
To Ask or Not To Ask: Robot-assisted Bite Acquisition
with Human-in-the-loop Contextual Bandits

Rohan Banerjee, Sarah Dean, Tapomayukh Bhattacharjee
Department of Computer Science, Cornell University
{rbb242, sdean, tapomayukh}@cornell.edu

Abstract: Robot-assisted bite acquisition involves picking up food items that vary
considerably in their shape, size, texture, and compliance. An effective bite acqui-
sition system should be able to generalize to out-of-distribution instances in a few-
shot manner, but this is difficult for a fully autonomous strategy due to the large
variety of food items that exist. In this work, we propose a contextual bandit algo-
rithm that asks for human feedback to improve generalization to novel food items,
while minimizing the cognitive workload that querying imposes on the human.
We demonstrate through experimentation on a dataset of 16 food items that our
algorithm improves the tradeoff between task performance and cognitive work-
load compared to two baselines: (1) a state-of-the-art fully autonomous baseline,
and (2) a naive querying algorithm that does not incorporate cognitive workload.

Keywords: Contextual Bandits, Bite Acquisition, Human-in-the-Loop Autonomy

1 Introduction

Eating is a ubiquitous activity of daily living [1], but approximately 1 million people in the U.S.
are unable to eat without assistance [2]. Robot-assisted feeding could help address this gap, as a
robotic system could feed a user with mobility limitations who cannot feed themselves indepen-
dently. Robot-assisted feeding consists of two major components: bite acquisition [3–6], which is
the task of picking up a food item, and bite transfer [7, 8], which is the task of transferring the food
item to the mouth of the user. In our work, we focus on bite acquisition, with the goal of learning a
policy that can robustly acquire food items with varying shape, color, texture, compliance, and size.

A typical grocery store contains more than 40,000 unique food items [9], motivating the need for
robotic bite acquisition strategies that can generalize well to out-of-distribution food instances. Ex-
isting state-of-the-art approaches to robotic bite acquisition [4, 5] perform well when exposed to
out-of-distribution food items, but require a large number of samples to converge to the optimal
acquisition action. Our belief is that it would be very challenging for a fully autonomous strategy
to achieve few-shot convergence to novel food items due to the significant diversity of food items.
Unlike in the rigid body manipulation setting, food items are fragile, meaning that an inefficient
acquisition strategy could destroy the food items.

To overcome this limitation, our insight is that we can leverage the presence of the human user to
develop online strategies that query that user for feedback on novel food items. A human being
could provide varying levels of feedback to the agent, such as identifying the food item or indicating
where the food item is located. In our work, we assume that the human can give expert feedback,
indicating what action the robot should take for the food item. However, frequent querying will
impose a cognitive workload on the human, which will ultimately decrease technology acceptance.

Therefore, the key research question that we address in this work is as follows: How can we balance
this trade-off between querying and task performance? In the setting where we receive expert labels
from the human, we hypothesize that an algorithm that decides when to query based on the estimated
cognitive workload penalty of querying the human, as well as the current uncertainty about the
performance of different bite acquisition actions, will achieve higher task performance (convergence

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



to the most performant acquisition) compared to a fully autonomous baseline, while achieving lower
cognitive workload compared to a naive querying baseline that does not account for the workload.

Prior work has studied the problem of deferring to an expert [10–14], and prior work in shared au-
tonomy for human-robot interaction has explored incorporating human state information into the
robot’s decision-making [15, 16]. Ours is the first to study deferring to a human in an online con-
textual bandit setting for the domain of robot-assisted bite acquisition, in which we incorporate a
model of cognitive workload. We provide further discussion of related work in Appendix A.

Our contributions are as follows:

• We propose an extension to the contextual bandit framework to incorporate the joint problem of
when to query and which robot action to select for bite acquisition, where we incorporate the
cognitive workload of querying the human into the reward function.

• We develop two querying algorithms (one naive algorithm, and one informed algorithm that takes
cognitive workload into account). We demonstrate through experimentation with a labeled set of
real-world food images that the informed algorithm achieves a higher weighted combination of
task reward and cognitive workload compared to a state-of-the-art strong LinUCB baseline.

2 Problem Formulation

We use an online learning formulation based on the contextual bandit approach used in prior bite
acquisition work [4, 5]. In this online setting, we receive a context (corresponding to a food item) at
each timestep, and we then must decide whether to query or to select one of the robot actions to pick
up the food item. More formally, our learning agent receives a sequence of contexts x ∈ X (with
no distributional assumptions on x), and must select actions a ∈ A that maximize expected reward.
The two primary components of contextual bandit approaches are policy updating (how to update the
policy based on reward observations) and action selection (how to select actions during the learning
process) [17]. Our primary focus is on action selection, which we extend to consider the special
query action. We develop our algorithm for a parameterized reward model learned by regression,
but remark that our algorithms would work more generally for any optimism-based contextual bandit
sub-routine.

Instead of explicitly detecting out-of-distribution contexts, we use the natural capability of a class of
contextual bandit algorithms to implicitly detect distributional shifts by modeling parameter uncer-
tainty. As we acquire data online, our algorithms construct reward confidence intervals that reflect
the similarity between an observed context and previously seen contexts. In our problem setting, we
assume that we have access to a dataset D collected from a robotic manipulator, consisting of raw
observations o ∈ O, actions a ∈ A, and rewards. We use D to pretrain and validate our contextual
bandit algorithms, but our algorithms also apply to the fully online setting without a priori access to
D. The dataset D and contextual bandit setting are characterized as follows:

• Observation space O: RGB-D images that contain a single bite-sized food item belonging to
a set of 16 distinct food types, situated on a plate under 3 distinct environment configurations:
isolated, close to the plate wall, and stacked on top of another food item [3].

• Action space A: A discrete action space shown in Figure 1 (left) consisting of 7 actions in total -
6 robot actions ar for r ∈ {1, . . . , 6} and 1 query action aq . Each robot action is a pair consisting
of one of three pitch configurations (tilted angled (TA), vertical skewer (VS), tilted vertical (TV))
and one of two roll configurations (0◦, 90◦), relative to the orientation of the food.

• Context space X : As in [4], we derive a lower-dimensional context x ∈ R2048 from the visual
observations o using the SPANet network [3]. SPANet is pretrained in a fully-supervised manner
to predict so(o, a), the probability that action a succeeds for observation o. A critical assumption
for our bandit algorithms is the realizability of a linear relationship between x and r. Because the
final layer of SPANet is linear, we use the penultimate activations of SPANet as our context.

We model cognitive workload as one component of a time-dependent reward function r(x, a, t),
which returns the expected reward at time t given context x and action a. In our setting, when we
query the human, we receive expert feedback in the form of the ground-truth action a∗(x) that has

2



the highest probability of successfully picking up the food item contained in x, and this feedback
incurs a cognitive workload penalty cCL(t) ≥ 0. We thus model our reward function as consisting
of a task reward rtask(x, a, t) and a cognitive workload reward rCL(x, a, t):

rtask(x, a, t) =

{
sx(x, a) a ̸= aq
sx(x, a

∗(x)) a = aq
rCL(x, a, t) =

{
0 a ̸= aq
−cCL(t) a = aq

where sx(x, a) is the probability that action a succeeds for context x. In the above expression, the
task reward can be understood as the mean of a Bernoulli random variable. Note that the dataset D
contains observed binary rewards that can be thought of as samples from the Bernoulli distribution.

We define cCL(t) using a rebounding satiation model for multi-armed bandits [18] adapted to our
contextual bandit setting. First, we define vt to be the cognitive workload state at time t, with
dynamics vt = γvt−1 + γq1(at = aq). In this model, γ ∈ (0, 1] is the retention factor, γq ∈ (0, 1]
is the instantaneous cost, at is the action taken at time t, and 1(at = aq) is equal to 1 if at = aq and
0 otherwise. We then define cCL(t) = λqvt, where λq ≥ 0 is a scaling factor.

The cognitive workload penalty is higher when many queries have been made recently, while the
impact of past queries is discounted over time. Our goal is to learn a policy π(a|x, t) that maximizes
the expected reward E[rt|xt, at, t] = r(x, a, t) = wtaskrtask(x, a, t) + wCLrCL(x, a, t) over any
observed sequence of food items, where wtask and wCL are positive, scalar weights that sum to 1.

3 Querying Algorithms

Our fully autonomous baseline is LinUCB [19], which is the state-of-the-art algorithm for bite ac-
quisition [4, 5]. LinUCB selects the action for an observed context x that maximizes an upper-
confidence bound (UCB) estimate of the reward for each possible action, given by UCBa =
θTa x+αba. Here, θa is the parameter vector for a linear reward model that is learned through regres-
sion on a context matrix Xa and observed rewards for each action a, where Xa includes the contexts
seen for action a during pretraining and online validation, α > 0 is a parameter that corresponds to a
particular confidence level in the accuracy of the UCB estimate, and ba = (xT (XT

a Xa+λI)−1x)1/2

is the UCB bonus with L2 regularization given by parameter λ. The size of the reward confidence
interval αba reflects how out-of-distribution x is compared to the contexts observed in Xa.

We consider the following two querying algorithms, where both algorithms decide to either query
the human or select the robot action that maximizes UCBa. Our first algorithm is called Exp-
Decay and is shown in Algorithm 1. The Exp-Decay algorithm queries with an exponentially-
decaying probability that is a function of the number of food items seen within an episode, and is
independent of the query cognitive workload. Our second algorithm is called LinUCB-Query-Gap
(abbreviated LinUCB-QG) and is shown in Algorithm 2. LinUCB-QG decides to query if the worst-
case performance gap between the best action a∗ and second-best action a− exceeds a scaled version
of cCL(t), with scaling factor w. A larger gap represents a greater risk that the predicted best arm
may be suboptimal (for instance, if x is out-of-distribution), increasing the odds that the reward gain
from querying will exceed the cognitive workload penalty.

Algorithm 1 Exp-Decay.

1: Inputs: Context x, decay rate c, number of food items seen N , time t
2: For all robot actions ar, compute UCB bonus bar

and UCB value UCBar
.

3: Set P (query) = e−cN if t is the first timestep to observe x, P (query) = 0 otherwise.
4: Set a = aq with probability P (query), a = argmaxar

UCBar
with probability 1−P (query).

5: return a

4 Evaluation + Results

Dataset. We use the food dataset from [3], consisting of food images that were collected using a
Kinova Gen-2 robot with a fork attached to its end effector. The robot arm was instrumented with an
RGB-D camera on the end effector. In front of the robot arm was a plate containing bite-sized food

3



Algorithm 2 LinUCB-QG.

1: Inputs: Context x, weight term w, time t
2: For all robot actions ar, compute UCB bonus bar and UCB value UCBar .
3: Let a∗ = argmaxar θ

T
ar
x, a− = argmaxar ̸=a∗ θTar

x

4: Set a = aq if (θTa−x+ αba−)− (θTa∗x− αba∗) > wcCL(t), a = argmaxar
UCBar

otherwise
5: return a

items. The dataset contains 16 food types, with each food type including 30 trials for each of the 6
robot actions in the action space. Figure 1 (right) contains examples of food items from the dataset.

Figure 1: Action space and food items. Left: Image [3] of robot actions ar , consisting of three distinct pitch
configurations: tilted angled (TA) in lower left, vertical skewer (VS) in upper left, and tilted skewer (TV) in
right, each with 0◦ and 90◦ roll configurations, along with query action aq . Right: Food items and optimal
pitch configurations for pretraining set Dp and validation set Dv .

Generalization scenarios and metrics. To assess the generalization performance of our algo-
rithms, we pretrain the LinUCB reward model with a subset of food items. We partition D into
a pretraining set Dp and a validation set Dv , from which food instances are drawn online. We
construct Dp and Dv so that the optimal actions for food items in each set are disjoint. In our
case, Dp includes 6 food types (optimal actions: TA or TV), while Dv includes the remaining 10
food types (optimal action: VS), shown in Figure 1 (right). We measure the following metrics: the
total task reward rtask(x, a, t), the total cognitive workload reward rCL(x, a, t), a weighted met-
ric Mwt = wtaskrtask(x, a, t) + wCLrCL(x, a, t), where wtask and wCL represent user-specific
preferences for the task reward/cognitive load tradeoff.

Querying algorithm hyperparameters. For the LinUCB baseline, we conduct hyperparameter
tuning (see Appendix B) to select the value of α = 0.1. For Exp-Query, we consider 4 different
values of the decay rate c. For LinUCB-QG, we consider 6 different values of the weight term w.
All experiments use the following cognitive workload parameters: λq = 1, γ = 0.5, γq = 10−2.

5 Discussion

Table 1 shows results for a user preference of wtask = 0.7 and wCL = 0.3 (see Appendix C for ad-
ditional preference settings). LinUCB-QG achieves a higher weighted score compared to LinUCB
(fully autonomous baseline) and Exp-Query (naive baseline) because in the above setting where the
cost of querying is low, LinUCB-QG trades off task performance and cognitive workload by fre-
quently querying (see Appendix C for additional workload settings). Figure 2 visualizes the metrics
for each hyperparameter setting, showing that LinUCB-QG can manage user-specific tradeoffs.

Method rtask rCL Mwt

LinUCB 0.716 - 0.501
Exp-Query 0.738 −0.026 0.509
LinUCB-QG 0.819 −0.139 0.532

Table 1: Querying bandit algorithm metrics. Aver-
ages are across 5 random seeds (For Exp-Query, we
also average across 5 policy random seeds). Values
for rtask and rCL correspond to hyperparameter set-
ting with maximal Mwt.

Figure 2: Pareto plot with rtask and rCL for Lin-
UCB and different settings of Exp-Query (varying c)
and LinUCB-QG (varying w). Filled circles indicate
the setting that maximizes Mwt.

4



Acknowledgments

This work was partly funded by NSF CCF 2312774 and NSF OAC-2311521, a LinkedIn Research
Award, and a gift from Wayfair, and by NSF IIS 2132846 and CAREER 2238792. The authors
would like to thank Ethan Gordon for his assistance with the food dataset.

References
[1] S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, and M. W. Jaffe. Studies of illness in the

aged: the index of adl: a standardized measure of biological and psychosocial function. jama,
185(12):914–919, 1963.

[2] M. W. Brault. Americans with disabilities: 2010. Current population reports, 7:70–131, 2012.

[3] R. Feng, Y. Kim, G. Lee, E. K. Gordon, M. Schmittle, S. Kumar, T. Bhattacharjee, and S. S.
Srinivasa. Robot-assisted feeding: Generalizing skewering strategies across food items on a
plate. In The International Symposium of Robotics Research, pages 427–442. Springer, 2019.

[4] E. K. Gordon, X. Meng, T. Bhattacharjee, M. Barnes, and S. S. Srinivasa. Adaptive robot-
assisted feeding: An online learning framework for acquiring previously unseen food items.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
9659–9666. IEEE, 2020.

[5] E. K. Gordon, S. Roychowdhury, T. Bhattacharjee, K. Jamieson, and S. S. Srinivasa. Lever-
aging post hoc context for faster learning in bandit settings with applications in robot-assisted
feeding. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
10528–10535. IEEE, 2021.

[6] P. Sundaresan, S. Belkhale, and D. Sadigh. Learning visuo-haptic skewering strategies for
robot-assisted feeding. In 6th Annual Conference on Robot Learning, 2022.

[7] D. Gallenberger, T. Bhattacharjee, Y. Kim, and S. S. Srinivasa. Transfer depends on acquisi-
tion: Analyzing manipulation strategies for robotic feeding. In 2019 14th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI), pages 267–276. IEEE, 2019.

[8] S. Belkhale, E. K. Gordon, Y. Chen, S. Srinivasa, T. Bhattacharjee, and D. Sadigh. Balancing
efficiency and comfort in robot-assisted bite transfer. In 2022 International Conference on
Robotics and Automation (ICRA), pages 4757–4763. IEEE, 2022.

[9] A. Malito. Grocery stores carry 40,000 more items than they did in the 1990s. MarketWatch,
June, 17, 2017.

[10] M. Raghu, K. Blumer, G. Corrado, J. Kleinberg, Z. Obermeyer, and S. Mullainathan. The
algorithmic automation problem: Prediction, triage, and human effort. arXiv preprint
arXiv:1903.12220, 2019.

[11] V. Keswani, M. Lease, and K. Kenthapadi. Towards unbiased and accurate deferral to multiple
experts. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages
154–165, 2021.

[12] H. Narasimhan, W. Jitkrittum, A. K. Menon, A. Rawat, and S. Kumar. Post-hoc estimators
for learning to defer to an expert. Advances in Neural Information Processing Systems, 35:
29292–29304, 2022.

[13] H. Mozannar and D. Sontag. Consistent estimators for learning to defer to an expert. In
International Conference on Machine Learning, pages 7076–7087. PMLR, 2020.

[14] S. Joshi, S. Parbhoo, and F. Doshi-Velez. Learning-to-defer for sequential medical decision-
making under uncertainty. arXiv preprint arXiv:2109.06312, 2021.

5



[15] S. Nikolaidis, Y. X. Zhu, D. Hsu, and S. Srinivasa. Human-robot mutual adaptation in shared
autonomy. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction, pages 294–302, 2017.

[16] S. Jain and B. Argall. Probabilistic human intent recognition for shared autonomy in assistive
robotics. ACM Transactions on Human-Robot Interaction (THRI), 9(1):1–23, 2019.

[17] T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[18] L. Leqi, F. Kilinc Karzan, Z. Lipton, and A. Montgomery. Rebounding bandits for modeling
satiation effects. Advances in Neural Information Processing Systems, 34:4003–4014, 2021.

[19] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661–670, 2010.

[20] H. Heidari, M. J. Kearns, and A. Roth. Tight policy regret bounds for improving and decaying
bandits. In IJCAI, pages 1562–1570, 2016.

[21] N. Levine, K. Crammer, and S. Mannor. Rotting bandits. Advances in neural information
processing systems, 30, 2017.

[22] P. Laforgue, G. Clerici, N. Cesa-Bianchi, and R. Gilad-Bachrach. A last switch dependent
analysis of satiation and seasonality in bandits. In International Conference on Artificial Intel-
ligence and Statistics, pages 971–990. PMLR, 2022.

[23] O. Ben-Porat, L. Cohen, L. Leqi, Z. C. Lipton, and Y. Mansour. Modeling attrition in recom-
mender systems with departing bandits. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 6072–6079, 2022.

[24] L. Fridman, B. Reimer, B. Mehler, and W. T. Freeman. Cognitive load estimation in the wild.
In Proceedings of the 2018 chi conference on human factors in computing systems, pages 1–9,
2018.

[25] A. Rajavenkatanarayanan, H. R. Nambiappan, M. Kyrarini, and F. Makedon. Towards a real-
time cognitive load assessment system for industrial human-robot cooperation. In 2020 29th
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
pages 698–705. IEEE, 2020.

[26] A. Pichler, S. C. Akkaladevi, M. Ikeda, M. Hofmann, M. Plasch, C. Wögerer, and G. Fritz.
Towards shared autonomy for robotic tasks in manufacturing. Procedia Manufacturing, 11:
72–82, 2017.

[27] A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off. The Journal of Machine
Learning Research, 22(1):5928–5976, 2021.

6



A Related Work

Learning to defer. Our problem setting is an instance of learning to defer to an expert [10]. In this
setting, a learning agent must decide whether to produce decisions according to its own learned
model, or defer to the decisions from one or more experts, such as oracle models or humans.
Most approaches operate in the supervised learning [10–13] or RL [14] domains. Motivated by
the constraints of the robot-assisted bite acquisition task, in which we observe independent contexts
and receive sparse feedback in response to robot acquisition actions based on those contexts, our
work focuses on developing learning-to-defer policies in an online contextual bandit setting. Some
learning-to-defer approaches incorporate a fixed cost of querying the expert [11–13], or an imperfect
expert [12], while in our work the deferral penalty (cognitive workload) is time-dependent.

To model the cognitive workload penalty, we considered a number of different reward models from
the bandits literature that take into account the frequency of queries. Such approaches include ex-
plicit reward models that depend on the total number of queries [18, 20, 21] or the number of queries
within a time interval [22], and methods that indirectly affect reward by shortening the time horizon
[23]. We chose to apply the rebounding bandit model [18] to our contextual bandit setting due to its
simplicity and expected qualitative similarity to real-world cognitive workload dynamics [24, 25].

Shared autonomy for human-robot interaction. A number of papers explore the concept of shared
autonomy between a robot and human, in which the policies of the robot and human are combined
in such a way that both contribute to the decision-making for a particular task. Shared autonomy
approaches differ in the types of information that they infer about the human, such as the goals of the
human [15, 16], and also in the degree to which human input guides the autonomous system [26].
Our work differs in that our algorithm decides between the decision of the agent and human input
without blending the two, and we incorporate a model of human state (cognitive workload) distinct
from the intent of the human.

7



B Hyperparameter Tuning

We describe our hyperparameter tuning process for the LinUCB baseline. Because all querying
algorithms default to LinUCB as their action-selection method, we first select the LinUCB hyperpa-
rameters using our tuning process, and then use these fixed LinUCB hyperparameter values in our
evaluations for the querying algorithms.

For hyperparameter tuning, in addition to the pretrain setting that we considered in our main exper-
iments (shown in Figure 1), we considered the performance of LinUCB in three additional pretrain
settings, each containing food items with different optimal robot actions. The four pretrain settings
that we considered are: (1) no pretraining, (2) pretraining with food items whose optimal pitch an-
gle is tilted vertical (TV), (3) pretraining with food items whose optimal pitch angle is either tilted
angled (TA) or tilted vertical (TV), and (4) pretraining with food items whose optimal pitch angle is
either tilted angled (TA) or vertical skewer (VS).

For LinUCB, we tune the α parameter, and we keep the L2 regularization parameter λ = 0.1
fixed. We consider 9 distinct values of α, ranging from 0.001 to 0.5, and we measured the mean
convergence rate for the LinUCB policy across 5 random seeds. Each random seed controls the
sequence of contexts that were observed as well as the stochasticity in the one-step rewards. Figure
3 shows the mean convergence rate across different values of α, and across different generalization
settings. We ultimately selected α = 0.1 because it had the highest convergence rates across the four
generalization settings with different choices for Dp and Dv . Our hyperparameter tuning scheme is
similar to that of prior empirical work for contextual bandits that leverages supervised datasets [27].

Figure 3: Hyperparameter tuning for LinUCB, showing mean convergence for different pre-train
settings and different values of α.

8



C Additional Experiments

Fraction of querying statistics. In Table 2, we augment the algorithm statistics shown in Table
1 to include the fq metric, indicating the fraction of timesteps in which each algorithm selects the
querying action. The results show that LinUCB-QG achieves higher task performance through more
frequent querying.

Method fq rtask rCL Mwt

LinUCB - 0.716 - 0.501
Exp-Query 0.027 0.738 −0.026 0.509
LinUCB-QG 0.391 0.819 −0.139 0.532

Table 2: Querying bandit algorithm metrics. Averages are across 5 random seeds (For Exp-Query,
we also average across 5 policy random seeds). Values for rtask and rCL correspond to hyperpa-
rameter setting with maximal Mwt.

Results for convergence metric. We also considered an additional set of metrics to capture task
performance: convergence, where we define convergence rκ =

∑Nfooditem

i=1 κi, where Nfooditem is
the total number of food items encountered in an episode, and κi is a binary variable that is 1 if the
algorithm selects the action with the highest ground-truth probability of success within 10 trials, and
0 otherwise, and weighted-convergence, given by Mwc = wtaskrκ + wCLrCL(x, a, t). Table 3 and
Figure 4 show the metric results and Pareto plot for the convergence metrics, respectively. The ad-
vantages in the weighted metric and task score are more pronounced when considering convergence
compared to task reward in Figure 2, which we attribute to the discrete nature of the convergence
metric, but LinUCB-QG still has superior weighted task reward compared to the other algorithms.

Method rκ rCL Mwc

LinUCB 0.4 - 0.28
Exp-Query 0.796 −0.072 0.536
LinUCB-QG 0.98 −0.133 0.646

Table 3: Querying bandit algorithm metrics.
Averages are across 5 random seeds (For Exp-
Query, we also average across 5 policy random
seeds). Values for rtask and rCL correspond to
hyperparameter setting with maximal Mwc.

Figure 4: Pareto plot with rκ and rCL for Lin-
UCB and different settings of Exp-Query (varying
c) and LinUCB-QG (varying w). Filled circles in-
dicate the setting that maximizes Mwc.

Additional user settings. In order to understand the effect that variable user settings for wtask and
wCL have on the relative performance of the querying algorithms, we experimented with three
additional settings for these weight parameters: (1) wCL = 1.5wtask, (2) wCL = wtask, (3)
wtask = 1.5wCL, which correspond to values of wtask = [0.4, 0.5, 0.6], respectively. Results
for the weighted task and convergence metrics are shown in Tables 4 and 5, respectively.

We see that for smaller values of wtask (larger values of wCL), the cognitive workload of LinUCB-
QG is amplified in the weighted metrics, leading it to have a smaller weighted score compared to
LinUCB in Table 4. However, as wtask increases, the improved task metric (convergence or task
reward) for LinUCB-QG begins to dominate the weighted metric.

9



Table 4: Results for bandit algorithms for querying, using weighted-task metric. Averages are across
5 random seeds. For Exp-Query, we also average across 5 independent policy random seeds. Con-
vergence and cognitive workload values for each algorithm correspond to hyperparameter setting
with maximal weighted reward.

wtask Method rtask rCL Mwt

0.4
LinUCB 0.716 - 0.286

Exp-Query 0.738 −0.026 0.279
LinUCB-QG 0.819 −0.139 0.244

0.5
LinUCB 0.716 - 0.358

Exp-Query 0.738 −0.026 0.356
LinUCB-QG 0.819 −0.139 0.340

0.6
LinUCB 0.716 - 0.430

Exp-Query 0.738 −0.026 0.432
LinUCB-QG 0.819 −0.139 0.436

Table 5: Results for bandit algorithms for querying, using weighted-convergence metric. Averages
are across 5 random seeds. For Exp-Query, we also average across 5 independent policy random
seeds. Convergence and cognitive workload values for each algorithm correspond to hyperparameter
setting with maximal weighted reward.

wtask Method rκ rCL Mwc

0.4
LinUCB 0.4 - 0.16

Exp-Query 0.796 −0.072 0.275
LinUCB-QG 0.98 −0.133 0.312

0.5
LinUCB 0.4 - 0.2

Exp-Query 0.796 −0.072 0.362
LinUCB-QG 0.98 −0.133 0.423

0.6
LinUCB 0.4 - 0.24

Exp-Query 0.796 −0.072 0.449
LinUCB-QG 0.98 −0.133 0.535

10



C.1 Results with time-delayed querying model.

We also considered a cognitive workload model that was time-delayed, where the value cCL(t) was
delayed by one timestep (that is, the decision whether to query only affected the cognitive workload
at the next timestep). This affects both the decision whether to query, as well as the overall cognitive
workload reward rCL induced by querying. This setting is more similar to the satiation setting
explored in [18], in that a time-delayed cognitive workload score is more lenient towards a single
query but penalizes repeated querying after the initial query. In the below experiments, we used
γ = γq = 0.5, corresponding to a higher one-step penalty of querying compared to the results in the
main paper.

Results for task and convergence metrics. Results for the task and convergence metrics are shown
in Tables 6 and 7, with wtask = 0.7 and wCL = 0.3. We observe that in Figure 6 tuning the decay
parameter of Exp-Query leads to a direct tradeoff between convergence and cognitive workload, but
even with this tuning, its convergence is suboptimal compared to LinUCB-QG. Again, the advan-
tages in the weighted metric and task score are more pronounced when considering convergence
compared to task reward in Figure 5.

Compared to the cognitive workload setting in the main paper, we observe that LinUCB-QG
achieves lower absolute cognitive workload and lower relative cognitive workload compared to Exp-
Query, suggesting that LinUCB-QG efficiently asks queries leading to increased task performance.

Method rtask rCL Mwt

LinUCB 0.728 - 0.510
Exp-Query 0.776 −0.625 0.356
LinUCB-QG 0.807 −0.145 0.521

Table 6: Querying bandit algorithm metrics. Aver-
ages are across 5 random seeds (For Exp-Query, we
also average across 5 policy random seeds). Values
for rtask and rCL correspond to hyperparameter set-
ting with maximal Mwt.

Figure 5: Pareto plot with rtask and rCL for Lin-
UCB and different settings of Exp-Query (varying c)
and LinUCB-QG (varying w). Filled circles indicate
the setting that maximizes Mwt.

Method rκ rCL Mwc

LinUCB 0.46 - 0.322
Exp-Query 0.656 −0.825 0.212
LinUCB-QG 0.86 −0.145 0.558

Table 7: Querying bandit algorithm metrics.
Averages are across 5 random seeds (For Exp-
Query, we also average across 5 policy random
seeds). Values for rtask and rCL correspond to
hyperparameter setting with maximal Mwc.

Figure 6: Pareto plot with rκ and rCL for Lin-
UCB and different settings of Exp-Query (varying
c) and LinUCB-QG (varying w). Filled circles in-
dicate the setting that maximizes Mwc.

Additional user settings. Tables 8 and 9 show values for the weighted-task and weighted-
convergence metrics, respectively. Similar to the cognitive workload setting in the main paper,
we see that smaller values of wtask amplify the cognitive workload of LinUCB-QG, decreasing its
weighted score compared to LinUCB in Table 8. However, as wtask increases, the improved task
metric (convergence or task reward) for LinUCB-QG begins to dominate the weighted metric.

11



Table 8: Results for bandit algorithms for querying, using weighted-task metric. Averages are across
5 random seeds. For Exp-Query, we also average across 5 independent policy random seeds. Con-
vergence and cognitive workload values for each algorithm correspond to hyperparameter setting
with maximal weighted reward.

wtask Method rtask rCL Mwt

0.4
LinUCB 0.728 - 0.291

Exp-Query 0.776 −0.625 −0.0646
LinUCB-QG 0.807 −0.145 0.236

0.5
LinUCB 0.728 - 0.364

Exp-Query 0.776 −0.625 0.0754
LinUCB-QG 0.807 −0.145 0.331

0.6
LinUCB 0.728 - 0.437

Exp-Query 0.776 −0.625 0.216
LinUCB-QG 0.807 −0.145 0.426

Table 9: Results for bandit algorithms for querying, using weighted-convergence metric. Averages
are across 5 random seeds. For Exp-Query, we also average across 5 independent policy random
seeds. Convergence and cognitive workload values for each algorithm correspond to hyperparameter
setting with maximal weighted reward.

wtask Method rκ rCL Mwc

0.4
LinUCB 0.46 - 0.184

Exp-Query 0.556 −0.625 −0.153
LinUCB-QG 0.86 −0.145 0.257

0.5
LinUCB 0.46 - 0.23

Exp-Query 0.556 −0.625 −0.0345
LinUCB-QG 0.86 −0.145 0.357

0.6
LinUCB 0.46 - 0.276

Exp-Query 0.556 −0.625 0.0836
LinUCB-QG 0.86 −0.145 0.458

12


	Introduction
	Problem Formulation
	Querying Algorithms
	Evaluation + Results
	Discussion
	Related Work
	Hyperparameter Tuning
	Additional Experiments
	Results with time-delayed querying model.


