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Abstract

Self-attention models have made great strides toward accurately modeling a wide array of
data modalities, including, more recently, graph-structured data. This paper demonstrates
that adaptive hierarchical attention can go a long way toward successfully applying trans-
formers to graphs. Our proposed model Sequoia provides a powerful inductive bias towards
long-range interaction modeling, leading to better generalization. We propose an end-to-end
mechanism for a data-dependent construction of a hierarchy which in turn guides the self-
attention mechanism. Using adaptive hierarchy provides a natural pathway toward sparse
attention by constraining node-to-node interactions with the immediate family of each node
in the hierarchy (e.g., parent, children, and siblings). This in turn dramatically reduces the
computational complexity of a self-attention layer from quadratic to log-linear in terms of the
input size while maintaining or sometimes even surpassing the standard transformer’s ability
to model long-range dependencies across the entire input. Experimentally, we report state-
of-the-art performance on long-range graph benchmarks while remaining computationally
efficient. Moving beyond graphs, we also display competitive performance on long-range se-
quence modeling, point-clouds classification, and segmentation when using a fixed hierarchy.
Our source code is publicly available at https://github.com/HySonLab/HierAttention.

*These authors contributed equally to this work
†Correspondence to TruongSon.Hy@indstate.edu
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1 Introduction

Transformers (Vaswani et al., 2017) are powerful models that demonstrated superior performance in various
input modalities, ranging from natural language processing to video understanding. Self-attention has also
proved to be an effective tool for handling long-range dependencies, although its efficiency suffers due it
its quadratic complexity in the input size. Therefore, a considerable body of literature on efficient
transformers is dedicated to scaling the vanilla transformer with multiple approaches to resolving their
scaling/performance trade-off. Strategies to make them more compute-efficient include approximating the
attention matrix with sparsity patterns (Ho et al., 2020; Beltagy et al., 2020a; Zaheer et al., 2020a), clustering
before computing attention (Roy et al., 2021; Kitaev et al., 2020b), low-rank estimation (Wang et al., 2020;
Xiong et al., 2021) and better memory I/O (Dao et al., 2022).

Figure 1: (Left) We adaptively partition the graph to form a hierarchy. This incremental partitioning at
each level is produced by message passing on the graph at a lower level and the use of Gumbel-max for

hard clustering. (Right) This adaptive tree forms the basis for sparse self-attention in a single
self-attention layer.

In this work, we focus on devising a self-attention mechanism that could enable long-range interaction
modeling on graph-structured data. Most current efficient transformers either sparsify the attention
matrix using random patterns or a distance metric derived from the tokens’ relative positions in a sequence.
Our initial motivation coincides with a similar idea of skipping superfluous interactions to capture long-
range interactions under a fixed computational budget (Choromanski et al., 2021; Katharopoulos et al.,
2020). More precisely, our model Sequoia decreases the computational cost by exploiting an adaptive
task-informed hierarchical clustering of the graph rather than using a prespecified interaction
pattern. As a result, our method not only requires lower resources but also surpasses the performance
of standard attention due to additional information about the data structure provided by the learnable
hierarchy. Furthermore, by propagating the information bottom-up and top-down through the tree built
atop the input graph, our method guarantees local and global information sharing. The resulting adaptive
hierarchical self-attention layer can be used as a building block for geometric deep learning using
transformers.

Our model is comprised of two parts : (i) computational tree learning that forms the basis for (ii) hi-
erarchical attention mechanism. Our work attempts to cover long-range datasets with various structures,
including what we categorize as ordered, semi-ordered, and unordered data. This distinction is related to
the way the hierarchy is constructed in each case: for ordered data structures, such as images and long
sequences, a hierarchy may be naturally constructed from their regular grid. More concretely, a sequence
or image is divided into nested sub-sequence or image patches, with decreasing resolution and increasing
receptive field at each level of the hierarchy. For semi-ordered structures such as point clouds, such a grid
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structure can be “imposed”, for example, using nested voxelization (Liu et al., 2019). However, graphs, as
an example of an unordered structure, arguably lack a natural hierarchy, and we learn the hierarchy for each
data instance. Due to the effectiveness of adaptive hierarchy for graphs, we focus our discussions on graphs;
discussion and further results on long-range sequences and point clouds are moved to the appendix.

In short, the main contributions of this paper are:

• An efficient hierarchical self-attention scheme with O(n log(n)) space and time complexity in
terms of the sequence length / the number of points / the graph size.

• A data-driven approach to constructing a tree as a guideline for the attention mechanism for
long-range graphs.

• Extensive experiments on long-range graphs understanding as well as long-range sequence mod-
elling and point clouds with state-of-the-art or competitive results along with ablation studies to
demonstrate the effectiveness and efficacy of our method.

2 Related work

Our contribution is related to a wide range of literature on deep learning on graphs, and in particular
application of transformer architectures to graphs, as well as the line of research of efficient transformers.
Below, we present a concise overview and further motivate our approach in the light of related literature:

Learning on graphs Graph neural networks based on message-passing scheme (Scarselli et al., 2009;
Gilmer et al., 2017; Kipf & Welling, 2016; Xu et al., 2019; Corso et al., 2020; Hamilton et al., 2017; Veličković,
2022) are currently the most widely adopted architectures for learning on graphs. By imposing a sparsity
pattern derived from the input graph on the computation graph, this type of neural architecture benefits
from linear complexity in the input size. While efficient and often competitive, the message-passing
scheme based on propagating and aggregating information among local neighbourhoods possesses well-known
limitations such as too much focus on locality (Morris et al., 2019; Xu et al., 2019), over-squashing (Alon
& Yahav, 2021; Topping et al., 2022) and over-smoothing (Chen et al., 2020a; Oono & Suzuki, 2020), pre-
venting them from dealing with long-range graphs (Dwivedi et al., 2022b) or capturing multiscale structures
(Hy & Kondor, 2023; Ying et al., 2018). In particular, several previous works on graph learning adaptively
construct a hierarchy using differentiable pooling (Gao & Ji, 2019; Knyazev et al., 2019; Khasahmadi et al.,
2020; Lee et al., 2019b; Ranjan et al., 2019). Their main distraction with our work is that they construct
a soft cluster assignment, which does not help with computational complexity when working with trans-
formers. Moreover, pooling operations only enable information sharing in a bottom-up direction, while our
hierarchical self-attention, enables information sharing between parents, children and siblings.

Recently, transformers built upon the self-attention mechanism, which takes into account all pairwise inter-
actions between nodes, has been employed to alleviate these issues (Müller et al., 2023).

Transformers for graphs Previous studies have adapted conventional transformers to work on graph
domains by introducing novelties, such as graph feature encoding schemes (Dwivedi & Bresson, 2020a;
Rampasek et al., 2022; Ying et al., 2021), spectral attention (Kreuzer et al., 2021), graph tokenization (Kim
et al., 2022a), structural information extraction (Chen et al., 2022; Rong et al., 2020), relative positional
encoding (Mialon et al., 2021), and attention on meta-paths (Yun et al., 2019). These techniques enable
transformers to display good performance on a wide range of small graph benchmarks (Hu et al., 2020;
Sterling & Irwin, 2015). However, extensions of vanilla transformers, which retain quadratic complexity,
encounter challenges in terms of memory and execution time when the graphs become larger (Dwivedi et al.,
2022b). Our work aims at bridging the gap between graph transformers and message-passing
networks. Building graph hierarchies enables us to operate local attention at each level and achieve global
attention by aggregating and updating information between the levels. This, as a result, helps with the
communication between distant nodes, while benefiting from a sub-quadratic complexity.

Efficient transformers for modeling long-range dependencies To ease the quadratic complexity of
vanilla transformer in modeling long sequences, several mechanisms were proposed to simplify the computa-
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tion of the attention matrix as summarized in survey (Lin et al., 2022). Reformer (Kitaev et al., 2020a) is a
content-based sparse attention transformer that matches tokens together into buckets using locality-sensitive
hashing before applying local attention. Others employ learnable sparsity patterns, like Sinkhorn transform-
ers (Tay et al., 2020a) which induce sparsity by sorting the keys and values matrices such that local heuristics
can be applied in the computation of the scaled-dot-product. Most efficient transformers (Guo et al., 2019),
(Beltagy et al., 2020b; Ravula et al., 2020; Zaheer et al., 2020b) resort to similar sparsity heuristics to get
rid of the bulk of the computations in the dot-product attention in a structured way, allowing for efficient
implementation without custom CUDA kernels. They often rely on local information processing, only se-
lecting a few tokens as “global tokens” which will attend to every token and can be attended to by all other
tokens. Further away from sparsity-based approaches, Transformer-XL (Dai et al., 2019) is a memory-based
transformer that adds recurrent connections across segments by reusing the hidden states of the model while
processing tokens of the previous segment. The work closest to ours is BP Transformer (Ye et al., 2019),
which uses binary partitioning of a sequence in order to integrate information from long-term context in a
fine-to-coarse fashion. Our model relies on sequential local message-passing updates in a tree, as opposed to
BP Transformer, which achieves global information sharing by computing intermediate nodes’ embeddings
in parallel directly from their leaf nodes instead of their direct children. Also, it relies on the sequential
ordering of the tokens to construct the dynamic hierarchy, which is impossible to do on graph-structured
data for which a natural monotonous ordering does not always exist.

We argue that models from the efficient transformers literature outlined above are not suitable for graph-
structured data for at least three reasons:

1. Their approach to sparsification may rely on 1D distance between tokens (e.g. convolutional-sense
locality) and thus cannot be applied to other input modalities than sequences.

2. Their efficient implementation on GPUs often requires custom CUDA kernels, which limits the
widespread availability of such models.

3. Most importantly, they often accomplish sparsification via mathematical tricks which may or may
not constitute a natural or motivated inductive bias towards better generalization.

As a consequence, vanilla attention remains a strong state-of-the-art general-purpose model in terms
of task performance for a wide array of input modalities. We believe that the main limitation towards better
task performance of a general-purpose model is the ability to retrieve specific information from long-range
interactions, which is lost in the “noise” of the large sum over input tokens performed by attention pooling
over large input data. In this paper, we aim not only to perform on par with vanilla attention on designated
benchmarks but also to outperform classical attention in terms of task performance thanks to the
powerful inductive bias provided by adaptive hierarchical attention.

3 Method

Overall, our proposed methods comprise two interacting components: (i) learning a hierarchical latent
structure over the input tokens and (ii) applying a sparse attention scheme over the recursive
k-ary tree computed in (i) in order to update tokens’ embeddings.

The k-ary tree is built over the input tokens, which correspond to leaf nodes. The other intermediate levels
of the tree up until the root node will henceforth be denoted virtual nodes. We use X ∈ Rn×d to denote
the embedding of input tokens or node features, and E ∈ Rn×n for the weighted adjacency matrix – that is
Eij > 0 implies an edge between node vi and vj with weight Eij . We use τ = τ(X, E) for a k-ary tree, where
n =

∑Λ−1
λ=0 nλ is the total number of nodes in the tree, including both leaf nodes and internal or virtual

nodes. Here, λ ∈ {0, . . . , Λ − 1} indexes the tree level, where λ = 0, λ = Λ − 1 indicates leaf level and
root level, respectively. Using this indexing, Xλ ∈ Rnλ×d is the embeddings matrix of the nodes at level λ.
Similarly, Eλ ∈ Rnλ×nλ corresponds to the adjacency matrix at that level. Finally, we use Iλ ⊂ {0, . . . , n}
for node indices in a given layer.
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Next, we elaborate on two components of our model, adaptive construction of hierarchy and sparse self-
attention guided by the resulting tree.

Figure 2: Our proposed Cluster Learning Block. In this block, the features of low-level nodes are used to
learn the cluster presented as virtual high-level nodes.

3.1 Adaptive Hierarchy

Although Sequoia’s k-ary tree can be pre-constructed using a partitioning algorithm designed especially for
a given input domain, we provide an approach to learn the clustering automatically. In contrast to
previous works (Gao & Ji, 2019; Knyazev et al., 2019; Khasahmadi et al., 2020; Lee et al., 2019b; Ranjan
et al., 2019) that learn a soft clustering assignment for nodes, ours learns to partition the inputs into mutually
exclusive clusters and coarsen into the upper-level resolution in the hierarchy, which enables inter-level and
intra-level attention at different resolutions.

A hard clustering of n nodes into k clusters is a mapping π : {1, .., n} → {1, ..., k} where π(i) = j if node
i is assigned to cluster j. The clustering is represented by an assignment matrix Π ∈ {0, 1}n×k, where
Πi,π(j) = 1. Since we require this hard assignment to be the output of a neural network, we relax Π to
P ∈ (0, 1)n×k, a row-stochastic matrix representing a distribution over clusters. We then sample from this
distribution to produce a cluster assignment. To make this process differentiable, we employ the Gumbel-
max trick (Gumbel, 1954; Maddison et al., 2014; Jang et al., 2016) that provides a simple implementation
and efficient way to define a categorical distribution π as:

Πi = one-hot
(
argmax

[
gi,k + log Pi,k

])
,

where Pi = [Pi,1, ..., Pi,k], is a vector of class probabilities computed by Softmax, and gi,j ∼ Gumbel(0, 1)
are i.i.d samples from Gumbel distribution.

To construct the hierarchy in a bottom-up fashion, starting from leaf nodes we use a Message-Passing Neural
Network(MPNN) on the corresponding graph (Xλ, Eλ) to compute the probability matrix P and apply the
GumbelMax function to derive Π, and therefore the layer above in the hierarchy:

Pλ = MPNN(Xλ−1, Eλ−1),
Πλ = GumbelMax(Pλ).

As Πλ is differentiable, the parameters of MPNN can be updated via backpropagation, resulting in an
effective end-to-end method for learning to cluster. For each level λ, corresponding node indices Iλ can be
easily retrieved from cluster memberships Πλ by converting from one-hot vector to index.

After identifying the cluster memberships in the layer above in the hierarchy, we use the membership to
aggregate the features of lower nodes and edges to construct higher-level node and edge features:

Xλ = Π⊤Xλ−1, Eλ = Π⊤Eλ−1Π. (1)

The interaction in the opposite direction is also straight-forward:

Xλ−1 = ΠXλ. (2)
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We term these two operations as Pooling(Eq. 1) and Expanding(Eq. 2) layers.

In short, when forming a tree, the nodes and edges at a higher level are constructed based on the lower
level. Specifically, after the input is fed into Adaptive Hierarchy, the block yields assignment matrix Π.
Based on this matrix Π and low-level nodes X and edges E , we can substitute them into Eq. 1 to obtain the
higher-level nodes and edges, resulting in weighted graphs. Optionally, the equation can also applicable for
edge attribute. However, in our implementation, for the simplicity, we keep the graph unweighted, which
means we only consider whether two nodes are connected without considering the weight of the connection.
The pseudocode for this process is presented in Alg. 1.

3.2 Hierarchical Self-Attention Block

Sequoia’s hierarchical attention scheme attends to three different neighbourhoods based on the tree structure:

• Children Cλ,i (all nodes j ∈ Iλ−1 | Parent[j] = i).
• Siblings Sλ,i (all nodes j ∈ Iλ | Parent[j] = Parent[i]).
• Ancestors Aλ,i : (all nodes j ∈ Iλ ∪ · · · ∪ ∈ IΛ−1 | Parent ◦ · · · ◦ Parent︸ ︷︷ ︸

Λ−λ times

[i] = j).

Our proposed attention scheme consists in applying:

ATTN(·) = Aent(·) = ϕ (Ac(·),As(·),Aa(·)) ,

where ϕ an appropriate fusion layer mixing the updated embeddings of each node according to the three
different attention types ( c - children, s - siblings and a - ancestors) on the node axis. Overall, for each node
i ∈ Iλ, we first gathers three types of neighbors j of target nodes i, including children Cλ,i, siblings Sλ,i, and
ancestors Aλ,i using the tree structure - illustrated in Figure 1. Then, we compute three different types of
embeddings Ac, As, and Aa for the target node based on its attention scores to each type of neighbor. These
resulting embeddings are aggregated using pooling to produce a unifying embedding Aent for the target node.

More formally, let Qi be the query embedding associated with node i, and (Kj , Vj)j∈V be the key and value
embeddings associated with nodes j in the neighbourhood, then the attention for children Ac

τ,λ,i, siblings
As

τ,λ,i, ancestors Aa
τ,λ,i of node i at level λ in k-ary tree τ is defined as:

Ac
τ,λ,i(Xτ

λ , i) = Attention W c
Q

,W c
K

,W c
V

[
Qi, (Kj , Vj)j ∈ Cλ,i

]
,

As
τ,λ,i(Xτ

λ , i) = Attention W s
Q

,W s
K

,W s
V

[
Qi, (Kj , Vj)j ∈ Sλ,i

]
,

Aa
τ,λ,i(Xτ

λ , i) = Attention W a
Q

,W a
K

,W a
V

[
Qi, (Kj , Vj)j ∈ Aλ,i

]
.

We finally fuse the updated embeddings proposed for node i by each of the three attention types using
simple average pooling, which can also be sum or max pooling. Here, we do not combine the embeddings
of children, siblings and ancestors with the embedding of each node itself because they will be implicitly
combined using residual connections mentioned in the next section.

Aent
τ,λ,i = ϕaverage[Ac

τ,λ,i, As
τ,λ,i, Aa

τ,λ,i] =
Ac

τ,λ,i + As
τλ,i + Aa

τ,λ,i

3 .

3.3 Putting it all together

Initially, the cluster learning block is applied repeatedly Λ−2 times to learn an Λ-layers tree. Here, the root
node representation is given by pooling the XΛ−2, without any “learning”. The term "without any learning"
means that the root node’s embedding is not initialized as a learnable parameter that is updated via back-
propagation, but is the aggregation of node embeddings of the low-level nodes. After constructing the tree
structures level by level, a combination of message passing, hierarchical attention, and residual connections
are used to refine node features, before pooling (Eq. 1) them to produce the features for the higher level;
we call these steps bottom-up blocks (Alg. 2). By employing the bottom-up iteratively from the leaves up to
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Figure 3: Our proposed Sequoia which mainly uses Bottom-Up and Top-Down block to aggregate local
features from leaves to root and propagate global features in the opposite direction.

the root, the model can extract global information from local features. To propagate back the information
to local features, a top-down block (Alg. 3) is used. In this block the feature from the higher level needs to
be expanded to have the same shape as the lower one. Subsequently, we apply MLP on refined lower-level
and then add both expanded (Eq. 2) and refined features together. The details of the combination of all
mentioned blocks are presented in Alg. 4. This block is also applied several times until the information
reaches the leaf level. We refer the readers to the Appendix for a time-complexity analysis.

Algorithm 1: Building Hierarchical Tree
Input: Xλ−1, Eλ−1 ; ▷ Inputs are nodes and edges of low-level in the hierarchy
Output: Xλ, Eλ ; ▷ Outputs are nodes and edges of high-level in the hierarchy
Pλ = MPNN(Xλ−1, Eλ−1) ; ▷ Apply the MPNN to compute the probability matrix P
Πλ = GumbelMax(Pλ) ; ▷ Apply the GumbelMax function to derive the assignment matrix Π
Xλ = Π⊤Xλ−1 ; ▷ Compute the high-level nodes Xλ

Eλ = Π⊤Eλ−1Π ; ▷ Compute high-level edges Eλ

Algorithm 2: Bottom-up Block
Input: Xλ−1, Eλ−1 ; ▷ Input is nodes and edges of low-level in the hierarchy
Output: Xλ ; ▷ Output is nodes of high-level in the hierarchy
Xlocal = Xλ−1 + MPNN(Xλ−1, Eλ−1) ; ▷ Apply the MPNN to compute the local features
Xglobal = Xλ−1 + ATTN(Xλ−1)) ; ▷ Apply the ATTN to compute the global features
X ′

λ−1 = Xlocal + Xglobal ; ▷ Combine local and global features
Xλ = POOLING(X ′

λ−1) ; ▷ Compute high-level nodes Xλ
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Algorithm 3: Top-down Block
Input: Xλ−1, Xλ, Eλ ; ▷ Input is nodes and edges of high-level in the hierarchy
Output: X ′′

λ−1 ; ▷ Output is nodes of low-level in the hierarchy
Xlocal = Xλ + MPNN(Xλ) ; ▷ Apply the MPNN to compute the local features
Xglobal = Xλ + ATTN(Xλ) ; ▷ Apply the ATTN to compute the global features
X ′

λ = Xlocal + Xglobal ; ▷ Combine local and global features
X ′

λ−1 = UNPOOLING(X ′
λ) ; ▷ Compute new low-level nodes

X ′′
λ−1 = Xλ−1 + X ′

λ−1 ; ▷ Combine old and new low-level nodes to generate X ′′
λ−1

Algorithm 4: Entire Network
Input: X0, E0 ; ▷ Input is leaf nodes of the hierarchy
Output: X ′ ; ▷ Output is nodes of all levels in the hierarchy
for (i = 0, i < λ, i = i + 1) do

Xi+1, Ei+1 ← Build Hierarchical Tree (Xi, Ei) ; ▷ Calculate nodes and edges of higher level
end
for (i = 0, i < λ, i = i + 1) do

Xi+1 ← Bottom-up Block (Xi, Ei) ; ▷ Aggregate features for nodes of higher level
end
for (i = λ, i > 0, i = i− 1) do

X ′
i−1 ← Top-down Block (Xi−1, Xi, Ei) ; ▷ Aggregate features for nodes of lower level

end

4 Experiments

4.1 Graph understanding

Dataset Description To demonstrate the effectiveness of our hierarchical inductive bias, we apply Sequoia
to three graph modeling datasets, namely LRGB (Dwivedi et al., 2022c), Polymer (St. John et al., 2019),
and Citation network (Sen et al., 2008):

• LRGB (Dwivedi et al., 2022c) is a long-range graph benchmark that is built on peptides and images.
In this work, we use 4 graph learning datasets: peptides-func (peptides), peptides-struct (pep-
tides), VOC-sp (image), and COCO-sp (image). Table 1 demonstrates the statistics of these datasets.
In particular, the long-range property is determined based on the graph diameter (i.e. the length of
the shortest path between the most distant nodes).

• Polymer (St. John et al., 2019) cointains 54,000 molecules associated to polymer properties. The
task in this dataset is to predict three types of density functional theory (DFT) metrics (Hohenberg
& Kohn, 1964) for each polymer. In particular, the model is trained to predict the first excitation
energy of the monomer (GAP), the energy of the highest occupied molecular orbital (HOMO), and the
lowest unoccupied molecular orbital (LUMO). The predictions are evaluated and compared with the
two important benchmark error levels (Faber et al., 2017): (1) DFT errors, the estimated average
error of the DFT approximation to nature; and (2) Chemical accuracy, a standard target error
recognized within the chemistry community.

• Citation networks (Sen et al., 2008) is a benchmark comprising 3 subdatasets named Cora, Cite-
seer, and Pubmed. In each dataset, documents are represented by sparse bag-of-words feature
vectors which correspond to the nodes of the underlying graph. Besides, the edges of the graph are
the citation links between documents.

Implementation Details The same configuration is shared across all datasets. In particular, we set batch
size = 128, hidden dimension d = 96, tree’s layer Λ = 3, stochastic gradient descent optimizer with the initial
learning rate of 10−4, maximum number of clusters C = 32, and epoch = 200.
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Table 1: Description of datasets in the LRGB benchmark

Dataset # Graphs # Nodes # Edge Diameter

Peptides-func 15k 2,3m 4.7m 56.99 ± 28.72
Peptides-struct 15k 2,3m 4.7m 56.99 ± 28.72
VOC-SP 11k 5m 30.7m 27.62±2.13
COCO-SP 123k 58m 332m 27.39±2.14

Table 2: Results on peptides property prediction. The baseline results are taken from (Dwivedi et al.,
2022b).

Method Params ↓ Time ↓ Peptides-struct Peptides-func

MAE ↓ AP ↑

GCN (Kipf & Welling, 2016) 508k 3s 0.3496 ± 0.0013 0.5930 ± 0.0023
GCNII (Chen et al., 2020b) 505k 3s 0.3471 ± 0.0010 0.5543 ± 0.0078
GINE (Xu et al., 2019) 476k 3s 0.3547 ± 0.0045 0.5498 ± 0.0079
GatedGCN (Bresson & Laurent, 2017) 509k 4.5s 0.3420 ± 0.0013 0.5864 ± 0.0077
GatedGCN + RWPE (Bresson & Laurent, 2017) 506k 4.5s 0.3357 ± 0.0006 0.6069 ± 0.0035

Transformer + LapPE (Vaswani et al., 2017) 488k 7.5s 0.2529 ± 0.0016 0.6326 ± 0.0126
Transformer + RWPE (Vaswani et al., 2017) 488k 7.5s 0.2620 ± 0.0010 0.6502 ± 0.0101
SAN + LapPE (Kreuzer et al., 2021) 493k 55s 0.2683 ± 0.0043 0.6384 ± 0.0121
SAN + RWPE (Kreuzer et al., 2021) 500k 55s 0.2545 ± 0.0012 0.6562 ± 0.0075
GPS (Rampášek et al., 2022) 500k 14s 0.2500 ± 0.0005 0.6535 ± 0.0041
MLP-Mixer (He et al., 2023) 396k 7.0s 0.2478 ± 0.0010 0.6970 ± 0.0080

Sequoia + RWPE (ours) 346k 5.3s 0.2453 ± 0.0006 0.6755 ± 0.0074
Sequoia + LapPE (ours) 346k 5.3s 0.2526 ± 0.0019 0.6323 ± 0.0042

Table 3: Results on VOC and COCO datasets. The baseline results are taken from (Dwivedi et al.,
2022b).

Method VOC COCO

Params ↓ Time ↓ macro F1 ↑ Params ↓ Time ↓ macro F1 ↑

GCN (Kipf & Welling, 2016) 496k 10.6s 0.1268 ± 0.0060 509k 116.3s 0.0841 ± 0.0010
GCNII (Chen et al., 2020b) 492k 8.8s 0.1698 ± 0.0080 505k 111.2s 0.1404 ± 0.0011
GINE (Xu et al., 2019) 505k 8.9s 0.1265 ± 0.0076 515k 105s 0.1339 ± 0.0044
GatedGCN (Bresson & Laurent, 2017) 502k 18.5s 0.1265 ± 0.0076 509k 189.7s 0.2641 ± 0.0045
GatedGCN + RWPE (Bresson & Laurent, 2017) 502k 18.5s 0.1265 ± 0.0076 509k 189.7s 0.2574 ± 0.0034

Transformer + LapPE (Vaswani et al., 2017) 501k 16.1s 0.2694 ± 0.0098 508k 196.1s 0.2618 ± 0.0031
Transformer + RWPE (Vaswani et al., 2017) 501k 16.1s 0.2718 ± 0.0076 508k 196.1s 0.2686 ± 0.0027
SAN + LapPE (Kreuzer et al., 2021) 531k 185s 0.3230 ± 0.0039 536k 2148s 0.2592 ± 0.0158*
SAN + RWPE (Kreuzer et al., 2021) 468k 185s 0.3216 ± 0.0027 474k 2148s 0.2434 ± 0.0156*
GPS (Rampášek et al., 2022) 510k 23.2s 0.3748 ± 0.0109 510k 280.5s 0.3412 ± 0.0044

Sequoia + RWPE (ours) 438k 13.5s 0.3379 ± 0.0133 438k 157.8s 0.2728 ± 0.0036
Sequoia + LapPE (ours) 438k 13.5s 0.3481 ± 0.0116 438k 157.8s 0.2756 ± 0.0027

In graph-level classification, there is one layer of message passing to refine the feature before constructing the
hierarchy, while in node-level segmentation, we apply four message-passing layers in this process. Thereafter
we employ a combination of message-passing, hierarchical attention and residual layers once at each level
of the tree to aggregate the global and local information. Additionally, we project the positional encoding
(e.g., Laplacian (Dwivedi & Bresson, 2020b) or random walk (Dwivedi et al., 2022a)) to the same dimension
of features (d = 96) and add them into the features.

Results Our model consistently outperforms other models in the benchmarks presented above. Regarding
effective time complexity, our model is slower than message passing, yet faster than other transformer models
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for graphs. More precisely, in the peptides dataset Table 2, we successfully reduce the MAE below 0.25 and
surpass the other methods by a large margin, suggesting that our Cluster Learning Block constructs a useful
hierarchy. We observe the same performance for the polymer dataset - Table 4. We believe that while a
learnable hierarchy breaks the graph into simpler and more meaningful subgraphs, the aggregation function,
with Bottom-Up and Top-Down techniques, enables efficient communication among features from different
levels in the hierarchical structure. This reasoning may hold true for the polymer dataset because this
data is related to chemistry, where learning from subgraphs highly benefits the network. For node-level
classification, as shown in Table 3, Sequoia achieves better performances in VOC and COCO. However, the
improvements are marginal for citation networks - Table 6. This aligns with the fact (Chen et al., 2020b;
Dwivedi et al., 2022b) that shallow GNNs are more effective than their deep counterparts and long-range
modeling methods on these benchmarks.

Table 4: Results on polymer property prediction. We trained all the following baselines for the
Polymer datasets.

Method Params ↓ Time ↓ GAP HOMO LUMO

MAE ↓ MAE ↓ MAE ↓

DFT error 1.2 2.0 2.6
Chemical accuracy 0.043 0.043 0.043

GCN (Kipf & Welling, 2016) 527k 13s 0.1094 ± 0.0020 0.0648 ± 0.0005 0.0864 ± 0.0014
GCN + Virtual Node (Kipf & Welling, 2016) 557k 13s 0.0589 ± 0.0004 0.0458 ± 0.0007 0.0482 ± 0.0010
GINE (Xu et al., 2019) 527k 11s 0.1018 ± 0.0026 0.0749 ± 0.0042 0.0764 ± 0.0028
GINE + Virtual Node (Xu et al., 2019) 557k 11s 0.0870 ± 0.0040 0.0565 ± 0.0050 0.0524 ± 0.0010

Transformer + LapPE (Vaswani et al., 2017) 320k 24s 0.0542 ± 0.0029 0.0445 ± 0.0020 0.0458 ± 0.0057
Transformer + RWPE (Vaswani et al., 2017) 320k 24s 0.1280 ± 0.0122 0.0854 ± 0.0055 0.0990 ± 0.0054
SAN + LapPE (Kreuzer et al., 2021) 495k 151s 0.0461 ± 0.0022 0.0356 ± 0.0026 0.0356 ± 0.0017
SAN + RWPE (Kreuzer et al., 2021) 495k 151s 0.0467 ± 0.0031 0.0351 ± 0.0024 0.0372 ± 0.0011

Sequoia + LapPE (ours) 346k 19s 0.0494 ± 0.0010 0.0384 ± 0.0028 0.0376 ± 0.0035
Sequoia + RWPE (ours) 346k 19s 0.0409 ± 0.0009 0.0312 ± 0.0014 0.0312 ± 0.0012

Table 5: Sequence Classification results on Long Range Arena benchmark for efficient transformers.

Method IMDB Cifar10 Listops Retrieval Patfhinder

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Complexity ↓

BigBird (Zaheer et al., 2020a) 64.02 40.83 36.05 59.29 74.87 O(n)
LongFormer (Beltagy et al., 2020a) 62.85 42.22 35.63 56.89 69.71 O(n)
Performer (Choromanski et al., 2021) 65.40 42.77 18.01 53.82 77.05 O(n)
LinFormer (Wang et al., 2020) 53.94 38.56 35.70 52.27 76.34 O(n)
Local Attention (Tay et al., 2020c) 52.98 41.46 15.82 53.59 66.63 O(n)
Linear Trans (Tay et al., 2020c) 65.90 42.34 16.13 53.09 75.30 O(n)

S4 (Gu et al., 2022) 76.02 86.09 88.65 87.09 86.05 O(n log n)
Mega (Ma et al., 2023) 90.43 90.44 63.14 91.25 96.01 O(n)

Sequoia (ours) 75.10 49.88 37.70 67.04 87.30 O(n log n)

4.2 Long Sequence Modeling

Dataset Description We evaluate Sequoia on Long Range Arena (Tay et al., 2020b) (sequence classifi-
cation on multiple input modalities) to demonstrate the effectiveness of our model. Our goal in the sequence
modeling experiments is to validate that Sequoia is a general-purpose model and can handle multiple input
modalities, including sequences of discrete tokens. Since our objective is to propose a hierarchical method
that can scale to large-sized data (e.g., long sequences, large graphs, etc.) efficiently, we compare Sequoia
with several efficient Transformers, including BigBird (Zaheer et al., 2020a) , LongFormer (Beltagy et al.,
2020a), Performer (Choromanski et al., 2021), LinFormer (Wang et al., 2020), Local Attention (Tay et al.,
2020c), and Linear Transformer (Tay et al., 2020c).
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Table 6: Results on Cora, Citeseer, Pubmed

Method Citeseer Cora Pubmed
Acc ↑ Acc ↑ Acc ↑ Runtime ↓

TSVM (Joachims, 1999) 0.640 0.575 0.622 –
LP(Zhu et al., 2003) 0.453 0.680 0.630 –
GRAPHEMB (Tian et al., 2014) 0.432 0.672 0.653 –
PLANETOID-G (Yang et al., 2016) 0.493 0.691 0.664 –
PLANETOID-T (Yang et al., 2016) 0.629 0.757 0.757 –
ChebNet (Defferrard et al., 2016) 0.698 0.780 0.744 –
GCN (Kipf & Welling, 2016) 0.703 0.815 0.790 0.32s
GAT (Veličković et al., 2018) 0.725 0.830 0.790 2.42s
Sequoia (ours) 0.732 0.845 0.794 2.15s

Implementation Details For experimental simplicity, we use a standard model backbone configuration
throughout all sequence classification tasks. More specifically, our model consists of four transformer layers,
with a hidden dimension of 512 splits across settings for all datasets. We use a dropout rate of 0.1, and our
model is optimized by Adam optimizer with a learning rate of 0.001 with a linear warmup. The accuracy
reported corresponds to the test accuracy obtained on the best-performing model according to validation
steps over every 2,000 training steps.

Results Table 5 reports our results for long-range sequence modelling and by the introduction of hierar-
chical interactions, Sequoia surpasses other conventional efficient transformers on LRA. One possible reason
for the improvements is that during forming a hierarchy, we explicitly divide sentences or images into smaller
chunks which facilitates aggregation process of the model. Otherwise, other approaches in the table let the
network process entire sentences or images.

4.3 Point clouds

Dataset Description In order to demonstrate the efficiency of Sequoia on point clouds, we conduct
experiments on two tasks:

• Shape classification: ModelNet40 (Wu et al., 2015) dataset is a classification dataset that contains
12,311 3D models categorised into 40 classes.

• Part segmentation: ShapeNetPart (Mo et al., 2019) dataset is a part segmentation dataset, which
contains 16,881 synthetic point clouds from 16 classes.

Implementation Details In all experiments, our model use four Transformer layers and 4-layer tree. The
other configurations are kept the same as other works. In particular, the optimizer used in both experiments
is SGD (learning rate = 0.05, momentum = 0.9, and weight decay = 0.0001) and we train the model for 200
epochs with a batch size of 32 for classification and 16 for segmentation.

Results As observed from Table 7 and 8, Sequoia achieves competitive results on point cloud classification,
but it does not seem to perform as well as other baselines in part segmentation. The reason is that apart
from PointNet (Qi et al., 2017a), the remaining models in this experiment already use hierarchical structure
in their design, so our method obtains no significant superior in terms of aggregating features, compared
to them. However, with the new algorithm for tree construction, we can avoid O(n2) complexity when
calculating distance for sampling and finding nearest neighbors in other point-based methods.
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Table 7: Shape Classification results on ModelNet40

Method Accuracy ↑ mAcc ↑ Params ↓ Time ↓

VoxNet (Maturana & Scherer, 2015) 85.9 83.0 – –
MVCNN (Su et al., 2015) 90.1 – – –
PointNet (Qi et al., 2017a) 89.2 86.0 0.6M 0.81ms
DGCNN (Wang et al., 2019) 92.9 90.2 1.82M –
GridGCN (Xu et al., 2020) 93.1 91.3 – 42.2ms
Set Transformer (Lee et al., 2019a) 90.4 – – –
PointNet++ (Qi et al., 2017b) 91.9 88.4 1.0M 1.98ms
PointConv (Wu et al., 2019) 92.5 – – –
KPConv (Thomas et al., 2019) 92.9 – 14.3M 543.7ms
PointTransformer (Zhao et al., 2021) 93.7 90.6 11.7M 2.0ms

Sequoia (ours) 92.0 88.4 10.9M 9.6ms

Table 8: Part Segmentation results on ShapeNetPart

Method Inst IoU ↑ Class IoU ↑ Params ↓ Time ↓

PointNet (Qi et al., 2017a) 71.9 43.7 3.6M 1.0 ms
DGCNN (Wang et al., 2019) 85.1 82.3 1.3M 125ms
PointNet++ (Qi et al., 2017b) 85.1 81.9 1.0M 1.41ms
PointConv (Wu et al., 2019) 85.7 82.6 – –
PointCNN (Li et al., 2018) 86.1 84.6 – –
PointTransformer (Zhao et al., 2021) 86.6 83.7 7.8M 2.69ms

Sequoia (ours) 83.8 80.6 7.26M 7.8ms

4.4 Ablation study

To comprehensively evaluate our model, we conduct ablation studies on several aspects including graph sizes,
the maximum number of clusters, different types of hierarchy, the number of layers, and different types of
attention blocks.

Table 9: Ablation study for complexity and memory.

Method Nodes Synthetic Graph

Time ↓ Memory ↓ Parameters ↓

Message Passing
100

0.0156s 1.171GB 350k
Attention 0.0234s 1.175GB 500k
Sequoia (ours) 0.0221s 1.187GB 437k

Message Passing
1000

0.0237s 1.447GB 350k
Attention 0.0379s 1.635GB 500k
Sequoia (ours) 0.0235s 1.355GB 437k

Message Passing
10000

0.5152 20.295GB 350k
Attention OOM OOM 500k
Sequoia (ours) 0.5081 19.563GB 437k

Scalability We generate synthetic graphs with varying sizes from 100 to 10,000 nodes and perform node
classification. Table 9 shows that our model is comparable to message-passing networks in terms of efficiency.

Different types of hierarchy We compare 3 types of hierarchy in Table 10

12



Published in Transactions on Machine Learning Research (04/2024)

Table 10: Ablation study on clusters and hierarchy.

Cluster Peptides-func VOC Hierarchical Peptides-func VOC

Accuracy ↑ macro F1 ↑ Accuracy ↑ macro F1 ↑

16 66.95 0.3236 Fixed 62.78 31.83
32 67.55 0.3481 Random 66.19 31.20
64 65.67 0.3435 Learnable 67.55 34.81

Table 11: Ablation study on tree’s layers and attention blocks.

# Layers ModelNet40 Attention Blocks ModelNet40

Accuracy ↑ Accuracy ↑

3 90.19 Children 87.50
4 92.00 Children + Siblings 91.50
5 89.87 Children + Siblings + Ancestors 92.00

Table 12: Ablation study on hierarchical structure

Method Inst IoU Class IoU

Non-hierarchy 78.8 74.9
Sequoia’s hierarchy 82.7 79.5

• In a fixed hierarchical structure, we initially assign nodes to a predetermined hierarchical frame-
work, where clusters are defined based on the type of the dataset (e.g. KNN for point clouds, k ring
for graphs, sentence chunking for texts, and sliding window for images).

• In a random hierarchical structure, we assign nodes to a randomly generated hierarchical frame-
work.

• In our learnable hierarchical structure, the model learns the optimized hierarchical structure.

By constructing the meaningful hierarchical structure, our methods achieves best performance, compared to
the others.

Other configurations We run our model on several settings in terms of the maximum number of clusters,
the number of layers, and different types of attention blocks. The results are reported in Table 10, 11, and
12.

4.5 Other implementation details

Fairness in comparison between our method and the baselines For Tables 2, 3, 4, we reran all the
models in the benchmark using the same framework GraphGPS (Rampášek et al., 2022) on same devices
(RTX3090) for fair comparison in terms of runtime and number of parameters. We use (Fey & Lenssen,
2019) to evaluate the run-time for Table 6. There is no unified framework for point clouds, so we mainly
obtained information based on the benchmarks of other papers such as PointNext(Qian et al., 2022) and
RepSurf(Ran et al., 2022) for fair comparison in Table 7 and 8. As for Table 5, since our code does not use
the same framework as other efficient transformers, we to report the Big-O complexity instead. In terms of
the training time, we followed the same configuration when training and all our experiments had the same
number of epochs as the baselines, but the time of each epoch was different.

Tuning the maximum number of clusters In the Adaptive Hierarchy, the number of cluster k is
predefined meaningfully based on the statistics computed from the dataset. For example, k may be the
number of functional groups existing in a molecule, the number of parts of a 3D objects, or the number of
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elements inside a sentence. Furthermore, it is unnecessary to define k precisely since our Adaptive Hierarchy
block allows for empty clusters, which means we only need to approximate the upper bound of the number
of actual clusters. Additionally, the challenge of defining k could be eased by the multi-level mechanism of
the structure. Specifically, when the number of the predefined clusters is too small to capture the entire
functional sub-graphs, they can be extracted at a higher level in the tree. In short, during the experiments,
we merely select a reasonable upper-bound k that fits does not cause GPU memory issues rather than putting
effort into tailoring the best structure by tuning k for each level in the hierarchy.

The flexibility of Sequoia’s Adaptive Hierarchy Indeed, our Adaptive Hierarchy is a standalone block
that can be potentially viewed as a plug-and-play module for other graph transformer models. Theoretically,
the hierarchical structure can potentially benefit other methods that require a hierarchical organization of
the data. In our paper, our primary proposal is hierarchical “attention”, aimed at maximizing interactions
between different levels in the hierarchy generated by the Adaptive Hierarchy block, which can be easily
integrated to other architectures.

Conclusion

The first ingredient of our model, self-attention, has proved expressive and invaluable in learning powerful
models on a variety of structured data. The second ingredient, hierarchy, provides a useful inductive bias
and provides a convenient structure for both the organization of representations and the optimization of
computational budget. This paper introduces a mechanism for merging these in a single geometric learning
building block. We found this combination to be particularly useful for graphs that involve long-range
interactions. Our ablation studies suggest that in terms of computation, it compares with message-passing
methods, even surpassing them on larger graphs.
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A Transformers as general message-passing networks

Transformer block Let L be the number of layers, H the number of attention heads, N the maximum
sequence length, and d the token feature dimension at the output of the transformer block 1. A Transformer
is defined by the iterative composition of transformer blocks sharing the following form: T (x) = F(A(x)+x).

Scaled dot-product self-attention Scaled-dot-product attention updates embeddings through a
weighted pooling of token-wise features pooled across the entire input sequence. Let us first compute (query,
key, value) pairs for each token:

Q = XWQ, K = XWK , V = XWV ,

with WQ ∈ Rd×dk , WK ∈ Rd×dk and WV ∈ Rd×dv . Token i-th’s embedding is updated using the following
formula:

X ′
i = AWQ,WK ,WV

(X, i) =
∑

j∈[1,N ]

S(Qi, Kj)Vj .

In scaled-dot-product attention, the interaction scores S(·, ·) are computed as follows:

S(Qi, Kj) =
exp(QiK

T
j )

|Si|
× 1√

dk

,

with |Si| the normalization factor associated with token i:

|Si| =
∑

j∈[1,N ]

exp(QiK
T
j ).

Multiheaded attention Multiheaded self-attention parallelizes the computation of attention into various
subspaces of the latent space. We first split each input into H different subspaces of latent dimension dh

k = dk

H

for queries and keys and dh
v = dv

H :

Amultiheaded(X) = [X ′1 :: · · · :: X ′h :: · · · :: X ′H ]WO,

where X ′h is the output of the self-attention mechanism for head h ∈ [1, H]:

Asinglehead(X) = AW h
Q

,W h
K

,W h
V

(X),

with W h
Q ∈ Rd×dh

k ,W h
K ∈ Rd×dh

k , W h
V ∈ Rd×dh

v and WO ∈ Rdv×d.

Message passing neural networks MPNNs iteratively apply a local message passing equation
updating a node’s hidden state mt+1

i based on its neighbours’ embeddings. This summarized representation
of its local context is then fused with its previous embedding Xt

i in order to compute its updated embedding
Xt

i
2. In the limit of infinitely many layers, soft attention can be understood as a simple message-passing

mechanism deprived of the locality inductive bias (Kim et al., 2022b) (the aggregating neighbourhood of
token i is the entire sequence/token set itself N (i) = [0, n− 1]).

mt+1
i = Ξ

(
{χ(Xt

i , Xt
j , ei→j)}j∈N (i)

)
Xt+1

i = ζ
(
mt+1

i , Xt
i

) (3)

Most efficient transformer models employing locality-sensitive heuristics can be adequately framed under the
simple message-passing framework outlined above.

1For the sake of simplicity, we omit the layer and head indices l and h, the extension to the multi-layer / multi-head case
being straightforward.

2For that purpose, a gated mechanism is often employed in order to adaptively filter past information based on its relevance
for the task at hand
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Transformers for point clouds The hierarchical structure has existed in point cloud models since Point-
Net++ (Qi et al., 2017b), which significantly improved upon its non-hierarchical version predecessor PointNet
(Qi et al., 2017a). However, the attention operation was only successfully integrated into this dataset in
Point Cloud Transformer (Guo et al., 2021). This work applied self-attention to all points in the point
cloud and gained outstanding results on object classification. Afterward, Point Transformer (Zhao et al.,
2021) leveraged the hierarchy with local attention to enhance the performance on the segmentation prob-
lems on the point cloud. Following that, Stratified Point Transformer (Lai et al., 2022) adapted voxels in
order to estimate local regions for attention and positional encoding, further boosting the performance of
the Transformer model in point cloud semantic segmentation. Meanwhile, another paper named Fast Point
Transformer (Park et al., 2022) tries to optimize the attention function and proposes a new attention-based
model that is 129 times faster than Point Transformer (Zhao et al., 2021) in semantic segmentation. In our
work, we not only apply a new hierarchical scheme built through voxelization but also propose a new way
to aggregate information across the levels of the hierarchy.

B Proofs of Computational Complexity

The total number of nodes (both true and virtual) in the tree is :

|I| =
Λ−1∑
λ=0
|Iλ| =

Λ−1∑
λ=0
⌈n× 1

kλ
⌉ = n×

[
1−

( 1
k

)Λ

1− 1
k

]
+O(Λ)

= n

[
kΛ − 1

kΛ−1(k − 1)

]
+O(Λ)

≈ (≤) n×
[

k

k − 1

]
︸ ︷︷ ︸

∆k

Thus, |I| ≤ n × ∆k, with ∆k = k
k−1 ≥ 1 being the dilation factor of the tree. Let us now examine the

computational complexity of Sequoia’s efficient attention scheme, both in terms of runtime and memory :

CSequoia(n) = Cchildren(n) + Csiblings(n) + Cancestors(n)

Cchildren(n) =
Λ−1∑
λ=1
Cchildren(n, λ),

Csiblings(n) =
Λ−1∑
λ=0
Csiblings(n, λ),

Cancestors(n) =
Λ−2∑
λ=0
Cancestors(n, λ)

∀λ ∈ [0, Λ− 1] Cchildren(n, λ) = O(|Iλ| × k)
∀λ ∈ [0, Λ− 1] Csiblings(n, λ) = O(|Iλ| × k)
∀λ ∈ [0, Λ− 1] Cancestors(n, λ) = O(|Iλ| × (Λ− λ))

= O(|Iλ| × Λ)

Using the upper bound on the number of nodes in the tree constructed by Sequoia, we get :
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Cchildren(n) = O
(Λ−1∑

λ=0
|Iλ| × k

)
≈ (≤) n× k ×∆k

Cancestors(n) = O
(Λ−1∑

λ=0
|Iλ| × Λ

)
≈ (≤) n× Λ×∆k

For Csiblings(n), we obtain a similar bound as for Cchildren(n). We finally derive the following class of quasi-
linear computational complexity for our proposed attention model :

CSequoia(n) = O
(

n×
[
2×

[
k

k − 1

]
+ Λ

])
= O(n× (k + log(n))

Indeed, the tree depth is such that Λ = ⌈ log(n)
log(k) ⌉ ≤

log(n)
log(k) + 1 = O(log(n)). In particular, we notice that

this upper bound on CSequoia(n) does not depend on the mode of computation of attention inside a given
transformer block (bottom-up / top-down or parallel), and that the total complexity of Sequoia’s attention
scheme is dominated by the attention computed at the first level of the tree3.

C Visualization

In this section, we extract the feature of nodes in different levels of the tree including leaf nodes, nodes from
the low-level, nodes from the high-level, and root nodes. Then, we use t-SNE (van der Maaten & Hinton,
2008) to reduce the features’ dimension into 2 and visualize these features in Figures 4, 5, 6, and 7. We
observe a clear clustering pattern from these figures that suggests our hierarchical method has learned useful
and meaningful representation.

Figure 4: Visualization of the feature of root nodes in Shape Classification task.

3Precisely, siblings attention on the first level and, to a lesser extent, ancestors attention on the first level.
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Figure 5: Visualization of the feature of nodes on the high level of the tree in Shape Classification task.

Figure 6: Visualization of the feature of nodes on the low level of the tree in Shape Classification task.
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Figure 7: Visualization of the feature of leave nodes on Part Segmentation task.
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