
Landscape Surrogate: Learning Decision Losses for Mathematical Optimization
Under Partial Information

Arman Zharmagambetov 1 Brandon Amos 1 Aaron Ferber 2 Taoan Huang 2 Bistra Dilkina 2 Yuandong Tian 1

Abstract
Recent works in learning-integrated optimization
have shown promise in settings where the opti-
mization problem is only partially observed or
where general-purpose optimizers perform poorly
without expert tuning. By learning an optimizer g
to tackle these challenging problems with f as the
objective, the optimization process can be substan-
tially accelerated by leveraging past experience.
Training the optimizer can be done with supervi-
sion from known optimal solutions (not always
available) or implicitly by optimizing the com-
pound function f ◦ g, but the implicit approach
is slow and challenging due to frequent calls to
the optimizer and sparse gradients, particularly
for combinatorial solvers. To address these chal-
lenges, we propose using a smooth and learnable
Landscape SurrogateM instead of f ◦ g. This
surrogate can be computed faster than g, provides
dense and smooth gradients during training, can
generalize to unseen optimization problems, and
is efficiently learned via alternating optimization.
We test our approach on both synthetic problems
and real-world problems, achieving comparable
or superior objective values compared to state-of-
the-art baselines while reducing the number of
calls to g. Notably, our approach outperforms
existing methods for computationally expensive
high-dimensional problems.

Optimization problems in various settings have been widely
studied, and numerous methods exist to solve them (Korte &
Vygen, 2018; Nocedal & Wright, 2006). Although the liter-
ature on this topic is immense, real-world applications con-
sider settings that are nontrivial or extremely costly to solve.
The issue often stems from uncertainty in the objective or

*Equal contribution 1Meta AI (FAIR) 2University of Southern
California. Correspondence to: Arman Zharmagambetov <ar-
manz@meta.com>, Yuandong Tian <yuandong@meta.com>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

in the problem definition. For example, combinatorial prob-
lems involving nonlinear objectives are generally hard to
address. One possible approach could be learning so-called
linear surrogate costs (Ferber et al., 2022) that guide an
efficient linear solver towards high quality solutions for the
original hard nonlinear problem. This automatically finds a
surrogate mixed integer linear program (MILP), for which
relatively efficient solvers exist (Gurobi, 2019). Another
example is the smart predict+optimize framework (a.k.a.
decision-focused learning) (Elmachtoub & Grigas, 2017;
Wilder et al., 2020) where some problem parameters are un-
known at test time and must be inferred from the observed
input using a parametric mapping (e.g., neural nets).

Despite having completely different settings and purposes,
what is common among learning surrogate costs, smart
predict+optimize, and other integrations of learning and op-
timization, is the need to learn a certain target mapping to
estimate the parameters of a latent optimization problem.
This makes the optimization problem well-defined, easy to
address, or both. In this work, we draw general connections
between different problem families and combine them into a
unified framework. The core idea (section 1) is to formulate
the learning problem via constructing a compound function
f ◦g that includes a parametric solver g and the original ob-
jective f . To the best of our knowledge, this paper is the first
to propose a generic optimization formulation (section 1)
for these types of problems.

Minimizing this new compound function f ◦g is a nontrivial
task as it requires differentiation through the argmin opera-
tor. Although various methods have been proposed to tackle
this issue (Amos & Kolter, 2017; Agrawal et al., 2019), they
have several limitations. First, they are not directly applica-
ble to combinatorial optimization problems, which have 0
gradient almost everywhere, and thus require various compu-
tationally expensive approximations (Pogančic̀ et al., 2020;
Wilder et al., 2020; Ferber et al., 2020; Wang et al., 2019).
Second, even if the decision variables are continuous, the
solution space (i.e., argmin) may be discontinuous. Some
papers (Donti et al., 2017; Gould et al., 2016) discuss the
fully continuous domain but typically involve computing the
Jacobian matrix, which leads to scalability issues. Further-
more, in some cases, an explicit expression for the objective
may not be given, and we may only have black-box access

1



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Figure 1. Overview of our proposed framework LANCER. We re-
place the non-convex and often non-differentiable function f ◦ g
with landscape surrogate M and use it to learn the target mapping
cθ . The current output of cθ is then used to evaluate f and to
refine M. This procedure is repeated in alternating optimization
fashion.

to the objective function, preventing straightforward end-to-
end backpropagation. Some works discuss derivative-free
approaches but they rely on frequent calls to the solver g
(Shah et al., 2022).

These limitations motivate Landscape Surrogate losses
(LANCER), a unified model for solving coupled learning
and optimization problems. LANCER accurately approxi-
mates the behavior of the compound function f ◦ g, allow-
ing us to use it to learn our target parametric mapping (see
fig. 1). Furthermore, we propose an efficient alternating
optimization algorithm that jointly trains LANCER and the
parameters of the target mapping. Our motivation is that
training LANCER in this manner better distills task-specific
knowledge, resulting in improved overall performance.

We will make the implementation of LANCER available
at https://github.com/facebookresearch/
LANCER.

1. A Unified Training Procedure
Consider the following optimization problem:

min
x

f(x; z) s.t. x ∈ Ω (1)

where f is the function to be optimized, x ∈ Ω are the
decision variables that must lie in the feasible region, typ-
ically specified by (non)linear (in)equalities and possibly
integer constraints, and z ∈ Z is the problem description.
For example, if f is to find a shortest path in a graph, then
x is the path to be optimized, and z represents the pairwise
distances in the formulation.

Ideally, we would like to have an optimizer that can (1)
deal with the complexity of the loss function landscape (2)
leverage past experience in solving similar problems, and
(3) can deal with a partial information setting, in which only
an observable problem description y can be seen but not the
true problem description z.

To design such an optimizer, we consider the following
setting: assume that for the training instances, we have
access to the full problem descriptions {zi} ⊆ Z , as well

as the observable descriptions {yi} ⊆ Y , while for the
test instance, we only know its observable description ytest.
Given this setting, we propose the following general training
procedure on a training set Dtrain := {(yi, zi)}Ni=1:

min
θ
L(Y,Z) :=

N∑
i=1

f (gθ(yi); zi) (2)

Here gθ : Y 7→ Ω is a learnable solver that returns a high
quality solution for objective f directly from the observ-
able problem description yi. θ are the learnable solver’s
parameters. Once gθ is learned, we can solve new problem
instances with observable description ytest by either calling
xtest = gθ(ytest) to get a reasonable solution, or continue
to optimize Eqn. 1 using x = xtest as an initial solution.

Our proposed training procedure is general and covers many
previous works that rely on either fully or partially observed
problem information:

• In Smart Predict+Optimize (P+O), f belongs to a spe-
cific function family (e.g., linear or quadratic programs).
The full problem description z includes objective coeffi-
cients, but we only have access to noisy versions of them
in y. Then the goal in P+O is to identify a mapping cθ
(e.g. a neural net) so that a downstream solver outputs a
high quality solution: gθ(y) = argminx∈Ω f(x; cθ(y)).
Here argminx∈Ω f can often be solved with standard
approaches, and the main challenge is to estimate the
problem description accurately (w.r.t. eq. (2)).

• Learning surrogate costs for MINLP. When f is a gen-
eral nonlinear objective (but y = z is fully observed),
computing argminx∈Ω f also becomes non-trivial, espe-
cially if x is in combinatorial spaces. Such problems are
commonly referred as mixed integer nonlinear program-
ming (MINLP). To leverage the power of linear combina-
torial solvers, SurCo (Ferber et al., 2022) sets the learnable
solver to be gθ(y) = argminx∈Ω x⊤cθ(y), which is a
linear solver and does not include the nonlinear function
f at all. Intuitively, this models the complexity of f by
the learned surrogate cost cθ, which is parameterized by
a neural network.

2. LANCER: Learning Landscape Surrogate
Losses

While multiple approaches exist to learn θ, at each step of
the training process, we need to call a solver to evaluate
gθ, which can be computationally expensive. Furthermore,
typically gθ is learned via gradient descent of Eqn. 2, which
involves backpropagating through the solver. One issue of
this procedure is that the gradient is non–zero only at cer-
tain locations, which makes the gradient-based optimization
difficult.

2

https://github.com/facebookresearch/LANCER
https://github.com/facebookresearch/LANCER


LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

One question arises: can we model the composite function
f ◦ gθ jointly? The intuition here is that while gθ can be
hard to compute, f ◦ gθ can be smooth to model, since f
can be smooth around the solution provided by gθ. If we
model f ◦ gθ locally by a landscape surrogate modelM,
and optimize directly on the local landscape ofM, then the
target mapping cθ can be trained without running expensive
solvers:

min
θ
M(Y, Z) :=

N∑
i=1

M (cθ(yi); zi) . (3)

Note thatM directly depends on cθ (not on gθ). Obviously,
M cannot be any arbitrary function. Rather it should satisfy
certain conditions: 1) capture a task-specific loss f ◦ gθ; 2)
be differentiable and smooth. The primary advantage is that
we can avoid backpropagating through the solver or even
through f . Moreover,Mw is typically high dimensional
and potentially can make the learning problem for cθ much
easier. The question is how to obtain such a model M?
One way is to parameterize it and formulate the learning
problem:

min
w
∥Mw(Y,Z;θ∗)− L(Y, Z;θ∗)∥

s.t. θ∗ ∈ argminθMw(Y,Z;θ)
(4)

where we add θ as an argument to explicitly emphasize
the dependence of the loss function on the target map-
ping c. Note that M does not need to be accurate over
the entire domain, but only needs to be accurate around
the optimal solution θ∗. In other words,Mw serves as a
surrogate loss that approximates L in a certain landscape:
Mw(Y,Z,θ) ∼ L(Y, Z,θ).

Notice that Eqn. 4 is an instance of bi-level optimization.
Established methods from the bi-level optimization litera-
ture, such as (Gould et al., 2016; Ye et al., 2022), could
potentially be used, but most of them still rely on ∇θL
(or even ∇2

θ), which involves differentiating through the
solver. To overcome this issue, we propose a simple and
generic algorithm 1, which is based on alternating optimiza-
tion (high-level idea is depicted in fig. 1). The core idea
is to simultaneously learn both mappings (Mw and cθ) to
explore different solution spaces. By improving our tar-
get model cθ, we obtain better estimates of the surrogate
loss around the solution, and a better estimator Mw leads
to better optimization of the desired loss L. The use of
alternating optimization helps both mappings reach a com-
mon goal. Note that the algorithm avoids backpropagating
through the solver or even through f . The only require-
ment is evaluating the function f at the solution of g, which
can be achieved by black-box solver access. As a result,
this approach eliminates the complexity and computational
expense associated with computing derivatives of combi-
natorial solvers, making it a more efficient and practical
solution.

Shortest Path Multidimensional Knapsack

Figure 2. Normalized test regret (lower is better) for different
P+O methods: 2-stage, SPO+ (Elmachtoub & Grigas, 2017),
DBB (Pogančic̀ et al., 2020), LODLs (Shah et al., 2022) and ours
(LANCER). Overlaid dark green bars (right) indicate the warm
started method from 2stg. DBB performs considerably worse on
the right benchmark and is cut off on the y-axis.

Reusing landscape surrogate modelMw Once Algo-
rithm 1 finishes, we usually discardMw as it is an inter-
mediate result of the algorithm, and we only retain cθ (and
solver g) for model deployment. However, we have found
through empirical exploration that the learned surrogate loss
Mw can be reused for a range of problems, increasing the
versatility of the approach. This is particularly advanta-
geous for SurCo setting, where we handle one instance at a
time. In this scenario, we utilize the trainedMw for unseen
test instances by executing only the θ-step of Algorithm 1.
The main advantage of this extension is that it eliminates
the need for access to the solver g, leading to significant
deployment runtime improvements.

3. Experiments
We validate LANCER in two settings: smart pre-
dict+optimize and learning surrogate costs for MINLP. Over-
all, LANCER exhibits superior or comparable objective val-
ues while maintaining efficient runtime. Additional experi-
ments and ablation studies can be found in Appendix C.

3.1. Synthetic data

The shortest path (SP) and multidimensional knapsack
(MKS) are both classic problems in combinatorial optimiza-
tion with broad practical applications. In this setting, we
consider a scenario where problem parameters z, such as
graph edge weights and item prices, cannot be directly ob-
served during test time, and instead need to be estimated
from y via learnable mapping z = cθ(y). That is, we con-
sider smart P+O setting. Experimental setup can be found
in Appendix B.1.

The results are summarized in fig. 2. We report the nor-
malized regret as described in (Tang & Khalil, 2022). The
findings indicate that LANCER and SPO+ consistently out-
perform the two-stage baseline, particularly when consid-
ering the warm start. As SPO+ is specifically designed for
linear programs, it provides informative gradients, making it
a robust baseline. Even in MKS, where theorems proposed

3



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Table 1. Portfolio selection normalized test decision loss (lower is
better).

Method Test DL
Random 1
Optimal 0
2–Stage 0.57 ± 0.02

LODLs (Shah et al., 2022) 0.55 ± 0.02
MDFL (Wilder et al., 2020) 0.52 ± 0.01

LANCER 0.53 ± 0.02

in (Elmachtoub & Grigas, 2017) are no longer applicable,
SPO+ performs decently with minimal tuning effort. The
DBB approach, however, demonstrates unsatisfactory de-
fault performance but can yield favorable outcomes with
proper initialization and tuning (see the right plot). Interest-
ingly, the other P+O baselines, initialized randomly, were
unable to outperform a naive 2stg in both benchmarks.

LANCER achieves superior performance in both tasks, with
a noticeable advantage in MKS. This may be attributed
to the high dimension of the MKS problem and the large
feature space (y). One possible explanation is that the sparse
gradients of the derivative-based method make the learning
problem harder, whereas LANCER models the landscape of
f ◦ g, providing informative gradients for cθ.

3.2. Real-world use case: the quadratic programming

In this study, we tackle the classical quadratic (Markowitz,
1952) portfolio selection problem. We use real-world
data from Quandl (Quandl) and follow the setup described
in Shah et al. (2022). The prediction task leverages each
stock’s historical data y to forecast future prices z, which
are then utilized to solve the QP (i.e., P+O setting). The
predictor is the MLP with 1 hidden layer of size 500. The re-
maining setup description can be found in Appendix B.2.1.

Results Table 1 summarizes our results. We report the
normalized decision loss (i.e., normalized Eqn. (2)) on test
data. Since the problem is smooth and exact gradients
can be calculated, MDFL achieves the best performance
closely followed by the LANCER. The remaining results are
in agreement with (Shah et al., 2022). While LANCER does
not achieve the best overall performance, it does so using
a significantly smaller number of calls to a solver, as we
discuss in more detail in Appendix C.2.

3.3. Real-world use case: combinatorial portfolio
selection with third-order objective

The convex portfolio optimization problem discussed in the
previous section 3.2 is unable to capture desirable properties
such as logical constraints (Bertsimas et al., 1999; Ferber
et al., 2020), or higher-order loss functions (Harvey et al.,
2010) that integrate metrics like co-skewness to better model
risk. We use the Quandl (Quandl) data (see Appendix B.2.2
for setup details). Here, we assume that the full problem

Figure 3. Objective (lower is better) and deployment runtime for
combinatorial portfolio selection problem. For LANCER–zero and
SurCo–zero, numbers at each point correspond to the number of
iterations.

description z is given at train/test time.

Results are shown in fig. 3. We first tried to solve the given
MINLP exactly via SCIP. However, it fails to produce the
optimal solution within 1 hour time limit and we report
the best incumbent feasible solution. MIQP (blue squares)
and MILP (blue triangles) approximations overlook the co-
skewness and non-linear terms, respectively. For LANCER
and SurCo, we present results for two scenarios: learning
the linear cost vector c directly (zero) for each instance, and
a parameterized version cθ(z) (prior). The main distinction
of “prior” is that no learning occurs during test time. Con-
sequently, the deployment runtime is similar to that of the
MILP approximation, but LANCER–prior produces slightly
superior solutions. Remarkably, LANCER–zero achieves
significantly better loss values, surpassing all other meth-
ods. Although it takes longer to run, the runtime remains
manageable, and importantly, the solution quality improves
with an increasing number of iterations.

4. Conclusion
This paper makes a dual contribution: 1) we derive a unified
training procedure to address various coupled learning and
optimization settings, including smart P+O and surrogate
learning; 2) we propose an effective and powerful method
called LANCER to tackle this training procedure. LANCER
offers several advantages over existing literature, such as
versatility, differentiability, and efficiency. Experimental re-
sults validate these advantages, leading to significant perfor-
mance improvements. One potential drawback is the com-
plexity of tuningM, requiring model selection and training.
However, future research directions include addressing this
drawback and exploring extensions of LANCER, such as
applying it to fully black box f scenarios.

4



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

References
Achterberg, T. SCIP: Solving constraint integer pro-

grams. Mathematical Programming Computation, 1
(1):1–41, July 2009. ISSN 1867-2957. doi: 10.1007/
s12532-008-0001-1.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,
S., and Kolter, J. Z. Differentiable convex optimization
layers. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d’Alché Buc, F., Fox, E., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems (NEURIPS),
volume 32, pp. 9562—-9574. MIT Press, Cambridge,
MA, 2019.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In Precup, D.
and Teh, Y. W. (eds.), Proc. of the 34th Int. Conf. Ma-
chine Learning (ICML 2017), pp. 136—-145, Sydney,
Australia, August 6–11 2017.

Bertsimas, D., Darnell, C., and Soucy, R. Portfolio construc-
tion through mixed-integer programming at grantham,
mayo, van otterloo and company. Interfaces, 29:49–66,
1999.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1–5, 2016.

Donti, P., Amos, B., and Kolter, J. Z. Task-based end-to-end
model learning in stochastic optimization. In Guyon, I.,
v. Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems (NIPS), volume 30, pp.
1320–1332. MIT Press, Cambridge, MA, 2017.

Elmachtoub, A. N. and Grigas, P. Smart “predict, then
optimize”. arXiv:1710.08005, October 22 2017.

Fan, Y. Y., Kalaba, R. E., and Moore, J. E. Arriv-
ing on time. Journal of Optimization Theory and Ap-
plications, 127(1):497—-513, December 2005. doi:
10.1007/s10957-005-7498-5.

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. MIPaaL:
Mixed integer program as a layer. In AAAI Conference
on Artificial Intelligence (AAAI 2020), 2020.

Ferber, A., Huang, T., Zha, D., Schubert, M., Steiner, B.,
Dilkina, B., and Tian, Y. Surco: Learning linear surro-
gates for combinatorial nonlinear optimization problems.
arXiv:2210.12547, October 22 2022.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz,
R. S., and Guo, E. On differentiating parameterized
argmin and argmax problems with application to bi-level
optimization. arXiv:1607.05447, July 21 2016.

Gurobi. Gurobi optimizer reference manual, 2019.

Harvey, C. R., Liechty, J. C., Liechty, M. W., and Muller,
P. Portfolio selection with higher moments. Quantitative
Finance, 10:469–485, 2010.

Korte, B. and Vygen, J. Combinatorial Optimization: The-
ory and Algorithms. Number 21 in Algorithms and Com-
binatorics. Springer-Verlag, sixth edition, 2018.

Lim, S., Sommer, C., Nikolova, E., and Rus, D. Practical
route planning under delay uncertainty: Stochastic short-
est path queries. In Robotics: Science and Systems VIII,
pp. 249–256, 2012. doi: 10.15607/RSS.2012.VIII.032.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine Learning,
8:293—-321, 1992.

Markowitz, H. Portfolio selection. J. of Finance, 7(1):
77–91, March 1952.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer Series in Operations Research and Financial
Engineering. Springer-Verlag, New York, second edition,
2006.

Pogančic̀, M. V., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. Differentiation of blackbox combinatorial
solvers. In Proc. of the 8th Int. Conf. Learning Represen-
tations (ICLR 2020), Addis Ababa, Ethiopia, April 26–30
2020.

Quandl. Wiki various end-of-day data, 2022. URL https:
//www.quandl.com/data/WIKI.

Shah, S., Wang, K., Wilder, B., Perrault, A., and Tambe,
M. Decision-focused learning without decision-making:
Learning locally optimized decision losses. In Advances
in Neural Information Processing System, pp. 1320–1332,
2022.

Tang, B. and Khalil, E. B. Pyepo: A pytorch-based end-to-
end predict-then-optimize library for linear and integer
programming. arXiv:2206.14234, June 28 2022.

Wang, P.-W., Donti, P., Wilder, B., and Kolter, Z. Satnet:
Bridging deep learning and logical reasoning using a
differentiable satisfiability solver. In International Con-
ference on Machine Learning, pp. 6545–6554. PMLR,
2019.

Wilder, B., Dilkina, B., and Tambe, M. Melding the data-
decisions pipeline: Decision-focused learning for combi-
natorial optimization. In AAAI Conference on Artificial
Intelligence (AAAI 2020), 2020.

5

https://www.quandl.com/data/WIKI
https://www.quandl.com/data/WIKI


LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Ye, M., Liu, B., Wright, S., Stone, P., and Liu, Q. Bome!
bilevel optimization made easy: A simple first-order ap-
proach. In Advances in Neural Information Processing
System, 2022.

6



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

A. Algorithm details

Algorithm 1 Pseudocode for simultaneously learning LANCER and target model cθ. Note that the algorithm may vary
slightly based on setting: P+O in algorithm 2 and variations of SurCo in algorithms 3-4.

1: Input: Dtrain ← {yi, zi}Ni=1, solver g, objective f , target model cθ;
2: Initialize cθ (e.g. random, warm start);
3: for t = 1 . . . T do
4: • w-step (fix θ and optimize over w):
5: for (yi, zi) ∈ Dtrain do
6: evaluate ĉi = cθ(yi);
7: evaluate f̂i = f(g(ĉi); zi);
8: add (ĉi, zi, f̂i) to D;
9: end for

10: solve minw
∑

i∈D

∥∥∥Mw(ĉi, zi)− f̂i

∥∥∥ via supervised learning;
11: • θ-step (fix w and optimize over θ):
12: solve minθ

∑
i∈Dtrain

Mw(cθ(yi), zi) via supervised learning.
13: end for

A.1. Reusing past evaluations of f ◦ gθ

In LANCER, the learning process ofMw is solely reliant on D and is independent of the current state of cθ . Put simply, to
effectively learnMw, we only need the inputs and outputs of f ◦ gθ, namely cθ(yi), Z, and the corresponding objective
value f̂ . Interestingly, we can cache the predicted descriptions themselves, cθ(yi), without the need for the model θ or
problem information. This caching mechanism allows us to reuse the data (cθ(yi), z, f̂) from previous iterations (1 . . . T−1)
as-is. By adopting this practice, we enhance and diversify the available training data forMw, which proves particularly
advantageous for neural networks. This concept bears resemblance to the concept of a replay buffer (Lin, 1992) commonly
found in the literature on Reinforcement Learning.

A.2. Computational complexity

It is quite straightforward to estimate the runtime of our approach from Algorithm 1. Let us denote Ig as the time to get the
solution from solver g(yi). Also, let Iw and Iθ be the runtime of training the parametric lossMw and the target model cθ ,
respectively. Then, assuming evaluating f is negligible, one iteration of our algorithm naively takes O(N · Ig + Iw + Iθ),
so the total runtime is O(T ·N · Ig + T · Iw + T · Iθ). In practice, we iterate at most 100 times (T < 100). Therefore, the
main bottleneck is O(T ·N · Ig), which is mainly overtaken by an access to g. Although we claim that leveragingM to
learn θ is efficient, we admit that there is still a requirement to access the solver g.

However, there are several accelerations that can be made:

1. O(N · Ig) is embarrassingly parallel computation since each request to g is independent and, additionally, subsampling
on Dtrain can be performed.

2. We can “warm start” the solver g from solutions obtained in t− 1, which typically yields faster convergence.

3. Although we did not test this, but one can “early stop” the solver g if it is too costly to solve optimally (e.g. large scale
MILP). Our hypothesis is that it is enough to obtain a feasible solution x̂ in certain neighborhood of x∗. Since we are
still able to evaluate f and (f(x̂), ĉ, z) is a “valid” tuple, we can use it to trainMw.

4. Moreover, we empirically found out that the supervised learning steps (lines 10 and 12) do not require “perfect”
learning. That is, we perform several gradient updates over w and θ, which significantly reduces Iw and Iθ.

A.3. Variations of the algorithm

Algorithms 2-4 below closely resemble what we present in the main paper. However, there are minor variations that depend
on the problem setting, whether it involves learning linear surrogates for MINLP or smart Predict+Optimize setting.

7



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Algorithm 2 Pseudocode for learning LANCER and target model cθ for smart Predict+Optimize setting. Note: y – input
(always observed) features, z – ground truth problem descriptions (available at train time only).

1: Input: Dtrain ← {yi, zi}Ni=1, solver g, objective f (can be black–box), target model cθ, (optional) prediction loss
penalty λ;

2: Initialize cθ from solving: minθ
∑

i∈Dtrain
∥cθ(yi)− zi∥;

3: Set D ← {};
4: for t = 1 . . . T do
5: • w-step (fix θ and optimize over w):
6: for (yi, zi) ∈ Dtrain do
7: evaluate ĉi = cθ(yi);
8: evaluate f̂i = f(g(ĉi); zi);
9: add (ĉi, zi, f̂i) to D;

10: end for
11: minimize: minw

∑
j∈D

∥∥∥Mw(ĉj , zj)− f̂j

∥∥∥;
12: • θ-step (fix w and optimize over θ):
13: minimize: minθ

∑
i∈Dtrain

Mw(cθ(yi), zi) + λ∥cθ(yi)− zi∥.
14: end for

Algorithm 3 Pseudocode for learning linear surrogates with LANCER–zero (used sections 5.1.2 and 5.2.2 in the main paper).
Note that y = z in this setting and we have only one optimization problem instance.

1: Input: problem description y, solver g, objective f (can be black–box);
2: Initialize c ∈ RL;
3: Set D ← {};
4: for t = 1 . . . T do
5: • w-step (fix c and optimize over w):
6: randomly sample {ĉi}Ni around c;
7: for i = 1...N do
8: evaluate f̂i = f(g(ĉi);y);
9: add (ĉi, f̂i) to D;

10: end for
11: minimize: minw

∑
j∈D

∥∥∥Mw(ĉj)− f̂j

∥∥∥;
12: • θ-step (fix w and optimize over c):
13: // θ = c in this setting as we solve for a single problem instance y
14: minimize: mincMw(c).
15: end for

Algorithm 4 Pseudocode for learning linear surrogates with LANCER–prior (used section 5.2.2 in the main paper): we learn
cθ on a distribution of optimization problems. Note that y = z in this setting

1: Input: Dtrain ← {yi}Ni=1, solver g, objective f (can be black–box), target model cθ;
2: Initialize cθ (random, warm start from heuristics);
3: Set D ← {};
4: for t = 1 . . . T do
5: • w-step (fix θ and optimize over w):
6: for (yi) ∈ Dtrain do
7: evaluate ĉi = cθ(yi);
8: evaluate f̂i = f(g(ĉi);yi);
9: add (ĉi,yi, f̂i) to D;

10: end for
11: minimize: minw

∑
j∈D

∥∥∥Mw(ĉj ,yj)− f̂j

∥∥∥;
12: • θ-step (fix w and optimize over θ):
13: minimize: minθ

∑
i∈Dtrain

Mw(cθ(yi),yi).
14: end for

8



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

B. Details of experimental setup
B.1. Synthetic data

Data We follow the setup and scripts from PyEPO (Tang & Khalil, 2022) library to generate data.

• for SP, we follow the same data generation process as in the original scripts: 5× 5 grid (40 total edges), 1000 training
problem instances with 5 input features (i.e., Y ∈ R1000×5) and the same for the test set. Input features (y) are
generated using normal distribution with N (0,1). The ground truth descriptors z are obtained by first randomly and
linearly projecting y in 40 dimensions followed by nonlinearity (polynomial of degree 6 and normalization). Lastly,
random noise is added to z to make the problem harder. We use the standard linear program (LP) formulation of the
shortest path and implement solver g in SCIP (Achterberg, 2009).

• As for MKS, we begin by generating a cost vector for each item using a random uniform distribution between 0 and
5. Then, we obtain features y by passing z through a random neural network with one hidden layer of size 500 and
tanh activation. Knapsack capacity is 40, knapsack dimension is 5, 100 total items to choose from, feature dimension
is 256 and there are 1000 instances in both train/test. Lastly, weight for each item is generated according to the
uniform distribution between 0 and 1. We use the standard mixed-integer linear program (MILP) formulation of the
multidimensional knapsack and implement solver g in SCIP (Achterberg, 2009).

Target mapping cθ All baselines use the same target mappings for each problem: linear mapping for SP and MLP with 1
hidden layer for MKS (size of 300 and tanh activation).

LANCER The training procedure closely follows Algorithm 2. Other problem dependent settings are as follows:

• for SP, LANCER uses MLP with 2 hidden layers of size 100 (tanh activation). We train LANCER for T = 10 iterations.
At each iteration, we make 5 updates (using Adam optimizer with lr= 0.001) for each mappings (cθ andMw).

• for MKS, LANCER uses MLP with 2 hidden layers of size 200 (tanh activation). We train LANCER for T = 7 iterations.
At each iteration, we perform 5 updates (using Adam optimizer with lr= 0.001) for cθ and 10 updates forMw.

Baselines

• SPO+,DBB: We use the versions implemented within PyEPO and set the number of epochs to 25. Both methods use
the Adam optimizer with learning rates tuned for each problem. Other arguments follow the default setting suggested
by authors.

• LODLs: We use the implementation provided by authors in (Shah et al., 2022). We set the number of sampling points
to 1000 and employ “random Hessian” version of the algorithm. Other arguments follow the default setting suggested
by authors.

B.2. Real-world use case: quadratic and broader nonlinear portfolio selection

B.2.1. THE QUADRATIC PROGRAMMING (QP) FORMULATION

We use the standard quadratic program formulation of the Markowitz’ (Markowitz, 1952) portfolio selection problem:

min
x

αxTGx− µTx

s.t.
k∑

i=1

xi = 1 and x ≥ 0
(5)

where µ is an expected return vector for each portfolio and G is the covariance matrix. We set the user-defined hyperparam-
eter α = 0.1 in all experiments and use CvxPy (Diamond & Boyd, 2016) to solve QP in eq. (5).

Data We reuse the code from Shah et al. (2022) to generate data (downloaded from QuandlWIKI (Quandl)) and use the
same setup. The features y are historical stock prices and the task is to predict an expected return µ (using MLP with 1
hidden layer of size 500) in smart Predict+Optimize fashion. There are 200 instances in train/validation set and 400 instances
in test set. The number of portfolios in each instance is 50.

9



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

LANCER The training procedure closely follows Algorithm 2. We use MLP with 2 hidden layers of size 100 and tanh
activation. We train LANCER for T = 8 iterations. At each iteration, we make 10 updates (using Adam optimizer) to fit
each mapping (cθ andMw).

Baselines

• LODLs: We use the implementation provided by authors in (Shah et al., 2022). We replicate their configurations for
this experiment, except we made a quick fix in the code as they forgot to add a matrix transpose in the quadratic term.

• MDFL (Melding Decision Focused Learning) (Wilder et al., 2020): we use the version implemented in (Shah et al.,
2022) and follow their configurations.

B.2.2. COMBINATORIAL PORTFOLIO SELECTION WITH THIRD-ORDER OBJECTIVE

We extend the portfolio selection problem in eq. (5) as follows:

min
x,v

αxTGx+ γ∥x− x0∥1 − µTx− βxTSx⊗ x

s.t.
k∑

i=1

xi = 1

fmin ∗ vi ≤ xi ≤ fmax ∗ vi for i = 1 . . . k (fraction of each selected portfolio)

m ≤
k∑

i=1

vi ≤M (no. of selected portfolios must be between m and M )

x ≥ 0

v ∈ {0, 1}

(6)

where S is co-skewness matrix and v is the binary variables to enforce discrete constraints (e.g. hard limit on number of
portfolios). We also introduce the initial portfolio selection vector x0 (generated uniformly at random) and enforce our final
solution to be close to it (via γ). We set the penalty on co-skewness as β = 0.5, γ = 0.01, m = 3, M = 10, fmin = 0.01
and fmax = 0.2 throughout all experiments. We reuse the same data as in section B.2.1 but increase the number of portfolios
to 100 and add co-skewness matrix S to it. Note that in this task we assume that all problem descriptors are fully observed
(e.g. µ,G,S).

LANCER The training procedure for LANCER-zero closely follows Algorithm 3 and LANCER-prior closely follows
Algorithm 4. We use MLP with 2 hidden layers of size 300 and tanh activation. We train LANCER for T = 40 iterations.
At each iteration, we perform 10 updates (using Adam optimizer) for each learnable models (cθ andMw). Additionally,
LANCER-prior uses a parametric mapping for cθ which is implemented via 1 hidden layer MLP of size 500, which µ takes
as input.

Baselines

• SCIP attempts to solve the problem defined in Eqn. (6) in three different settings related to the objective: ignores all
nonlinear terms (MILP), ignores cubic term (MIQP) and attempts to solve the original nonlinear problem (MINLP).
We set the maximum time limit to 60 min before terminating the solver and obtaining the best solution.

• for SurCo (Ferber et al., 2022), we use two versions: SurCo-prior and SurCo-zero. SurCo-prior uses the same mapping
for cθ as LANCER described above. We use DBB (Pogančic̀ et al., 2020) to differentiate through the solver with
λ = 100 and apply Adam optimizer for 100 epochs with the learning rate = 0.1 (0.0001 for prior).

C. Additional experimental results
C.1. Combinatorial optimization with nonlinear objective

In this section, we apply LANCER for solving mixed integer nonlinear programs (MINLP). Specifically, we transform a
combinatorial problem with a nonlinear objective into an instance of MILP via learning linear surrogate costs as described

10



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Grid 5x5 Grid 15x15

Figure 4. Results on stochastic shortest path using different grid sizes: 5x5 (left) and 15x15 (right). We report avg objective values (higher
is better) on three settings described in (Ferber et al., 2022). For grid size of 15x15, SCIP (Achterberg, 2009) was unable to finish within
the 30 min time limit.

in Ferber et al. (2022). Note that in this setting, we assume that the full problem description y = z is given and fully
observable (in contrast to the P+O setting).

We examine on-the-fly optimization, where each problem is treated independently. In this scenario, the cost vector cθ(y)
simplifies to a constant value c. SurCo is then responsible for directly training the cost vector c of the linear surrogate. We
refer to this version as LANCER–zero to be consistent with SurCo–zero.

C.1.1. SETUP

Nonlinear shortest path problems arise when the objective is to maximize the probability of reaching a destination before
a specified time in graphs with random edges (Lim et al., 2012; Fan et al., 2005). These problems commonly occur in
risk-aware contexts, such as emergency service operators aiming to maximize timely arrival or situations where driver
incentives depend on meeting deadlines. The problem formulation is similar to the standard linear programming (LP)
formulation of the shortest path, as described in section 3.1, with a few adjustments: 1) the weight of each edge follows a
normal distribution, i.e., we ∼ N (µe, σe); 2) the objective is to maximize the probability that the sum of weights along the
shortest path is below a threshold W , which can be expressed using the standard Gaussian cumulative distribution function
(CDF), P (

∑
e∈E we ≤ W ) = Φ

(
(W −

∑
e∈E µe)/

√∑
e∈E σe

)
where E is the set of edges belonging to the shortest

path. We use 5× 5 and 15× 15 grid graphs with 25 draws of edge weights. We set the threshold W to three different values
corresponding to loose, normal, and tight deadlines.

We aim to solve the following optimization problem with nonlinear objective:

min
x

Φ

(W −
∑

(u,v)∈E

xu,vµu,v)/

√ ∑
(u,v)∈E

xu,vσu,v


s.t.

∑
(u,t)∈E

xu,t ≥ 1 (at least one unit of flow into t)

∑
u:(u,v)∈E

xu,t −
∑

u:(v,u)∈E

xu,t ≥ 0 , ∀v /∈ {s, t} (flow in ≥ flow out)

x ≥ 0

(7)

where Φ is the standard Gaussian cumulative distribution function (CDF), E is the set of all edges, W is the user-defined
threshold, µu,v and σu,v are the mean and the variance of the corresponding edge’s weight.

Data We closely follow the data generation process described in (Ferber et al., 2022). Specifically, each edge is a random
variable with µ coming from the uniform distribution (between 0.1 and 0.2); and with σ is also generated uniformly

11



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Multidimensional Knapsack Portfolio Optimization

Figure 5. Trade-off curves between black-box solver calls (MILP or QP) vs decision loss (or regret) on P+O problems. Point labels (e.g.
1,4,7) correspond to the epoch; except for LODLs, where they correspond to the number of samples per instance. Each algorithm uses a
different number of BB calls per epoch.

randomly (between 0.1 and 0.3 multiplied by 1− µ). For thresholds W , we set them as follows: calculate the distance of
the shortest path distance using the mean value as an edge weight and multiply it to 0.9 for tight, 1.0 for normal and 1.1 for
loose deadlines, respectively. We set the number of problem instances to 25 and use the Bellman-ford algorithm for a solver
g.

LANCER The training procedure closely follows Algorithm 3. We use MLP with 2 hidden layers of size 200 (300 for
15 × 15 grid size) and tanh activation. We train LANCER for T = 40 iterations. At each iteration, we make 10 updates
(using Adam optimizer) for each learnable models (c andMw).

Baselines

• SCIP attempts to solve the original MINLP defined in Eqn. (7). We set the maximum time limit to 30 min before
terminating the solver.

• Domain Heuristic simply assigns each edge’s weight as we = µe + γσe (where γ is a hyperparameter) and run the
Bellman-ford’s algorithm.

• SurCo (Ferber et al., 2022) replicates the same experimental setup as described in the original paper. Specifically, we
use DBB (Pogančic̀ et al., 2020) to differentiate through the solver with λ = 1000 and apply Adam optimizer for 40
epochs with the learning rate = 0.1.

C.1.2. RESULTS

Fig. 4 illustrates the performance of different methods in both grid sizes. SCIP directly formulates the MINLP to maximize
the CDF, resulting in an optimal solution. However, this approach is not scalable for larger problems and is limited to smaller
instances like the 5× 5 grid. The heuristic method assigns each edge weight as we = µe + γσe, where γ is a user-defined
hyperparameter, and employs standard shortest path algorithms (e.g., Bellman-ford). As the results indicate, this heuristic
approach produces highly suboptimal solutions. SurCo–zero and LANCER–zero demonstrate similar performance, with
LANCER–zero being superior in almost all scenarios.

C.2. Computational efficiency

Comparing baseline methods, including LANCER, we find that querying solver gθ is the primary computational bottleneck.
To evaluate this aspect, we empirically analyze different algorithms on various benchmarks in the P+O domain. The results,
depicted in fig. 5, highlight that LODLs require sampling a relatively large number of points per training instance, leading
to potentially time-consuming solver access. On the other hand, gradient-based methods like DBB, MDFL, and SPO+
typically solve the optimization problem 1-2 times per update but require more iterations to converge. In contrast, LANCER

12



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Table 2. Results of reusing M on stochastic shortest path problem from fig. 4 (15× 15 grid). Here, “reused Mw” has limited access to
the solver g, and thus is much faster while retaining solution quality.

Method Loose Deadline Normal Deadline Tight Deadline
obj. time (s) obj. time (s) obj. time (s)

LANCER–zero 0.556 ± 0.006 61.1 ± 3.2 0.497 ± 0.004 62.3 ± 2.9 0.434 ± 0.005 62.8 ± 2.7
LANCER–reused Mw 0.556 ± 0.007 2.9 ± 0.3 0.496 ± 0.004 2.7 ± 0.6 0.432 ± 0.004 2.5 ± 0.6

accesses the solver in the w-step, with the number of accesses proportional to the training set size and a small total number
of alternating optimization iterations. Moreover, we leverage saved solutions from previous iterations, akin to a replay buffer,
when fittingM. These combined factors allow us to achieve favorable results with a small value of T .

C.3. Reusing landscape surrogateMw

In this scenario, we introduce a dependency ofMw on both the predicted linear cost (c) and the problem descriptor (y), as
described in section 2. This enables us to reuseMw for different problem instances without retraining, and eliminate the
dependency on the solver gθ, giving LANCER a substantial runtime acceleration. To validate this hypothesis, we pretrain
Mw using 200 instances of the stochastic shortest path on a 15× 15 grid by providing concatenated (c,y) as input. We
apply LANCER–zero to the same test set as before and present results in fig. 2, demonstrating comparable performance
between these two approaches, with “reusedMw” being much faster.

D. Interpreting combinatorial portfolio selection with third-order objective
Based on our experimental findings, LANCER showcased the most significant improvement in addressing the combinatorial
portfolio selection problem. Inspired by this success, we delved further into the intricacies of this problem and sought to
visualize the actual solutions obtained by the two best-performing methods: SurCo and LANCER. We present the results for
a randomly selected instance in Figure 6.

We have assigned a symbol of a corresponding S&P company to each point for clarity. On the Y-axis, we represent the
expected return of a selected stock, which is multiplied by its fraction (approximate solution x in Eqn. (6)). Similarly,
the X-axis displays the “risk−skewness score” calculated as follows: αx ⊙ (Gx) − βx ⊙ (Sx ⊗ x), where ⊙ denotes
element-wise multiplication. This computation results in a vector of dimensions equal to the number of stocks, enabling us
to interpret it as a score assigned to each stock. Furthermore, the combinatorial constraints outlined in Eqn. (6) enforce the
selection of a maximum of M stocks with fractions lower than or equal to fmax.

As we try to maximize the return and minimize the risk−skewness score, we want all point to be in the upper-left corner.
This is what LANCER achieves. It is interesting to see that LANCER chooses the less number of portfolios (6 vs 9) but
assigns higher fraction to them improving overall objective.

13



LANCER: Learning Decision Losses for Mathematical Optimization Under Partial Information

Figure 6. Visualization of the solution for a single instance of the combinatorial portfolio selection with third-order objective. LANCER
demonstrates a tendency to select and allocate a significant proportion to stocks characterized by a combination of low ’risk − skewness’
and high rewards (upper-left corner).

14


	A Unified Training Procedure
	LANCER: Learning Landscape Surrogate Losses
	Experiments
	Synthetic data
	Real-world use case: the quadratic programming
	Real-world use case: combinatorial portfolio selection with third-order objective

	Conclusion
	Algorithm details
	Reusing past evaluations of fgbold0mu mumu 
	Computational complexity
	Variations of the algorithm

	Details of experimental setup
	Synthetic data
	Real-world use case: quadratic and broader nonlinear portfolio selection
	The quadratic programming (QP) formulation
	Combinatorial portfolio selection with third-order objective


	Additional experimental results
	Combinatorial optimization with nonlinear objective
	Setup
	Results

	Computational efficiency
	Reusing landscape surrogate Mw

	Interpreting combinatorial portfolio selection with third-order objective

