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Abstract

Keyphrase generation (KG) aims to generate
a set of summarizing words or phrases given
a source document, while keyphrase extrac-
tion (KE) aims to identify them from the text.
Because the search space is much smaller in
KE, it is often combined with KG to predict
keyphrases that may or may not exist in the
corresponding document. However, current uni-
fied approaches adopt sequence labeling and
maximization-based generation that primarily
operate at a token level, falling short in ob-
serving and scoring keyphrases as a whole. In
this work, we propose SIMCKP, a simple con-
trastive learning framework that consists of two
stages: 1) An extractor-generator that extracts
keyphrases by learning context-aware phrase-
level representations in a contrastive manner
while also generating keyphrases that do not ap-
pear in the document; 2) A reranker that adapts
scores for each generated phrase by likewise
aligning their representations with the corre-
sponding document. Experimental results on
multiple benchmark datasets demonstrate the
effectiveness of our proposed approach, which
outperforms the state-of-the-art models by a
significant margin.1

1 Introduction

Keyphrase prediction (KP) is a task of identifying
a set of relevant words or phrases that capture the
main ideas or topics discussed in a given document.
Prior studies have defined keyphrases that appear in
the document as present keyphrases and the oppo-
sites as absent keyphrases. High-quality keyphrases
are beneficial for various applications such as in-
formation retrieval (Kim et al., 2013), text summa-
rization (Pasunuru and Bansal, 2018), and trans-
lation (Tang et al., 2016). KP methods are gener-
ally divided into keyphrase extraction (KE) (Witten

*Work done during an internship at Naver Webtoon.
1Our code is publicly available at https://github.

com/brightjade/SimCKP.

Document: Purpose - The purpose of this paper is to solve generic magnetostatic
problems by BEM, by studying how to use a boundary integral equation (BIE) with the
double layer charge as unknown derived from the scalar potential.
Design/methodology/approach - Since the double layer charge produces only the
potential gap without disturbing the normal magnetic flux density, the field is accurately
formulated even by one BIE with one unknown. Once the double layer charge is
determined, Biot-Savart's law gives easily the magnetic flux density. Findings - The BIE
using double layer charge is capable of treating robustly geometrical singularities at
edges and corners. It is also capable of solving the problems with extremely high
magnetic permeability. Originality/value - The proposed BIE contains only the double
layer charge while the conventional equations derived from the scalar potential contain
the single and double layer charges as unknowns. In the multiply connected problems,
the excitation potential in the material is derived from the magnetomotive force to
represent the circulating fields due to multiply connected exciting currents.

Present keyphrases: { boundary integral equation, double layer charge, multiply
connected problem, scalar potential, integral equations }

Absent keyphrases: { nonlinear magnetostatic analysis, electric current }

Title: Nonlinear magnetostatic BEM formulation using one unknown double layer charge

Sequence labeling result: { boundary integral equation, double layer charge, multiply
connected, scalar potential }

MLE result: { magnetostatic energy analysis, magnetomotive force, electric current }

Figure 1: An example of keyphrase prediction. Present
and absent keyphrases are colored blue and red, respec-
tively. Overlapping keyphrases are in bold.

et al., 1999; Hulth, 2003; Nguyen and Kan, 2007;
Medelyan et al., 2009; Caragea et al., 2014; Zhang
et al., 2016; Alzaidy et al., 2019) and keyphrase
generation (KG) models (Meng et al., 2017; Ye
and Wang, 2018; Chan et al., 2019; Chen et al.,
2020b; Yuan et al., 2020; Ye et al., 2021b; Zhao
et al., 2022), where the former only extracts present
keyphrases from the text and the latter generates
both present and absent keyphrases.

Recently, several methods integrating KE and
KG have been proposed (Chen et al., 2019a; Liu
et al., 2021; Ahmad et al., 2021; Wu et al., 2021,
2022b). These models predict present keyphrases
using an extractor and absent keyphrases using
a generator, thereby effectively exploiting a rel-
atively small search space in extraction. However,
current integrated models suffer from two limita-
tions. First, they employ sequence labeling models
that predict the probability of each token being
a constituent of a present keyphrase, where such
token-level predictions may be a problem when
the target keyphrase is fairly long or overlapping.
As shown in Figure 1, the sequence labeling model
makes an incomplete prediction for the term “multi-
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ply connected problem” because only the tokens for
“multiply connected” have yielded a high probabil-
ity. We also observe that the model is prone to miss
the keyphrase “integral equations” every time be-
cause it overlaps with another keyphrase “boundary
integral equation” in the text. Secondly, integrated
or even purely generative models are usually based
on maximum likelihood estimation (MLE), which
predicts the probability of each token given the past
seen tokens. This approach scores the most proba-
ble text sequence the highest, but as pointed out by
Zhao et al. (2022), keyphrases from the maximum-
probability sequence are not necessarily aligned
with target keyphrases. In Figure 1, the MLE-based
model predicts “magnetostatic energy analysis”,
which is semantically similar to but not aligned
with the target keyphrase “nonlinear magnetostatic
analysis”. This may be a consequence of greedy
search, which can be remedied by finding the tar-
get keyphrases across many beams during beam
search, but it would also create a large number of
noisy keyphrases being generated in the top-k pre-
dictions.

Existing KE approaches based on represen-
tation learning may address the above limita-
tions (Bennani-Smires et al., 2018; Sun et al., 2020;
Liang et al., 2021; Zhang et al., 2022; Sun et al.,
2021; Song et al., 2021, 2023). These methods first
mine candidates that are likely to be keyphrases
in the document and then rank them based on the
relevance between the document and keyphrase
embeddings, which have shown promising results.
Nevertheless, these techniques only tackle present
keyphrases from the text, which may mitigate the
overlapping keyphrase problem from sequence la-
beling, but they are not suitable for handling MLE
and the generated keyphrases.

In this work, we propose a two-stage contrastive
learning framework that leverages context-aware
phrase-level representations on both extraction
and generation. First, we train an encoder-decoder
network that extracts present keyphrases on top
of the encoder and generates absent keyphrases
through the decoder. The model learns to extract
present keyphrases by maximizing the agreement
between the document and present keyphrase repre-
sentations. Specifically, we consider the document
and its corresponding present keyphrases as pos-
itive pairs and the rest of the candidate phrases
as negative pairs. Note that these negative candi-
date phrases are mined from the document using

a heuristic algorithm (see Section 4.1). The model
pulls keyphrase embeddings to the document em-
bedding and pushes away the rest of the candi-
dates in a contrastive manner. Then during infer-
ence, top-k keyphrases that are semantically close
to the document are predicted. After the model
has finished training, it generates candidates for
absent keyphrases. These candidates are simply
constructed by overgenerating with a large beam
size for beam search decoding. To reduce the noise
introduced by beam search, we train a reranker that
allocates new scores for the generated phrases via
another round of contrastive learning, where this
time the agreement between the document and ab-
sent keyphrase representations is maximized. Over-
all, major contributions of our work can be summa-
rized as follows:

• We present a contrastive learning framework
that learns to extract and generate keyphrases
by building context-aware phrase-level repre-
sentations.

• We develop a reranker based on the semantic
alignment with the document to improve the
absent keyphrase prediction performance.

• To the best of our knowledge, we introduce
contrastive learning to a unified keyphrase ex-
traction and generation task for the first time
and empirically show its effectiveness across
multiple KP benchmarks.

2 Related Work

2.1 Keyphrase Extraction
Keyphrase extraction focuses on predicting salient
phrases that are present in the source document.
Existing approaches can be broadly divided into
two-step extraction methods and sequence label-
ing models. Two-step methods first determine a
set of candidate phrases from the text using differ-
ent heuristic rules (Hulth, 2003; Medelyan et al.,
2008; Liu et al., 2011; Wang et al., 2016). These
candidate phrases are then sorted and ranked by
either supervised algorithms (Witten et al., 1999;
Hulth, 2003; Nguyen and Kan, 2007; Medelyan
et al., 2009) or unsupervised learning (Mihalcea
and Tarau, 2004; Wan and Xiao, 2008; Bougouin
et al., 2013; Bennani-Smires et al., 2018). Another
line of work is sequence labeling, where a model
learns to predict the likelihood of each word being
a keyphrase word (Zhang et al., 2016; Luan et al.,
2017; Gollapalli et al., 2017; Alzaidy et al., 2019).
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Figure 2: A contrastive framework for keyphrase prediction. In the first stage (left), the model learns to maximize
the relevance between present keyphrases and their corresponding document while generating absent keyphrases.
After training, the model generates candidates for absent keyphrases and sends them to the second stage (right),
where the candidates are reranked after their relevance with the document has been maximized/minimized.

2.2 Keyphrase Generation

The task of keyphrase generation is introduced to
predict both present and absent keyphrases. Meng
et al. (2017) first proposed CopyRNN, a seq2seq
framework with attention and copy mechanism un-
der the ONE2ONE paradigm, where a model is
trained to generate a single keyphrase per docu-
ment. However, due to the problem of having to
fix the number of predictions, Yuan et al. (2020)
proposed the ONE2SEQ paradigm where a model
learns to predict a dynamic number of keyphrases
by concatenating them into a single sequence.
Several ONE2SEQ-based models have been pro-
posed using semi-supervised learning (Ye and
Wang, 2018), reinforcement learning (Chan et al.,
2019), adversarial training (Swaminathan et al.,
2020), hierarchical decoding (Chen et al., 2020b),
graphs (Ye et al., 2021a), dropout (Ray Chowdhury
et al., 2022), and pretraining (Kulkarni et al., 2022;
Wu et al., 2022a) to improve keyphrase generation.

Furthermore, there have been several attempts
to unify KE and KG tasks into a single learning
framework. These methods not only focus on gen-
erating only the absent keyphrases but also perform
presumably an easier task by extracting present
keyphrases from the document, instead of having to
generate them from a myriad of vocabularies. Cur-
rent methodologies utilize external source (Chen
et al., 2019a), selection guidance (Zhao et al.,
2021), salient sentence detection (Ahmad et al.,
2021), relation network (Wu et al., 2021), and
prompt-based learning (Wu et al., 2022b).

2.3 Contrastive Learning

Methods to extract rich feature representations
based on contrastive learning (Chopra et al., 2005;
Hadsell et al., 2006) have been widely studied in
numerous literature. The primary goal of the learn-

ing process is to pull semantically similar data to
be close while pushing dissimilar data to be far
away in the representation space. Contrastive learn-
ing has shown great success for various computer
vision tasks, especially in self-supervised training
(Chen et al., 2020a), whereas Gao et al. (2021) have
devised a contrastive framework to learn univer-
sal sentence embeddings for natural language pro-
cessing. Furthermore, Liu and Liu (2021) formu-
lated a seq2seq framework employing contrastive
learning for abstractive summarization. Similarly, a
contrastive framework for autoregressive language
modeling (Su et al., 2022) and open-ended text gen-
eration (Krishna et al., 2022) have been presented.

There have been endeavors to incorporate con-
trastive learning in the context of keyphrase extrac-
tion. These methods generally utilized the pairwise
ranking loss to rank phrases with respect to the
document to extract present keyphrases (Sun et al.,
2021; Song et al., 2021, 2023). In this paper, we de-
vise a contrastive learning framework for keyphrase
embeddings on both extraction and generation to
improve the keyphrase prediction performance.

3 Problem Definition

Given a document x, the task of keyphrase
prediction is to identify a set of keyphrases
Y = {yi}i=1,...,∣Y∣, where ∣Y∣ is the number of
keyphrases. In the ONE2ONE training paradigm,
each sample pair (x, Y) is split into multiple pairs
{(x,yi)}i=1,...,∣Y∣ to train the model to generate
one keyphrase per document. In ONE2SEQ, each
sample pair is processed as (x, f(Y)), where f(Y)
is a concatenated sequence of keyphrases. In this
work, we train for extraction and generation si-
multaneously; therefore, we decompose Y into a
present keyphrase set Yp = {yi

p}i=1,...,∣Yp∣ and an

absent keyphrase set Ya = {yi
a}i=1,...,∣Ya∣.



4 SIMCKP

In this section, we elaborate on our approach to
building a contrastive framework for keyphrase pre-
diction. In Section 4.1, we delineate our heuristic
algorithm for constructing a set of candidates for
present keyphrase extraction; in Section 4.2, we de-
scribe the multi-task learning process for extracting
and generating keyphrases; and lastly, we explain
our method for reranking the generated keyphrases
in Section 4.3. Figure 2 illustrates the overall archi-
tecture of our framework.

4.1 Hard Negative Phrase Mining

To obtain the candidates for present keyphrases,
we employ a similar heuristic approach from ex-
isting extractive methods (Hulth, 2003; Mihalcea
and Tarau, 2004; Wan and Xiao, 2008; Bennani-
Smires et al., 2018). A notable difference between
prior work and ours is that we keep not only
noun phrases but also verb, adjective, and adverb
phrases, as well as phrases containing preposi-
tions and conjunctions. We observe that keyphrases
are actually made up of diverse parts of speech,
and extracting only the noun phrases could lead
to missing a significant number of keyphrases.
Following the common practice, we assign part-
of-speech (POS) tags to each word using the
Stanford POSTagger2 and chunk the phrase
structure tree into valid phrases using the NLTK
RegexpParser3.

As shown in Algorithm 1, each document is con-
verted to a phrase structure tree where each word
w is tagged with a POS tag t. The tagged docu-
ment is then split into possible phrase chunks based
on our predefined regular expression rules, which
must include one or more valid tags such as nouns,
verbs, adjectives, etc. Nevertheless, such valid tag
sequences are sometimes nongrammatical, which
cannot be a proper phrase and thus may introduce
noise during training. In response, we filter out such
nongrammatical phrases by first categorizing tags
as independent or dependent. Phrases generally
do not start or end with a preposition or conjunc-
tion; therefore, preposition and conjunction tags
belong to a dependent tag set Tdep. On the other
hand, noun, verb, adjective, and adverb tags can
stand alone by themselves, making them belong
to an independent tag set Tindep. There are also

2https://stanfordnlp.github.io/
CoreNLP/

3https://www.nltk.org/

Algorithm 1 Hard Negative Phrase Mining
Input: Source document x, maximum n-gram length n, regu-
lar expression pattern p, POS tagging function tag(⋅), phrase
parsing function parse(⋅), stemming function stem(⋅)
Output: Present keyphrase candidate set Cpre

1: Cpre ← ∅
2: word_tag_pairs ← tag(x)
3: phrase_tree ← parse(p,word_tag_pairs)
4: for phrase ∈ phrase_tree do
5: for wi, ti ∈ phrase do
6: if ti ∉ Tindep and ti ∉ Tend_dep then
7: continue
8: spani ← stem(wi)
9: Cpre ← Cpre ∪ spani

10: for wij , tij ∈ phrase[i + 1:] do
11: if len(spani.split()) ≥ n then
12: break
13: if tij ∈ Tdep or tij ∈ Tend_dep then
14: spani += stem(wij)
15: continue
16: if tij ∈ Tindep or tij ∈ Tstart_dep then
17: spani += stem(wij)
18: Cpre ← Cpre ∪ spani

19: return Cpre

tag sets Tstart_dep and Tend_dep, which include tags
that cannot start but end a phrase and tags that can
start but not end a phrase, respectively. Lastly, each
candidate phrase is iterated over to acquire all n-
grams that make up the phrase. For example, if the
phrase is “applications of machine learning”, we se-
lect n-grams “applications”, “machine”, “learning”,
“applications of machine”, “machine learning”, and
“applications of machine learning” as candidates.
Note that phrases such as “applications of”, “of”,
“of machine”, and “of machine learning” are not
chosen as candidates because they are not proper
phrases. As noted by Gillick et al. (2019), hard neg-
atives are important for learning a high-quality en-
coder, and we claim that our mining accomplishes
this objective.

4.2 Extractor-Generator
In order to jointly train for extraction and gener-
ation, we adopt a pretrained encoder-decoder net-
work. Given a document x, it is tokenized and fed
as input to the encoder where we take the last hid-
den states of the encoder to obtain the contextual
embeddings of a document:

[h0,h1, ...,hT ] = Encoderp(x), (1)

where T is the token sequence length of the doc-
ument and h0 is the start token (e.g., <s>) rep-
resentation used as the corresponding document
embedding. For each candidate phrase, we con-
struct its embedding by taking the sum pool-
ing of the token span representations: hp =

https://stanfordnlp.github.io/CoreNLP/
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SumPooling([hs, ...,he]), where s and e de-
note the start and end indices of the span. The
document and candidate phrase embeddings are
then passed through a linear layer followed by non-
linear activation to obtain the hidden representa-
tions:

zdp = tanh(Wdph0 + bdp)
zp = tanh(Wphp + bp),

(2)

where Wdp , Wp, bdp , bp are learnable parameters.

Contrastive Learning for Extraction To extract
relevant keyphrases given a document, we train our
model to learn representations by pulling keyphrase
embeddings to the corresponding document while
pushing away the rest of the candidate phrase em-
beddings in the latent space. Specifically, we follow
the contrastive framework in Chen et al. (2020a)
and take a cross-entropy objective between the doc-
ument and each candidate phrase embedding. We
set keyphrases and their corresponding document
as positive pairs, while the rest of the phrases and
the document are set as negative pairs. The training
objective for a positive pair (zdp , z

+
p,i) (i.e., docu-

ment and present keyphrase y
i
p) with Np candidate

pairs is defined as

Li
CL = − log e

sim(zdp ,z
+
p,i)/τ

e
sim(zdp ,z+p,i)/τ+∑Np

j=1 e
sim(zdp ,z−p,j )/τ

,

(3)
where τ is a temperature hyperparameter and
sim(u,v) is the cosine similarity between vectors
u and v. The final loss is then computed across all
positive pairs for the corresponding document (i.e.,

LCL = ∑∣Yp∣
i=1 Li

CL).

Joint Learning Our model generates keyphrases
by learning a probability distribution pθ(ya)
over an absent keyphrase text sequence ya =

{ya,1, ..., ya,∣y∣} (i.e., in an ONE2SEQ fashion),
where θ denotes the model parameters. Then, the
MLE objective used to train the model to generate
absent keyphrases is defined as

LMLE = −
1

∣ya∣

∣ya∣
∑
t=1

log pθ(ya,t∣ya,<t). (4)

Lastly, we combine the contrastive loss with the
negative log-likelihood loss to train the model to
both extract and generate keyphrases:

L = LMLE + λLCL, (5)

where λ is a hyperparameter balancing the losses
in the objective.

Split Dataset #KPµ #KPσ |KP|µ % Absent # Samples

Train KP20k 5.28 3.76 1.94 38.19 530,809

Valid KP20k 5.26 3.67 1.94 38.26 20,000

Test

KP20k 5.27 3.74 2.04 37.03 20,000
Inspec 9.81 4.97 2.33 22.25 500
Krapivin 5.84 3.55 2.08 44.77 400
NUS 10.85 6.67 2.13 51.55 211
SemEval 14.97 3.50 2.15 55.74 100

Table 1: Dataset statistics. #KPµ: average number of
keyphrases; #KPσ: standard deviation of the num-
ber of keyphrases; |KP|µ: average length (n-gram) of
keyphrases per document.

4.3 Reranker
As stated by Zhao et al. (2022), MLE-driven mod-
els predict candidates with the highest probability,
disregarding the possibility that target keyphrases
may appear in suboptimal candidates. This prob-
lem can be resolved by setting a large beam size for
beam search; however, this approach would also
result in a substantial increase in the generation
of noisy keyphrases among the top-k predictions.
Inspired by Liu and Liu (2021), we aim to reduce
this noise by assigning new scores to the generated
keyphrases.

Candidate Generation We employ the fine-
tuned model from Section 4.2 to generate candi-
date phrases that are highly likely to be absent
keyphrases for the corresponding document. We
perform beam search decoding using a large beam
size on each training document, resulting in the
overgeneration of absent keyphrase candidates. The
model generates in an ONE2SEQ fashion where
the outputs are sequences of phrases, which means
that many duplicate phrases are present across the
beams. We remove the duplicates and arrange the
phrases such that each unique phrase is indepen-
dently fed to the encoder. We realize that the gener-
ator sometimes fails to produce even a single target
keyphrase, in which we filter out such documents
for the second-stage training.

Dual Encoder We adopt two pretrained encoder-
only networks and obtain the contextual embed-
dings of a document, as well as each candidate
phrase c: [h0

d,h
1
d, ...,h

T
d ] = Encodera1(x) and

[h0
c ,h

1
c , ...,h

Tc
c ] = Encodera2(c), where Tc is the

token sequence length of the candidate phrase and
h
0
d and h

0
c are the start token representations used

as the document and candidate phrase embedding,
respectively. Consequently, their hidden representa-
tions are obtained by zda = tanh(Wdah

0
d + bda)



Inspec Krapivin NUS SemEval KP20k
Model F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Generative Models
catSeq (Yuan et al., 2020) 0.225 0.262 0.269 0.354 0.323 0.397 0.242 0.283 0.291 0.367
catSeqTG (Chen et al., 2019b) 0.229 0.270 0.282 0.366 0.325 0.393 0.246 0.290 0.292 0.366
catSeqTG-2RF1 (Chan et al., 2019) 0.253 0.301 0.300 0.369 0.375 0.433 0.287 0.329 0.321 0.386
ExHiRD-h (Chen et al., 2020b) 0.253 0.291 0.286 0.347 − − 0.284 0.335 0.311 0.374
SetTrans (Ye et al., 2021b) 0.285 0.324 0.326 0.364 0.406 0.450 0.331 0.357 0.358 0.392
CorrKG (Zhao et al., 2022) 0.330 0.365 − − 0.405 0.449 0.333 0.359 0.370 0.404

Unified Models
SEG-Net (Ahmad et al., 2021) 0.216 0.265 0.276 0.366 0.396 0.461 0.283 0.332 0.311 0.379
UniKeyphrase (Wu et al., 2021) 0.260 0.288 − − 0.415 0.443 0.302 0.322 0.347 0.352
PromptKP (Wu et al., 2022b) 0.260 0.294 − − 0.412 0.439 0.329 0.356 0.351 0.355

SIMCKP 0.3566 0.3588 0.4058 0.4058 0.4968 0.4989 0.3872 0.3864 0.4261 0.4271

Table 2: Present keyphrase prediction results. The best results are in bold, while the second best are underlined. The
subscript denotes the corresponding standard deviation (e.g., 0.4271 indicates 0.427 ± 0.001).

and za = tanh(Wah
0
c + ba), where Wda , Wa,

bda , ba are learnable parameters.

Contrastive Learning for Generation To rank
relevant keyphrases high given a document, we
train the dual-encoder framework via contrastive
learning. Following a similar process as before,
we train our model to learn absent keyphrase rep-
resentations by semantically aligning them with
the corresponding document. Specifically, we set
the correctly generated keyphrases and their corre-
sponding document as positive pairs, whereas the
rest of the generated candidates and the document
become negative pairs. The training objective for a
positive pair (zda , z+a,i) (i.e., document and absent
keyphrase y

i
a) with Na candidate pairs then fol-

lows Equation 3, where the cross-entropy objective
maximizes the similarity of positive pairs and min-
imizes the rest. The final loss is computed across
all positive pairs for the corresponding document
with a summation.

5 Experimental Setup

5.1 Datasets

We evaluate our framework on five scientific article
datasets: Inspec (Hulth, 2003), Krapivin (Krapivin
et al., 2009), NUS (Nguyen and Kan, 2007), Se-
mEval (Kim et al., 2010), and KP20k (Meng et al.,
2017). Following previous work (Meng et al., 2017;
Chan et al., 2019; Yuan et al., 2020), we concate-
nate the title and abstract of each sample as a source
document and use the training set of KP20k to train
all the models. Data statistics are shown in Table 1.

5.2 Baselines

We compare our framework with two kinds of KP
models: Generative and Unified.

Generative Models Generative models predict
both present and absent keyphrases through gen-
eration. Most models follow catSeq (Yuan et al.,
2020), a seq2seq framework under the ONE2SEQ

paradigm. We report the performance of catSeq
along with its variants such as catSeqTG (Chen
et al., 2019b), catseqTG-2RF1 (Chan et al., 2019),
and ExHiRD-h (Chen et al., 2020b). We also com-
pare with two state-of-the-arts SetTrans (Ye et al.,
2021b) and CorrKG (Zhao et al., 2022).

Unified Models Unified models combine extrac-
tive and generative methods to predict keyphrases.
We compare with the latest models including SEG-
Net (Ahmad et al., 2021), UniKeyphrase (Wu
et al., 2021), and PromptKP (Wu et al., 2022b).

5.3 Evaluation Metrics
Following Chan et al. (2019), all models are evalu-
ated on macro-averaged F1@5 and F1@M . F1@M
compares all the predicted keyphrases with the
ground truth, taking the number of predictions
into account. F1@5 measures only the top five
predictions, but if the model predicts less than
five keyphrases, we randomly append incorrect
keyphrases until it obtains five. The motivation is
to avoid F1@5 and F1@M reaching similar results
when the number of predictions is less than five.
We stem all phrases using the Porter Stemmer and
remove all duplicates after stemming.

5.4 Implementation Details
Our framework is built on PyTorch and Hugging-
face’s Transformers library (Wolf et al., 2020). We
use BART (Lewis et al., 2020) for the encoder-
decoder model and uncased BERT (Devlin et al.,
2019) for the reranking model. We optimize their
weights with AdamW (Loshchilov and Hutter,



Inspec Krapivin NUS SemEval KP20k
Model F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Generative Models
catSeq (Yuan et al., 2020) 0.004 0.008 0.018 0.036 0.016 0.028 0.016 0.028 0.015 0.032
catSeqTG (Chen et al., 2019b) 0.005 0.011 0.018 0.034 0.011 0.018 0.011 0.018 0.015 0.032
catSeqTG-2RF1 (Chan et al., 2019) 0.012 0.021 0.030 0.053 0.019 0.031 0.021 0.030 0.027 0.050
ExHiRD-h (Chen et al., 2020b) 0.011 0.022 0.022 0.043 − − 0.017 0.025 0.016 0.032
SetTrans (Ye et al., 2021b) 0.021 0.034 0.047 0.073 0.042 0.060 0.026 0.034 0.036 0.058
CorrKG (Zhao et al., 2022) 0.032 0.045 − − 0.061 0.079 0.039 0.044 0.053 0.071

Unified Models
SEG-Net (Ahmad et al., 2021) 0.009 0.015 0.018 0.036 0.021 0.036 0.021 0.030 0.018 0.036
UniKeyphrase (Wu et al., 2021) 0.026 0.036 − − 0.045 0.056 0.045 0.052 0.046 0.068
PromptKP (Wu et al., 2022b) 0.017 0.022 − − 0.036 0.042 0.028 0.032 0.032 0.042

SIMCKP 0.0332 0.0353 0.0781 0.0890 0.07612 0.08815 0.0402 0.0476 0.0732 0.0801

Table 3: Absent keyphrase prediction results.

2019) and tune our hyperparameters to maximize
F1@M

4 on the validation set, incorporating tech-
niques such as early stopping and linear warmup
followed by linear decay to 0. We set the maximum
n-gram length of candidate phrases to 6 during min-
ing and fix λ to 0.3 for scaling the contrastive loss.
When generating candidates for absent keyphrases,
we use beam search with the beam size 50. Dur-
ing inference, we take the candidate phrases as
predictions in which the cosine similarity with the
corresponding document is higher than the thresh-
old found in the validation set. The threshold is
calculated by taking the average of the F1@M -
maximizing thresholds for each document. If the
number of predictions is less than five, we retrieve
the top similar phrases until we obtain five. We con-
duct our experiments with three different random
seeds and report the averaged results.

6 Results and Analyses

6.1 Present and Absent Keyphrase Prediction

The present and absent keyphrase prediction results
are demonstrated in Table 2 and Table 3, respec-
tively. The performance of our model mostly ex-
ceeds that of previous state-of-the-art methods by a
large margin, showing that our method is effective
in predicting both present and absent keyphrases.
Particularly, there is a notable improvement in the
F1@5 performance, indicating the effectiveness of
our approach in retrieving the top-k predictions.
On the other hand, we observe that F1@M val-
ues are not much different from F1@5, and we
believe this is due to the critical limitation of a
global threshold. The number of keyphrases varies
significantly for each document, and finding op-

4We compared with F1@5 and found no difference in
determining the best hyperparameter configuration.

In-domain Out-of-domain
Method F1@5 F1@M F1@5 F1@M

Present keyphrase prediction
SIMCKP 0.426 0.427 0.411 0.412

w/o CL 0.295 0.388 0.278 0.356
CL⇒SEQLABEL 0.236 0.384 0.180 0.272
CL⇒BINARYCLF 0.209 0.322 0.171 0.251

Absent keyphrase prediction
SIMCKP 0.073 0.080 0.057 0.064

w/o CL 0.030 0.066 0.027 0.051
w/o RERANKER 0.035 0.069 0.025 0.041

Table 4: Ablation study. “w/o CL” is the vanilla BART
model using beam search for predictions. “w/o reranker”
extracts with CL but generates using only beam search.

timal thresholds seems necessary for improving
the F1@M performance. Nonetheless, real-world
applications are often focused on identifying the
top-k keywords, which we believe our model effec-
tively accomplishes.

6.2 Ablation Study

We investigate each component of our model to
understand their effects on the overall performance
and report the effectiveness of each building block
in Table 4. Following Xie et al. (2022), we report
on two kinds of test sets: 1) KP20k, which we
refer to as in-domain, and 2) the combination of
Inspec, Krapivin, NUS, and SemEval, which is out-
of-domain.

Effect of CL We notice a significant drop in both
present and absent keyphrase prediction perfor-
mance after decoupling contrastive learning (CL).
For a fair comparison, we set the beam size to 50,
but our model still outperforms the purely genera-
tive model, demonstrating the effectiveness of CL.
We also compare our model with two extractive
methods: sequence labeling and binary classifica-



Figure 3: Comparison of present keyphrase prediction
performance w.r.t max n-gram length during extraction.

In-domain Out-of-domain
Mining Method F1@5 F1@M F1@5 F1@M

IN-BATCH DOC NEGATIVES 0.077 0.038 0.092 0.065
RANDOM NEGATIVES 0.210 0.226 0.211 0.267
HARD NEGATIVES (OURS) 0.426 0.427 0.411 0.412

Table 5: Comparison of negative mining methods for
present keyphrase prediction.

tion. For sequence labeling, we follow previous
work (Tokala et al., 2020; Liu et al., 2021) and em-
ploy a BiLSTM-CRF, a strong sequence labeling
baseline, on top of the encoder to predict a BIO5

tag for each token, while for binary classification,
a model takes each phrase embedding to predict
whether each phrase is a keyphrase or not. CL out-
performs both approaches, showing that learning
phrase representations is more efficacious.

Effect of Reranking We remove the reranker and
observe the degradation of performance in absent
keyphrase prediction. Note that the vanilla BART
(i.e., w/o CL) is trained to generate both present
and absent keyphrases, while the other model (i.e.,
w/o RERANKER) is trained to generate only the
absent keyphrases. The former performs slightly
better in out-of-domain scenarios, as it is trained
to generate diverse keyphrases, while the latter ex-
cels in in-domain since absent keyphrases resemble
those encountered during training. Nevertheless,
the reranker outperforms the two, indicating that it
plays a vital role in the KG part of our method.

6.3 Performance over Max N-Gram Length
We conduct experiments on various maximum
lengths of n-grams for extraction and compare the

5We use the BIO format for our sequence labeling baseline.
For example, if the phrase “voip conferencing system” is
tokenized into “v ##oi ##p con ##fer ##encing system”, it is
labeled as “B I I I I I I”.

Document
Positive
Negative

Figure 4: Visualization of the semantic space using t-
SNE. The left shows the extractor space, while the right
depicts the generator space after reranking.

present keyphrase prediction performance from
unigrams to 6-grams, as shown in Figure 3. For
all datasets, the performance steadily increases
until the length of 3, which then plateaus to the
rest of the lengths. This indicates that the test-
ing datasets are mostly composed of unigrams, bi-
grams, and trigrams. The performance increases
slightly with the length of 6 for some datasets,
such as Inspec and SemEval, suggesting that there
is a non-negligible number of 6-gram keyphrases.
Therefore, the length of 6 seems feasible for maxi-
mum performance in all experiments.

6.4 Impact of Hard Negative Phrase Mining
In order to assess the effectiveness of our hard neg-
ative phrase mining method, we compare it with
other negative mining methods and report the re-
sults in Table 5. First, utilizing in-batch document
embeddings as negatives yields the poorest perfor-
mance. This is likely due to ineffective differen-
tiation between keyphrases and other phrase em-
beddings. Additionally, we experiment with using
random text spans as negatives and observe that
although it aids in representation learning to some
degree, the performance improvement is limited.
The outcomes of these two baselines demonstrate
that our approach successfully mines hard nega-
tives, enabling our encoder to acquire high-quality
representations of keyphrases.

6.5 Visualization of Semantic Space
To verify that our model works as intended, we vi-
sualize the representation space of our model with
t-SNE (van der Maaten and Hinton, 2008) plots, as
depicted in Figure 4. From the visualizations, we
find that our model successfully pulls keyphrase
embeddings close to their corresponding document
in both extractor and generator space. Note that the
generator space displays a lesser number of phrases
than the beam size 50 because the duplicates after
stemming have been removed.



Inspec Krapivin NUS SemEval KP20k
R@50 0.14416 0.2265 0.18512 0.0725 0.2207

Table 6: Upper bound performance for absent keyphrase
prediction after overgeneration with the beam size 50.

6.6 Upper Bound Performance

Following previous work (Meng et al., 2021;
Ray Chowdhury et al., 2022), we measure the up-
per bound performance after overgeneration by cal-
culating the recall score of the generated phrases
and report the results in Table 6. The high recall
demonstrates the potential for reranking to increase
precision, and we observe that there is room for
improvement by better reranking, opening up an
opportunity for future research.

7 Conclusion

This paper presents a contrastive framework that
aims to improve the keyphrase prediction perfor-
mance by learning phrase-level representations, rec-
tifying the shortcomings of existing unified models
that score and predict keyphrases at a token level.
To effectively identify keyphrases, we divide our
framework into two stages: a joint model for ex-
tracting and generating keyphrases and a reranking
model that scores the generated outputs based on
the semantic relation with the corresponding docu-
ment. We empirically show that our method signif-
icantly improves the performance of both present
and absent keyphrase prediction against existing
state-of-the-art models.

Limitations

Despite the promising prediction performance of
the framework proposed in this paper, there is still
room for improvement. A fixed global threshold
has limited the potential performance of the frame-
work, especially when evaluating F1@M . We ex-
pect that adaptively selecting a threshold value via
an auxiliary module for each data sample might
overcome such a challenge. Moreover, the result
of the second stage highly depends on the perfor-
mance of the first stage model, directing the next
step of research towards an end-to-end framework.
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A Additional Details for SIMCKP

A.1 Details for Hard Negative Phrase Mining
In order to effectively extract present keyphrases,
we categorize POS tags to the corresponding tag
set as the following:

• Tindep: {“CD”, “FW”, “GW”, “NN*”, “VB*”,
“JJ*”, “RB*”, “ADD”}

• Tdep: {“CC”, “POS”, “HYPH”, “IN”}

• Tstart_dep: {“RP”}

• Tend_dep: {“DT”, “AFX”, “LS”}

where each tag is defined in the NLTK library. An
asterisk (*) refers to any character(s) that come
after the tag name. For example, “JJ”, “JJR”, and
“JJS” are adjectives, comparative adjectives, and
superlative adjectives, respectively, and all of them
are elements of the independent tag set Tindep.

A.2 Hyperparameter Search
We perform a grid search to find the best hyperpa-
rameter configuration and report the tuning range
used for our experiments in Table 7. The evaluation
on the validation set is performed for every 5,000
gradient accumulating steps, and the tolerance in-
creases by 1 when the validation loss or F1@M is
worse than the previous evaluation.

Model Hyperparameter Range Best

BARTBASE

learning rate { 5e-5, 1e-4 } 5e-5
warm-up ratio { 0.0, 0.1 } 0.0

batch size { 4, 8, 16 } 8
τ { 0.1, 0.3, 0.5, 0.7, 1.0 } 0.1
λ { 0.1, 0.2, ..., 1.0 } 0.3

epoch { 10 } 10
max tolerance { 10 } 10
max grad norm { 1.0 } 1.0

BERTBASE

learning rate { 1e-5, 2e-5, 3e-5, 4e-5, 5e-5 } 3e-5
warm-up ratio { 0.0, 0.1 } 0.1

batch size { 4, 8, 16 } 8
τ { 0.1 } 0.1

epoch { 10 } 10
max tolerance { 10 } 10
max grad norm { 1.0 } 1.0

Table 7: Hyperparameter tuning range and best values
used in the experiments.
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