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Fig. 1. Explorer addresses the problem of open-world object-goal navigation: i.e. building a system for navigating to an open-vocabulary object goal,
that generalises across embodiments and environments. Explorer is a robot system fully made up of foundation models to achieve such generalisation. To
compose these models effectively, we propose the Open Scene Graph (OSG) to act as a persistent scene memory for the models. The OSG is a hierarchical,
topo-semantic scene representation, whose structure can be configured to appropriately represent different environments.

Abstract—Can we build a system to perform object-goal
navigation (ObjectNav) and other complex semantic navigation
tasks in the open world? Composing LLMs that are strong
semantic reasoners with robotics foundation models that gen-
eralise across environments and embodiments seems a viable
avenue. While selecting the right representations to connect them
effectively is crucial, existing works often prompt LLMs with
scene representations that are uninformative, unstructured and
constructed with methods that generalise poorly. To address this
gap, we propose the Open Scene Graph (OSG), a rich, structured
topo-semantic representation, along with an OSG mapper module
composed fully from foundation models. We demonstrate that
OSGs facilitate reasoning with LLMs, enabling a greedy LLM
planner to outperform existing LLM approaches by a wide mar-
gin on ObjectNav benchmarks in diverse indoor environments.
We take a step towards an open-world ObjectNav system by
building the fully foundation model-based Explorer system from
an LLM planner and a generalisable visuomotor policy, with
OSGs built online by our mapper to connect them. We show
that Explorer is capable of effective object-goal navigation in the
real world across different robots and novel instructions.

I. INTRODUCTION

Consider being asked to find a bottle of wine in an unfamil-
iar house. We might first reason about its possible location: it
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might be kept in the kitchen or a wine cellar. We would then
guess where the kitchen or wine cellar might be and find our
way there. This object-goal navigation (ObjectNav) task is an
instance of the broader domain of semantic navigation: navi-
gation tasks that go beyond geometric scene understanding,
vitally requiring semantic reasoning abilities and common-
sense priors about human environments. Formally, ObjectNav
requires an agent to navigate to a specified object category
in a novel, unmapped scene [16]. Our ability to perform such
semantic navigation tasks also transfers to new environments -
e.g. if we were in a restaurant or hotel, and new embodiments
- e.g. if we were lugging a heavy shopping trolley or in a
wheelchair. In this work, we consider the problem of open-
world object-goal navigation (ObjectNav) that can generalise
across environments and embodiments. While recent Object-
Nav methods exhibit strong performance, broad generalisation
remains an issue [10]. Large Language Models’ (LLMs) se-
mantic reasoning and rich open-world knowledge hold promise
for enabling capable and generalisable ObjectNav [18, 13].
By composing them with recent robotics foundation models
for perception [6, 8] and control [14, 15] that transfer over
embodiments [5], we can build systems capable of ObjectNav
across environments and embodiments.

However, effectively harnessing these models’ abilities to



perform robot system functions like planning and localisation
requires an appropriate scene representation to retain and
organise the information needed by the models. Existing
works using LLMs often employ unstructured, uninformative
representations that do not capture the scene’s structure and
contents in an organised way [4, 18, 13], limiting LLMs’
ability to reason. Others recognise the need for rich, structured
representations like scene graphs [11, 9], but rely on metric
SLAM pipelines with limited generalisation across environ-
ments and embodiments [1]. Thus to enable strong reasoning
and to generalise, the representation should be structured and
mainly reliant on semantic information.

In this work we focus on establishing the feasibility of
building a single robot system for effective open-world Ob-
jectNav, by composing it fully from foundation models. The
crux of this approach lies in designing a rich structured
scene representation that facilitates LLM reasoning, along with
an associated mapping pipeline that promotes generalisation.
Specifically, we propose the Open Scene Graph (OSG), a
hierarchical, topo-semantic, open-vocabulary representation of
a scene’s contents and topology. It has a configurable structure
that can be adapted by the user to appropriately represent
various environment types. OSGs are built online with our
OSG mapper, a mapping pipeline fully composed from VFMs
and LLMs. We construct Explorer, our open-world ObjectNav
system, from the OSG mapper, an LLM-based planner and a
General Navigation Model visuomotor policy, with the OSG
used as the central scene memory. Through experiments in
simulation, and also in the real world across two differ-
ent robots, we show that Explorer enables effective open-
vocabulary ObjectNav that generalises zero-shot across diverse
indoor environments and robots. In particular, we find that an
LLM-based system shows improved reasoning for ObjectNav
when using OSGs, enabling it to outperform existing LLM-
based approaches on standard benchmarks by a wide margin.

II. PROBLEM FORMULATION

In the ObjectNav task, a robot is assigned to find an instance
of a specified object category in a novel indoor environment
with no prior map. We allow for different robot embodiments
so long as they take linear/angular velocity commands and
have a forward-facing RGB camera, without restricting the
camera type or its mounting. We do not assume metric infor-
mation like pose estimates is available. This setting encourages
solutions that generalise over environments and embodiments.

III. APPROACH

A. Overview

We propose Explorer, a modular robot system for open-
world ObjectNav, comprising an OSG acting as a structured
scene memory, along with various subsystems composed from
foundation models. The 3 subsystems in Explorer are: (1) an
OSG mapper that estimates the robot’s state and builds the
OSG online (Section III-C); (2) a planner that searches over
the OSG to propose regions to explore that are potentially
near the target object, and generates plans to reach them

(Section III-D); (3) and an image-goal visuomotor policy that
navigates the robot to the next waypoint in a given plan
(Section III-E).

Each subsystem in Explorer is composed from one or
more foundation models, drawn from the following 4 types
of models: a Large Language Model (LLM), a General Nav-
igation Model (GNM), a Visual Foundation Model (VFM)
for Visual Question-Answering (VQA), and a VFM for open-
set object detection. In particular, Explorer uses: OpenAI’s
GPT-3.5 (LLM); ViNT [14] (GNM); BLIP-2 [7] (VQA);
GroundingDINO [8] (object detector).

B. Open Scene Graphs

An Open Scene Graph (OSG) is a layered, directed graph
that represents a scene’s contents and spatial structure at multi-
ple levels of abstraction. Formally it is a heterogeneous, simple
directed graph G = (V, E) organised into N layers. It serves
to (1) contain image/textual information needed for planning,
localisation and control with foundation models, and to (2)
organise the information in a semantically meaningful way
with multiple levels of abstraction to improve the efficiency
and efficacy of decision-making, particularly with LLM-based
planners [11, 19]. It is also (3) designed to be built purely with
foundation models, fully harnessing their open-set abilities.

We first give a high-level description of the node and edge
types in an OSG, and then give a formal description of these
elements to establish layers needed in OSG.

Nodes. The nodes of an OSG represent information about
a scene’s contents (i.e. Objects and Structures) and the se-
mantically meaningful spatial regions (i.e. Places and Region
Abstractions) within it. (1) Objects. We define objects as
static scene elements occupying a spatially localised region.
They enable a rich, functional understanding of the scene.
Objects can also serve as effective landmarks. In particular,
we recognise places and objects using their object features -
i.e. an aggregated list of nearby objects and their associated
textual descriptions. Finally, objects can also serve as goals for
navigation. (2) Places. Places are the smallest semantically
meaningful spatial regions with a particular functional and
semantic meaning in a scene - e.g. study-rooms for work -
which is information valuable for semantic reasoning. Also,
we define the robot’s state in our system as a Place node in
the OSG. (3) Region Abstractions. These organise the set
of spatial regions by partitioning them into spatially and se-
mantically close subsets. In the example, rooms are organised
with the floor abstraction, forming two separate clusters of
connected rooms based on their elevation. Such hierarchical
abstractions can enable hierarchical planning that scales to ex-
pansive environments. (4) Structures. Structures are spatially
localised building elements that physically connect different
spatial regions, e.g. doors that connect rooms. Structures help
capture information on reachability and spatial connectivity in
a scene, which is valuable for planning.

Edges. We represent spatial and semantic relationships
between scene elements via 3 types of directed edges. The
relationships and corresponding edge types are: (1) Spatial



Fig. 3. System architecture of Explorer. The OSG mapper takes as input the
current RGB observation and robot’s previous state (Place node). It estimates
the current state and updates the OSG, guided by the OSG specification. The
planner reasons over the OSG to propose a goal node to explore. It then finds
a reachable path P , consisting of a sequence of images of the nodes along
the path. The image-goal visuomotor policy is tasked with navigating to each
node in turn, conditioned on an image of the next node along the path.

connectivity. “connects to” indicates that the destination
node is reachable from the source node. These specify the
topological structure of the environment. (2) Spatial proxim-
ity. “is near” indicates spatial proximity between nodes,
and is particularly used to determine nearby objects that can be
used as object features. (3) Hierarchy. “contains” specifies
the hierarchy of spatial abstractions and captures the concept
of spatial containment. These edges define a tree over the
nodes of the OSG.

Layers. An OSG is made up of layers, each containing
nodes of a distinct type. (L1) The lowest layer contains Object
nodes as leaf nodes, each of which represents a distinct object
and has an associated textual description and image. (L2) This
contains Structure nodes, that are also leaf nodes. In addition,
they can be distinguished from Objects since they also capture
spatial connectivity. (L3) This contains Place nodes, which are
the finest-resolution spatial regions that can contain the robot
- e.g. a room in a home. (L4-N) The kth layer, for k ≥ 4, is a
configurable Region Abstraction that partitions and organises
the spatial regions in the (k− 1)th layer - e.g. rooms (Places)
can be clustered into floors (Region Abstraction). The OSG
specification only requires that Layers 1 and 3 be specified to
facilitate planning and localisation, with Layer 2 and Layers
4 onward being optional.

C. OSG mapper

The OSG mapper builds OSGs online, structuring them in
accordance with OSG specifications given by the user at the
start of the navigation episodes. At a high level, it processes

RGB observations into textual information, which is used in
a structured set of queries to an LLM to estimate the robot’s
state and update the OSG. Specifically, it uses an LLM, a VQA
model and open-set object detector to do so. The OSG mapper
is a sequential pipeline comprising 3 modules: (1) an image
parser to extract semantic information from RGB observations;
(2) a state estimator; (3) an OSG updater which updates the
OSG using the semantic information and predicted state.

1) Image parser: The image parser extracts the semantic
information Odet needed for planning, localisation and control
from RGB images, using the VQA and object detector VFMs.
It identifies and lists the objects in an image, each associated
with a rich textual description and image crop. It also identifies
the Place the robot is currently in, by querying the VQA model
to describe its current location. Examples in Appendix E.

2) State estimator: The state estimator uses Ot to predict
the robot’s current state in the OSG, i.e. the Place node it is
in. If the state estimator determines the robot is in a novel
location, it triggers the OSG updater to add a new Place
node into the OSG. Given the label for the robot’s current
location and the object features from the observation, the state
estimator queries the LLM to identify nodes in the OSG with
semantically similar labels by comparing their object features.

3) OSG updater: The OSG updater integrates information
from incoming observations into the OSG. To do so, it first up-
dates nodes and edges in Layers 1-3 based on the observations
by prompting the LLM to compare their object features with
those stored in the OSG. The contents of abstract, higher layers
may not be directly observable from egocentric images, and
are inferred from the updated Objects, Structures and Places
in the OSG. Further details are given in Appendix E.

D. Integrating an LLM planner into Explorer

The planner semantically reasons about possible locations
for the target object using the OSG, then plans paths to
search these promising areas. Possible target object locations
are suggested using the (1) Region Proposer and (2) Goal
Proposer modules. The Region Proposer guides the LLM to
reason hierarchically about spatial regions, and propose a
Place node close to or containing the target object. Given a
proposed Place node, the Goal Proposer queries the LLM to
select an Object/Structure leaf node contained in this Place as
a concrete goal for the robot to navigate to. Then, the planner’s
(3) Pathfinder module searches for a feasible path in the OSG
using Dijkstra, and successively issues waypoints on the path
to the visuomotor policy as the robot navigates. Pathfinder
tracks the robot’s state to determine the next waypoint node,
and uses the image crop of it stored in the OSG to command
the visuomotor policy.

E. Integrating a visuomotor policy into Explorer

To navigate according to the planned paths in the real world,
Explorer uses an image-goal visuomotor policy. Recent work
on such policies [14, 15] highlight that they are effective
substrates on which to build cross-embodiment foundation
models for navigation with. In particular, Explorer uses the



ViNT GNM zero-shot, by commanding with an image crop
of the next subgoal node in the planned path. These crops are
stored in the OSG by the OSG updater.

IV. EXPERIMENTS

Our experiments answer the following questions: (1) Is
LLM planning with OSGs effective at object-goal navigation
over diverse environments? (2) How well does Explorer per-
form in the real world, across different robot embodiments?

In these tests, Explorer explores unmapped areas, continu-
ously updating a scene memory in the form of a OSG as it
does so. Using this OSG, it localises and plans about where
to explore next to find the target object category.

A. Experimental setup in simulation
Our simulation experiments evaluate the utility of OSGs for

ObjectNav, especially compared to LLM-based approaches.
Datasets and metrics. We evaluate our approach on the

full Gibson validation set and 400 randomly sampled episodes
from HM3D-Semantics v0.1 validation set, that are equally
split among all scenes in the dataset. We follow the Habitat
ObjectNav Challenge setup [16] and use the standard met-
rics of success rate, success-weighted path length (SPL) and
distance-to-goal (DTG).

Baselines. To maintain consistency in controllers across
baselines, we use a Fast Marching Method [12] (FMM)
controller. For Explorer variants, we use RGB-D information
in the FMM controller to enable it to navigate to image goals.
Further details can be found in Appendix G. The evaluated
baselines and variants are:

a) Greedy LLM: Similar to [4]. Scene information is repre-
sented to LLM as a list of objects detected in the current
timestep’s image input. Using this, LLM greedily selects
an object to explore towards. Uses ground-truth object
annotations.

b) Language Frontier Guide (LFG) [13]: Maintains a metric
frontier map that accumulates object information. Scene
information is represented to LLM as a list of object
clusters extracted from frontiers in the metric map. LLM
scores the frontiers, and acts as a search heuristic. Uses
ground-truth object annotations.

c) Explorer-FMM-GT: Variant of our approach that uses
ground-truth object annotations.

d) Explorer-FMM: Variant of our approach that does not use
any ground-truth information.

B. Experimental setup in real-world
Our real world experiments evaluate the ability of Ex-

plorer to perform zero-shot object-goal navigation with open-
vocabulary instructions, across different robot embodiments.
We conduct tests in an open-plan apartment environment
comprising a living room, dining room and kitchen.

Robots. We deploy Explorer on two real-world robot sys-
tems: (1) Spot: A quadrupedal robot, with a 170◦ fisheye
RGB camera mounted ∼ 0.8m above ground and (2) Fetch:
A differential-drive mobile manipulator, with a 79◦ Realsense
RGB camera mounted ∼ 1.4m above ground.

TABLE I
COMPARISON AGAINST LLM-BASED OBJECT-GOAL NAVIGATION

APPROACHES ON HM3D VALIDATION SET

Method Success (↑) SPL (↑) DTG (↓)

Greedy LLM 0.275 0.080 5.078
LFG [13] 0.675 0.389 2.411

Explorer-FMM-GT 0.775 0.380 1.702

Explorer-FMM 0.693 0.283 2.338

TABLE II
REAL-WORLD SUCCESS RATE OF Explorer ACROSS DIFFERENT ROBOTS

Object goal Spot Fetch

guitar 4/5 4/5
dish washer 5/5 4/5

C. Effectiveness on ObjectNav over diverse environments

We observe that Explorer shows strong zero-shot perfor-
mance on ObjectNav across diverse indoor environments.
We attain a high success rate on HM3D, which contains
a diverse range of household scenes. We also outperform
recent methods using LLMs by a wide margin (Table I). We
find that rich, structured representations that encode not just
object information but also the environment’s structure and
layout can enhance exploration. From Table I, LFG improves
significantly over Greedy LLM by providing richer and more
comprehensive information (i.e. listing objects from accumu-
lated metric map compared to listing objects within field-of-
view) that is better structured (i.e. objects organised into spatial
clusters compared to a flat list). OSG-based LLM planning
improves further over LFG, which we attribute to OSGs being
richer and more informative: by organising scene elements
with semantically meaningful abstraction, it provides crucial
semantic structure that improves LLM planning and hence
ObjectNav performance. In general, while our topo-semantic
approach does not let us optimise for shortest geometric paths,
the Explorer variants still remain competitive with state-of-the-
art baselines in SPL and DTG. More results in Appendix H.

D. How well does Explorer perform in the real world?

Explorer is able to perform object-goal navigation across
embodiments, with open-vocabulary instructions in the real
world. Our tests search for 2 uncommon object types: “guitar”
and “dish washer”. Table II highlights that Explorer succeeds
often, with similar performance across both Spot and Fetch.

V. DISCUSSION

We present Explorer, a fully foundation model-based system
for ObjectNav that generalizes across new instructions, envi-
ronments, and embodiments. We find that it performs strongly
on simulation benchmarks and when deployed zero-shot across
different robots in the real world with novel instructions.
This is enabled by our Open Scene Graph, which captures
and organises rich information about the scene’s contents and
structure, and our foundation model-based OSG mapper for
building OSGs.



REFERENCES

[1] César Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
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APPENDIX

A. System details

TABLE III
HYPERPARAMETERS USED IN THE Explorer SYSTEM

Subsystem Hyperparameter Value

OSG mapper

Centroid nearness, βpix 100 (pixels)
Bounding box overlap, βIOU 0.1 (IoU)
Min. object size threshold 200 (pixels2)
LLM temperature 0.3

Planner LLM temperature 0.3

Visuomotor policy
(FMM)

Occupancy map resolution 0.05 (m)
Occupancy map size 4.8 (m)
Min. obstacle height 0.5 (m)
Turning action angle 30 (deg)
Forward action distance 0.25 (m)

Visuomotor policy
(GNM)

Stopping threshold 2.25
Max linear velocity 0.5 (m/s)
Max angular velocity 0.3 (rad/s)

1) Explorer system hyperparameters: Table III highlights
the hyperparameters used in each subsystem of Explorer. The
OSG mapper’s and planner’s hyperparameters are kept the
same across both simulation and real-world tests, and across
robot platforms in the real world. Some of the thresholds are
sensor-dependent and can benefit from tuning for a specific
sensor - i.e. centroid nearness and minimum object size
thresholds that are expressed in pixel-based units, and hence
depend on image resolution or field-of-view. In practice, our
centroid nearness threshold is defined to be large enough that
sufficient object features can be accumulated when using both
RGB sensors in simulation and on our robots in the real world.

2) Statistics of queries for foundation models: Table IV
provides the number of queries for each foundation model.
In each episode, BLIP2 is prompted to predict the label of
the current Place node and the observed object attributes,
including color and material. Additionally, GroundingDINO
provides object detection, including object labels and their
corresponding bounding boxes in the observations. The LLM
is responsible for parsing this textual information from BLIP2
and GroundingDINO to construct and update the OSG and
plan based on the OSG.

3) Statistics of nodes and edges in OSG: Table V provides
the average number of nodes and edges in OSG constructed
by Explorer-FMM-GT in HM3D environments. In HM3D
environments, there are typically 2 or 3 floors, with an average
of 7.350 rooms per floor, and the maximum reaches 19 rooms
per floor. Table V demonstrates that, on average, the system
searches through 3 rooms to reach the goal. We showcase
the efficiency of Explorer-FMM-GT in finding the goal object
using commonsense priors derived from foundation models.

B. OSG specification

1) OSG abstract specification: We provide an example of
an OSG specification described in ??, formatted as a JSON
string. For brevity, this specification contains a single region

abstraction layer. The OSG mapper takes this string as input
and uses it to construct OSGs. We later show examples of
how this template specification can be specialised for particular
environments, namely household and supermarket scenes.

{
"AbstractionType": {

"layer_type": "Region Abstraction",
"contains": ["PlaceType"],
"connects to": ["StructureType"]

},
"PlaceType": {

"layer_type": "Place",
"contains": ["Object"],
"connects to": ["PlaceType", "

StructureType"]
},
"StructureType": {

"layer_type": "Structure",
"is near": ["Object"],
"connects to": ["PlaceType", "

AbstractionType"]
},
"Object": {},
"State": ["PlaceType"]

}

2) OSG specification example for household environments:
We provide the OSG specification used for ObjectNav tasks in
household environments in our HM3D and Gibson simulation
tests. “Rooms” are often the clearest and most fine-grained
division of space in homes, and are usually connected by
traversable structures in the form of “stairs” and “entrances”.
In multi-storey homes, an additional “floors” layer further
organises rooms according to the level they belong to.

{
"floor": {

"layer_type": "Region Abstraction",
"contains": ["room"],
"connects to": ["stairs"]

},
"room": {

"layer_type": "Place",
"contains": ["object"],
"connects to": ["entrance", "room",

"stairs"]
},
"stairs": {

"layer_type": "Structure",
"is near": ["object"],
"connects to": ["floor", "room"]

},
"entrance": {

"layer_type": "Structure",
"is near": ["object"],
"connects to": ["room"]



TABLE IV
QUERY TIMES FOR FOUNDATION MODELS USED IN THE EXPLORER-FMM SYSTEM

Avg. no. of queries per episode

Model Function HM3D Gibson

VQA (BLIP2) Image parser 67.544 84.936

Object Detector (GroundingDINO) Image parser 7.836 7.592

LLM (OpenAI GPT-3.5)
State estimator 58.718 45.804
OSG updater 41.091 33.094

Planner 50.739 45.455

TABLE V
AVERAGE NUMBER OF NODES AND EDGES IN EXPLORER-FMM-GT

Nodes Edges

Places Structures Objects “contains” “connects to” “is near”

3.030 8.476 81.253 84.283 18.915 18.729

},
"object": {},
"state": ["room"]

}

3) OSG specification example for supermarkets: We pro-
vide the OSG specification used for our mapping tests with
Gibson supermarket scenes. Supermarkets are largely divided
into distinct aisles that can be directly connected to each
other - thus, we only specify “aisles” as Places and do
not specify Structures. Due to the small size of the Gibson
supermarket scene, we do not consider higher-level region
abstractions, though we note that in larger supermarkets and
department stores, “sections” or “floors” might be reasonable
region abstractions.

{
"aisle": {

"layer_type": "Place",
"contains": ["object"],
"connects to": ["aisle"]

},
"object": {
},
"state": ["aisle"]

}

4) OSG specification example for household environments
in real-world experiments: We provide the OSG specification
used for testing Explorer in real world.

{
"room": {

"contains": ["object"],
"connects to": ["entrance", "room"]

},
"entrance": {

"is near": ["object"],

"connects to": ["room"]
},
"object": {},
"state": ["room"]

}

C. OSG mapper: Image parser module

We prompt BLIP-2 to get the instance label vplabel for the
current place the agent is observing.

What <PlaceType> are we in?

While our specification allows for multiple Place types vpcls,
our system currently assumes that only one Place type (e.g.
rooms or aisles) per environment for simplicity, and directly
queries BLIP-2 for the Place label without first identifying
the type of Place it is in. We note that this can potentially be
extended to settings with multiple Place types by first querying
BLIP-2 to identify which specified Place type is closest to the
observations.

For detailed information about objects and structures, we
query BLIP-2 to obtain their material and color.

What color is the <Object>/<StructureType>
?
What material is the <Object>/<
StructureType> made of?

D. OSG mapper: State estimator module

We prompt the LLM to determine whether two places are
the same location based on their object features. This is used
in the state estimator when the current location has the same
BLIP-2 issued label as nodes already in the OSG. In this case,
the state estimator attempts to determine if the current location
has already been seen before, and if so identify the specific
visited node it matches.



Our prompt encourages the LLM to reason about the
similarity of composition of observed objects and structures in
both places, and about the similarity of the spatial relationships
between objects/structures in each scene. It also directs the
LLM to focus on larger objects, which are more robustly and
consistently detected than smaller objects. We provide several
examples of such reasoning with few-shot prompting to guide
the LLM.

There are two descriptions of what I
observe from two viewpoints. Please assess
the shared objects and spatial

relationship in the descriptions to
determine whether these two positions are
in the same <PlaceType>. Please reply True
or False. Always follow the format:

Reasoning: <your reasoning>. Answer: <your
answer>

Description 1: On the left, I can see a
brown wood headboard, a white paper pillow
. On the right, I can see a black metal
television, gray plastic laundry basket,
white wood closet dresser, and brown wood
drawer. In front of me, I can see a white
wood bed, white wood window, brown metal
lamp, brown wood dresser, brown wood
dresser nightstand, black silk curtain,
white plastic curtain, white metal wall
lamp, brown wood drawer. Behind me, I can
see a brown wood cabinet.

Description 2: On the left, I can see a
white wood door. On the right, I can see a
white wood bed, white glass lamp, white

glass window, white plastic curtain, brown
wood dresser nightstand, white glass

window, white wood nightstand, blue fabric
curtain, white cotton pillow, white metal
ceiling fan, and silver metal wall lamp.

In front of me, I can see a white glass
lamp, brown wood headboard, white cotton
pillow, brown wood dresser, white wood bed
, white cotton pillow, red metal wall lamp
door, and brown wood drawer. Behind me, I
can see a brown wood bureau, black glass

television, brown wood stool, brown wood
drawer, brown wood drawer, brown wood
drawer.

Example:
User:
Description1: On the left, there is a
white wood dresser, white glass lamp, and
a white glass window/door. On the right,
there is a white wood chair and a silver

metal wall lamp. In front of me, there is
an incomplete description. Behind me,
there is a purple wood bed, yellow wood
ceiling fan, white wood dresser, and
another white glass window.
Description2: On the left, there is a
white glass mirror, silver metal faucet,
white porcelain sink, white wood bathroom
sink, white wood bed, brown metal wall
lamp. On the right, there are no specified
items. In front of me, there is a silver

metal faucet, white porcelain sink, white
plastic toiletry, silver glass mirror,
blue plastic soap toiletry, white bathroom
sink countertop, blue metal wall lamp,

black wood bathroom cabinet, black metal
wall lamp. Behind me, there is a white
porcelain tub, black cloth curtain, white
cotton bed, brown wood bed, black cloth
curtain, white porcelain bath.
These are depictions of what I observe
from two different vantage points. Please
assess the shared objects and spatial
relationship in the descriptions to
determine whether these two positions are
indeed in the same place. Provide a
response of True or False, along with
supporting reasons.

Assistant:
Reasoning: To simplify the description,
given the abundance of objects, we focus
initially on common perceptions of larger
objects, as they are less prone to
detection errors.
Description1: On the left, there is a
white wood dresser, and a white glass
window/door. On the right, there is a
white wood chair and a silver metal wall
lamp. In front of me, there is nothing.
Behind me, there is a purple wood bed,
yellow wood ceiling fan, white wood
dresser.
Description2: On the left, there is a
silver metal faucet, white porcelain sink,
white wood sink, white wood bed. On the

right, there is nothing. In front of me,
there is a silver metal faucet, white
porcelain sink, white plastic toiletry.
Behind me, there is a white porcelain tub,
black cloth curtain, white cotton bed,

white porcelain bath.
Shared Large Objects: Both descriptions
feature common large objects, including a
wood bed and a silver metal wall lamp,
though the color of bed is different.



Spatial Relationships: Despite variations
in surrounding details, the consistent
mention of a white wood bed suggests a
shared spatial context, possibly from
different viewpoints within the same room.
Minor differences, such as color

variations in the bed, may be attributed
to observational nuances rather than
indicating distinct rooms, reinforcing the
likelihood of the same room.

Answer: True

Reasoning: To simplify the description,
given the abundance of objects, we focus
on common perceptions of object sizes.
Our attention is directed toward larger
objects, as these are less prone to
detection errors.
Description 1: On the left, there is brown
wood headboard, white paper pillow. On
the right, black metal television, brown
wood dresser, and white wood closet
dresser are of relatively large size. In
front of me, there is a white wood bed
and a brown wood dresser. Behind me, I
can see a brown wood cabinet.
Description 2: On the left, there is white
wood door. On the right, the white wood
bed, brown wood dresser, nightstand, and
ceiling fan are of relatively large size.
In front of me, there is a white wood
bed, black glass television and a brown
wood dresser. Behind me, I can see a
brown wood drawer.
Shared Large Objects: the two descriptions
exhibit significant commonalities,
prominently featuring large and easily
observable items such as a brown wood
dresser, a brown wood drawer, a white
wood bed, a metal wall lamp, a television
, and a brown wood headboard. Spatial
Relationship: the spatial relationships
within both descriptions remain
consistent, with the dresser positioned
near the bed in each scenario. Despite
minor variations in the color or material
of smaller objects like stools or
curtains, these discrepancies appear more
likely to stem from observational
nuances rather than indicating distinct
rooms.
Answer: True

E. OSG mapper: OSG updater module

Algorithm 1 UPDATELEAFNODES

Input: Object/Structure detections Odet
t , current Place node

vp, OSG G
Output: Updated OSG G′

, list of unassociated detections Ψ
1: // Get Object/Structure nodes in vp

2: Vnb ← GETCONTAINEDNODES(vp,G)
3: Ψ←[]
4: for v ∈ Vnb do
5: // Try to find matching detection for v
6: hasMatch, imatch ← DATAASSOCLLM(Odet

t , v)
7: // Update attributes of v if matched with detection
8: if hasMatch then
9: dlabel, ddesc, dimg, ← Odet

t [imatch]
10: vlabel, vdesc, vimg ← dlabel, ddesc, dimg

11: else
12: Ψ.append(Odet

t [imatch], L[imatch], imatch)
13: return G′

, Ψ

1) ClassifyLayerLLM: As object detector models de-
tect both Objects and Structures without distinction, we query
the LLM to sort the detections and assign them to the
appropriate layer in the OSG (Algorithm 2 line 2). While
we only require Objects and Structures at this step, we find
that in practice the GroundingDINO object detector used in
Explorer can occasionally produce detections of places like
rooms (e.g. a bathroom). Thus our prompt asks the LLM to
additionally filter out the Places from the detections, which
are subsequently discarded.

We observe the following: ["livingroom_0
", "window_13","door_2", "doorway_3", "
table_4","chair_5","livingroom sofa_6", "
floor_7", "wall_8", "doorway_9", "
stairs_10", "tv_16", "stool_17", "couch_18
", "remote_19"]. Please eliminate
redundant strings in the element from the
list and classify them into <PlaceType>, <
StructureType>, <Object> classes.

Answer:
room: livingroom_0
entrance: door_2, doorway_3, doorway_9
stair: stairs_10
object: table_4, chair_5, sofa_6,
window_13, tv_16, stool_17, couch_18.
remote_19

2) DataAssocLLM: To integrate Object and Structure
detections into the OSG, we try to associate new detections
with existing Objects and Structures in the OSG by querying
the LLM (Algorithm 1 line 4). We prompt the LLM with
the detected Object/Structure and its associated object fea-
tures, and ask it to determine whether it matches an existing
Object/Structure from the OSG based on similarity of object
features.



Algorithm 2 OSG UPDATER

Input: Semantic information Ot, OSG specification S, OSG
G, previous subgoal gt−1, current estimated Place node vp

Output: Updated state estimate st
1: // (1) Infer which layer each detection belongs to
2: L ← CLASSIFYLAYERLLM(Odet

t )
3: // (2) Update, then add nodes in Layers 1-3 from Ot

4: if vp is None then
5: vp ← Add new place node to G with label Oplace

t

6: Ψ← zip(Odet
t , L, range(|Odet

t |))
7: I ← {}
8: else
9: vplabel ← Oplace

t

10: Vupd, I,Ψ← UPDATELEAFNODES(Odet
t , vp, G)

11: Vnew, I ← ADDLEAFNODES(Ψ, I,G)
12: // (3) Add edges in Layers 1-3 from Ot

13: Vs
new ← GETSTRUCTURENODES(Vnew)

14: ADDEDGES(vp,Vnew, “contains”, G)
15: ADDEDGES(vp,Vs

new, “connects to”, G)
16: ADDEDGES(Vs

new, v
p, “connects to”, G)

17: for v ∈ Vnew ∪ Vupd do
18: Vnb ← GETNEIGHBOURNODES(Odet

t , v, I)
19: ADDEDGES(v,Vnb, “is near”, G)
20: // (4) Update, add nodes/edges in Layers 4-N
21: vi−1 ← vp

22: for i in range(4, N + 1) do
23: if LAYERCONNECTEDBYSTRUCTURE(i,S) then
24: if ISSTRUCTURENODE(gt−1) then
25: vi ← ADDNODE(G)
26: ADDEDGES(vi, gt−1, “connects to”, G)
27: ADDEDGES(gt−1, v

i, “connects to”, G)
28: else
29: vi ← GETPARENTNODE(vi−1)
30: else
31: vi ← INFERREGIONLLM(i, vi−1,G,S)
32: ADDEDGES(vi, vi−1, “contains”, G)
33: vi−1 ← vi

34: return vp

We are looking for <StructureType>/<Object
> that is near a tv, a chair and a stool.
Now we have seen the following <
StructureType>/<Object>: doorframe_2 that
is near chair and sofa. doorframe_3 that
is near a tv and a chair. wooden door_2
that is near table, sink and lamp.
Please select the <StructureType>/<Object>
that is most likely to be the one I want

to find. If none of them seems likely,
reply None. Always follow this format:
Reasoning: <your reasoning>. Answer: <your
answer>.

Reasoning: Among the given objects, "

doorframe_3" is mentioned to be near a TV
and a chair, most likely meeting the

specified criteria of being near a TV,
chair, and stool.
Answer: doorframe_3

3) InferRegionLLM: We describe how we update re-
gion abstraction layers in the OSG (Algorithm 2 line 18).
Some region abstractions are directly connected by Structures
(e.g. floors are directly connected by stairs). In such cases,
we are able to directly update the region abstraction layers
by keeping track of the Structures encountered. However,
some region abstraction layers may be abstract clusterings
of lower layers - e.g. a supermarket may consist of “aisles”,
which are loosely grouped into “sections” that selling similar
classes of items. “Sections” may not be explicitly connected
by any Structure. To handle the general case where region
abstractions are not connected by Structures, we query the
LLM to determine whether the current location falls into an
existing region abstraction node, or whether we a new node
should be added.

Previously, we were in <AbstractionType>
containing the <PlaceType>, and we move
towards <Object/Structure subgoal>. Now we
arrive in a <PlaceType>. Do you think the
current state <PlaceType> belongs to [

list of existing <AbstractionType>s]?

If it belongs to any other existing region
abstraction, return the region

abstraction name; otherwise propose the
name for this new <AbstractionType>
formatted as "<name> <AbstractionType> (
New)". Ensure that your response follows
the format:
Reasoning: <your reasoning>.
Answer: <your answer>

Concretely, we provide an example in a supermarket envi-
ronment. The query below uses the supermarket OSG specifi-
cation with an added region abstraction layer of ”Section”.

Previously, we were in the Cooked Food
Section containing the Deli Aisle, and we
move towards Freezer. Now we arrive in a
Dairy Aisle. Do you think the current
state Dairy Aisle belongs to any of the
existing region abstractions: ["Cooked
Food Section", "Clothing Section", "Dry
Goods Section"]?

If it belongs to any other existing region
abstraction, return the region

abstraction name; otherwise propose the
name for this new section formatted as "<
name> Section (New)". Ensure that your
response follows the format:



Reasoning: <your reasoning>.
Answer: <your answer>

The response from GPT-3.5 is:

Reasoning: The Dairy Aisle typically
contains products such as milk, cheese,
yogurt, and butter, which are perishable
food items. Given its nature as a section
primarily housing food products, it
doesn’t fit within the existing region
abstractions provided ("Cooked Food
Section", "Clothing Section", "Dry Goods
Section").

Answer: Perishable Food Section (New)

4) Other functions: Aside from LLM-related functions,
there are other key functions for updating leaf nodes. Once
objects are assigned to appropriate layers and undergo data
association function, they are divided into two groups. For
objects already present in the OSG, the UPDATELEAFNODES
function is utilized to update their stored information, includ-
ing corresponding images, attributes, and connected edges.
Conversely, for new objects, the ADDLEAFNODES function
creates a new leaf node and adds its information and edges
into the OSG.

Additional functions including GETSTRUCTURENODES,
GETNEIGHBORNODES, GETCONTAINEDNODES, and GET-
PARENTNODES serve the purpose of retrieving specific nodes
that meet the criteria given a node in the OSG. For instance,
GETNEIGHBORNODES extracts all objects near the given
node, i.e., connected by an “is near” edge to the given
node.

F. Planner

1) Prompts for planning: The LLM reasons about the
environment and proposes nodes to explore for the object
goal based on the prompted OSG and OSG specification. We
guide the LLM to plan hierarchically, following the hierar-
chical structure from the OSG specification. We do this as a
simple means of encouraging hierarchical planning, and note
that future extensions could employ the explicit hierarchical
planning approach of [11].

You see the partial layout of the
environment: {"room": {"livingroom_1", "
connects to": ["door_1", "door_2"]}, "
diningroom_1": {"connects to": ["door_1
"]}}, "entrance": {"door_1": {"is near":
["towel_1"], "connects to": ["livingroom_1
", "diningroom_1"]}, "door_2": {"is near":
[], "connects to": ["livingroom_1"]}}}

Question: Your goal is to find a <goal
object> sink. If any of the <LayerType> in
the layout are likely to contain the

target object, specify the most probable <

LayerType> name. If all the <LayerType>
are not likely to contain the target
object, provide the <StructureType> (that
could connect <LayerType>) you would
select for exploring a new <LayerType>
where the target object might be found.

Example
User:
You see the partial layout of the
environment: {"room": {"livingroom_1": {"
connects to": ["doorway_1", "door_2"]}, "
entrance": {"doorway_1": {"is near": ["
table_1"]}, "door_2": {"is near": ["
clock_1"], "connects to": ["livingroom_1"
]}}} Question: Your goal is to find a oven
. If any of the rooms in the layout are
likely to contain the target object,
specify the most probable room name. If
all the rooms are not likely to contain
the target object, provide the door you
would select for exploring a new room
where the target object might be found.
Assistant:
Reasoning: There are only livingroom in
the layout. Among all the rooms,
livingroom is usually unlikely to contain
an oven, making it less likely for me to
find an oven in the current room. Instead,
I plan to explore other rooms connected

to the current living room via entrances.
Evaluating the entrances, doorway1 stands
out as it is close to a table. Tables are
commonly found in kitchens, which often
contain ovens. Therefore, I have decided
to explore through doorway_1.
Answer: doorway_1

Reasoning: There is only a livingroom in
the layout. livingroom is not likely to
contain a sink, so I will not explore the
current room. Among all the doors,

door_1 is near to the towel. A towel is
usually more likely to be near the
bathroom or kitchen, so it is likely that
if you explore door_1 you will find a

bathroom or kitchen and thus find a sink.
Answer: door_1

In the bathroom, we observe ["mirror_2", "
lamp_1", "picture_7", "tool_6", "toilet_8
", "sofa_11", "floor_12", "wall_13"].
Please select one <Object> that is most
likely located near the <goal object> sink



. Always follow the format: Reasoning: <
your Reasoning>. Answer: <your answer>.

Reasoning: Among the given options, the
object most likely located near a sink is
a "mirror." Mirrors are commonly found
near sinks in bathrooms for personal
grooming and hygiene activities.
Answer: mirror_2

2) Prompts for goal checking: While open-set object de-
tectors and VQA models can identify a wide range of objects,
they can provide unusual labels for uncommon objects. For
instance, a beanbag may be identified as a “floor cushion”. To
more robustly handle open-vocabulary queries with open-set
VFMs, we propose to query LLMs to disambiguate whether
a particular detection from the VFM is the goal object. This
can result in a large number of LLM queries given the number
of objects in real environments - as a compromise, Explorer
queries the LLMs once at the start of a navigation episode to
generate synonyms of the goal object, which are then matched
against VFM detections.

G. Simulation experiment details

1) Fast Marching Method implementation: To isolate the
effects of scene representation and reasoning, we use the
same Fast Marching Method-based (FMM) controller across
all LLM baselines and Explorer variants in simulation. Our
implementation uses depth information and ground-truth pose
from the simulator to build a 2D obstacle map, and is
based on the implementation of [2]. It takes a goal specified
in (x, y) coordinates, computes a shortest path with FMM
over the metric map, then converts it to navigation actions.
Our implementation additionally includes a heuristic recovery
policy that attempts to rotate and perturb the robot in-place
when it gets stuck or cannot find a valid path.

We adapt this FMM visuomotor policy to also take in image
goals, for compatibility with Explorer variants. We assume
that the simulated agent has access to depth images that are
aligned with the RGB input being used by the OSG mapper.
For each image goal, we can project the depth points that
fall within its bounding box in the RGB-D image into 3D
world coordinates, filter outlier 3D points and set the (x, y)
coordinates of the centroid as the goal for FMM.

2) Object feature evaluation details: To determine if object
features suffice for representing individual objects, structures,
and places, we created a dataset containing object features. We
randomly selected 10 environments in the HM3D validation
dataset. In each environment, we randomly selected at least 6
place nodes, including the living room, dining room, kitchen,
bedroom, and bathroom. If there are multiple rooms with the
same room type, we include all of them. We have roughly 60
rooms and 150 objects in the dataset. For each place node, as
well as all the structure and object nodes within the selected
place nodes, we collected information about nearby objects
from two different viewpoints, including their color, materials,

TABLE VI
COMPARISON WITH VARIOUS OBJECT-GOAL NAVIGATION APPROACHES ON
GIBSON VALIDATION SET. TF REFERS TO TRAINING-FREE APPROACHES.

NM REFERS TO APPROACHES THAT BUILD NON-METRIC SCENE
REPRESENTATIONS.

Method Success (↑) SPL (↑) DTG (↓) TF NM

SemExp [2] 0.657 0.339 1.474 ✗ ✗
PONI [10] 0.736 0.410 1.250 ✗ ✗

FBE [17] 0.641 0.283 1.780 ✓ ✗
SemUtil [3] 0.693 0.405 1.488 ✓ ✗

Explorer-FMM 0.734 0.386 1.722 ✓ ✓

TABLE VII
ACCURACY OF USING OBJECT FEATURES TO MATCH AND DIFFERENTIATE

OBJECTS, STRUCTURES AND PLACES

Node Match Differentiate

Same type Different type

Objects 0.85 0.58 -
Structures 0.75 0.83 -

Places 0.88 0.80 0.94

and type. We assessed the feasibility of associating the same
node from different viewpoints and distinguishing between
different nodes in the dataset.

3) Scene graph construction evaluation details: To evaluate
the quality of the OSGs constructed by the OSG mapper
across various environments, we mapped 5 selected HM3D
environments with the OSG mapper. We ran the Explorer
system, but manually selected object subgoals for the agent
to navigate to instead of using LLM planning, to enforce
complete coverage of the environment. All environments are
multi-storey, with four environments having at least two floors.
Each of the environments has roughly 10 rooms.

H. Additional results for ObjectNav task

We evaluate Explorer-FMM in simulation on the full Gib-
son dataset. Results are shown in Table VI. On Gibson
dataset, Explorer-FMM achieves a high success rate compet-
itive with the strongest learned baselines like PONI, despite
not having any ObjectNav or environment-specific training.
Notably, we show stronger performance than other training-
free approaches, like the state-of-the-art SemUtil that reasons
semantically by combining classical planning with semantics.

I. Additional results for OSG

1) How effective are object features for data association?:
We find that comparing object features with LLMs is an
effective method of performing association and matching of
objects, structures and places. We curate datasets of object
features for objects, structures and places sampled across
10 HM3D scenes, with more details given in ??. Table VII
presents the accuracy achieved in matching and distinguishing
objects, structures and places solely using object features.
Across the diverse indoor household scenes tested, object



TABLE VIII
EVALUATION OF CONSTRUCTED SCENE GRAPH QUALITY

Nodes “contains” “connects to”

Pr Re Pr Re Pr Re

Floors 1.000 1.000 0.889 0.914 1.000 1.000
Rooms 0.846 0.880 - - 0.771 0.831
Doors 0.845 0.800 - - 0.783 0.857

features are informative and abundant enough to reach high
levels of accuracy. We show strong performance on differ-
entiating rooms of different types based on object features,
to highlight that such features are a reliable alternative to
localising with VQA models. Differentiating objects that are
instances of the same type proves challenging since such
objects are often clustered closely in self-contained groups in
household environments and thus have similar object features,
making it hard for LLMs to differentiate them. E.g., chairs
in a dining room are often grouped near a dining table,
and sofas are often grouped around a coffee table. Even so,
these objects’ proximity means that wrong associations can
still take us close to the correct object. Overall, the strong
performance suggests that LLM-based object feature matching
enables robust localisation and re-identification of observed
objects and structures for navigation.

2) How well can we build OSGs over diverse environ-
ments?: We evaluate the accuracy of OSGs built with OSG
mapper from teleoperated trajectories in HM3D homes by
comparing them to human-annotated scene graphs. Table VIII
presents precision and recall for mapping nodes for structures
(doors), places (rooms) and abstractions (floors), as well as
their outgoing edges. The strong performance indicates that
most OSGs generated by OSG mapper accurately capture the
scene’s topology and contents.

Qualitatively, we show a constructed OSG for a two-storey
house in Figure 4. The OSG recognises and correctly labels all
key rooms in the house except for livingroom_2, which
is a hallway that is misidentified by our VQA model. We
demonstrate in Gibson’s Gratz supermarket scene in Figure 5
to show how the OSG specification can help to capture the
right abstractions for the scene, by specifying “aisles” as Place
nodes.

3) How do OSGs enhance exploration with LLM planners?:
We find that structured planning with LLMs, facilitated by
rich, structured representations that encode the environment’s
layout, enhances exploration. From Table I, LFG improves
significantly over Greedy LLM by providing richer and more
comprehensive information (i.e. listing objects from accumu-
lated metric map compared to listing objects within field-
of-view) that is better structured (i.e. objects organised into
spatial clusters compared to a flat list). OSG-based LLM
planning improves further over LFG, which we attribute to
OSGs being richer and more informative, and providing a
scaffold for structured planning by organising scene elements
with semantically meaningful abstractions. We show this with

Fig. 4. OSG built with OSG mapper in two-storey house from HM3D
validation set. livingroom_2 (in red) is a hallway misclassified by the
VQA model.

Fig. 5. Scene graph constructed in supermarket, using “aisle” Place nodes

qualitative examples of LFG and Explorer-FMM-GT’s explo-
ration trajectories in Figure 6.

In (a), the robot starts in a bedroom and has to find a toilet.
As there are few objects around, LFG defaults to geometric ex-
ploration and heads to a frontier on the left of the door, missing
the bathroom immediately to the right of the bedroom. Since
the OSG not only encodes objects but also place semantics, the
LLM is able to reason that though the bedroom is unlikely to
contain a toilet, a bathroom with one is likely to be nearby. The
LLM decides to explore nearby, and the OSG specification-
guided planning leads it to choose nearby “door” structures to
explore, allowing it to quickly locate a bathroom and find a



Fig. 6. Comparison of navigation performance between LFG and Explorer-FMM-GT

toilet. In (b), the robot is tasked to find a chair. Both methods
first enter the nearby “door 2” to explore the laundry room,
which does not contain chairs. Due to the sparsity of objects,
LFG is guided to exhaustively search over nearby areas. Since
the OSG specification identifies “doors” as meaningful and
important scene elements, this focuses Explorer-FMM-GT’s
attention on these, leading it plan to explore other “doors”
recorded in its OSG memory after failing to find chairs in the
laundry room. It previously saw “door 3” from the hallway
and recorded the a carpet close to the door. It decides that
this door is likely to lead to a living room-like space that may
contain a chair and chooses to explore through there. Thus,
the OSG specification helps to focus the planner’s attention
onto semantically meaningful goals for exploration, and the
OSG serves as memory to enable efficient backtracking during
search.

J. Additional results for OSG mapping

1) Examples of constructed OSGs: We provide additional
examples of constructed OSGs from our tests described in
Appendix G. We show OSGs for 3 different household en-
vironments in HM3D in Figure 7, Figure 8, Figure 9. From
these tests, we observe that the constructed OSG generally
achieves high accuracy. However, we also note that the OSG
mapper has difficulty consistently identifying and relocalising
to hallways, as it often attempts to localise using the objects
in rooms observed from the hallway.

2) Importance of hierarchical structure: We highlight that
LFG effectively serves as a single layer graph, as it contains
only discrete object information, without capturing scene
hierarchy or topology. In contrast, OSG additionally captures
the place semantics and the environment’s topology, enriching
Explorer’s semantic reasoning. We note that this contributes
to its ability to outperform LFG by reasoning hierarchically
over places in addition to objects, as detailed in Appendix I3.

Fig. 7. HM3D Environment: 00835



Fig. 8. HM3D Environment: 00814

Fig. 9. HM3D Environment: 00832
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