolveODE(x0, [0, 1],vt ) ∈ M0. (4)
The existence of invertible bijection is in accordance with the design
of normalizing flow. That is, the ODE gives a diffeomorphism onto
the manifold itself, connecting two type of structures. □

Proposition 2 (Manifold Preserving). Given a set of centroids

in the manifold µ ∈ Gdκ , we have Linear(µ1, · · · , µK ,w) ∈ Gdκ hold

for any set of weightsw ∈ R.

Proof. The proof involves heavy algebra. We give the key equa-
tions to support the proof, instead of buried in the algebra. First,
we introduce the Lorentz/spherical model, which connects to κ-
stereographical model with stereographic projection Γ. Concretely,
Lorentz/spherical model is defined in Ldκ = {z ∈ Rd+1 |κ⟨z, z⟩κ =
1}, where hyperbolic and hyperspherical spaces are unified in the
curvature-aware metric inner product

⟨z, z⟩κ = sдn(κ)z
2
t + z

⊤
s zs , ∀z = [zt zs ]

⊤ ∈ Ldκ , (5)
where sдn is the sign function. z is rewritten as the time-space
coordinates. The projection is given as

Γ([zt zs ]
⊤) =

1
1 +

√
|κ |zt

zs → x ∈ Gdκ (6)

Γ−1(x) =

(
1√
|κ |

(λκx − 1), λκx x

)
→ z ∈ Ldκ , (7)

where λκx is the conformal factor. Stereographic projection gives
a perfect duality of gyrovector ball and Lorentz model. Then, we
have the proposition hold if and only if the following equality

1
κ
(λκx − 1)2 + (λκx )

2x⊤x =
1
κ
, (8)

is ensured with µ ∈ Gdκ . Indeed, Eq. (8) is verified. Alternatively,
one can have a quick check by investigating the gyro-midpoint as

midκ (x1, · · · ,xK ;α ) =
1
2
⊗κ (

n∑
i=1

αiλ
κ
x i∑n

j=1 α j (λ
κ
x j

− 1)
x i ), (9)

where α is the vector collecting the weights. As the midpoint lies
in the manifold, the re-scaled midpoint is also manifold preserving.
Note that, x ∈ Gdκ holds for any 1

2 ⊗ x ∈ Gdκ . □

Proposition 3 (Upper Bound). The differentiable Ricci curvature
in Eq. 12 is the upper bound of Ollivier’s Ricci curvature (Eq. 11) in

the k-NN graph with the mass distribution given as

mα
i (x) =


α, x = i,

(1 − α) 1
Deдr eei , x ∈ Ni ,

0, Otherwise,

(10)

where Ni denotes the neighboring points in the k-NN graph.

Proof. First, we give the Ollivier’s Ricci curvature with the mass
distribution above and our differentiable formulation as follows

Ricα (i, j) = 1 −
W1(mα

i ,m
α
j )

d(x i ,x j )
, (11)

Ricα (i, j) = 1 −
f ([Lα (X ⊗κ W )]i ) − f ([Lα (X ⊗κ W )]j )

d(x i ,x j )
, (12)

where we have f (x) = x1. Second, we study the relationship be-
tween Wasserstein distance and expression as follows,

f ([Lα (X ⊗κ W )]i ) − f ([Lα (X ⊗κ W )]j ), (13)
where Laplacian matrix Lα takes the form of

[Lα ]i j =


α, i = j,

(1 − α) 1
D ii
, [A]i j = 1,

0, Otherwise,

(14)

and D is the diagonal degree matrix of the k-NN graph. With
Kantorovich-Rubinstein duality [15], Wasserstein distance between
two distributions is rewritten as

W1(p,q) = sup∥f ∥L ≤1 Ez∼p [f (z)] − Ez∼q [f (z)], (15)

where f is 1−Lipschitz. With Eqs. (10), (13) and (15),

W1(m
α
i ,m

α
j ) = sup

∥f ∥L ≤1

∑
x ∈D

f (x)mα
i (x) −

∑
x ∈D

f (x)mα
j (x)

= sup
∥f ∥L ≤1

[Lα f (X )]i − [Lα f (X )]j ,
(16)

where f (X ) = (X ⊗κ W )1. The operation of ⊗κ is indeed an affine
transform [1], and thus f is 1−Lipschitz with proper scaling ac-
cording to Cauchy-Schwartz inequality. The supremum holds for
any feasible f . That is, our differentiable formulation is the upper
bound of Ollivier’s Ricci curvature. □

F REPRODUCIBILITY

We specify the network architecture of parametricvt and f for soft
assignment, and further details in the experiment.

On the vector fieldvt , it is a function over manifold-valued point
x and time t . First, we perform logarithmic map on x to obtain the
projection in Euclidean tangent space. Then, the concatenation of
mapped x and time encoding of t is fed into the MLP. We leverage
the popular cosine encoding ϕ(t) defined as follows,

ϕ(t) =

√
1
d
[cos(ω1t + θ1), cos(ω2t + θ2), · · · , cos(ωd t + θd )], (17)

where d is the dimension of time encoding, and ω’s and θ ’s are
parameters. Eq. (17) induces a translation-invariant kernel accord-
ing to Bochner’s theorem. On the soft assignment, the network
architecture of f is designed as

f (z,π , µ1, · · · , µK ) = h(Cat(π , Pooling(z, µ1, · · · , µK ))), (18)
where Cat denotes vector concatenation. We suggest the mean-
pooling, and h is given as MLP. As for dimension reduction, one
can leverage an autoencoder in Euclidean space. In RicciNet, we
opt for unitizing κ-right-multiplication given in Table 3, and the
weight matrix is jointly learnt with our model. In the discussion,
for the variantM0, we employ the algorithm in [13] to predefine
curvature. The algorithm is based on analyzing and enumerating
the geodesic triangles. It is time consuming, and thus is expensive
for large scale graphs. We set curvature as a learnable parameter of
RicciNet. In the training process, learning rate of the optimizer is
set as 0.0005, and the dropout of velocity net is set as 0.2 by default.
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