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ABSTRACT

Deep low-level networks are successful in laboratory benchmarks, but still suffer
from severe generalization problems in real-world applications, especially for the
deraining task. An “acknowledgement” of deep learning drives us to use the train-
ing data with higher complexity, expecting the network to learn richer knowledge
to overcome generalization problems. Through extensive systematic experiments,
we show that this approach fails to improve their generalization ability but instead
makes the networks overfit to degradations even more. Our experiments establish
that it is capable of training a deraining network with better generalization by re-
ducing the training data complexity. Because the networks are slacking off during
training, i.e. learn the less complex element in the image content and degradation
to reduce the training loss. When the background image is less complex than the
rain streak, the network will focus on the reconstruction of the background with-
out overfitting the rain patterns, thus achieving a good generalization effect. Our
research demonstrates excellent application potential and provides an indispens-
able perspective and research methodology for understanding the generalization
problem of low-level vision.

1 INTRODUCTION

The whirlwind of progress in deep learning has produced a steady stream of promising low-level
vision networks, which significantly outperform traditional methods in existing benchmark datasets.
However, the intrinsic overfitting issue has prevented these deep models from real-world applica-
tions, especially when the degradation differs a lot from the training data. We call this dilemma the
generalization problem. Although important, this problem is not well studied in low-level vision
literature. We need more in-depth analysis and understanding, before proposing effective solutions.

Understanding generalization in low-level vision is by no means easy. It is not a naive extension of
the generalization research in high-level vision. We need dedicated analysis tools to interpret new
phenomena. In this paper, we hope to build a stepping stone towards a more in-depth understanding
of this problem. To achieve this goal, we select a representative low-level vision task as the break-
through point, and design quantitative analysis methods for several controlling factors. The heart of
our methodology is stated as follows.

Select deraining as the representative task. Low-level vision includes many tasks, such as im-
age denoising and super-resolution, which have different characteristics. A general understanding of
generalization across all low-level vision tasks cannot be built in a day. Thus, we choose the image
deraining task as a representative. Image deraining aims to remove the undesired rain streaks in an
image. There are two considerations for selecting the deraining task. First, as a typical decomposi-
tion problem, image deraining has a relatively simple degradation model (a linear superimposition
model). This will facilitate our research and enable the usage of many quantitative measurements.
Second, the deraining task suffers from a severe generalization problem. Existing deraining models
tend to do nothing for the rain streaks that are beyond their training distribution. See Figure 1 for an
example. This phenomenon is very intuitive and easy to quantify.

Analyze from the perspective of training data. We argue that the generalization problem is due
to the network overfitting the degradation (the rain patterns in the deraining task). The main reason
for this result is the inappropriate training objective. We start our analysis with the most basic and
indispensable factor in constructing the training objective – training data. There has been a lot of
works trying to improve real-world performance by improving the complexity of training data. This
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(a) Input Rainy Image (b) Baseline Model (c) Baseline Model, w/ More 
Background Training Data

(d) Baseline Model, w/ More 
Rain Data

(e) Reducing Training data 
According to our Conclusion

Figure 1: The existing deraining models suffer from severe generalization problems. After training
with synthetic rainy images, when feeding (a) an image with different rain streaks, its output (b)
shows limited effect. Two intuitive ways to improve generalization performance – (c) adding back-
ground images, and (d) adding rain patterns, cannot effectively relieve the generalization issue. In
this paper, we provide a new counter-intuitive insight – (e) we improve the generalization ability of
the deraining networks by selecting much less training background images for training, not more.

comes from a natural but unproven “acknowledgment” in low-level vision that more training data can
solve the generalization problem. This acknowledgment also influences the deraining committee:
when the network sees more (both background images and rain streaks), it can generalize better to
more real-world scenarios. However, the generalization problem of deraining is NOT solved in this
way. These methods still do not work on rain patterns that have not yet been collected. We argue that
because too much background data is provided for training, the model cannot learn to reconstruct the
image content and can only overfit to the degradation. Therefore, we propose to reduce the number
of training background images in our study, rather than increase it further.

Our analysis methods. To systematically study the changes in model behavior brought about by
changing training objectives, we construct a number of training sets consisting of different back-
ground images. We first investigate the effect on the number of training set images by overfitting
the model on very few (16 even 8) images. By switching between different image categories, we
study the network behaviour when fitting images of different complexity levels. We study the rela-
tionship between the complexity of the background image set and the generalization performance of
deraining through extensive quantitative experiments.

Except for constructing training objectives, we also perform a fine-grained analysis of the model
outputs. Previous works simply use the overall image quality as the performance indicator, such as
PSNR. However, the reason for the quality deterioration may be either the unsuccessful removal of
rain streaks or the poor reconstruction of the image background. Thus we decouple the deraining
task as rain removal and background reconstruction, which are studied separately. Since the gener-
alization problem in the deraining task is mainly related to the removal of rain streaks, fine-grained
analysis can exclude the influence of other factors.

Our key findings. We find that deep networks are slacking off during training. They take shortcuts
in reducing the loss, resulting in poor generalization performance. This is due to the inappropriate
objective we set for training. Our key finding can be summarized as:

Between the image content and the additive degradation, deep networks tend to learn the less
complex element in the separation task.

Specifically, in the common training data with high background complexity and low rain complexity,
the network will naturally learn to identify and separate rain streaks, because they are less complex
and easier to learn. But when the real situation deviates from its depiction of rain, the network tends
to ignore them and gets poor generalization performance. On the contrary, when we train the model
on a less complex background image set, it exhibits better generalization ability, see Figure 1 (e).
The reason is that when the complexity of the training image background is smaller than that of
the rain patterns, the network will also take a shortcut to reduce the loss, i.e., remember the recon-
struction of the background instead of overfitting to the rain streaks. Except for the removal of rain,
the performance of the model is also determined by the background reconstruction. Reducing the
background complexity of the training data could inevitably produce unsatisfactory reconstruction
results. However, our results show that the model trained on only 256 images can already handle
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most of the image components. These counter-intuitive phenomena have never been studied and
valued in the literature.
Implication. Given the current literature, our results are interesting and inspiring. Our results
demonstrate the importance of the training objective in determining the generalization ability. An
inappropriate and incomplete training objective provides an opportunity for deep networks to “slack
off”. Although we hope that the network can learn the rich semantics in natural images, it is of-
ten overlooked that the low-level vision system can achieve learning goals through some shortcuts.
While these shortcuts lead to poor generalization performance of the model. Our results also illus-
trate that a model with good generalization ability should learn the distribution of the natural images
themselves, rather than overfit the degradation. By simply exploiting our findings, we can make the
simplest networks exhibit excellent generalization capabilities. This shows that our findings have
great potential for application.

1.1 RELATED WORKS

This work is first related to dereaining research. But we do not propose new network structures,
loss functions, or datasets like most existing deraining works. Our work is aimed at the analysis and
understanding of the generalization problem in the deraining task. Due to the limited space, the de-
raining works are reviewed in Appendix A.1. We next review previous works about interpretability
and understanding of generalization in low-level vision.

Deep learning interpretability research aims to understand the mechanism of deep learning methods
and to obtain clues about the success or failure of these methods. Without a deep understanding
of these working mechanisms, we are not convinced to move forward in the right direction. The
research on deep learning interpretability follows a long line of works, most of them focusing on
the classification task Simonyan et al. (2013); Springenberg et al. (2014); Shrikumar et al. (2017);
Sundararajan et al. (2017); Zhou et al. (2018); Lundberg & Lee (2017). Most low-level vision tasks
have also embraced great success with powerful deep learning techniques. There are also works
on interpretability for these deep low-level networks Gu & Dong (2021); Xie et al. (2021); Magid
et al. (2022). For the generalization problem in low-level vision, these problems often arise when
the testing degradation model does not match the degradation used in training, e.g., different down-
sampling kernel Gu et al. (2019); Liu et al. (2022a); Kong et al. (2022) and noise distribution Guo
et al. (2019). The existing works either develop blind restoration methods to include more degrada-
tion possibilities in the training process or make the training data closer to real-world applications.
Only a little work has been proposed to study the reasons for this lack of generalization performance
Liu et al. (2021; 2022b). More details of these previous works can also be found in Appendix. No
research has attempted to investigate the interpretation of the training process of low-level vision
networks, especially from the perspective of the generalization problem. Our work fills this gap.

2 ANALYSIS METHOD

Our goal is to explore how different training objectives affect the network behavior and general-
ization performance. Before introducing our observations, we need to describe the experimental
designs and quantitative analytical methods in this section.

2.1 CONSTRUCTION OF TRAINING OBJECTIVE

The training objective of a deep network is jointly determined by the training data and the loss
function. We set a variety of training objectives in order to observe the changes in the generalization
performance of different deraining models. As shown in Figure 3 (left), a rainy image O can be
roughly modeled using a linear model O = B +R, where B is the image background, and R is the
additive rain streaks. We will change the training objectives with different background images and
rain streaks.
Background Images. Typically, image backgrounds are sampled from street view images Geiger
et al. (2012) or natural image datasets Schaefer & Stich (2003); Arbelaez et al. (2010), as these
images are close to the application scenarios of deraining. In the literature, the previous works
Fu et al. (2017b); Zhang & Patel (2018) claim that the model can learn the prior knowledge of
reconstructing these scenes by training on a large number of such background images. We break
this common sense by constructing different training background image sets from the following two
aspects.

For the first aspect, we change the number of background images. We argue that as too much
background data are provided for training, the model cannot faithfully learn to reconstruct the image
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Figure 2: (a) Background images from different image datasets. It can be seen that the structure of
the face image (CelebA) is relatively complex. Natural image patches (DIV2K) contain natural tex-
tures and patterns. The patterns in Manga109 and Urban100 are artificially created – Manga images
have sharp edges, while Urban images contains a lot of repeating patterns and self-similarities. (b)
Rain streaks used our experiments.

content but overfit the degradation patterns. To demonstrate this comment, we reduce the complexity
of the background images to see how the network behavior changes in extreme scenarios. In our
experiments, we use 8, 16, 32, 64, 128, 256, 512, and 1024 background image patches of size
128× 128 to build the training datasets, respectively. We also use a large number of patches (up to
30,000) to simulate the common situation when the image background is sufficiently sampled.

In addition to the number of images, the image content will also affect the learning procedure. For
images with many self-similar or regular patterns, it is easier for the network to remember and
extract semantic features. While a face image that contains both short- and long-term dependent
structures is apparently more complex than a skyscraper that consists of just repeated lines and grids
Bagrov et al. (2020). We carefully choose the image distribution as the second aspect of our dataset
construction. We sample from four image datasets that are distinct from each other: CelebA (face
images) Liu et al. (2015), DIV2K (natural images) Timofte et al. (2017), Manga109 (comic images)
Matsui et al. (2017), and Uerban100 (building image) Huang et al. (2015). Some examples of these
images are shown in Figure 2 (a).

Table 1: Different rain streaks synthesis ranges.
Range Quantity Width Length Direction
Small [200, 300] {5} [30, 31] [−5◦, 5◦]

Medium [200, 300] {5,7,9} [20, 40] [−30◦, 30◦]
Large [200, 300] {1,3,5,7,9} [5, 60] [−70◦, 70◦]

Rain streaks synthesis. Since it is hard to
collect a large number of real-world rainy/clean
image pairs, we follow the previous deraining
works Garg & Nayar (2006); Fu et al. (2017b)
to synthesize rainy images for research. We use
two different kinds of rain streaks for training and testing, separately. For training, we use the com-
putational model 1 to render the streaks left on the image by raindrops of varying sizes, densities,
falling speeds, and directions. This model allows us to sample rain streaks from different distribu-
tions. We adopt three rain image ranges for training, where different ranges may lead to different
generalization effects, see Figure 2 (b) for a convenient visualization and Table 1 for the detailed
set-up. For testing, we use the synthetic rain patterns presented by Yang et al. (2017). Although
in both cases the rain streaks are simulated and visually similar to humans, they still pose a huge
generalization challenge to existing deep models.

Loss Function. In low-level vision, the loss function is usually defined by the difference between
the output image and the ground truth. In our study, we use the l1-norm loss to simplify the problem.
In this setting, our conclusions do not lose generality and can be extended to other similarity-based
training loss functions.

2.2 FINE-GRAINED ANALYSIS.

Generally, the evaluation of a deraining model is to compute similarity metrics (e.g., PSNR) be-
tween the output and ground truth images Gu et al. (2020). However, such an evaluation on the
whole image may lead to unfair comparison. For example, an image with perfect background recon-

1The reimplementation of the PhotoShop rain streaks synthesis method. Please refer to https://www.
photoshopessentials.com/photo-effects/photoshop-weather-effects-rain/.
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Figure 3: (Left) The illustration of the rainy image synthesis. (Right) Our fine-grained analysis of
the deraining results.

struction but inferior rain removal may have a higher PSNR value than that with perfect rain removal
but inferior background reconstruction (e.g., color shift). Such quantitative results would introduce
systematic errors in our study.

We discuss the removal of rain streaks separately from the reconstruction of the background regions.
Generalization performance of a deraining model is mainly shown in the form of removing unseen
rain. The reconstruction of the background may affect the visual effect but is irrelevant to the
removal of rain marks. Pixels in R without rain streaks should be black, while rain streaks will
appear brighter, as shown in Figure 2 (b). After synthesis, these black areas reflect the background
area, while the brighter areas indicate the rainy regions. A perfect rain removal effect should do
minimal damage to the background area and remove the additive signal from the rain streaks area.
By processing the R to a binary mask M using a threshold t, where M[i,j] = 0 if R[i,j] ≤ t and
M[i,j] = 1 if R[i,j] > t, we can segment the output image Õ into the rain streaks part Õ ⊙M and
the background part Õ ⊙ (1−M). We then have two performance numbers:

• Rain Removal Performance: ER =
√
E[(Õ ⊙M −O ⊙M)2] gives the effect of rain re-

moval. A network with poor generalization will not remove rain streaks and make minimal
changes to the image. This term measures the changes made by the network in the rainy
regions. A higher value reflects better rain removal performance.

• Background Reconstruction: EB =
√
E[(Õ ⊙ (1−M)−B ⊙ (1−M))2] gives the ef-

fect of background reconstruction by comparing the background regions to the ground
truth. A high error in this term means poor overall reconstruction quality.

2.3 DEEP MODELS

We summarize existing networks into three main categories. The first category is a network com-
posed of convolutional layers and deep residual connections, and we use the ResNet Ledig et al.
(2017) as a representative. The second category is the network with an encoder-decoder design, and
we use UNet Ronneberger et al. (2015) as a representative. Compared with ResNet, UNet introduces
down-sampling and up-sampling layers to extract global and multi-scale features, which have been
proven successful in many deraining networks. The last category is image processing Transformer.
Transformer Shi et al. (2022); Chen et al. (2021) is a new network structure characterized by self-
attention operations. We include SwinIR Liang et al. (2021) as a representative Transformer in our
study. For the training settings of these models, please check Appendix E.2.

3 UNDERSTANDING GENERALIZATION

In this section, we conduct experiments based on the above analysis methods. Our analysis consists
of two aspects – the rain removal effect and the effect of background reconstruction.

3.1 GENERALIZATION ON RAIN REMOVAL

We analyze the rain removal effect on unseen rain streaks. Notably, as we use different kinds of rain
streaks for training and testing, the results in this section all represent generalization performance.
After comprehensive experiments, we obtain the following interesting observations.

Training with fewer background images leads to better deraining performance. First, we fix
the range of rain streaks to medium level and then replace the background images to build different
training objectives. We conduct experiments on all four categories of images. For each category,
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Figure 4: The relationship between the number of training patches and their rain removal perfor-
mance. For each plot, the x-axis represents the patch number, and the y-axis represents the quanti-
tative rain removal effect ER. Higher values on the y-axis mean better rain removal. The test rain
patterns are not in the training set. The effect of rain removal at this time reflects the generalization
performance. The qualitative results are obtained using ResNet.
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Figure 5: When trained with different rain ranges, the model exhibits different rain removal effects.
The y-axis represents the quantitative rain removal effect. When the rain removal performance is
lowered to the blue dashed line, the qualitative effect of removing rain starts to decrease significantly.
We mark these cases and their corresponding effects with colors. We use ResNet in this experiment.

we use the training set with different amounts of image patches. We test the rain removal effect
of these models. The testing images adopt rain streaks as in Yang et al. (2017). Their background
images are sampled from each category and are different from the training set. The experimental
results are shown in Figure 4. It can be seen that these experimental results speak to the same trend,
despite different background images and networks. Specifically, the deraining models trained on
eight image patches can surprisingly handle unseen rain streaks. On the contrary, models trained
with a large number of background images cannot remove these rain streaks. This is no longer in
line with our common sense. Between these two extreme states, the rain removal effect is getting
worse with the increase in the number of training images. When the patch number increases to
256, the networks have already lost most of their rain removal ability. While the number of patches
increased from 1024 to 30k, the rain removal effects do not change significantly (they all fail to
remove rain). This can also be observed from the qualitative results.

We present our explanation of this interesting phenomenon. Although we describe the training
objective as removing rain streaks from images, there are two strategies for the network to reduce
the training loss. One is to recognize and remove rain streaks, and the other is to recognize and
reconstruct the image background. If we do not specify the learning strategy, the network will
choose the simpler one of these two strategies. When a large number of background patches are used
in training, learning to reconstruct backgrounds is much more complicated than learning to remove
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Figure 7: The relationship between the number of training patches and their background reconstruc-
tion effect. For each plot, the x-axis represents the patch number, and the y-axis represents the
reconstruction error of the background.
rain. Then the network chooses to recognize rain and remove it. This will result in an overfitting
problem: when new rain streaks deviate from the training ones, the network fails to recognize and
remove them. On the contrary, when the background image consists of only a few image patches,
learning the background is easier than learning rain streaks. The network will recognize image
components in the background, and ignore the features of rain streaks. Thus, the model shows better
rain removal effects in images with unseen rain streaks.

The relative complexity between the background and rain determines the network behavior.
To verify the above conjecture, we change the range of the rain streaks used in training according
to Section 2.1. When using the medium rain range, the rain removal effect weakens when training
using 64 background patches. According to our explanation, a larger rain streak range makes it
harder for the network to learn the rain pattern. Therefore, the rain removal effect will not be
weakened until more background patches are used for training. The results of this experiment are
shown in Figure 5. As can be seen, in all three training rain ranges, the rain removal effects decrease
as the number of background patches increases. When there are enough background images for
training (30k patches), even the large rain range of training rain cannot make the final model achieve
sufficient rain removal performance, indicating that the large rain range does not cover our testing
cases. When training with a large rain range, the network shows a significant drop in rain removal
performance until it is trained with more than 512 background patches. The model trained on a
small rain range cannot show a good rain removal effect even when there are only 16 background
training image patches. These results indicate that the network behaviors are affected by the relative
relationship between the background image and rain streaks. The complexity or learning difficulty
of the medium range rain is approximately less than 64 training patches, while the complexity of the
large range rain is approximately less than 512 training background patches. The network will slack
off, and “select” the easier way to learn in different situations.

A more complex background set makes it harder for the network to learn. We next change the
category of the background images used for training and observe the models’ behavior. To compare
across different image categories, we normalize the deraining effect to [0, 1]. The results are shown
in Figure 6 (a). The most intuitive conclusion is that even with the same number of training patches,
different image categories can lead to different rain removal effects. For CelebA images, when
the patch number increases from 8 to 16, its deraining performance begins to drop sharply. For
the natural image patches, increasing the patch number to 16 does not cause such a rain removal
performance drop. In contrast, for image patches from Manga109 and Urban100, the rain removal
performance does not drop significantly until the patch number is larger than 32. According to our
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(a) Input Rainy Image (b) SPDNet (c) RCDNet (d) ResNet (10k patches, Large Rain)

(e) RCDNet (Large Rain) (f) RCDNet (64 patches) (g) RCDNet (128 patches, Large Rain) (h) Ground Truth

Figure 8: Visualization of the deraining results on a synthetic image. Zoom in for better comparison.

Training Objective ResNet SPDNet Yi et al. (2021) RCDNet Wang et al. (2020c)
Back. Range ER ↑ EB ↓ PSNR ↑ ER ↑ EB ↓ PSNR ↑ ER ↑ EB ↓ PSNR ↑
30k Medium 31.24 10.79 25.15 33.63 5.49 30.51 26.55 5.41 28.54

64 Medium 53.33 25.02 20.87 – – – 45.47 14.78 25.32
512 Large – – – 39.88 8.91 28.57 37.53 7.16 29.60
256 Large 45.64 16.51 24.30 38.87 8.03 29.40 40.40 8.52 29.08
128 Large 51.75 23.53 21.45 43.20 14.59 25.67 44.67 13.72 26.09

Table 2: Quantitative
comparisons between
different models. ↑
means the higher the
better while ↓ means
the lower the better.

explanation, as the number of training patches increases, the more complex image categories will
make the models suffer from performance drop earlier. Our results suggest that the complexity of
these four image categories can be in decent order as CelebA, DIV2K, Manga109 and Urban100.

This roughly matches our human perception. Face images have strong global and local structures.
DIV2K images are rich in texture but have a simple global structure. Manga images lack complex
textures but often contain text and complex edges. Urban images consist of repetitive stripes and
grids. We then verify our conclusion with a system complexity calculated by a mathematical model.
Bagrov et al. (2020) propose a computational method to estimate the structural complexity of natural
patterns including natural images. We calculate the multi-scale structure complexity for these four
image categories, and the results exhibit the same order, see Figure 6 (b). This provides mathematical
evidence for our argument.

3.2 RECONSTRUCTION ON BACKGROUND

The above results show that the deraining ability can be improved by reducing the background image
used for training. But training with only limited background images is not at zero cost. Reducing
the training images prevents the network from overfitting the rain patterns, but causes the network
to overfit the limited background images. We also conduct experiments on this issue.

With the decoupled evaluation metrics EB described in Section 2.2, we can measure the reconstruc-
tion of the background independently. The results are shown in Figure 7. With the increase of train-
ing images, the reconstruction of the background becomes better. It can be seen that training with
256 background patches can already bring a good background reconstruction effect. Continuing to
add training images does not further improve the performance of background reconstruction. This
conclusion is surprising, as this goes against our intuition that training the low-level vision model
requires a lot of images. Our research shows that training with a large number of background im-
ages does not lead to a large gain in reconstruction performance, but instead exacerbates the model’s
overfitting to rain streaks. Another surprising finding is that the model trained with only 256 images
can already handle most of the image components. This may indicate that image components and
features are not as complex as we usually thought for a low-level vision network.

4 IMPLICATION

Improve the existing deraining models. Although this paper does not directly propose any al-
gorithms, our conclusions can shed light on improving the removal of unknown rain streaks by
existing models. Our experiments have three important practical findings: (1) Reducing the number
of background images can make the network focus on learning image content instead of overfitting
rain streaks. (2) Expanding the range of rain streaks allows us to use more background images for
training. (3) A few background images can already achieve good reconstruction performance. These
findings can be directly used to improve the generalization ability of existing models with minimal
changes. Our strategy is simple: find a balance between background images and rain range to avoid
overfitting to rain streaks.
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(a) Input (b) RCDNet (c) SPDNet (d) Syn2Real-Syn (e) Syn2Real-Real (f) RCDNet, Trained w/ 256

Figure 9: Qualitative results on real-world test images. Zoom in for better comparison.
Some quantitative results are presented in Table 2. We use three deraining models as baselines
(ResNet, SPDNet Yi et al. (2021), RCDNet Wang et al. (2020c)) and demonstrate the power of the
proposed simple strategy. We use 30K background images and the medium range rain to train our
baseline models. The test set is the R100 dataset Yang et al. (2017). We quantify the deraining effect
and the background reconstruction effect according to the decouple evaluation metrics ER and EB .
We also test PSNR as a reference. It can be seen that using the existing training methods cannot
generalize well to the unseen rain of R100, which is shown by the poor deraining performance in
Table 2. However, due to the learning on a large number of images, the reconstruction errors of the
baseline models are generally low. Thus the PSNR values cannot objectively reflect the rain removal
effect. We reduce the training background images to 64, which is the upper limit of the image
number that can make the model generalize under medium range rain. At this time, the rain removal
performance has greatly improved, but at the cost of background reconstruction performance. By
enlarging the rain range and training with more background images, we are able to achieve a trade-
off between rain removal performance and background reconstruction.

Figure 8 shows a qualitative comparison of these models under different training objectives. It can
be seen that even with the advanced network structure design, the rain removal effects of the baseline
models of SPDNet and RCDNet are not satisfactory. Using a larger range of rain can bring limited
improvements. In the case of medium range rain, reducing the background image to 64 significantly
improved the rain removal effect and resulted in unstable image reconstruction. When the rain
range is enlarged, and the training background is set to 128 patches, the model can show excellent
performance in rain removal and background reconstruction. Note that we do not use additional data
or improve the network structure throughout the process. We only adjust the training data.

We also present the comparison on real images in Figure 9. In addition, semi-supervised methods
Wei et al. (2019a); Huang et al. (2021) have also been used to improve the deraining effect on
real images, and we also include the representative method Syn2Real Yasarla et al. (2020; 2021).
Syn2Real-Syn is trained on synthetic data, and Syn2Real-Real is trained on synthetic labeled data
and real unlabeled data. Due to the difference in the distribution of rain streaks, the models trained
using synthetic data can not generate satisfactory rain removal effects. When obtaining some real
images, Syn2Real-Real can indeed achieve some improvement. However, these improvements are
not brought about by improving the generalization ability. Because these methods manage to convert
“rain outside the training set” to “rain inside the training set”. Since data collection is extremely
difficult, this method still faces great challenges in practice. Our method improves generalization
performance and achieves better results on test images.

5 CONCLUSION AND INSIGHTS

In this work, we study the generalization problem of deraining networks. Although we take image
deraining as a representative, our key conclusions can provide insights for low-level vision. We
argue that the generalization problem in low-level vision cannot be attributed to insufficient net-
work capacity or training data. Instead, we find that existing training strategies do not encourage
generalization. The networks only learn to overfit the degradations, and thus can hardly generalize
well to unseen degradations. A feasible solution is to guide the network to learn image distributions
instead of degradations. But this also poses challenges when the image distributions are complex.
Furthermore, due to the lack of effective interpretability tools, we cannot explore what the low-level
model learns and answer why it learns in this way. This gap between ideal and reality prompts us to
rethink the importance of low-level network interpretability, and this work provides an indispensable
perspective on this. These insights also need to be verified in other low-level vision tasks.
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APPENDIX

A OTHER RELATED WORK

A.1 IMAGE DERAINING

Many methods have been proposed to develop state-of-the-art deraining networks. These works
include deep networks designs Fu et al. (2017a); Wang et al. (2019a), residual networks Fu et al.
(2017b); Liu et al. (2019), recurrent networks Ren et al. (2019); Yang & Lu (2019); Yang et al.
(2019), multi-task Wang et al. (2019c); Du et al. (2020) and multi-scale designs Jiang et al. (2020);
Fu et al. (2019); Yasarla & Patel (2019); Yu et al. (2019); Wei et al. (2019b); Wang et al. (2020b);
Zamir et al. (2021), sparsity-based image modeling Gu et al. (2017); Zhu et al. (2017), low-rank
prior Chang et al. (2017), model-driven solutions Wang et al. (2020c;d), attention mechanism Wang
et al. (2020a); Chen et al. (2021); Fu et al. (2021), adversarial learning Li et al. (2019), representation
learning Chen & Li (2021), semi-supervised Yasarla et al. (2020) and unsupervised learning Chen
et al. (2022). Deep learning methods are data-hungry but collecting rain streaks and background
image pairs are challenging. A lot of works have been proposed to synthesize rain streaks with better
results. Garg & Nayar (2006) first propose a physically-based photo-realistic rendering method for
synthesizing rain streaks. Zhang & Patel (2018) and Fu et al. (2017a) use Photoshop software to
manually add rain effects to images to build the synthetic paired data. Due to the poor generalization
performance of existing methods, models trained on synthetic images were found to be ineffective
in real-world scenarios. Some works Yang et al. (2017); Zhang et al. (2019); Wang et al. (2019b)
that have contributed to real collected deraining datasets. However, acquiring these datasets is still
expensive and cannot solve the problem of poor generalization. There are also works that mentioned
the generalization issue of the deraining models. Xiao et al. (2021) and Zhou et al. (2021) attempt to
improve the generalization ability of deraining networks by accumulating knowledge from multiple
synthetic rain datasets, as most existing methods can only learn the mapping on a single dataset for
the deraining task. But this attempt does not allow the network to generalize beyond the training set.

In addition, semi-supervised methods Wei et al. (2019a); Huang et al. (2021) have also been used to
improve the deraining effect on real images, and we also include the representative method Syn2Real
Yasarla et al. (2020; 2021). There are some semi-supervised deraining methods Wei et al. (2019a);
Huang et al. (2021); Yasarla et al. (2020; 2021) are proposed to improve the performance of derain-
ing models in real-world scenarios. When obtaining some real images similar to the test images,
these works can indeed achieve some improvement. However, these improvements are not brought
about by improving the generalization ability. Their solution is to include real test images in the
training set, even if we don’t have corresponding clean images. These methods are effective when
we can determine the characteristics of the test image. But this does not solve the generalization
problem. Because these methods manage to convert “rain outside the training set” to “rain inside
the training set”. Since data collection is extremely difficult, this method still faces great challenges
in practice.

A.2 LOW-LEVEL VISION INTERPRETABILITY

We provide a detailed review of existing work on low-level visual interpretability. Gu & Dong
(2021) bring the first interpretability tool for super-resolution networks. Xie et al. (2021) find the
most discriminative filters for each specific degradation in a blind SR network, whose weights,
positions, and connections are important for the specific function in blind SR. Magid et al. (2022)
use a texture classifier to assign patches with semantic labels, in order to identify global and local
sources of SR errors. Shi et al. (2022) show that Transformers can directly utilize multi-frame
information from unaligned frames, and alignment methods are sometimes harmful to Transformers
in video super-resolution. They use a lot of interpretability analysis methods in their work. The
closest work to this paper is the deep degradation representation proposed by Liu et al. (2021). They
argue that SR networks tend to overfit to degradations and show degradation “semantics” inside the
network. The presence of these representations often means a decrease in generalization ability. The
utilization of this knowledge can guide us to analyze and evaluate the generalization performance of
SR methods Liu et al. (2022b).

B TRANSFERABILITY OF LIMITED TRAINING PATCHES

At the end of the main text, we propose a method to improve the generalization performance of
the deraining network by reducing the number of training background image patches. However,
this method will overfit the image content when the number of training background patches is very
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Figure 10: The relationship between the number of training patches and their rain removal or back-
ground reconstruction performance. The test image set for these six plots is the DIV2K set. We train
the model with all four image categories to validate the performance when the image distribution
mismatch. For background reconstruction EB , lower values on the y-axis mean better background
reconstruction. For rain removal effect ER, higher values on the y-axis mean better rain removal.
The test rain patterns are not in the training set. The effect of rain removal at this time reflects the
generalization performance.

small. In Section 3.2, we investigate the risk of reducing the number of training patches when testing
on the same image category. Recall that with the increase of training images, the reconstruction of
the background becomes better. Training with 256 background patches can already bring a good
background reconstruction effect. Continuing to add training images does not further improve the
performance of background reconstruction.

In this section, we investigate whether the proposed scheme is still robust when the training and
testing patch distributions are significantly different. We train the model on four image categories
and then test it using the DIV2K image category. This simulates the situation when the background
image distribution differs from the test set. We observe the behavior of models trained with different
numbers of patches. The results are shown in Figure 10. We can draw the following conclusions.
First of all, even if the distribution of training background images is very different, the model trained
using the images of CelebA and Urban categories can still perform similarly to the model trained by
DIV2K patches. These models can reconstruct background images well when training patches reach
128 or more. At this time, the difference in the distribution of these training sets and DIV2K does
not bring significant differences. The rain removal effect of these models is also similar. Second, we
found that the model trained with Manga image patches differed from others. The model trained with
manga image patches is generally worse at background reconstruction than other models. Even when
the number of patches is large, the model trained on manga cannot achieve similar performance to
other models. For rain removal, the model trained with manga also performs the worst. This result
is in line with expectations because manga images are significantly different from other images,
especially in the underlying image components. Although the other three types of images differ
greatly in image structure, texture type and other characteristics, they all belong to the category
of natural images. Whereas Manga images contain artificial textures and edges, which are quite
different from other images.

There is a large image reconstruction error when training with images whose distribution is very
different from that of the test set images. This is reasonable to some extent, because in this case,
even using a large number of training images cannot bridge the error caused by this distribution
mismatch. And we are pleased that the method of training using limited background images is
robust to image content to a considerable extent, as long as the training images are natural images.
This is consistent with our practice. In the process of actually using our method, we also found that
as long as more than 256 image patches are used for training, the results are stable. There is no
significant performance change due to the content of the selected training patches.
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Figure 11: Visualization of the deraining results. Zoom in for better comparison.

C MORE RESULTS

We provide more results of different deraining models in Figure 11 and Figure 12. Note that we did
not use additional data nor improve the network structure throughout the process. We only adjust
the training objective. Although the effect of the output image can be further improved, it shows our
conclusions’ practical value and application potential.

D LIMITATION.
Our work mainly takes the deraining task as a breakthrough point, and attempts to make a general
summary of the generalization problem in low-level vision. Due to the differences between different
low-level tasks, the analysis methods in this paper, especially the fine-grained analysis methods,
may not be directly used on some other tasks. But we believe our work can still bring novel insights
to the entire low-level vision field.

Our work also attempts to improve existing deraining models. But these improvements are based
on the simple usage of some key conclusions of our work. Although shown effective, we believe
that these methods are still far from ideal. We only demonstrate the application potential of the
knowledge presented in this work and have no intention to propose state-of-the-art algorithms or
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models. Research efforts are still needed to develop more robust deraining algorithms using our
conclusions.

E REPRODUCIBILITY STATEMENT

E.1 RESOURCES

The models used in our work are taken directly from their respective official sources. Our code
is built under the BasicSR framework https://github.com/xinntao/BasicSR for bet-
ter code organization. The deraining model SPDNet Yi et al. (2021) is available at https:
//github.com/Joyies/SPDNet. The deraining model RCDNet Wang et al. (2020c) is avail-
able at https://github.com/hongwang01/RCDNet. The training and testing datasets used
in our work are all publicly available.

E.2 NETWORK TRAINING

Due to space constraints, we do not describe our training method in detail in the main text. Here
we describe the training method to reproduce our results. A total of 150 models were involved
in our experiments. We used the same training configuration for all models. We use Adam for
training. The initial learning rate is 2× 10−4 and β1 = 0.9, β2 = 0.99. For each network, we fixed
the number of training iterations to 250,000. The batch size is 16, input rainy images are of size
128×128. The cosine annealing learning strategy is applied to adjust the learning rate. The period of
cosine is 250,000 iterations. All models are built using the PyTorch framework Paszke et al. (2017)
and trained with NVIDIA A100 GPUs.

E.3 AVAILABILITY

All the trained models and code will be publicly available.

F ETHICS STATEMENT

This study does not involve any human subjects, practices to data set releases, potentially harmful
insights, methodologies and applications, potential conflicts of interest and sponsorship, discrimi-
nation/bias/fairness concerns, privacy and security issues, legal compliance, and research integrity
issues. We do not anticipate any direct misuse of our contribution due to its theoretical nature.
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Input Rainy Image SPDNet RCDNet ResNet, Trained w/ 10k patches, Large Rain

RCDNet, Trained w/ Large Rain RCDNet, Trained w/ 64 patches RCDNet, Trained w/ 128 patches, Large Rain Ground Truth

Input Rainy Image SPDNet RCDNet ResNet, Trained w/ 10k patches, Large Rain

RCDNet, Trained w/ Large Rain RCDNet, Trained w/ 64 patches RCDNet, Trained w/ 128 patches, Large Rain Ground Truth

Figure 12: Visualization of the deraining results. Zoom in for better comparison.
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