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Abstract—Obstructive sleep apnea and hypopnea syndrome 

(OSAHS) is a significantly underdiagnosed condition that can lead 
to dangerous and sometimes life-threatening complications such 
as heart failure, stroke, and sudden cardiac death. Traditional 
diagnostic methods for OSAHS, such as polysomnography, are 
resource-intensive and not readily accessible for large-scale 
screening. In this study, we compared the efficacy of machine 
learning (ML) algorithms using non-invasive physiological data- 
pulse oximetry and heart rate variability, which can be recorded 
using wearable sensors, to detect OSAHS in a large dataset 
consisting of 6399 recordings (53% women and mean age 62±13 
years). The ML algorithms were trained and tuned using nested 
cross-validation on a subset of the dataset (training set, 80% of the 
dataset) and separately validated on the independent test set (20% 
of the dataset) to showcase the generalizability of our model 
performance. Furthermore, we investigated the performance of 
ML algorithms with respect to the sampling frequency, available 
data length, and presence of noise in physiological signals to 
understand the impact of real-world constraints on OSAHS 
detection. We also explored the model explainability with SHapley 
Additive exPlanations (SHAP) and an ablation study to enhance 
the clinical interpretation of the results. Our comparative analysis 
of ML algorithms (Random Forest, Support Vector Machine, 
eXtreme Gradient Boosting, Multi-Layer Perceptron, etc.) 
demonstrated the best performance for eXtreme Gradient 
Boosting algorithms with an F1-score of 0.896±0.012 and 0.897 on 
the cross-validated training set and independently validated test 
set, respectively. The algorithm’s performance deteriorated with 
reduced data availability in the independent test set, with an F1-
score of 0.897, 0.89, 0.887, 0.885, and 0.879 using physiological 
data with eight (full-night), four, two, one-hour, and 30-minute 
recording lengths, respectively. Algorithm performance was 
highest in models using pulse oximetry data with a 0.5 Hz sampling 
rate compared to 1 and 0.25 Hz sampling rates. The findings 
highlight the potential of various ML-driven analyses of 
unobtrusive physiological signals for scalable OSAHS screening 
and consideration of real-world constraints on the ML algorithm 
performance. 

Keywords—Obstructive sleep apnea, machine learning, pulse 
oximetry, heart rate variability, polysomnography  

I. INTRODUCTION 
Obstructive Sleep Apnea and Hypopnea Syndrome 

(OSAHS) is a common sleep disorder in which the muscles in 
the back of the throat relax excessively during sleep, causing the 
airway to narrow or close and leading to repeated pauses in 
breathing throughout the night [1], [2]. OSAHS represents a 
global public health crisis, with a 2019 analysis estimating that 
936 million adults aged 30-69 are affected worldwide [3]. The 
disorder is prevalent and carries severe health consequences. 
Decades of research have established OSAHS as an independent 
risk factor for numerous cardiovascular and systemic diseases, 
e.g., heart failure, stroke, cardiac arrhythmias, sudden cardiac 
deaths, and hypertension [4]. The repetitive cycles of hypoxia 
and sympathetic nervous system activation during OSAHS act 
as direct drivers of pathology, with studies showing a clear dose-
response relationship between OSAHS severity and the future 
development of hypertension [5], [6]. This link is so profound 
that OSAHS is now recognized as the most common identifiable 
secondary cause of resistant hypertension, affecting up to 83% 
of patients in that group [7], [8]. Beyond the clinical burden, the 
economic impact of undiagnosed OSAHS is staggering. In the 
United States alone, the annual economic cost is estimated to be 
approximately $149.6 billion [10]. Compounding this issue is a 
severe diagnostic gap; it is estimated that as many as 80% of 
individuals with moderate to severe OSAHS remain 
undiagnosed and untreated [11]. 

The primary bottleneck in addressing this crisis lies with the 
diagnostic gold standard, in-laboratory polysomnography (PSG) 
[2]. While diagnostically powerful, PSG is a costly, labor-
intensive, and inconvenient procedure that is unsuitable for mass 
screening [12]. Furthermore, the unfamiliar laboratory 
environment can disrupt sleep (a phenomenon known as the 
'first-night effect'), potentially yielding unrepresentative results 
[13]. Furthermore, the significant night-to-night variability of 
OSA means a single-night study may misclassify disease 
severity in a substantial percentage of patients [14]. These 
constraints make PSG inaccessible for much of the at-risk 



population, creating the urgent need for a more scalable 
diagnostic paradigm. 

To overcome these limitations, research has shifted towards 
developing automated screening tools that leverage machine 
learning (ML) and deep learning (DL) algorithms and a reduced 
set of physiological signals [15]. The feasibility of this approach 
is rooted in the fact that apneic events produce distinct and 
repeating physiological signatures in signals that are easily 
monitored, most notably the electrocardiogram (ECG) and 
peripheral oxygen saturation (SpO2) [16], [17]. These signatures 
include characteristic oxygen desaturations and cyclical 
variations in heart rate, providing the fundamental patterns that 
ML algorithms can be trained to recognize with high accuracy 
[17], [18]. Numerous studies have demonstrated the superiority 
of combining these two signals, as their fusion provides 
complementary information that enhances diagnostic 
confidence and robustness against noise [19], [20], [21]. 

While promising, many existing studies evaluate ML models 

using high-quality ECG and SpO2 signals derived directly from 
PSG recordings [22]. This does not fully address how these 
models would perform in a real-world setting using data from 
consumer-grade wearable devices, which may be subject to 
more noise and lower resolution. This study aims to bridge that 
critical gap. 

Therefore, the primary objective of this paper is twofold: 
first, to conduct a rigorous comparative analysis of several 
machine learning models for OSAHS detection using heart rate 
variability (HRV) and SpO2 data from gold-standard ECG and 
pulse oximetry signals, respectively; and second, to 
systematically evaluate the robustness and performance 
degradation of these same models when tested on signals that 
have been artificially degraded to simulate the data quality of 
wearable monitoring devices. This approach will provide crucial 
insights into the real-world viability of these algorithms for 
developing scalable, accessible, and reliable home-based 
OSAHS screening technologies (Fig. 1). 

II. METHODOLOGY 
This section details the framework of our study, from data 

acquisition and preprocessing to the experimental design for 
training and evaluating the machine learning models under four 
distinct data conditions. 
A. Dataset and Cohort Description 

This study utilized data from two large, well-characterized 
public cohorts: the Sleep Heart Health Study (SHHS) [23] and 
the Cleveland Family Study (CFS) [24]. Both datasets were 
obtained from the National Sleep Research Resource (NSRR) 

[25], which requires a formal data use agreement. The details of 
specific cohorts are described in their foundational publications, 
namely Quan et al. (1997) for SHHS [23] and Redline et al. 
(1995) for CFS [24]. 

The SHHS dataset included ECG signals sampled at 125 Hz 
and SpO2 signals at 1 Hz from 5787 participants. The CFS 
dataset provided ECG signals at 256 Hz and SpO2 signals at 1 
Hz from 612 participants. SHHS has a subset of subjects with 
two PSG recordings. We only included the first PSG of the two 
recordings to have all the subjects with single PSG recordings 
across the two datasets. The demographic details of the 
combined datasets are provided in Table I. Apnea and hypopnea 
events for both cohorts were previously scored by certified 
technicians and provided in harmonized XML annotation files 
by the NSRR team.  

For this study, the primary outcome was the binary 
classification of sleep apnea and hypopnea severity. A subject 
was labeled as positive for OSAHS if their Apnea-Hypopnea 
Index (AHI) [26] was ≥ 5 events/hour, and negative if their AHI 
was < 5.  
B. Experimental Data Conditions 

To comprehensively evaluate model performance and 
robustness, five distinct versions of the dataset were created and 
tested independently: 

• Baseline (Full-Night Data): As the primary benchmark, 
SpO2 and HRV features were extracted from the full 
duration (approximately 8-hour segments) of each 
subject's original, high-resolution overnight PSG 
recording. 

• Simulation of Reduced Recording Duration: To 
simulate shorter monitoring periods or loss of data in 
real-world conditions, two separate datasets were 
created by extracting random, contiguous segments 
from each full-night recording. Features were then 
extracted from these shorter segments only. The four 
conditions were: 4-hour segments, 2-hour segments, 1-
hour segments, 30-minutes segments 

• Simulation of Degraded Signal Fidelity: To simulate the 
use of lower-fidelity sensing, two additional datasets 
were created by down-sampling the SpO2 signal across 
its full-night duration. We have not varied the resolution 
of the ECG signal and kept it at its original resolution, 
as the recommended sampling frequency of ECG for 
HRV feature extraction is at least 100-250 Hz [27]. This 
process utilized the decimate function from the SciPy 
library and resulted in two conditions: 0.5 Hz SpO2 with 

 
Fig. 1. Overview of a wearable system with a smart watch or pulse oximeter, 
capable of recording pulse oximetry and pulse (heart) rate variability 
information that can be leveraged to detect obstructive sleep apnea (OSAHS), 
which can be further incorporated with clinical interpretability. 
 

TABLE I. DEMOGRAPHIC DISTRIBUTION 
 All (N=6399) OSAHS Positive 

(N=5151) 
OSAHS Negative 

(N=1248) 
Age  61.54 ± 12.75  55.06 ± 14.3 63.15 ± 11.82 
Sex  

Male 3031(47%) 2701(52%) 330(26%) 
Female 3368(53%) 2450(48%) 918(74%) 

BMI 28.72 ± 5.85 26.97 ± 5.39 29.14 ± 5.75 
AHI  

Normal (0 – 5) 1248 0 1248 
Mild (5-15) 2387 2387 0 

Moderate (15-30) 1686 1686 0 
Severe (>30) 1078 1078 0 

  



full-resolution ECG, 0.25 Hz SpO2 with full-resolution 
ECG 

• Simulation of Presence of Unimodal Physiological 
Signal: To simulate the presence of only one type of 
physiological signal, two separate datasets were created 
by including metrics from only from  SpO2 signal and 
only HRV separately from the baseline data. This 
process resulted in two conditions: SpO2 only metrics, 
HRV only metrics 

• Simulation of Presence of External Noise: To simulate 
the effects of external noise, two separate datasets were 
created by introducing distinct noise profiles to the 
baseline data. This process resulted in two conditions: 
Motion artifacts only, Additive Gaussian White Noise 
with Baseline Wander (AWGN-BW) 

C. Feature Engineering and Extraction 
We have extracted a total of 41 features (Table II), including 

three demographic and anthropometric, 23 SpO2 [28], [29], 
[30], and 15 HRV [31] features from the pulse oximetry and 
ECG signals independently for each of the experimental 
conditions mentioned above. 
D. Experimental Design and Model Development 

a)  Dataset Split: To set up our classification framework, 
we split the cohorts into training (80%) and testing (20%) sets 
using a subject-wise stratified method. This stratification was 
based on the presence of apnea and hypopnea, along with a 
combination of demographic features including age, sex, and 
BMI. This approach ensures that no single subject contributes 
to both sets and that the same ratio of subjects with our outcome 
variable (i.e., OSAHS positive and negative) and the specified 
demographic factors is maintained in both the training and 
testing sets. We could not maintain the ratio of race and 
ethnicity in the two sets, as there is significant missingness and 
mismatches between how race and ethnicity are originally 
reported in the SHHS and CFS datasets. 

b) Feature Exploration with Unsupervised Learning: 
Following feature extraction and dataset split, we have utilized 
principal component analysis (PCA) [32] and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) [33] to reduce the 
dimensionality of the data and explore if we can visually see 
any clusters in the feature sets with respect to our outcome 
variable. We have only used the training set data from the 
baseline data (full-night recording) for this purpose.  

c) ML Model Development: Following our feature 
extraction and exploration, we developed and tuned our ML 
models using a nested cross-validation approach to ensure 
robust tuning and evaluation, a best practice for clinical models 
[40], and separately validated the best-performing models, 
based on the training set results, on the independent test set. As 
our dataset is heavily imbalanced (80% OSAHS positive and 
20% OSAHS negative), we used the Synthetic Minority Over-
sampling Technique (SMOTE) [34] during ML model 
development to address the dataset imbalance. To compare the 
performance of ML algorithms in detecting OSAHS, we 
evaluated six algorithms, which are most commonly used in the 
literature [35]: Logistic Regression, Gaussian Naive Bayes 
(GNB), Support Vector Machine (SVM), Multi-Layer 

Perceptron (MLP), Random Forest (RF), and eXtreme Gradient 
Boost (XGBoost).  
 We used 10 outer folds for model training with five 
inner folds for hyperparameter tuning in the nested cross-
validation on the training set. Following the training and tuning 
the model on the training set, we chose the best-performing 
model and trained this model on the full training set and 
separately validated it on the independent test set. As the dataset 
is imbalanced, we chose F1-score as the metric to maximize our 
model performance in the nested cross-validation, as F1-score 
is a widely accepted performance metric for ML classification 
models on imbalanced datasets [36]. We reported the 
performance of the cross-validated training set and test set in 
terms of accuracy, precision, recall (sensitivity), F1-score, 
specificity, area under the curve (AUC) of the receiver 
operating characteristic curve (ROC), and AUC of the 
precision-recall (PR) curve in Table III. 

d) ML Model Comparison: Following our initial ML 
model development using the baseline (full night data using 
both SpO2 and HRV features), we chose the XGBoost 
algorithm, based on our initial analysis, to further explore the 
model performance with different feature sets, available data 
length, sampling frequency, and presence of noise. We have 
compared the performance of the XGBoost algorithms trained 
on datasets from a total of eleven variations: 8-hour (full night) 
SpO2 (1 Hz) and HRV (256/125 Hz) data- baseline data, 8-hour 
(full night) SpO2 (1 Hz) data, 8-hour (full night) HRV (256/125 
Hz) data, 4-hour SpO2 (1 Hz) and HRV (256/125 Hz) data, 2-
hour SpO2 (1 Hz) and HRV (256/125 Hz) data, 1-hour SpO2 
(1 Hz) and HRV (256/125 Hz) data, 30-minute SpO2 (1 Hz) 
and HRV (256/125 Hz) data, 8-hour (full night) SpO2 (0.5 Hz) 

TABLE II. SPO2 AND HRV FEATURES EXTRACTED 
  

Feature Type Feature Name Number of 
Features 

Demographic Age, Sex, Body Mass Index 3 
SpO2 (from Pulse Oximetry) 

Statistical Mean, Median, Standard Deviation, Minimum 
Value, Maximum Value, Skewness, Kurtosis 7 

Clinical 
Indices 

Delta Index, Time Below 90%, Saturation, Time 
Below 80%, Saturation 3 

Frequency-
Domain 

Power in 0.014-0.033Hz band, Power in 0.017-
0.050Hz band 2 

Non-Linear / 
Entropy 

Shannon Entropy, Sample Entropy, 
Approximate Entropy, Multiscale Entropy, 

Lempel-Ziv Complexity, Fuzzy Entropy, Phase 
Entropy, Permutation Entropy, Incremental 

Entropy 

11 

HRV (from ECG) 

Statistical 

Mean of R-R intervals, Median of R-R intervals, 
Standard Deviation of R-R intervals, Minimum 

of R-R intervals, Maximum R-R interval, 
Skewness of R-R intervals, Kurtosis of R-R 

intervals 

7 

Time-Domain 

Mean of NN intervals, Standard Deviation of 
NN intervals, Root Mean Square of Successive 

Differences, Percentage of successive NN 
intervals > 50ms 

4 

Frequency-
Domain 

Very Low Frequency Power, Low Frequency 
Power, High Frequency Power, Low Frequency 

to High Frequency Power Ratio 
4 

Total 41 
 



data, 8-hour (full night) SpO2 (0.25 Hz) data, 8-hour (full night) 
SpO2 (1 Hz) and HRV (256/125 Hz) data with motion artifacts, 
8-hour (full night) SpO2 (1 Hz) and HRV (256/125 Hz) data 
with additive white Gaussian noise with baseline wander 
(AWGN) 

Similar to the initial model development, we used nested 
cross-validation to develop and tune the models on the training 
set data and separately validated the trained and tuned models 
on the independent test set data, and reported the performance 
of the cross-validated training set and test set in Table IV.  
E. ML Model Explainability 
 To comprehensively evaluate feature importance and 
enhance the clinical interpretation of our results, we conducted 
a systematic ablation study complemented by a SHapley 
Additive exPlanations (SHAP) [37] The ablation study utilized 
a leave-one-out methodology, where each of the 38 features was 
individually removed, and the model was re-evaluated against a 
baseline trained on all features using the same nested cross-
validation procedure. Feature importance was primarily 
quantified by the change in F1-score and further characterized 
by the absolute performance drop, relative percentage drop, 
statistical significance (p-value from a paired t-test), and effect 
size (Cohen's d). To provide local, instance-specific insights, we 
further explored the best-performing XGBoost model with the 
SHAP TreeExplainer [38] The SHAP values were calculated on 
the preprocessed test set, using a background of 100 samples 

from the training data to establish a baseline for the feature 
contribution analysis. 

III. RESULTS AND DISCUSSION 
Fig. 2 shows raw SpO2 and ECG data from two 

representative subjects, one with severe OSAHS (AHI Index: 
53.15) and one with OSAHS negative (AHI Index: 1.59). The 
physiological recordings for the apnea patient clearly 
demonstrate pathological patterns. The ECG signal (top left) 
exhibits marked variability, indicative of heart rate fluctuations 
often associated with respiratory disturbances. Concurrently, 
the SpO₂ signal (top right) is characterized by recurrent, sharp 
desaturation events, creating a distinct cyclical pattern where 
oxygen levels frequently fall and recover.  

In stark contrast, the recordings from the OSAHS negative 
subject are distinguished by their stability. The SpO₂ signal 
(bottom right) remains consistently high, lacking the significant 
desaturation events seen above. The corresponding ECG 
(bottom left) also shows a more regular cardiac rhythm and less 
motion artifact from motion or respiration. This direct 
comparison highlights the distinct physiological signatures that 
our feature-based approach is designed to quantify for 
automated OSAHS detection.  

Fig. 3 shows the PCA and t-SNE plot. The PCA projection 
(top panel) reveals a significant overlap between the 'Apnea' 
and 'No Apnea' classes, which are concentrated in a single, 
dense distribution. The absence of any clear linear separability 
in this view highlights the need for advanced non-linear 
classification algorithms. In contrast, the t-SNE visualization 
(bottom panel) successfully captured the complex non-linear 

 
Fig. 2. Raw pulse oximetry (SpO2) and electrocardiogram (ECG) signals from 
two representative subjects, one with OSAHS positive and one negative. 
  

TABLE III. MODEL PERFORMANCE METRICS ON BASELINE DATA 

Algorithms 
Cross-Validated Training Set Test Set 

Accuracy Precision Recall/ 
Sensitivity F1-Score Specificity AUC-

ROC AUC-PR Accuracy Precision Recall/ 
Sensitivity F1-Score Specificity AUC-

ROC AUC-PR 

Logistic 
Regression 

0.7699 ± 
0.0217 

0.9336 ± 
0.0131 

0.7690 ± 
0.0269 

0.8430 ± 
0.0168 

0.7737 ± 
0.0483 

0.8535 ± 
0.0159 

0.9586 ± 
0.0054 0.7553 0.9335 0.7495 0.8314 0.7791 0.8510 0.9592 

Gaussian Naive 
Bayes 

0.5369 ± 
0.0151 

0.9207 ± 
0.0063 

0.4647 ± 
0.0198 

0.6174 ± 
0.0178 

0.8348 ± 
0.0143 

0.7465 ± 
0.0232 

0.9071 ± 
0.0089 0.5457 0.9212 0.4767 0.6283 0.8313 0.7555 0.9133 

Support Vector 
Machine 

0.8041 ± 
0.0061 

0.8071 ± 
0.0031 

0.9942 ± 
0.0071 

0.8909 ± 
0.0036 

0.0200 ± 
0.0195 

0.5000 ± 
0.0000 

0.8049 ± 
0.0006 0.8061 0.8074 0.9971 0.8923 0.0161 0.5 0.8053 

M 0.8137 ± 
0.0199 

0.8942 ± 
0.0134 

0.8719 ± 
0.0197 

0.8827 ± 
0.0130 

0.5735 ± 
0.0596 

0.8401 ± 
0.0217 

0.9532 ± 
0.0079 0.8084 0.8937 0.8650 0.8791 0.5743 0.8321 0.9544 

XGBoost 0.8303 ± 
0.0188 

0.8823 ± 
0.0111 

0.9107 ± 
0.0200 

0.8962 ± 
0.0120 

0.4984 ± 
0.0532 

0.8392 ± 
0.0176 

0.9545 ± 
0.0060 0.8311 0.8847 0.9087 0.8966 0.5100 0.8417 0.9571 

Multi-Layer 
Perceptron 

0.7957 ± 
0.0143 

0.8851 ± 
0.0152 

0.8583 ± 
0.0294 

0.8710 ± 
0.0108 

0.5375 ± 
0.0821 

0.7996 ± 
0.0137 

0.9367 ± 
0.0054 0.7858 0.8743 0.8573 0.8657 0.4900 0.7991 0.9411 

 

 
Fig. 3. Visual comparison of features from baseline (full-night) pulse oximetry 
and heart rate variability data with the target variable using (top) PCA and 
(bottom) t-SNE. 
  



structures within the data, revealing several distinct clusters. 
Although these clusters are not entirely class-pure, they exhibit 
localized concentrations of each class. This indicates that while 
intricate patterns exist, the boundary between the two classes is 
highly complex and intertwined. Collectively, these plots 
justify the selection of a powerful gradient boosting model 
capable of learning the complex decision boundaries suggested 
by the t-SNE manifold. 
A. Comparison of Different ML Algorithms 

Table III shows the comparison of different ML algorithms.  
The evaluation, conducted using nested cross-validation on the 
training set and validated on an independent test set, reveals that 
the tree-based ensemble methods—RF and XGBoost—yielded 
the most robust and accurate results. 

While both models performed strongly, XGBoost 
demonstrated a superior balance of metrics on the test set, 
achieving the highest Accuracy (0.8311), F1-score (0.8966), 
and a compelling AUC-PR of 0.9571. In contrast, other models 
exhibited critical weaknesses. SVM, despite a high recall, had 
a near-zero specificity (0.0161) and an AUC-ROC of 0.5, 
indicating a complete failure to learn a discriminative 
boundary. GNB showed poor performance across all metrics, 
while Logistic Regression and the MLP were competent but 
ultimately inferior to the ensemble methods. Fig. 4 shows the 
receiver operating characteristic curve and precision-recall 
curve using the XGBoost model on the baseline data.  
B. Comparison of Different Feature Sets 

Table IV shows the comparison of the performances of the 
XGBoost algorithm trained on different feature sets, data 
lengths, sampling frequency, and presence of noise. Analysis of 
the results in the table confirms the model's robustness and 
highlights several key findings. Performance is primarily 
driven by SpO2 features; the SpO2-only model                             
(Test AUC-PR: 0.9587) performed on par with the full-feature 

baseline (0.9571), whereas the HRV-only model's performance 
was substantially degraded (AUC-PR: 0.8895). Notably, the 
model also demonstrated high resilience to motion artifacts, as 
the configuration trained on data with motion artifacts 
maintained a strong performance (F1-score: 0.8974, AUC-PR: 
0.9539) comparable to the clean baseline. However, the model 
performance deteriorated markedly with additive white 
Gaussian noise and baseline wandering (F1-score: 0.8792, 
AUC-PR: 0.9053).  

Furthermore, the model maintained high efficacy with data 
segments.  A segment of 4 hours (F1-score: 0.8899, AUC-PR: 

0.9640) yielded results similar to the full 8-hour recording. 
Performance remained robust even with 1-hour segments (F1-
score: 0.8845, AUC-PR: 0.9469), with a more noticeable 

TABLE IV. COMPARISON OF MODEL PERFORMANCE WITH DIFFERENT DATASETS, LENGTH, AND SAMPLING FREQUENCY 

Algorithms 
Cross-Validated Training Set Test Set 

Accuracy Precision Recall/ 
Sensitivity F1-Score Specificity AUC-

ROC AUC-PR Accuracy Precision Recall/ 
Sensitivity F1-Score Specificity AUC-

ROC AUC-PR 

Baseline Data 8-H 
Segments 

0.8303 ± 
0.0188 

0.8823 ± 
0.0111 

0.9107 ± 
0.0200 

0.8962 ± 
0.0120 

0.4984 ± 
0.0532 

0.8392 ± 
0.0176 

0.9545 ± 
0.0060 0.8311 0.8847 0.9087 0.8966 0.5100 0.8417 0.9571 

SpO2 Features Only 
(1 Hz) 8-H Segments  

0.8311 ± 
0.0158 

0.8846 ± 
0.0085 

0.9088 ± 
0.0180 

0.8964 ± 
0.0102 

0.5104 ± 
0.0428 

0.8473 ± 
0.0192 

0.9570 ± 
0.0064 0.8131 0.8814 0.8874 0.8844 0.5060 0.8466 0.9587 

HRV Features Only 
8-H Segments 

0.7568 ± 
0.0225 

0.8500 ± 
0.0102 

0.8474 ± 
0.0243 

0.8486 ± 
0.0152 

0.3834 ± 
0.0442 

0.6850 ± 
0.0188 

0.8900 ± 
0.0124 0.7631 0.8519 0.8544 0.8531 0.3855 0.6988 0.8895 

4-H Data Segments 0.8326 ± 
0.0134 

0.8854 ± 
0.0098 

0.9100 ± 
0.0183 

0.8974 ± 
0.0089 

0.5136 ± 
0.0502 

0.8552 ± 
0.0144 

0.9607 ± 
0.0048 0.8210 0.8818 0.8981 0.8899 0.5020  0.8623 0.9640 

2-H Data Segments 0.8262 ± 
0.0103 

0.8782 ± 
0.0085 

0.9105 ± 
0.0130 

0.8939 ± 
0.0066 

0.4784 ± 
0.0470 

0.8303 ± 
0.0211 

0.9512 ± 
0.0079 0.8139 0.8701 0.9039 0.8867 0.4418 0.8330 0.9548 

1-H Data Segments 0.8207 ± 
0.0135 

0.8688 ± 
0.0070 

0.9154 ± 
0.0135 

0.8915 ± 
0.0085 

0.4304 ± 
0.0339 

0.8192 ± 
0.0177 

0.9480 ± 
0.0058 0.8088 0.8608 0.9094 0.8845 0.3936 0.8045 0.9469 

30-Min Data 
Segments 

0.8064 ± 
0.0122 

0.8628 ± 
0.0100 

0.9032 ± 
0.0149 

0.8824 ± 
0.0077 

0.4080 ± 
0.0519 

0.7896 ± 
0.0170 

0.9376 ± 
0.0052 0.8020 0.8628 0.8965 0.8793 0.4137 0.7897 0.9391 

SPO2 Features Only 
(0.5 Hz) 8-H 

Segments 

0.8217 ± 
0.0155 

0.8954 ± 
0.0109 

0.8816 ± 
0.0149 

0.8883 ± 
0.0099 

0.5745 ± 
0.0500 

0.8471 ± 
0.0238 

0.9571 ± 
0.0078 0.8256 0.9063 0.8738 0.8898 0.6265 0.8669 0.9644 

SPO2 Features Only 
(0.25 Hz) 8-H 

Segments 

0.8238 ± 
0.0169 

0.9082 ± 
0.0142 

0.8692 ± 
0.0109 

0.8882 ± 
0.0105 

0.6367 ± 
0.0608 

0.8756 ± 
0.0209 

0.9678 ± 
0.0061 0.8141 0.9098 0.8539 0.8810 0.6492 0.8778 0.9697 

Motion Artifacts 
Only 8-H Segments 

0.8249 ± 
0.0124 

0.8784 ± 
0.0094 

0.9122 ± 
0.0188 

0.8948 ± 
0.0083 

0.4347 ± 
0.0589 

0.8173 ± 
0.0285 

0.9510 ± 
0.0095 0.8291 0.8847 0.9105 0.8974 0.4562 0.8156 0.9539 

AGWN-BW 8-H 
Segments  

0.7911 ± 
0.0110 

0.8575 ± 
0.0070 

0.8935 ± 
0.0152 

0.8751 ± 
0.0070 

0.3267 ± 
0.0442 

0.7010 ± 
0.0395 

0.9050 ± 
0.0160 0.7970 0.8613 0.8979 0.8792 0.3286 0.7143 0.9053 

*Only XGBoost algorithm is used for this comparison 

 
Fig.4. Precision-Recall (PR) and Receiver Operating Characteristic (ROC) 
curves for the optimized XGBoost model.  



decline observed only when the data was reduced to 30-minute 
segments (F1-score: 0.8793, AUC-PR: 0.9391). This trend of 
graceful degradation indicates that while prolonged observation 
may not be essential, a minimum data duration is required for 
optimal ML performance.  

With respect to sampling frequency, downsampling the SpO₂ 
signal to 0.5 Hz and 0.25 Hz did not impair performance but 
instead yielded improvements in AUC-PR, with the 0.25 Hz 
configuration achieving the highest test AUC-PR (0.9697). 
These results demonstrate the feasibility of creating accurate, 
computationally efficient models from less granular data, a 
significant advantage for deployment on resource-constrained 
hardware.  
C. Model Explainability 

Our explainability analysis, combining a systematic 
ablation study with SHAP values (Fig. 5), provides a cohesive 
and robust understanding of the model's decision-making 
process. Both methods confirmed the dominant predictive 
power of features derived from the SpO₂ signal, followed by 
HRV and demographic features. The ablation study identified 
spo2_max_val as the single most critical feature, as its removal 
caused the most significant drop in F1-score. This quantitative 
finding is visually complemented by the SHAP analysis, which 
highlights measures of signal complexity—specifically 
Shannon (spo2_ShanEn), Fuzzy (spo2_FuzzyEn), and 
Permutation (spo2_PermEn) entropy—as highly influential. 

The plot reveals clinically intuitive relationships: high 
feature values for these entropies, indicating greater signal 
irregularity, strongly push the prediction towards an 'Apnea' 
classification (positive SHAP values). Similarly, a greater 
duration of desaturation (spo2_time_below_80) and a lower 
median SpO₂ value (spo2_median) are also powerful predictors 
of apnea. While demographic and HRV features like age and 
hrv_freq_HF contribute to the model, their overall impact is 
secondary. This explainability analysis provides transparent 
insight into the model's decision-making process, verifying its 
reliance on physiologically relevant markers.  

IV. CONCLUSION AND FUTURE WORK 
 In this paper, we compared the performance of various ML 
models in detecting obstructive sleep apnea and hypopnea 

syndrome (OSAHS). Our findings demonstrate that among the 
evaluated algorithms, tree-based ensemble methods, and 
specifically the XGBoost model, delivered the most robust and 
superior performance. The XGBoost classifier achieved a high 
F1-score on the cross-validated training set and on the 
independent test set, confirming its strong generalization 
capabilities. A key contribution of this work was the systematic 
evaluation of model performance under simulated real-world 
constraints. The analysis revealed that the model's predictive 
power is primarily driven by features derived from the SpO2 
signal, with the SpO2-only model performing nearly as well as 
the full-feature model. Furthermore, the model maintained high 
efficacy with reduced recording durations, indicating that data 
from the entire night's sleep is not essential and that an optimal 
recording window may exist for feature creation. Perhaps most 
significantly, we discovered that downsampling the SpO₂ signal 
to as low as 0.25 Hz did not degrade but, in fact, improved 
certain performance metrics, such as the AUC-PR. Model 
explainability analysis using ablation study and SHAP further 
enhanced the clinical interpretation by confirming that 
predictions were driven by physiologically relevant markers of 
sleep apnea, such as SpO2 entropy and desaturation metrics. 
Collectively, these results highlight the significant potential of 
leveraging machine learning with signals obtainable from 
consumer-grade wearable devices for developing scalable, 
reliable, and accessible screening tools for OSAHS.   
 Our work, while demonstrating the strong potential of ML 
models for OSAHS detection, has several limitations that pave 
the way for future research. Firstly, although we simulated real-
world conditions by manipulating data length, signal fidelity, 
and noise, the models were developed and validated using high-
quality, lab-based PSG data. The performance of these models 
on data collected from personal, consumer-grade devices in an 
uncontrolled home environment remains to be seen. Real-world 
data is often corrupted by motion artifacts, poor sensor contact, 
and other forms of noise. Although we evaluated the model 
performance with the presence of artifacts and noise, a real-
world scenario might not be fully represented in our simulations. 
Furthermore, our current approach relies on a computationally 
intensive feature extraction pipeline, calculating 41 distinct 
features. This process may not be feasible for real-time 
applications on resource-constrained wearable devices, which 
have limited processing power and battery life.  
 Secondly, this study was confined to the evaluation of 
traditional ML algorithms. While XGBoost performed 
exceptionally well, deep learning architectures such as 
Convolutional Neural Networks (CNNs), Long Short-Term 
Memory networks (LSTMs), or Transformers might offer 
superior performance. These models are adept at automatically 
learning relevant features and temporal dependencies directly 
from raw or minimally processed time-series signals. Future 
work will focus on developing and benchmarking such deep 
learning models against our current results. This approach could 
potentially bypass the computationally expensive feature 
engineering step and may prove more robust in handling the 
noisy, complex patterns inherent in real-world sensor data.  
 Finally, our dataset had limitations in its demographic 
representation. While we included age, sex, and BMI as features, 
we were unable to incorporate race and ethnicity due to 
significant missingness and inconsistent reporting standards 

 
Fig. 5. SHAP Summary plot for the OSAHS Detection Model. 
  



between the SHHS and CFS cohorts. Given that OSAHS 
prevalence and physiological manifestations can vary across 
different ethnic groups, the absence of this data limits our ability 
to assess the model's fairness and generalizability across a 
diverse population. Future studies should prioritize using or 
collecting datasets with complete and consistently reported 
demographic information. This will be critical not only for 
potentially improving model accuracy but also for ensuring that 
these diagnostic tools are equitable and effective for all 
segments of the population. Addressing these limitations will be 
a crucial next step in translating this research into a clinically 
validated and widely applicable screening technology. 
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