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Abstract—Obstructive sleep apnea and hypopnea syndrome
(OSAHS) is a significantly underdiagnosed condition that can lead
to dangerous and sometimes life-threatening complications such
as heart failure, stroke, and sudden cardiac death. Traditional
diagnostic methods for OSAHS, such as polysomnography, are
resource-intensive and not readily accessible for large-scale
screening. In this study, we compared the efficacy of machine
learning (ML) algorithms using non-invasive physiological data-
pulse oximetry and heart rate variability, which can be recorded
using wearable sensors, to detect OSAHS in a large dataset
consisting of 6399 recordings (53% women and mean age 62+13
years). The ML algorithms were trained and tuned using nested
cross-validation on a subset of the dataset (training set, 80% of the
dataset) and separately validated on the independent test set (20%
of the dataset) to showcase the generalizability of our model
performance. Furthermore, we investigated the performance of
ML algorithms with respect to the sampling frequency, available
data length, and presence of noise in physiological signals to
understand the impact of real-world constraints on OSAHS
detection. We also explored the model explainability with SHapley
Additive exPlanations (SHAP) and an ablation study to enhance
the clinical interpretation of the results. Our comparative analysis
of ML algorithms (Random Forest, Support Vector Machine,
eXtreme Gradient Boosting, Multi-Layer Perceptron, etc.)
demonstrated the best performance for eXtreme Gradient
Boosting algorithms with an F1-score of 0.896+0.012 and 0.897 on
the cross-validated training set and independently validated test
set, respectively. The algorithm’s performance deteriorated with
reduced data availability in the independent test set, with an F1-
score of 0.897, 0.89, 0.887, 0.885, and 0.879 using physiological
data with eight (full-night), four, two, one-hour, and 30-minute
recording lengths, respectively. Algorithm performance was
highest in models using pulse oximetry data with a 0.5 Hz sampling
rate compared to 1 and 0.25 Hz sampling rates. The findings
highlight the potential of various ML-driven analyses of
unobtrusive physiological signals for scalable OSAHS screening
and consideration of real-world constraints on the ML algorithm
performance.
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1. INTRODUCTION

Obstructive Sleep Apnea and Hypopnea Syndrome
(OSAHS) is a common sleep disorder in which the muscles in
the back of the throat relax excessively during sleep, causing the
airway to narrow or close and leading to repeated pauses in
breathing throughout the night [1], [2]. OSAHS represents a
global public health crisis, with a 2019 analysis estimating that
936 million adults aged 30-69 are affected worldwide [3]. The
disorder is prevalent and carries severe health consequences.
Decades of research have established OSAHS as an independent
risk factor for numerous cardiovascular and systemic diseases,
e.g., heart failure, stroke, cardiac arrhythmias, sudden cardiac
deaths, and hypertension [4]. The repetitive cycles of hypoxia
and sympathetic nervous system activation during OSAHS act
as direct drivers of pathology, with studies showing a clear dose-
response relationship between OSAHS severity and the future
development of hypertension [5], [6]. This link is so profound
that OSAHS is now recognized as the most common identifiable
secondary cause of resistant hypertension, affecting up to 83%
of patients in that group [7], [8]. Beyond the clinical burden, the
economic impact of undiagnosed OSAHS is staggering. In the
United States alone, the annual economic cost is estimated to be
approximately $149.6 billion [10]. Compounding this issue is a
severe diagnostic gap; it is estimated that as many as 80% of
individuals with moderate to severe OSAHS remain
undiagnosed and untreated [11].

The primary bottleneck in addressing this crisis lies with the
diagnostic gold standard, in-laboratory polysomnography (PSG)
[2]. While diagnostically powerful, PSG is a costly, labor-
intensive, and inconvenient procedure that is unsuitable for mass
screening [12]. Furthermore, the unfamiliar laboratory
environment can disrupt sleep (a phenomenon known as the
'first-night effect'), potentially yielding unrepresentative results
[13]. Furthermore, the significant night-to-night variability of
OSA means a single-night study may misclassify disease
severity in a substantial percentage of patients [14]. These
constraints make PSG inaccessible for much of the at-risk



population, creating the urgent need for a more scalable
diagnostic paradigm.

To overcome these limitations, research has shifted towards
developing automated screening tools that leverage machine
learning (ML) and deep learning (DL) algorithms and a reduced
set of physiological signals [15]. The feasibility of this approach
is rooted in the fact that apneic events produce distinct and
repeating physiological signatures in signals that are easily
monitored, most notably the electrocardiogram (ECG) and
peripheral oxygen saturation (SpO2) [16], [17]. These signatures
include characteristic oxygen desaturations and cyclical
variations in heart rate, providing the fundamental patterns that
ML algorithms can be trained to recognize with high accuracy
[17], [18]. Numerous studies have demonstrated the superiority
of combining these two signals, as their fusion provides
complementary  information that enhances diagnostic
confidence and robustness against noise [19], [20], [21].

While promising, many existing studies evaluate ML models
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Fig. 1. Overview of a wearable system with a smart watch or pulse oximeter,
capable of recording pulse oximetry and pulse (heart) rate variability
information that can be leveraged to detect obstructive sleep apnea (OSAHS),
which can be further incorporated with clinical interpretability.

using high-quality ECG and SpO: signals derived directly from
PSG recordings [22]. This does not fully address how these
models would perform in a real-world setting using data from
consumer-grade wearable devices, which may be subject to
more noise and lower resolution. This study aims to bridge that
critical gap.

Therefore, the primary objective of this paper is twofold:
first, to conduct a rigorous comparative analysis of several
machine learning models for OSAHS detection using heart rate
variability (HRV) and SpO2 data from gold-standard ECG and
pulse oximetry signals, respectively; and second, to
systematically evaluate the robustness and performance
degradation of these same models when tested on signals that
have been artificially degraded to simulate the data quality of
wearable monitoring devices. This approach will provide crucial
insights into the real-world viability of these algorithms for
developing scalable, accessible, and reliable home-based
OSAHS screening technologies (Fig. 1).

II.  METHODOLOGY

This section details the framework of our study, from data
acquisition and preprocessing to the experimental design for
training and evaluating the machine learning models under four
distinct data conditions.

A. Dataset and Cohort Description

This study utilized data from two large, well-characterized
public cohorts: the Sleep Heart Health Study (SHHS) [23] and
the Cleveland Family Study (CFS) [24]. Both datasets were
obtained from the National Sleep Research Resource (NSRR)

TABLE I. DEMOGRAPHIC DISTRIBUTION

All (N=6399) |OSAHS Positive| OSAHS Negative
(N=5151) (N=1248)
Age 61.54+£12.75| 55.06+14.3 63.15+11.82
Sex
Male 3031(47%) 2701(52%) 330(26%)
Female 3368(53%) 2450(48%) 918(74%)
BMI 28.72 £5.85 26.97 £5.39 29.14£5.75
AHI
Normal (0 —5) 1248 0 1248
Mild (5-15) 2387 2387 0
Moderate (15-30) 1686 1686 0
Severe (>30) 1078 1078 0

[25], which requires a formal data use agreement. The details of
specific cohorts are described in their foundational publications,
namely Quan et al. (1997) for SHHS [23] and Redline et al.
(1995) for CFS [24].

The SHHS dataset included ECG signals sampled at 125 Hz
and SpOq signals at 1 Hz from 5787 participants. The CFS
dataset provided ECG signals at 256 Hz and SpO?2 signals at 1
Hz from 612 participants. SHHS has a subset of subjects with
two PSG recordings. We only included the first PSG of the two
recordings to have all the subjects with single PSG recordings
across the two datasets. The demographic details of the
combined datasets are provided in Table I. Apnea and hypopnea
events for both cohorts were previously scored by certified
technicians and provided in harmonized XML annotation files
by the NSRR team.

For this study, the primary outcome was the binary
classification of sleep apnea and hypopnea severity. A subject
was labeled as positive for OSAHS if their Apnea-Hypopnea
Index (AHI) [26] was > 5 events/hour, and negative if their AHI
was < 3.

B. Experimental Data Conditions

To comprehensively evaluate model performance and
robustness, five distinct versions of the dataset were created and
tested independently:

e Baseline (Full-Night Data): As the primary benchmark,
SpO2 and HRV features were extracted from the full
duration (approximately 8-hour segments) of each
subject's original, high-resolution overnight PSG
recording.

e Simulation of Reduced Recording Duration: To
simulate shorter monitoring periods or loss of data in
real-world conditions, two separate datasets were
created by extracting random, contiguous segments
from each full-night recording. Features were then
extracted from these shorter segments only. The four
conditions were: 4-hour segments, 2-hour segments, 1-
hour segments, 30-minutes segments

e  Simulation of Degraded Signal Fidelity: To simulate the
use of lower-fidelity sensing, two additional datasets
were created by down-sampling the SpO2 signal across
its full-night duration. We have not varied the resolution
of the ECG signal and kept it at its original resolution,
as the recommended sampling frequency of ECG for
HRYV feature extraction is at least 100-250 Hz [27]. This
process utilized the decimate function from the SciPy
library and resulted in two conditions: 0.5 Hz SpO2 with



full-resolution ECG, 0.25 Hz SpO2 with full-resolution
ECG
e Simulation of Presence of Unimodal Physiological
Signal: To simulate the presence of only one type of
physiological signal, two separate datasets were created
by including metrics from only from SpO2 signal and
only HRV separately from the baseline data. This
process resulted in two conditions: SpO2 only metrics,
HRYV only metrics
e Simulation of Presence of External Noise: To simulate
the effects of external noise, two separate datasets were
created by introducing distinct noise profiles to the
baseline data. This process resulted in two conditions:
Motion artifacts only, Additive Gaussian White Noise
with Baseline Wander (AWGN-BW)
C. Feature Engineering and Extraction
We have extracted a total of 41 features (Table II), including
three demographic and anthropometric, 23 SpO2 [28], [29],
[30], and 15 HRV [31] features from the pulse oximetry and
ECG signals independently for each of the experimental
conditions mentioned above.

D. Experimental Design and Model Development

a) Dataset Split: To set up our classification framework,
we split the cohorts into training (80%) and testing (20%) sets
using a subject-wise stratified method. This stratification was
based on the presence of apnea and hypopnea, along with a
combination of demographic features including age, sex, and
BMI. This approach ensures that no single subject contributes
to both sets and that the same ratio of subjects with our outcome
variable (i.e., OSAHS positive and negative) and the specified
demographic factors is maintained in both the training and
testing sets. We could not maintain the ratio of race and
ethnicity in the two sets, as there is significant missingness and
mismatches between how race and ethnicity are originally
reported in the SHHS and CFS datasets.

b) Feature Exploration with Unsupervised Learning:
Following feature extraction and dataset split, we have utilized
principal component analysis (PCA) [32] and t-Distributed
Stochastic Neighbor Embedding (t-SNE) [33] to reduce the
dimensionality of the data and explore if we can visually see
any clusters in the feature sets with respect to our outcome
variable. We have only used the training set data from the
baseline data (full-night recording) for this purpose.

¢) ML Model Development: Following our feature
extraction and exploration, we developed and tuned our ML
models using a nested cross-validation approach to ensure
robust tuning and evaluation, a best practice for clinical models
[40], and separately validated the best-performing models,
based on the training set results, on the independent test set. As
our dataset is heavily imbalanced (80% OSAHS positive and
20% OSAHS negative), we used the Synthetic Minority Over-
sampling Technique (SMOTE) [34] during ML model
development to address the dataset imbalance. To compare the
performance of ML algorithms in detecting OSAHS, we
evaluated six algorithms, which are most commonly used in the
literature [35]: Logistic Regression, Gaussian Naive Bayes
(GNB), Support Vector Machine (SVM), Multi-Layer

TABLE II. SPO2 AND HRV FEATURES EXTRACTED

Number of
Feature Type Feature Name Features
Demographic Age, Sex, Body Mass Index 3
SpO2 (from Pulse Oximetry)
Statistical Mean, Median, Standard Deviation, Minimum 7
atistica Value, Maximum Value, Skewness, Kurtosis
Clinical  |Delta Index, Time Below 90%, Saturation, Time 3
Indices Below 80%, Saturation
Frequency- | Power in 0.014-0.033Hz band, Power in 0.017- 5
Domain 0.050Hz band

Shannon Entropy, Sample Entropy,
Approximate Entropy, Multiscale Entropy,
Lempel-Ziv Complexity, Fuzzy Entropy, Phase 11
Entropy, Permutation Entropy, Incremental
Entropy
HRV (from ECG)
Mean of R-R intervals, Median of R-R intervals,
Standard Deviation of R-R intervals, Minimum
of R-R intervals, Maximum R-R interval, 7
Skewness of R-R intervals, Kurtosis of R-R
intervals
Mean of NN intervals, Standard Deviation of
NN intervals, Root Mean Square of Successive

Non-Linear /
Entropy

Statistical

Time-Domain Differences, Percentage of successive NN 4
intervals > 50ms
Frequency- Very Loyv Frequency Power, Low Frequency
. Power, High Frequency Power, Low Frequency 4
Domain . .
to High Frequency Power Ratio
Total 41
Perceptron (MLP), Random Forest (RF), and eXtreme Gradient
Boost (XGBoost).

We used 10 outer folds for model training with five
inner folds for hyperparameter tuning in the nested cross-
validation on the training set. Following the training and tuning
the model on the training set, we chose the best-performing
model and trained this model on the full training set and
separately validated it on the independent test set. As the dataset
is imbalanced, we chose F1-score as the metric to maximize our
model performance in the nested cross-validation, as F1-score
is a widely accepted performance metric for ML classification
models on imbalanced datasets [36]. We reported the
performance of the cross-validated training set and test set in
terms of accuracy, precision, recall (sensitivity), Fl-score,
specificity, area under the curve (AUC) of the receiver
operating characteristic curve (ROC), and AUC of the
precision-recall (PR) curve in Table III.

d) ML Model Comparison: Following our initial ML
model development using the baseline (full night data using
both SpO2 and HRV features), we chose the XGBoost
algorithm, based on our initial analysis, to further explore the
model performance with different feature sets, available data
length, sampling frequency, and presence of noise. We have
compared the performance of the XGBoost algorithms trained
on datasets from a total of eleven variations: 8-hour (full night)
SpO2 (1 Hz) and HRV (256/125 Hz) data- baseline data, 8-hour
(full night) SpO2 (1 Hz) data, 8-hour (full night) HRV (256/125
Hz) data, 4-hour SpO2 (1 Hz) and HRV (256/125 Hz) data, 2-
hour SpO2 (1 Hz) and HRV (256/125 Hz) data, 1-hour SpO2
(1 Hz) and HRV (256/125 Hz) data, 30-minute SpO2 (1 Hz)
and HRV (256/125 Hz) data, 8-hour (full night) SpO2 (0.5 Hz)



data, 8-hour (full night) SpO2 (0.25 Hz) data, 8-hour (full night)
SpO2 (1 Hz) and HRV (256/125 Hz) data with motion artifacts,
8-hour (full night) SpO2 (1 Hz) and HRV (256/125 Hz) data
with additive white Gaussian noise with baseline wander
(AWGN)

Similar to the initial model development, we used nested
cross-validation to develop and tune the models on the training
set data and separately validated the trained and tuned models
on the independent test set data, and reported the performance
of the cross-validated training set and test set in Table I'V.

E. ML Model Explainability

To comprehensively evaluate feature importance and
enhance the clinical interpretation of our results, we conducted
a systematic ablation study complemented by a SHapley
Additive exPlanations (SHAP) [37] The ablation study utilized
a leave-one-out methodology, where each of the 38 features was
individually removed, and the model was re-evaluated against a
baseline trained on all features using the same nested cross-
validation procedure. Feature importance was primarily
quantified by the change in F1l-score and further characterized
by the absolute performance drop, relative percentage drop,
statistical significance (p-value from a paired t-test), and effect
size (Cohen's d). To provide local, instance-specific insights, we
further explored the best-performing XGBoost model with the
SHAP TreeExplainer [38] The SHAP values were calculated on
the preprocessed test set, using a background of 100 samples
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III. RESULTS AND DISCUSSION

Fig. 2 shows raw SpO2 and ECG data from two
representative subjects, one with severe OSAHS (AHI Index:
53.15) and one with OSAHS negative (AHI Index: 1.59). The
physiological recordings for the apnea patient clearly
demonstrate pathological patterns. The ECG signal (top left)
exhibits marked variability, indicative of heart rate fluctuations
often associated with respiratory disturbances. Concurrently,
the SpO: signal (top right) is characterized by recurrent, sharp
desaturation events, creating a distinct cyclical pattern where
oxygen levels frequently fall and recover.
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Fig. 2. Raw pulse oximetry (SpO2) and electrocardiogram (ECG) signals from
two representative subjects, one with OSAHS positive and one negative.
from the training data to establish a baseline for the feature
contribution analysis.
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Fig. 3. Visual comparison of features from baseline (full-night) pulse oximetry
and heart rate variability data with the target variable using (top) PCA and
(bottom) t-SNE.

In stark contrast, the recordings from the OSAHS negative
subject are distinguished by their stability. The SpO: signal
(bottom right) remains consistently high, lacking the significant
desaturation events seen above. The corresponding ECG
(bottom left) also shows a more regular cardiac rhythm and less
motion artifact from motion or respiration. This direct
comparison highlights the distinct physiological signatures that
our feature-based approach is designed to quantify for
automated OSAHS detection.

Fig. 3 shows the PCA and t-SNE plot. The PCA projection
(top panel) reveals a significant overlap between the 'Apnea’
and 'No Apnea' classes, which are concentrated in a single,
dense distribution. The absence of any clear linear separability
in this view highlights the need for advanced non-linear
classification algorithms. In contrast, the t-SNE visualization
(bottom panel) successfully captured the complex non-linear
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TABLE III. MODEL PERFORMANCE METRICS ON BASELINE DATA
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structures within the data, revealing several distinct clusters.
Although these clusters are not entirely class-pure, they exhibit
localized concentrations of each class. This indicates that while
intricate patterns exist, the boundary between the two classes is
highly complex and intertwined. Collectively, these plots
justify the selection of a powerful gradient boosting model
capable of learning the complex decision boundaries suggested
by the t-SNE manifold.

A. Comparison of Different ML Algorithms

Table III shows the comparison of different ML algorithms.
The evaluation, conducted using nested cross-validation on the
training set and validated on an independent test set, reveals that
the tree-based ensemble methods—RF and XGBoost—yielded
the most robust and accurate results.

While both models performed strongly, XGBoost
demonstrated a superior balance of metrics on the test set,
achieving the highest Accuracy (0.8311), Fl-score (0.8966),
and a compelling AUC-PR of 0.9571. In contrast, other models
exhibited critical weaknesses. SVM, despite a high recall, had
a near-zero specificity (0.0161) and an AUC-ROC of 0.5,
indicating a complete failure to learn a discriminative
boundary. GNB showed poor performance across all metrics,
while Logistic Regression and the MLP were competent but
ultimately inferior to the ensemble methods. Fig. 4 shows the
receiver operating characteristic curve and precision-recall
curve using the XGBoost model on the baseline data.

B. Comparison of Different Feature Sets

Table IV shows the comparison of the performances of the
XGBoost algorithm trained on different feature sets, data
lengths, sampling frequency, and presence of noise. Analysis of
the results in the table confirms the model's robustness and
highlights several key findings. Performance is primarily
driven by SpO2 features; the SpO2-only model
(Test AUC-PR: 0.9587) performed on par with the full-feature

baseline (0.9571), whereas the HRV-only model's performance
was substantially degraded (AUC-PR: 0.8895). Notably, the
model also demonstrated high resilience to motion artifacts, as
the configuration trained on data with motion artifacts
maintained a strong performance (F1-score: 0.8974, AUC-PR:
0.9539) comparable to the clean baseline. However, the model
performance deteriorated markedly with additive white
Gaussian noise and baseline wandering (F1-score: 0.8792,
AUC-PR: 0.9053).

Furthermore, the model maintained high efficacy with data
segments. A segment of 4 hours (F1-score: 0.8899, AUC-PR:

Precision-Recall Curve - CV Training Set ROC Curve - CV Training Set

1.000 1.000

0.800 0.800

0.600 0.600

Precision

0.400

True Positive Rate
)
=
S
3

0.200 0.200

0.000 PR (AUC = 0.955  0.006) 0.000 ROC (AUC = 0.839 + 0.018)

0.000 0.200 0.400 0.600 0.800 1.000
Recall

0.000 0.200 0.400 0.600 0.800 1.000
False Positive Rate

Precision-Recall Curve - Testing Set ROC Curve - Testing Set

1.000 1.000

0.800 0.800

0.600

o
@
3
S

Precision

0.400 0.400

True Positive Rate

0.200 0.200

PR (AUC = 0.957) ROC (AUC = 0.842)

0.000 0.000

0.000 0.200 0.400 0.600 0.800 1.000
Recall

Fig.4. Precision-Recall (PR) and Receiver Operating Characteristic (ROC)
curves for the optimized XGBoost model.
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0.9640) yielded results similar to the full 8-hour recording.
Performance remained robust even with 1-hour segments (F1-
score: 0.8845, AUC-PR: 0.9469), with a more noticeable

TABLE IV. COMPARISON OF MODEL PERFORMANCE WITH DIFFERENT DATASETS, LENGTH, AND SAMPLING FREQUENCY

) Cross-Validated Training Set Test Set
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Fig. 5. SHAP Summary plot for the OSAHS Detection Model.

decline observed only when the data was reduced to 30-minute
segments (F1-score: 0.8793, AUC-PR: 0.9391). This trend of
graceful degradation indicates that while prolonged observation
may not be essential, a minimum data duration is required for
optimal ML performance.

With respect to sampling frequency, downsampling the SpO-
signal to 0.5 Hz and 0.25 Hz did not impair performance but
instead yielded improvements in AUC-PR, with the 0.25 Hz
configuration achieving the highest test AUC-PR (0.9697).
These results demonstrate the feasibility of creating accurate,
computationally efficient models from less granular data, a
significant advantage for deployment on resource-constrained
hardware.

C. Model Explainability

Our explainability analysis, combining a systematic
ablation study with SHAP values (Fig. 5), provides a cohesive
and robust understanding of the model's decision-making
process. Both methods confirmed the dominant predictive
power of features derived from the SpO: signal, followed by
HRYV and demographic features. The ablation study identified
spo2_max_val as the single most critical feature, as its removal
caused the most significant drop in Fl-score. This quantitative
finding is visually complemented by the SHAP analysis, which
highlights measures of signal complexity—specifically
Shannon (spo2 ShanEn), Fuzzy (spo2 FuzzyEn), and
Permutation (spo2_PermEn) entropy—as highly influential.

The plot reveals clinically intuitive relationships: high
feature values for these entropies, indicating greater signal
irregularity, strongly push the prediction towards an 'Apnea’
classification (positive SHAP values). Similarly, a greater
duration of desaturation (spo2 time below 80) and a lower
median SpO: value (spo2_median) are also powerful predictors
of apnea. While demographic and HRV features like age and
hrv_freq HF contribute to the model, their overall impact is
secondary. This explainability analysis provides transparent
insight into the model's decision-making process, verifying its
reliance on physiologically relevant markers.

IV. CONCLUSION AND FUTURE WORK

In this paper, we compared the performance of various ML
models in detecting obstructive sleep apnea and hypopnea

syndrome (OSAHS). Our findings demonstrate that among the
evaluated algorithms, tree-based ensemble methods, and
specifically the XGBoost model, delivered the most robust and
superior performance. The XGBoost classifier achieved a high
Fl-score on the cross-validated training set and on the
independent test set, confirming its strong generalization
capabilities. A key contribution of this work was the systematic
evaluation of model performance under simulated real-world
constraints. The analysis revealed that the model's predictive
power is primarily driven by features derived from the SpO2
signal, with the SpO2-only model performing nearly as well as
the full-feature model. Furthermore, the model maintained high
efficacy with reduced recording durations, indicating that data
from the entire night's sleep is not essential and that an optimal
recording window may exist for feature creation. Perhaps most
significantly, we discovered that downsampling the SpO- signal
to as low as 0.25 Hz did not degrade but, in fact, improved
certain performance metrics, such as the AUC-PR. Model
explainability analysis using ablation study and SHAP further
enhanced the clinical interpretation by confirming that
predictions were driven by physiologically relevant markers of
sleep apnea, such as SpO2 entropy and desaturation metrics.
Collectively, these results highlight the significant potential of
leveraging machine learning with signals obtainable from
consumer-grade wearable devices for developing scalable,
reliable, and accessible screening tools for OSAHS.

Our work, while demonstrating the strong potential of ML
models for OSAHS detection, has several limitations that pave
the way for future research. Firstly, although we simulated real-
world conditions by manipulating data length, signal fidelity,
and noise, the models were developed and validated using high-
quality, lab-based PSG data. The performance of these models
on data collected from personal, consumer-grade devices in an
uncontrolled home environment remains to be seen. Real-world
data is often corrupted by motion artifacts, poor sensor contact,
and other forms of noise. Although we evaluated the model
performance with the presence of artifacts and noise, a real-
world scenario might not be fully represented in our simulations.
Furthermore, our current approach relies on a computationally
intensive feature extraction pipeline, calculating 41 distinct
features. This process may not be feasible for real-time
applications on resource-constrained wearable devices, which
have limited processing power and battery life.

Secondly, this study was confined to the evaluation of
traditional ML algorithms. While XGBoost performed
exceptionally well, deep learning architectures such as
Convolutional Neural Networks (CNNs), Long Short-Term
Memory networks (LSTMs), or Transformers might offer
superior performance. These models are adept at automatically
learning relevant features and temporal dependencies directly
from raw or minimally processed time-series signals. Future
work will focus on developing and benchmarking such deep
learning models against our current results. This approach could
potentially bypass the computationally expensive feature
engineering step and may prove more robust in handling the
noisy, complex patterns inherent in real-world sensor data.

Finally, our dataset had limitations in its demographic
representation. While we included age, sex, and BMI as features,
we were unable to incorporate race and ethnicity due to
significant missingness and inconsistent reporting standards



between the SHHS and CFS cohorts. Given that OSAHS
prevalence and physiological manifestations can vary across
different ethnic groups, the absence of this data limits our ability
to assess the model's fairness and generalizability across a
diverse population. Future studies should prioritize using or
collecting datasets with complete and consistently reported
demographic information. This will be critical not only for
potentially improving model accuracy but also for ensuring that
these diagnostic tools are equitable and effective for all
segments of the population. Addressing these limitations will be
a crucial next step in translating this research into a clinically
validated and widely applicable screening technology.
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