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ABSTRACT

In personalized Federated Learning (pFL), high data heterogeneity can cause
significant gradient divergence across devices, adversely affecting the learning
process. This divergence, especially when gradients from different users form an
obtuse angle during aggregation, can negate progress, leading to severe weight and
gradient update degradation. To address this issue, we introduce a new approach to
pFL design, namely Federated Learning with Layer-wise Aggregation via Gradient
Analysis (FedLAG), utilizing the concept of gradient conflict at the layer level.
Specifically, when layer-wise gradients of different clients form acute angles,
those gradients align in the same direction, enabling updates across different
clients toward identifying client-invariant features. Conversely, when layer-wise
gradient pairs make create obtuse angles, the layers tend to focus on client-specific
tasks. In hindsights, FedLAG assigns layers for personalization based on the
extent of layer-wise gradient conflicts. Specifically, layers with gradient conflicts
are excluded from the global aggregation process. The theoretical evaluation
demonstrates that when integrated into other pFL baselines, FedLAG enhances pFL
performance by a certain margin. Therefore, our proposed method achieves superior
convergence behavior compared with other baselines. Extensive experiments show
that our FedLAG outperforms several state-of-the-art methods and can be easily
incorporated with many existing methods to further enhance performance.

1 INTRODUCTION

The challenge of non-independent and non-identically distributed (non-IID) data significantly impacts
personalized Federated Learning (pFL). Addressing the aforementioned problem, numerous re-
searchers have delved deeply into various directions, e.g., 1) consisting adding regularization (T. Dinh
et al., 2020; Li et al., 2020), 2) pseudo representations generation (Zhu et al., 2021; Zhang et al.,
2022), 3) on-client data pre-processing (Huang et al., 2022; 2024a), 4) gradient update modification
(Reddi et al., 2021; Wang et al., 2020; Sun et al., 2023; Huang et al., 2024b), 5) cross-client feature
alignments (Zhang et al., 2023a; Dinh et al., 2022), and 6) adaptive global update by leveraging on-
server gradients (Jhunjhunwala et al., 2023; Panchal et al., 2023). These approaches are orthogonal
in nature, enabling their combined integration to achieve further performance enhancement.

Lately, model layer disentanglement has emerged as a promising approach to further enhancing the
performance of pFL (Oh et al., 2022; Collins et al., 2021; Chen & Chao, 2022; Xu et al., 2023).
This approach involves the disentanglement of local model into two distinct components: global
aggregation layers (GAL) and personalized layers (PL). GAL manages common tasks among all
users, while PL handles the specific tasks according to each user. However, existing methods
require extensive fine-tuning to determine which layers should be used for global aggregation and
personalization. Consequently, the optimal selection for layer disentanglement remains an open
question.

Addressing this challenge, we consider the gradient conflict (Yu et al., 2020b) in multi-task learning
(MTL). The principle of gradient conflict posits that if the angle between the gradients from two
users is less than π/2, the gradients are aligned in the same direction. Consequently, the gradient
progress of each user does not negatively impact the progress of the others (see Fig. 1). By utilizing
gradient conflict, it becomes possible to monitor user interactions directly from the server without
local data accessibility, i.e., the extent to which one user’s progress may adversely affect others.

1



Under review as a conference paper at ICLR 2025

Moreover, when analyzing gradient conflict at the layer level, we discovered that layer-wise gradient
conflicts do not align in a structured way. Specifically, the initial layers tend to exhibit low gradient
conflicts, indicating their role in learning generic features, whereas the deeper layers show high
gradient conflicts, reflecting their role in learning more personalized tasks (see Section 3). This
observation is also aligned with the phenomenon in MTL (Shi et al., 2023).

Building upon the rationale of gradient conflict
and the observation of layer-wise gradient conflict
among users in FL, we hypothesize that leverag-
ing layer-wise gradient conflict enables optimal
selection for layer disentanglement in pFL. To this
end, we propose Federated Learning with Layer-
wise Aggregation via Gradient Analysis (FedLAG).
Specifically, FedLAG utilizes gradients received
from local users to analyze and determine the opti-
mal approach for layer disentanglement via layer-
wise gradient conflict. The benefits of FedLAG
over current pFL include:
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Figure 1: The issue of gradient conflicts, we de-
note ideal gradient as the aggregated gradient when
component gradients do not make any conflicts,
i.e., when the conflicted gradient with angle more
than π/2 is projected into π/2 as mentioned in (Yu
et al., 2020b).

• Ability to evaluate the performance of deep learning models at the layer level.
• Ability to analyze statistics of local user data via users’ gradients.
• Efficiently reduce communication overhead by utilizing the gradients.

Our contributions can be summarized as follows: 1) We develop an algorithm, namely Federated
Learning with Layer-wise Aggregation via Gradient analysis (FedLAG), which can automatically
differentiate between the GAL and PL layers without requiring extensive tuning. 2) We give a
theoretical evaluation and present evidence showcasing the convergence of the proposed algorithm.
We illustrate its sustained superior convergence compared to conventional FL algorithms without the
incorporation of FedLAG. 3) We conduct extensive experimental evaluations to show the superiority
of the proposed algorithm over conventional FL algorithms.

2 PROBLEM FORMULATION & PRELIMINARIES

2.1 NOTATIONS

We use span(g
(r)
1 , . . . , g

(r)
J ) as the subspaces that are contained by all vectors {g(r)1 , . . . , g

(r)
J }. We

consider an FL system comprising a set of users denoted by U = {u|u = 1, 2, . . . , U}. Each user
gains access to its local data, which remains inaccessible to others. Specifically, the data collected by
the u-th user can be represented by Du ∈ RNu , where Nu denotes the number of data instances for
user u. The entire dataset available across all users can be denoted by D =

⋃
u∈U Du, and we have

N =
∑U

u=1 Nu. We use the term E to represent the number of local epochs. We abuse the notations
w

(r)
u and w

(r)
g to refer to the local model of user u and the global model at round r, respectively.

2.2 PROBLEM SETUP

During FL training, users iteratively conduct local training and communicate with the server for
model updating. To be specific, our FL concept works as follows:

Local Updates. In each round r, users’ local models are updated by the global model, i.e.,
w

(r)
u ← w

(r)
g , ∀u. Then, users conduct local training in parallel. We assume that the local

models parallelly solve the empirical loss over data distribution of the user u. For instance,
L(w(r,e)

u ) = EBk∈Du

[
ℓ(Bk, w

(r,e)
u )

]
, where Bk is the kth mini-batch sampled from Du, k rep-

resents the data batch index, and e as the local epoch. In each training epoch, the L(w(r,e)
u ) is

computed by averaging over the batch-wise loss computation ℓ(Bk, w
(r,e)
u ) over the all batches

Bk, ∀k ∈ {1, . . . ,K}. Subsequently, at every FL communication round, users update with a local
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learning rate η as w
(r,E)
u ← w

(r)
u −

∑E−1
e=0 η∇L

(
w

(r,e)
u

)
, where L, ∇L are the empirical loss

function and its gradient, respectively.

Global Aggregation. After local training, the server aggregates the local models w
(r+1)
g ←

1
U

∑U
u=1 w

(r,E)
u where Nu is the number of samples from user u and N =

∑U
u=1 Nu. The server

disseminates the global parameters w(r+1)
g to the local users chosen for the following round r + 1.

Layer Disentanglement. Assume user models w(r)
u consisting of L layers, i.e., w(r)

u = {θ(r)l,u}Ll=1,

where θ
(r)
l,u represents the parameter weights at lth layer. Our objective is to disentangle the L layers

into GAL and PL. The GAL is defined as θ(r)s,u = {θ(r)l,u | ∀l ∈ Lg}. On the other hand, PL is defined as

θ
(r)
p,u = {θ(r)l,u | ∀l ∈ Lp}. Here, Lg and Lp represent the layers assigned to GAL and PL, respectively.

We have w
(r)
u = {θ(r)l,u}Ll=1 = {θ(r)s,u, θ

(r)
p,u}. Similarly, we denote w

(r)
g = {θ(r)l,g }Ll=1 = {θ(r)s,g , θ

(r)
p,g}.

2.3 NEGATIVE TRANSFER AND GRADIENT CONFLICTS IN MULTI-TASK LEARNING

A major challenge for MTL is negative transfer, which refers to the performance drop on a task caused
by the learning from other tasks, resulting in degradation in overall performance. A rationale of this
phenomenon is the conflicting gradients (Yu et al., 2020a). Specifically, gradients from different
tasks may point in different directions so that directly optimizing the average loss is detrimental to
a specific task’s performance. Denote gi = ∇L (wi) as the gradient of task i, and ϕij as the angle
between two task gradients gi and gj , we have

Definition 2.1 (Conflicting gradients (Yu et al., 2020a)). Given two gradients gi, gj (i ̸= j), and
cosϕij =

gi·gj
∥gi∥∥gj∥ is the cosine between two vectors. gi and gj (i ̸= j) are said to be conflicting

with each other if cosϕij < 0.
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(a) Illustration of gradient conflict with toy dataset.
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(b) Layer-wise gradient conflict on Cifar-10.

Figure 2: Illustration of gradient conflicts on 2D toy dataset with 1-layer 3-parameter network (left),
and layer-wise gradient conflict of FedAvg during the training (right).

In (Shi et al., 2023), the concept of conflicting gradients is extended to the layer level.

Definition 2.2 (Layer-wise Conflicting Gradients Shi et al. (2023)). The gradients gl,i, gl,j (i ̸= j)
of layer l are said to be conflicting with each other if cosϕl

ij < 0.
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The definition suggests that gradient conflicts within a model can be analyzed at the layer level,
offering a foundation for exploring and determining optimal strategies for layer disentanglement.

3 VALIDATION OF LAYER-WISE GRADIENT CONFLICTS IN FL

We argue that the aggregation of layers with layer-wise gradient conflicts is detrimental in FL. To
validate our arguments, we conduct two experiments to answer two questions:

Question 3.1. Is gradient conflicts appear among users in federated learning?

To answer the question 3.1, we conduct the experiments on 2-D toy dataset (the details of the toy
dataset is reported in Appendix G). The result is visualized Fig. 2a. In the non-IID setting, the diver-
gences between two pairs of gradients (e.g., g(r)1 vs. g(r)3 and g

(r)
2 vs. g(r)4 ) result in the divergence of

the FL process (Fig. 2a, top). Due to gradient conflicts (angles exceeding π/2), the model diverges
along two hyper-spaces, span(g(r)1 , g

(r)
3 ) and span(g

(r)
2 , g

(r)
4 ) (Fig. 2a, bottom). In contrast, under

IID settings, the gradients form smaller angles and align toward consistent directions. Consequently,
the model progresses more directly toward the optimal solution. As noted in Appendix G, the optimal
solution is located at y = 0, implying that w1 = 0, w2 ̸= 0, and b = 0.

Question 3.2. Is the gradient conflict distribution aligned in an ascending way (i.e., from the input
layers to the output layers) during the training of federated learning?

To answer the question 3.2, we conduct the experiments on Cifar-10 dataset and visualize in Fig. 2b.
As observed in the figure, the distribution of gradient conflicts does not correspond with the assump-
tions regarding layer disentanglement found in current SOTA, e.g., Oh et al. (2022), Collins et al.
(2021). Specifically, the density of conflicting gradients among clients does not progressively increase
from the input layer to the output layer, as these approaches apply to design the layer disentanglement
(i.e., personalized layers are assigned at the very last layers).
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Figure 3: The FedLAG architecture. First, calculate the previous layer-wise gradient h(r−1)
u using

received and stored models. Second, measure angles between pairs of gradient vectors, considering
angles above 90 degrees as conflicts. Thirdly, the GCϵ(l) (in Definition 4.1) score for layer l increases
by 1 for each conflicted pair. The k layers with highest GCϵ(l) are assigned to PL. The GAL and PL
are used to assign the personalized and global aggregated layers.

4 METHODOLOGY

Building upon the validations presented in Section 3, we introduce FedLAG, a method that exploits
layer-wise gradient conflicts to identify the optimal selection for disentangling personalized and
generic layers. The process of FedLAG is briefly illustrated as in Figure 3. The core contribution of
FedLAG is its ability to utilize users’ gradients as a proxy for their behavior on the server, enabling
an analysis of user relationships without direct access to local datasets. By taking user gradients as
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input, FedLAG applies the gradient divergence analysis (GDA) to examine gradients at the layer level
(see Section 4.1). Upon performing GDA, the GCξ(l) score is computed, which quantifies the degree
to which a given layer should be personalized. Consequently, we can leverage GCξ(l) to adaptively
disentangle generic and personalized layers (see Section 4.2).

4.1 GRADIENT DIVERGENCE ANALYSIS

Layer-wise gradient. To implement the GDA, we calculate the gradient of each user u on round r:

h(r)
u =

E−1∑
e=0

η∇L(w(r,e)
u ) = w(r,E)

u − w(r)
u , (1)

where the layer-wise gradient h(r)
l,u of h(r)

u can be represented as

h
(r)
l,u =

E−1∑
e=0

η∇L(θ(r,e)l,u ) = θ
(r,E)
l,u − θ

(r)
l,u . (2)

Here, h(r)
u and h

(r)
l,u denote the gradient of w(r)

u and the lth layer of w(r)
u , respectively. We further

define h(r)
u = [h

(r)
1,u, h

(r)
2,u, . . . , h

(r)
L,u] where h(r)

l,u is a l-th layer-wise gradient of user u. The gradient is
calculated by utilizing the models from the previous round in conjunction with the recently received
model. As a result, FedLAG is both communication-efficient and capable of information aggregation.

Layer-wise Gradient Divergence Analysis. To evaluate the layer-wise gradient divergence between
two users, we introduce ϕ

(r)
l (u, v) to signify the angle between h

(r)
l,u and h

(r)
l,v . Based on Definition

2.1, we define gradient conflict of layer l in the round r with hyper-parameter ξ (w.r.t −1 < ξ ≤ 0)
as the layer-wise gradient conflict score, denoted by GCξ(l).
Definition 4.1 (GCξ(l) score). Given the threshold ξ, the GCξ(l) of the l-th layer is calculated as
the number of distinct user pairs (u, v) (where u ̸= v) that satisfy cosϕ

(r)
l (u, v) < ξ. For instance,

GCξ(l) =
1

2

U∑
u=1

U∑
v=1,v ̸=u

Iu,v, s.t. Iu,v =

{
1, if cosϕ(r)

l (u, v) < ξ,

0, otherwise,
(3)

where cosϕ
(r)
l (u, v) = cos(h

(r)
l,u , h

(r)
l,v ), ∀v, u ∈ U ; ξ denotes the extent of conflict severity. To

elaborate, by setting a smaller value for ξ, the angle between the two vectors becomes more obtuse.

Consequently, the Definition 4.1 allows us to focus primarily on the count of more prominent conflicts.
Subsequently, GCξ(l) acts as an indicator for conflicting gradients across various severity levels
within the layers. If GCξ(l) takes on the value

(
U
2

)
, it implies that for any two users, there is a conflict

in their gradients w.r.t the l-th layer. By computing these layer-wise conflict scores, we can pinpoint
the layers where conflicts occur most frequently.

We describe our method to find personalized layers Lp in Algorithm 2. First, we calculate h
(r)
l,u

for each layer by Eq. equation 2. Because we utilize the users’ model parameters to measure
users’ gradient trajectories h(r)

u . No additional communication cost is incurred for the execution of
Algorithm 2. Afterwards, we calculate cosine cosϕ

(r)
l (u, v) by Definition 2.1 and GCξ(l) score via

the Definition 4.1. Finally, we find the k layers with the highest scores and assign their index to Lp.

4.2 LAYER-WISE PERSONALIZED MODEL AGGREGATION

To achieve adaptive layer disentanglement, we base our approach on two key principles: (1) maintain
the global aggregation of FL on non-conflict layers, and (2) motivate the personalized learning on
conflict layers. Specifically, when a layer is significantly affected by gradient conflict, we transform
it into a personalized layer to prevent negative transfer resulting from the aggregation process at the
global server. To this end, rather than broadcasting the entire model to the local users, we restrict the
local model update to the global layer (i.e., layers assigned to GAL):

θ
(r+1)
l,u =

1

U

U∑
u=1

θ
(r,E)
l,u , if l ∈ Lg. (4)
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To motivate the personalized learning, the users do not update the conflict layers:

θ
(r+1)
l,u = θ

(r,E)
l,u , if l ∈ Lp. (5)

Here, Lp represents the layers that suffer from the gradient conflict and need to be converted
into personalized layers. The detailed description of our method is demonstrated in Algorithm 1.
Compared to the conventional pFL, FedLAG only alters the aggregation process on the global server,
leaving the local training unaffected. Consequently, our technique is applicable to various existing FL
or pFL approaches.

5 THEORETICAL ANALYSIS

In this section, we discuss the convergence of our algorithm. Our theoretical analysis aims to show
the improvement in terms of upper bound reduction for the convergence upper boundary.

5.1 LAYER-WISE LOSS IMPROVEMENT

To show the robustness and prove the convergence of FedLAG, we first want to analyze the perfor-
mance improvement when using our LAG algorithm in FL.
Lemma 5.1 (Personalization Improvement). Each user u achieve an improvement in loss when using
FedLAG over the vanilla FL approach as follows:

L
(
w

(r)
LAG,u

)
− L

(
w

(r)
VFL,u

)
= −η 1

U

U∑
v=1

∑
l∈Lp

∥h(r−1)
l,u ∥ × (∥h(r−1)

l,u ∥ − cosΦ(l)
u,v∥h

(r−1)
l,v ∥) < 0,

Lemma 5.2 (Generalization Improvement). For any sufficiently small learning rate η, the following
holds:

L
(
w

(r)
LAG,g

)
− L

(
w

(r)
VFL,g

)
= −η 1

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r−1)
l,u ∥ × (∥h(r−1)

l,u ∥ − cosΦ(l)
u,v∥h

(r−1)
l,v ∥) < 0,

where w
(r)
LAG,g = {θs,g, θp,g} and w

(r)
VFL,g = {θs,u, θp,u} stand for the FL with and without the

integration of FedLAG, respectively.

According to Lemma 5.2, at each round r, the loss function of the layer-wise pFL model consistently
surpasses that of the vanilla pFL model by a specific margin. This enhancement is directly proportional
to both the layer-wise gradient norm from the previous round r − 1 and the layer-wise angle between
pairs of users in the FL system. Consequently, the proof establishes that the application of FedLAG is
viable by relying on the previous gradients for estimating gradient conflicts, eliminating the need for
using the upcoming local gradients, which is unavailable at the global server. This approach avoids
communication overheads associated with exchanging information among local users. Furthermore,
the improvement remains constant in each round upon integrating the LAG, in contrast to the FL
algorithm lacking LAG integration. The proof of Lemma 5.2 is provided in Appendix H.4.

5.2 CONVERGENCE ANALYSIS

We use Assumptions H.1, H.2, H.4, H.3 and have the following theorem:
Theorem 5.3. Assuming users compute full-batch gradient with full participation and 1

2
√
6E2L

<

η < 1
6EL , the series {w(r)} generated by FedLAG satisfy:

L(w(R))− L(w∗) ≤ O
(∥w(0)

g − w∗∥2

RηE

)
+O

(
ησ2

∗

)
+O

(
η2E(E − 1)Lσ2

∗

)
(6)

−O
(
A

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥(∥h

(r)
l,u∥ − cosΦ(l)

u,v∥h
(r)
l,v ∥)

)
,

where w∗ ≜ argminw L(w) is the optimal global model, and A =
(
24E2(E − 1)η4L2 − η2E

)
>

0, ∀η,E, L.
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The convergence rate in Theorem 5.3 consists of four terms:

• The first term O
(

∥w(0)
g −w∗∥2

RηE

)
is the initialization error term that depends on the total

communication rounds R and local learning epoch E. This term is fixed among all FL
algorithms and independent of the FedLAG hyperparameters.

• The second term O
(
ησ2

∗

)
is the noise at optimum. This term reveals that the prediction at

the optimum always make a certain variance.

• The third term O
(
η2E(E − 1)Lσ2

∗

)
refers to the user drift error, which is the error induced

by the divergence when the user drift toward their specific domain characteristics. It affects
by the data characteristics and FL hyperparameters such as the number of epoch E and
learning rate η.

• The last term O
(
A
∑U

u=1

∑U
v=1

∑
l∈Lp
∥h(r)

p,u∥(∥h(r)
p,u∥ − cosΦ

(l)
u,v∥h(r)

p,v∥)
)

is the person-
alized loss improvement term. This loss shows the improvement in loss thanks to the
disentanglement in FL models into GAP and PL. We can see that this term consistently
reduces the bound and thus creates an absolute improvement to the FL system regardless of
whether the FL algorithm is integrated into it.

From the Theorem 5.3, we can have the following remarks:

Remark 5.4. When the conflict does not occur (e.g., the data is IID), no layer being assigned to
the PL subset, which makes

∑
l∈Lp
∥h(r)

p,u∥(∥h(r)
p,u∥ − cosΦ

(l)
u,v∥h(r)

p,v∥) becomes 0. Therefore, the

convergence of the FedLAG reduces to O
(

3∥w(0)
g −w∗∥2

RηE

)
+O

(
ησ2

∗

)
+O

(
η2E(E − 1)Lσ2

∗

)
.

Remark 5.5. When we set the top k layers to 0, the sum of
∑U

u=1

∑U
v=1

∑
l∈Lp
∥h(r)

p,u∥(∥h(r)
p,u∥ −

cosΦ
(l)
u,v∥h(r)

p,v∥) becomes 0, therefore, the convergence of FedLAG reduces to O
(

3∥w(0)
g −w∗∥2

RηE

)
+

O
(
ησ2

∗

)
+O

(
η2E(E − 1)Lσ2

∗

)
.

Remark 5.6. From the equation, as the number of layers becomes large (i.e., over-parameterization),
the right hand side may close to 0. However, in Appendix H.6, we prove that the value of the last
term is agnostic to the number of parameters in the network model. The reason is because as the
number of layers increase, the layer-wise gradient norm will decrease respectively.

Remark 5.7. Increasing E and η amplifies the value of A, boosting the improvement term. However,
this enhancement affects local learning in distributed users. For instance, a high value of E intro-
duces bias towards local characteristics, causing users to forget global knowledge learned through
aggregation, which loses the generality of the pFL concept.

Remark 5.8. The FedLAG’s main contribution is on the server. Therefore, FedLAG can be integrated
with any other FL algorithms to improve other algorithms’ performance. The theoretical results of
integration between FedLAG and other FL algorithms are demonstrated in Appendix D.

6 EXPERIMENT SETUP

6.1 DATASETS

To conduct a fair comparison among methods, we consider four different context data sets including
MNIST (28 × 28, 10 modalities) (LeCun et al., 1998), CIFAR10 (32 × 32 × 3, 10 modalities)
(Krizhevsky, 2012), EMNIST (28× 28, 62 modalities) (Cohen et al., 2017), and CIFAR100 (32×
32× 3, 100 modalities) (Krizhevsky, 2012). Otherwise, each data set is divided into several parts
corresponding to the number of users by randomly distinguished distribution. Each divided part
is identical to the others to ensure that non-IID term of FL problem. Each user owns each part
containing a train and test set, to which no data augmentation method is applied.
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Table 1: Test accuracy comparison among baselines and our proposed method on 4 datasets (i.e.,
MNIST, CIFAR10/100, EMNIST). The data set splitting method is selected from the Dirichlet
sampling with replacement. The experimental setups are 100 users at 20% user participation (i.e.
α ∈ {0.1, 0.5}). Each result is averaged after 5 times.

Setting non-IID (α = 0.1) non-IID (α = 0.5)
Problem
Method MNIST CIFAR10 CIFAR100 EMNIST MNIST CIFAR10 CIFAR100 EMNIST

FedLAG
(Ours) 97.18 ± 0.13 85.21 ± 0.29 51.35 ± 0.02 96.34 ± 0.25 96.68 ± 0.01 69.26 ± 0.09 33.75 ± 0.14 91.42 ± 0.18
PerAvg 89.11 ± 0.17 81.25 ± 0.20 43.21 ± 0.28 84.84 ± 0.20 94.89 ± 0.06 61.25 ± 0.14 23.98 ± 0.25 89.70 ± 0.14
FedROD 97.02 ± 0.29 81.72 ± 0.16 46.17 ± 0.06 96.02 ± 0.08 94.87 ± 0.12 68.47 ± 0.19 26.76 ± 0.08 90.70 ± 0.28
FedPAC 89.12 ± 0.04 83.13 ± 0.01 44.77 ± 0.06 89.63 ± 0.04 94.60 ± 0.18 63.01 ± 0.04 25.42 ± 0.25 88.44 ± 0.61
FedBABU 95.92 ± 0.26 80.75 ± 0.08 42.59 ± 0.03 84.63 ± 0.19 91.42 ± 0.03 65.12 ± 0.18 21.54 ± 0.30 87.35 ± 0.10
FedAvg 90.61 ± 0.11 65.47 ± 0.17 41.28 ± 0.09 85.02 ± 0.30 88.43 ± 0.07 59.01 ± 0.26 15.99 ± 0.10 86.35 ± 0.16
FedCAC 96.77 ± 0.03 84.62 ± 0.19 47.22 ± 1.52 96.01 ± 0.15 96.33 ± 0.11 68.93 ± 0.19 26.12 ± 0.04 91.10 ± 0.18
FedDBE 95.73 ± 0.11 83.76 ± 0.09 50.12 ± 0.12 95.04 ± 0.05 95.52 ± 0.11 67.75 ± 0.04 25.43 ± 0.04 90.14 ± 0.08
GPFL 94.15 ± 0.10 82.11 ± 0.25 49.85 ± 0.01 93.25 ± 0.21 93.56 ± 0.08 66.38 ± 0.07 24.01 ± 0.11 88.45 ± 0.15
FedAS 95.36 ± 0.12 84.11 ± 0.02 50.26 ± 0.03 93.25 ± 0.19 94.28 ± 0.18 67.38 ± 0.14 32.01 ± 0.04 89.45 ± 0.32
FedAF 95.24 ± 0.15 84.35 ± 0.03 50.11 ± 0.04 93.10 ± 0.20 94.40 ± 0.17 67.55 ± 0.13 32.07 ± 0.05 89.50 ± 0.30

Table 2: Accuracy of FedLAG under different
settings of top k layers. The evaluations are con-
ducted with U = 100.

Setting
Dataset k = 0 k = 3 k = 5 k = 10 k = 15

Cifar10 45.47 83.62 85.21 85.46 84.77
Cifar100 51.24 65.91 67.52 67.37 66.82

Table 3: Accuracy of FedLAG under different
settings of hyper-parameter ξ. The evaluations
are conducted with U = 100.

Setting
Dataset ξ = 0 ξ = −0.1 ξ = −0.2 ξ = −0.3

Cifar10 85.05 85.62 84.18 83.26
Cifar100 64.13 65.11 64.55 63.37

6.2 BASELINES

To assess the robustness of our proposed FedLAG, we run evaluations on 5 other baselines (i.e.,
FedAvg (McMahan et al., 2017), PerAvg (Fallah et al., 2020), FedBABU (Oh et al., 2022), FedPAC
(Xu et al., 2023), and FedRoD (Chen & Chao, 2022), FedCAC (Wu et al., 2023), FedDBE (Zhang et al.,
2023b), GBFL (Zhang et al., 2023c), which are all trained from scratch using ResNet18 (He et al.,
2016). We apply the same settings on all baselines to achieve the fairest experimental evaluations.
In detail, each method is conducted in with unbalanced data distribution and non-IID scenarios,
along with different sampling rates α = 0.1%, and 0.5%. Otherwise, various numbers of users are
applied to perform a fair comparison among methods (i.e. 20, 40, 60, 80, 100), corresponding with
the different number of global rounds: 100, 200, 400, 600, and 800 rounds, respectively.

7 EXPERIMENTAL EVALUATIONS

7.1 OVERALL PERFORMANCE

To evaluate the overall performance of the FL system, we compute average results across users.
Table 1 provides a detailed overview of comprehensive performance metrics, where α represents the
Dirichlet coefficient. The table explores the FL performance of two settings: 1) varying participation
ratio and 2) different levels of heterogeneity.

7.1.1 DIFFERENT HETEROGENEITY LEVELS

We assess at two heterogeneity levels, i.e., α = 0.1, 1. The table reveals that FedLAG outperforms
other baselines, with improvements ranging from an average of 5− 7% to 15% when α = 0.5. The
resilience of FedLAG becomes more evident in a more challenging setting, namely α = 0.1, where it
demonstrates a substantial improvement over other baselines, averaging 10% to 40%. Among the
competing baselines, FedRoD poses a notable challenge. This is because, in FedRoD, the authors
employ disentanglement in personalized and generic models across different data settings (same as
our work). In contrast, our research incorporates adaptive control over the two sub-models, resulting
in superior performance compared to FedRoD.
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7.1.2 DIFFERENT USER PARTICIPATION RATIO

We evaluated under five different participation ratio, i.e., {20%, 40%, 60%, 80%, 100%}, and illus-
trated as in Table 7. As it can easily be seen from the table, our proposed FedLAG can achieve
significantly higher performance, as opposed to other baselines (i.e., an average of 20% up to 40% in
performance improvement). The improvement is more significant when we employ the algorithm in
more challenging data sets, which showcases a more divergence in data characteristics among users.
The detailed comparisons between FedLAG and other baseline models in terms of comprehensive
training are presented in Appendix E.

7.2 ABLATION TEST

7.2.1 INTEGRATABILITY

In this section, we evaluavate FedLAG ’s compatibility into other FL baselines on the Cifar10
dataset, and illustrate the overall performance as in Figure 5. The integration of FedLAG showcase a
significantly better accuracy over baselines.

Settings Cifar-10 Cifar-100
Acc. (↑) PD (↓) Acc. (↑) PD (↓)

First-2 72.81 ± 0.33 12.40 17.35 ± 0.04 20.00
First-4 71.15 ± 0.16 14.06 19.21 ± 0.05 18.14
Last-2 82.47 ± 0.18 2.74 27.38 ± 0.11 9.97
Last-4 80.75 ± 0.25 4.46 22.54 ± 0.02 14.81
Middle-2 73.92 ± 0.17 11.29 15.43 ± 0.07 21.92
Middle-4 70.15 ± 0.15 15.06 12.28 ± 0.03 25.07
FedLAG 85.21 ± 0.29 0 37.35 ± 0.02 0

Figure 4: The comparison of FedLAG with differ-
ent fixed layer disentanglement. First-K means we
fix first K layers for the disentanglement, Last-K
means we fix last K layers, Middle-K means we
fix K layers at the middle of the network.
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Figure 5: Convergence of FedLAG integration.

7.2.2 IS FEDLAG MORE EFFICIENT THAN FIXED LAYER DISENTANGLEMENT?

To prove the robustness of FedLAG over fixed layer disentanglement techniques, we conduct experi-
ments on FedBABU, and fix K layers for personalized layers. Tab. 4 demonstrates that the fixing
the last K layers generally yields the most efficient performance. Other settings show significant
drop in performance, compared to that of the FedLAG. This observation aligns with the assumption
that gradient conflicts tend to be concentrated in the final layers, though not all layers with high
conflict scores are necessarily the last layers. In total, we can obviously see that the adaptive layer
disentanglement of FedLAG shows a significant robustness over fixed layer disentanglement.

7.2.3 TOP k SCORE LAYER

We conducted experiments with varying values of k, and the results are presented in Table 2. As
shown in the table, selecting the top k layers leads to significantly improved performance compared to
the case where k = 0. This enhancement is notable because when k = 0, the algorithm reduces to the
FedAvg algorithm, lacking the robustness inherent in the GDA algorithm. Our analysis reveals that
gradient conflicts predominantly affect only a small number of layers in the FL model. Consequently,
setting k = 5, 10, 15 does not result in a significant performance improvement, as the most conflicted
gradients are already captured in the initial layers with the highest conflicts. Detailed results are
presented in Appendix F.2.

7.2.4 CONFLICT GRADIENT SCORE

Table 3 demonstrates the performance of FedLAG under different conflict score ξ. As observed in
the table, there is negligible performance disparity despite different gradient scores being applied.
This is because the score primarily impacts the frequency of gradient conflicts across various model
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layers, yet it does not alter the distribution of conflicted gradients throughout the model layers. A
high value of ξ (e.g., 0) results in performance drops due to an excessive inclusion of gradient pairs
with small conflicts. Some of these pairs are beneficial for learning common structures and should not
be excluded. Conversely, a too-small value for S (e.g., −0.3) also leads to performance degradation
by ignoring many gradient pairs with significant conflicts, which can be detrimental to the learning
process. Detailed results are presented in Appendix F.3.
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Figure 6: The figures illustrate the performance without pretrained model of FL-LAG vs. various
baselines on CIFAR10. The evaluation is implemented on different numbers of users (from left to
right, the number of users is {100%, 80%, 60%, 40%, 20%}, respectively). α = 0.1.
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Figure 7: The figures illustrate the performance without pretrained model of FL-LAG vs. various
baselines on CIFAR100. The evaluation is implemented on different numbers of users (from left to
right, the number of users is {100%, 80%, 60%, 40%, 20%}, respectively). α = 0.1.

7.2.5 EFFICIENCY WHEN TRAINING WITHOUT PRETRAINED MODELS

In this section, we evaluate FL without pretrained models on the CIFAR-10 and CIFAR-100 datasets
to assess FL performance when training from scratch (see Figs. 6, 7). We only apply the FedLAG
after first 30 rounds to sample the very first gradient trajectories for the initial process of GDA. Most
baseline models encounter significant challenges when trained without pre-trained parameters. In
contrast, our FedLAG consistently demonstrates superior performance, achieving the highest results
alongside FedRod and FedPAC. The significant superiority of FedLAG is shown when training on
the challenging CIFAR-100 dataset, which contains a large number of labels. While other federated
learning baselines struggle to exceed random performance, FedLAG rapidly surpasses this threshold
and achieves effective convergence in fewer than 100 communication rounds.

8 CONCLUSION

Current researches on layer disentanglement in pFL typically require extensive fine-tuning to achieve
optimal separation between generic and personalized layers. In our study, we introduce an adaptive
approach to disentangle these layers by leveraging a well-established principle in multi-task learning,
namely, conflicting gradients. To address conflicting gradients among users without incurring
communication overhead from user-to-user interactions, we propose a novel data-free gradient
divergence analysis method performed on the server. This technique enhances federated learning
performance by enabling the selective assignment of network layers to personalization when layer-
wise gradients are in conflict, and to generic layers otherwise. Our proposed method, FedLAG,
demonstrates significant improvements over current baselines in both accuracy and convergence time.
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A NOTATIONS

Table 4: Abbreviations

Symbol Description
U Number of users
η Learning rate
w Model parameter
E Number of training epochs for each user per round
ξ Threshold for layer-wise gradient conflict score
L Number of model layers
R Number of rounds
w∗ Optimal global model
σ2
∗ Upper bound of variance of user gradients at optimum

w
(r)
g Global parameter at round t

w
(r,e)
u Local parameter at round t, training at epoch e

cosΦ
(l)
u,v Cosine of gradient of user u and v w.r.t the lth layer

θ
(r)
s,u, θ

(r)
s,g Model layers that is assigned for global aggregation

θ
(r)
p,u, θ

(r)
p,g Model layers that is assigned for personalized purpose

θ
(r)
l,u lth Layer in model parameter
h
(r)
u gradient of user u on round r

h
(r)
l,u gradient w.r.t the lth layer

P Number of parameters of each pFL model
Pl Number of parameters on layer lth
Lp,Lg The set of coefficients in the personalized and global model
k Number of selected layers for personalization
w

(r)
LAG,u Layer-wise Personalized Model of user u

GCξ(l) Layer-wise gradient conflict score

14



Under review as a conference paper at ICLR 2025

B RELATED WORKS

Gradient-based Multi-task Learning. In MTL, the AI model consists of two distinguished groups:
1) shared encoder that is common to all tasks, and 2) task-specific decoders which are designed
and learned independently for each task. Addressing the contemporary challenge of task conflicts
in MTL, numerous approaches have been devised to mitigate the aforementioned issue, which can
be categorized in two main directions, i.e., task loss balancing and gradient manipulation. PCGrad
(Yu et al., 2020a), projects each gradient onto the normal plane of another gradient and employs
the average of these projected gradients for updates. GradDrop (Chen et al., 2020), randomly drops
some elements of gradients based on element-wise conflicts. CAGrad (Liu et al., 2021), ensures
convergence to a minimum of the average loss across tasks through gradient manipulation. RotoGrad
(Javaloy & Valera, 2022), re-weights task gradients and rotates the shared feature space to mitigate
conflicts. RECON (Shi et al., 2023), leverages gradient information to modify network structure and
address task conflicts at their core.

Mitigating non-IID in Federated Learning. Prior work has investigated how to improve the FL
robustness against non-IID data. FedPAC (Xu et al., 2023) training personalized models by exploiting
a better feature extractor and user-specific classifier collaboration. FedProx (Li et al., 2020) adds
a proximal term to the local training objective to keep updated parameters close to the original
downloaded model. SCAFFOLD (Karimireddy et al., 2020) introduces control variates to correct
the drift in local updates. MOON (Li et al., 2021) adopts contrastive loss to improve representation
learning.

Layer disentanglement in Federated Learning. Oh et al. (2022) decompose the entire local network
into the body (extractor), which is related to universality, and the head (classifier), which is related
to personalization. Collins et al. (2021) proposes a method where the entire network is trained
sequentially during local updates, but only the body is aggregated. During the local update phase,
each client first trains the head using the aggregated representation. Then, within the same epoch,
the client trains the body using its own head. FedRoD (Chen & Chao, 2022) proposes to use the
balanced softmax for learning generic models and vanilla softmax for personalized heads. Xu et al.
(2023) design an objective function to constraint the body with the task of learning invariant features.
However, most layer disentanglement approaches demand significant effort to identify the optimal
layer selection, often leading to arbitrary choices for the body and head layers. Currently, there is no
clear method for determining which layers should be personalized and which should remain generic.

Mitigating negative transfer in Federated Learning. Recently, negative transfer has been discov-
ered to be one of the most crucial issue in FL. FedCollab (Bao et al., 2023) minimizes the pair-wise
distribution distances between users to alleviate the negative transfer among clients. DisentAFL (Chen
& Zhang, 2024) integrates mixtures of experts to selectively aggregate clients’ representations. To
this end, the FL system can aggregate the fine-grained inter-client relationships to achieve sufficient
positive transfer while avoiding negative transfer. However, we believe that current methods lack a
strong theoretical foundation that directly addresses negative transfer among clients.
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C DETAIL OF MODELS USED

Dataset Model
1 Initial

Conv Residual Blocks 3 FC Layers Activation
Function

Total
Model

Size (MB)Output
Channel

Blocks/
Group

Output Channels/
Group

Output
Dimension

MNIST Resnet-9 32 (1,2,2,1) (32,64,128,256) (256,128,10) ReLU 6.81
EMNIST Resnet-9 32 (1,2,2,1) (32,64,128,256) (256,128,10) ReLU 6.81
CIFAR-10 Resnet-20 64 (3,3,3) (64,128,256) (256,128,10) ReLU 17.54
CIFAR-100 Resnet-20 64 (2,3,4) (64,128,256) (256,128,100) ReLU 17.54

Table 5: Model employed for MNIST, EMNIST, CIFAR-10, CIFAR-100 Datasets.

D EXTENSIVE THEORETICAL RESULTS

As current FL concepts are mostly gradient-based optimization approaches, the convergence proofs
of all FL approaches are proved in a similar approach. Therefore, for simplicity, we do not prove all
the theoretical results comprehensively. As being proved in Appendix H.4, our LAG always give
the improvement of− 1

U

∑U
u=1

∑
l∈Lp
∥h(r)

p,u∥(∥h(r)
p,u∥− cosΦ

(l)
u,v∥h(r)

p,v∥) on any global loss function.
Therefore, by apply this theorem to the proof in other approaches (e.g., pFedMe (T. Dinh et al., 2020),
FedEXP (Jhunjhunwala et al., 2023), SCAFFOLD (Karimireddy et al., 2020)), and apply the model
disentanglement to apply the loss improvement lemma, we can have the results as following table:

Method Convergence Rate
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SCAFFOLD (Karimireddy et al., 2020) O( σ
µSKϵ

) +O( 1µ ) +O(
N
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SCAFFOLD + LAG (Ours) O( σ
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Table 6: Table of convergence of baselines vs. baselines + LAG.
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E DETAILED RESULTS

E.1 FULL TABLE OF OVERALL PERFORMANCE

Problem non-IID (α = 0.1) non-IID (α = 0.5)
Problem
Method MNIST CIFAR10 CIFAR100 EMNIST MNIST CIFAR10 CIFAR100 EMNIST

Participation ratio = 100%
FedLAG
(Ours) 97.97 ± 0.17 88.54 ± 0.1 57.08 ± 0.28 96.73 ± 0.15 99.57 ± 0.10 87.18 ± 0.03 41.81 ± 0.18 97.57 ± 0.27
PerAvg 87.05 ± 0.13 83.12 ± 0.26 51.27 ± 0.05 83.34 ± 0.24 93.36 ± 0.05 83.50 ± 0.08 34.13 ± 0.27 95.74 ± 0.12
FedROD 97.74 ± 0.11 82.09 ± 0.04 49.33 ± 0.20 95.25 ± 0.20 94.88 ± 0.29 81.94 ± 0.10 38.34 ± 0.30 96.46 ± 0.20
FedPAC 96.64 ± 0.21 81.75 ± 0.17 53.83 ± 0.11 92.22 ± 0.09 94.36 ± 0.19 80.30 ± 0.13 38.51 ± 0.04 93.44 ± 0.05
FedBABU 85.46 ± 0.15 79.55 ± 0.27 51.78 ± 0.12 83.77 ± 0.27 90.62 ± 0.03 86.60 ± 0.15 33.18 ± 0.16 93.48 ± 0.16
FedAvg 85.77 ± 0.19 60.45 ± 0.02 47.25 ± 0.21 83.24 ± 0.10 91.90 ± 0.11 78.15 ± 0.05 32.64 ± 0.02 93.83 ± 0.26
FedCAC 95.90 ± 0.15 86.50 ± 0.08 53.46 ± 0.25 94.65 ± 0.13 93.12 ± 0.08 85.73 ± 0.02 39.14 ± 0.12 95.50 ± 0.25
FedDBE 94.90 ± 0.12 85.50 ± 0.06 55.13 ± 0.22 93.65 ± 0.10 92.26 ± 0.06 84.26 ± 0.01 38.75 ± 0.26 93.50 ± 0.22
GPFL 93.90 ± 0.10 84.50 ± 0.04 54.11 ± 0.20 92.65 ± 0.08 91.37 ± 0.04 83.12 ± 0.01 38.23 ± 0.10 95.50 ± 0.17
FedAS 97.22 ± 0.02 87.73 ± 0.23 54.92 ± 0.06 97.77 ± 0.01 98.14 ± 0.18 85.92 ± 0.26 38.19 ± 0.05 96.89 ± 0.22
FedAF 97.25 ± 0.04 86.25 ± 0.01 51.80 ± 0.02 95.25 ± 0.11 97.00 ± 0.02 85.10 ± 0.03 38.20 ± 0.16 95.50 ± 0.23

Participation ratio = 80%
FedLAG
(Ours) 97.95 ± 0.20 88.02 ± 0.24 55.98 ± 0.10 95.72 ± 0.16 99.28 ± 0.21 85.25 ± 0.12 39.91 ± 0.09 96.14 ± 0.29
PerAvg 89.44 ± 0.24 83.61 ± 0.06 48.93 ± 0.04 83.88 ± 0.09 93.18 ± 0.05 81.59 ± 0.16 35.37 ± 0.23 94.53 ± 0.22
FedROD 97.61 ± 0.24 87.42 ± 0.11 48.18 ± 0.27 95.51 ± 0.09 94.85 ± 0.27 82.03 ± 0.18 35.26 ± 0.24 97.92 ± 0.28
FedPAC 95.05 ± 0.23 83.81 ± 0.11 50.37 ± 0.21 93.92 ± 0.07 94.24 ± 0.15 80.87 ± 0.19 36.12 ± 0.24 93.55 ± 0.10
FedBABU 96.51 ± 0.08 86.7 ± 0.28 50.69 ± 0.29 83.58 ± 0.18 90.03 ± 0.25 83.52 ± 0.29 37.24 ± 0.03 92.53 ± 0.12
FedAvg 89.88 ± 0.06 63.36 ± 0.18 46.46 ± 0.05 83.71 ± 0.15 92.18 ± 0.01 75.75 ± 0.21 30.13 ± 0.26 92.94 ± 0.19
FedCAC 95.82 ± 0.14 86.47 ± 0.09 52.92 ± 0.27 94.60 ± 0.12 92.92 ± 0.07 85.04 ± 0.03 37.84 ± 0.14 94.46 ± 0.23
FedDBE 94.87 ± 0.13 85.44 ± 0.07 54.94 ± 0.23 93.58 ± 0.09 91.97 ± 0.05 84.04 ± 0.02 37.62 ± 0.13 93.44 ± 0.21
GPFL 93.84 ± 0.09 84.44 ± 0.05 53.93 ± 0.19 92.58 ± 0.07 90.95 ± 0.03 83.07 ± 0.14 38.71 ± 0.11 92.46 ± 0.18
FedAS 96.62 ± 0.07 86.23 ± 0.25 53.73 ± 0.01 95.77 ± 0.25 97.28 ± 0.08 84.92 ± 0.07 37.89 ± 0.11 93.45 ± 0.15
FedAF 97.25 ± 0.04 86.25 ± 0.01 51.80 ± 0.02 95.25 ± 0.11 96.00 ± 0.09 79.10 ± 0.07 37.20 ± 0.02 91.50 ± 0.20

Participation ratio = 60%
FedLAG
(Ours) 97.39 ± 0.20 87.25 ± 0.15 55.03 ± 0.22 96.88 ± 0.14 98.87 ± 0.26 83.24 ± 0.26 37.98 ± 0.24 94.82 ± 0.26
PerAvg 89.04 ± 0.08 83.85 ± 0.28 46.52 ± 0.09 84.18 ± 0.04 94.52 ± 0.22 79.76 ± 0.10 33.09 ± 0.07 93.78 ± 0.09
FedROD 97.15 ± 0.19 83.15 ± 0.21 48.39 ± 0.09 96.5 ± 0.16 94.82 ± 0.30 79.52 ± 0.07 35.19 ± 0.18 93.46 ± 0.19
FedPAC 84.9 ± 0.04 83.35 ± 0.19 49.75 ± 0.06 94.74 ± 0.04 94.62 ± 0.17 76.17 ± 0.19 34.95 ± 0.20 93.10 ± 0.12
FedBABU 95.85 ± 0.07 80.17 ± 0.15 49.61 ± 0.15 83.76 ± 0.02 90.78 ± 0.07 74.91 ± 0.27 31.96 ± 0.06 92.11 ± 0.12
FedAvg 90.04 ± 0.14 64.9 ± 0.05 46.51 ± 0.22 84.23 ± 0.05 93.47 ± 0.20 68.12 ± 0.07 22.24 ± 0.03 92.45 ± 0.18
FedCAC 95.75 ± 0.16 86.43 ± 0.10 51.98 ± 0.45 94.55 ± 0.14 92.85 ± 0.09 75.14 ± 0.03 35.20 ± 0.16 93.40 ± 0.27
FedDBE 94.80 ± 0.14 85.40 ± 0.07 54.23 ± 0.24 93.50 ± 0.11 91.90 ± 0.07 76.42 ± 0.02 34.81 ± 0.14 92.40 ± 0.23
GPFL 93.80 ± 0.11 84.40 ± 0.06 53.85 ± 0.21 92.50 ± 0.09 90.90 ± 0.05 76.95 ± 0.03 34.65 ± 0.12 91.40 ± 0.19
FedAS 96.24 ± 0.11 85.79 ± 0.12 51.24 ± 0.23 95.34 ± 0.16 96.28 ± 0.22 76.92 ± 0.01 32.89 ± 0.09 91.26 ± 0.05
FedAF 96.25 ± 0.07 85.25 ± 0.01 51.00 ± 0.02 94.25 ± 0.15 95.20 ± 0.12 78.30 ± 0.09 32.50 ± 0.02 90.50 ± 0.24

Participation ratio = 40%
FedLAG
(Ours) 97.55 ± 0.15 86.11 ± 0.62 53.19 ± 0.09 96.14 ± 0.07 96.17 ± 0.22 76.34 ± 0.08 36.39 ± 0.16 93.58 ± 0.13
PerAvg 89.43 ± 0.02 81.44 ± 0.01 44.38 ± 0.23 84.17 ± 0.02 91.71 ± 0.12 73.57 ± 0.07 32.10 ± 0.27 90.09 ± 0.29
FedROD 97.15 ± 0.07 82.53 ± 0.19 47.76 ± 0.42 95.73 ± 0.18 94.72 ± 0.03 78.03 ± 0.07 35.21 ± 0.16 93.30 ± 0.16
FedPAC 84.24 ± 0.29 82.63 ± 0.21 48.38 ± 0.13 86.42 ± 0.19 93.57 ± 0.07 75.91 ± 0.27 32.26 ± 0.28 93.27 ± 0.02
FedBABU 95.34 ± 0.09 76.19 ± 0.06 45.01 ± 0.04 83.97 ± 0.07 91.17 ± 0.25 72.21 ± 0.06 31.46 ± 0.13 91.44 ± 0.14
FedAvg 90.71 ± 0.14 69.66 ± 0.17 42.21 ± 0.18 84.45 ± 0.19 93.88 ± 0.28 65.63 ± 0.25 16.05 ± 0.25 91.05 ± 0.03
FedCAC 96.05 ± 0.18 77.19 ± 0.09 48.15 ± 0.12 94.80 ± 0.14 93.20 ± 0.09 75.20 ± 0.03 33.45 ± 0.16 92.80 ± 0.27
FedDBE 95.48 ± 0.13 75.80 ± 0.08 51.27 ± 0.26 94.25 ± 0.12 92.10 ± 0.07 74.20 ± 0.02 32.74 ± 0.13 91.70 ± 0.22
GPFL 94.36 ± 0.12 74.60 ± 0.05 50.86 ± 0.22 93.17 ± 0.10 91.20 ± 0.06 73.20 ± 0.02 32.26 ± 0.11 91.52 ± 0.20
FedAS 95.76 ± 0.15 84.79 ± 0.22 50.89 ± 0.01 94.56 ± 0.19 95.28 ± 0.03 74.22 ± 0.17 32.89 ± 0.16 90.45 ± 0.02
FedAF 95.50 ± 0.10 84.50 ± 0.02 50.40 ± 0.02 93.50 ± 0.18 94.60 ± 0.15 67.70 ± 0.12 32.15 ± 0.04 89.80 ± 0.28

Participation ratio = 20%
FedLAG
(Ours) 97.18 ± 0.13 85.21 ± 0.29 51.35 ± 0.02 96.34 ± 0.25 96.68 ± 0.01 69.26 ± 0.09 33.75 ± 0.14 91.42 ± 0.18
PerAvg 89.11 ± 0.17 81.25 ± 0.20 43.21 ± 0.28 84.84 ± 0.20 94.89 ± 0.06 61.25 ± 0.14 23.98 ± 0.25 89.70 ± 0.14
FedROD 97.02 ± 0.29 81.72 ± 0.16 46.17 ± 0.06 96.02 ± 0.08 94.87 ± 0.12 68.47 ± 0.19 26.76 ± 0.08 90.70 ± 0.28
FedPAC 89.12 ± 0.04 83.13 ± 0.01 44.77 ± 0.06 89.63 ± 0.04 94.60 ± 0.18 63.01 ± 0.04 25.42 ± 0.25 88.44 ± 0.61
FedBABU 95.92 ± 0.26 80.75 ± 0.08 42.59 ± 0.03 84.63 ± 0.19 91.42 ± 0.03 65.12 ± 0.18 21.54 ± 0.30 87.35 ± 0.10
FedAvg 90.61 ± 0.11 65.47 ± 0.17 41.28 ± 0.09 85.02 ± 0.30 88.43 ± 0.07 59.01 ± 0.26 15.99 ± 0.10 86.35 ± 0.16
FedCAC 96.77 ± 0.03 84.62 ± 0.19 47.22 ± 1.52 96.01 ± 0.15 96.33 ± 0.11 68.93 ± 0.19 26.12 ± 0.04 91.10 ± 0.18
FedDBE 95.73 ± 0.11 83.76 ± 0.09 50.12 ± 0.12 95.04 ± 0.05 95.52 ± 0.11 67.75 ± 0.04 25.43 ± 0.04 90.14 ± 0.08
GPFL 94.15 ± 0.10 82.11 ± 0.25 49.85 ± 0.01 93.25 ± 0.21 93.56 ± 0.08 66.38 ± 0.07 24.01 ± 0.11 88.45 ± 0.15
FedAS 95.36 ± 0.12 84.11 ± 0.02 50.26 ± 0.03 93.25 ± 0.19 94.28 ± 0.18 67.38 ± 0.14 32.01 ± 0.04 89.45 ± 0.32
FedAF 95.24 ± 0.15 84.35 ± 0.03 50.11 ± 0.04 93.10 ± 0.20 94.40 ± 0.17 67.55 ± 0.13 32.07 ± 0.05 89.50 ± 0.30

Table 7: Test accuracy comparison among baselines and our proposed method on 4 datasets (i.e.,
MNIST, CIFAR10/100, EMNIST). The data set splitting method is selected from the Dirichlet
sampling with replacement (i.e. α ∈ {0.1, 0.5}). The experimental setups are at 20%, 40%, 60%,
80%, and 100% user participation. Each result is averaged after 10 times.
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F DETAILED ABLATION TEST

F.1 TRAINING TIME

We have conducted a thorough evaluation of FedLAG’s robustness in comparison to other baselines,
focusing on convergence rate and accuracy. Additionally, we evaluated the robustness of FedLAG by
computing the average computation time per round for various FL algorithms, and the results are
presented in Table 8.

As depicted in the table, FedLAG demonstrates a lower computation cost compared to other baselines.
This efficiency stems from our approach, which involves measuring the gradient and applying a
straightforward analysis on the server. It is noteworthy that servers typically possess significantly
more computational resources than individual devices. As a result, our proposed FedLAG effectively
leverages the server’s computation capacity, leading to substantial time savings.

The efficiency gains achieved by FedLAG make it particularly well-suited for Internet of Things (IoT)
systems with constrained computational resources. In contrast, FedPAC tends to be less suitable for
such environments, as it demands substantial computation time on distributed devices. Our findings
emphasize the practical advantages of FedLAG in scenarios where computational efficiency is crucial,
such as IoT systems with limited resources.

Method
Dataset FedBABU PerAvg FedROD FedPAC FedLAG

(Ours)
Mnist 11 ± 0.11 9 ± 0.13 12 ± 0.32 342 ± 0.06 8 ± 0.37
Cifar10 23 ± 0.25 19 ± 0.62 22 ± 0.18 474 ± 0.26 15 ± 0.77
Cifar100 22 ± 0.13 20 ± 0.11 21 ± 0.55 698 ± 0.77 17 ± 0.34
EMNIST 117 ± 0.25 108 ± 0.20 114 ± 0.70 503 ± 0.43 112 ± 0.43

Table 8: Training time (second/round) of FedLAG vs. baselines.
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F.2 TOP K LAYERS
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Figure 8: The impact of the top k conflict layer
hyperparameter on accuracy on cifar 10.
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Figure 9: The impact of the top k conflict layer
hyperparameter on accuracy on cifar 100.

F.3 GRADIENT SCORE
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Figure 10: The impact of the conflict hyperpa-
rameter ξ on accuracy on cifar 10.
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Figure 11: The impact of the conflict hyperpa-
rameter ξ on accuracy on cifar 100.
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F.4 CONFLICTED SCORE DURING THE TRAINING OF FEDAVG

F.4.1 MNIST DATASET
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Figure 12: The GC score on each layer (Dataset MNIST - IID).
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Figure 13: The GC score on each layer (Dataset MNIST - NIID α = 0.1).

In the MNIST dataset under the IID setting shown in Fig. 12, it’s clear that the gradient conflict score
is close to 0 in the early rounds. This is due to training on IID settings and the simplicity of the
MNIST dataset. Consequently, there’s minimal negative transfer of gradient conflict among users.
When compared with that of the conflicted scores in MNIST dataset with non-IID settings, we can
see that the problem of conflicted scores become significant.
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F.4.2 CIFAR10 DATASET
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Figure 14: The GC score on each layer (Dataset Cifar10 - NonIID with α = 0.1).
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Figure 15: The GC score on each layer (Dataset Cifar10 - IID).

Fig. 14 shows the fluctuating scores observed during training on the Cifar10 dataset under non-IID
conditions (α = 0.1). We excluded layers without trainable parameters, such as Batch Normalization
layers, from visualization. Initially, from round 0 to 150, the conflicting gradients are prominent
in the later layers (i.e., layers 12 to 16). However, as training progresses, the intensity of conflicts
in these layers diminishes, resulting in a more balanced distribution of conflicting gradients across
layers 8 to 16. This indicates that the nature of conflicting scores varies throughout the training stages
of FL. In the IID settings (Fig. 15), the conflicted scores is much reduced as the divergence among
domains are small. However, we can easily see that the layers with high gradient conflicts are not
densely distributed at the very first and the very last layers.
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G TOY DATASET DESCRIPTION

We visualize the training data in 16, and 17. In the FDG setting, the users are from different domains.
To this end, we design the data where the point are distributed into rectangular with different size and
shape. The rationale of designing the data distribution is as follows:

• The global dataset consists of two classes from two rectangular, which has the classification
boundary is equal to y = 0.

• Each domain-wise dataset has different classification boundary (e.g., x = −6 for domain 1).
We add the noisy data on every domains so that the user assign to each domain will tend to
learn the local boundary instead of the global boundary. Thus, we can observe the gradient
divergence more clearly, as the global boundary is not the optimal solution when learn on
local dataset.

• All of the local classification boundary is orthogonal from the global classification boundary,
thus, we can make the learning more challenging despite the simplicity of the toy dataset.

Figure 16: Illustration of users with different domains.

Figure 17: Illustration of users with same domains.
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H PROOF

H.1 ASSUMPTIONS AND DEFINITIONS

To come up with our theoretical analysis, we first adopt the following assumptions:
Assumption H.1 (L-smooth). Local objective Fu(w) is differentiable and L-smooth for all u ∈
{1, 2, . . . , U}, i.e., ∥∇Lu(w)−∇Lu(w

′)∥ ≤ L∥w − w′∥, ∀w,w′ ∈ Rd.
Assumption H.2 (µ-strongly convex). Local objective Fu(w) is differentiable and L-smooth for all
u ∈ {1, 2, . . . , U}, i.e., ∥∇Lu(w)−∇Lu(w

′)∥ ≥ µ∥w − w′∥, ∀w,w′ ∈ Rd.
Assumption H.3 (Bounded data heterogeneity at optimum). The norm of the user gradients at the
global optima w∗ is bounded as follows: 1

U

∑U
u=1 ∥∇Lu(w

∗)∥2 ≤ σ2
∗.

Assumption H.4 (Bounded global gradient variance). There exists a constant σ2
g > 0 such that the

global gradient variance is bounded as follows: 1
U

∑U
u=1 ∥∇Lu(w)−∇L(w)∥2 ≤ σ2

g .

H.2 PRELIMINARIES

Lemma H.5 (Jensen’s Inequality). For any au ∈ Rd, u ∈ {1, 2, . . . , U}:

∥ 1
U

U∑
u=1

au∥2 ≤
1

U

U∑
u=1

∥au∥2 (7)

∥
U∑

u=1

au∥2 ≤ U

U∑
u=1

∥au∥2 (8)

Lemma H.6 ((Khaled et al., 2020)). If L is smooth and convex, then

∥∇L(w)−∇L(w′)∥2 ≤ 2L(L(w)− L(w′)− ⟨∇L(w′), w − w′⟩) (9)

Lemma H.7 (Co-coercivity of convex L-smooth function). If F is L-smooth and convex then

⟨∇L(w)−∇L(w′), w − w′⟩ ≥ 1

L
∥∇L(w)−∇L(w′)∥2. (10)

A direct consequence of this lemma is:

⟨∇L(w), w − w∗⟩ ≥ 1

L
∥∇L(w)∥2, (11)

where w∗ is a minimizer of L(w)
Lemma H.8 (Co-coercivity of µ-strongly convex function). If F is L-smooth and convex then

⟨∇L(w)−∇L(w′), w − w′⟩ ≥ 1

L
∥∇L(w)−∇L(w′)∥2. (12)

A direct consequence of this lemma is:

⟨∇L(w), w − w∗⟩ ≥ 1

L
∥∇L(w)∥2, (13)

where w∗ is a minimizer of F (w)
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H.3 REFORMULATION FOR VANILLA PFL AND FEDLAG

In the appendix, we aim to achieve two main objectives. Firstly, we intend to illustrate the distinction
between FedLAG and other Federated Learning (FL) algorithms that do not incorporate FedLAG.
Secondly, we aim to demonstrate the convergence under novel FedLAG settings. To accomplish these
goals, we introduce additional notations in the appendix. It is essential to note that these extensively
defined notations are exclusive to the appendix and do not compromise the generality of the main
paper. Towards the conclusion of the appendix, our objective is to consolidate the formulations and
revert the convergence formulation back to its original form.

We define w
(r)
u , w

(r)
g as local and global model parameters, respectively. In the appendix, to distin-

guish between two concepts Vanilla pFL and FedLAG (with our proposed layer-wise personalization
technique), we also define the following auxiliary variables that will used in the proof:

• Layer-wise Personalized Model: To represent the layer disentanglement architecture,
where the model are layer-wise personalized, we define the user’s model w

(r)
LAG,u =

{θ(r)s,u, θ
(r)
p,u}, where {θ(r)s,u, θ

(r)
p,u} represents the model layers that is assigned for global

aggregation, and the one that is assigned for personalized purpose, respectively.

• Vanilla FL Model: We define the user’s model w(r)
VFL,u = {θ(r)s,u, θ

(r)
q,u}, where {θ(r)s,u, θ

(r)
q,u}

represents the model layers that is assigned for global aggregation, and the one that is
assigned for personalized purpose. However, in Vanilla settings, we do the shared global
aggregation on the personalized model. Thus, the model update at global aggregation is
similar to the shared layers.

As the model layer θ(r)s,u is assigned for the global aggregation. Without the loss of generality, the two
model layers have same attributes and update rules. Consequently, we use the same notations θ(r)s,u for
the two model layers according to Layer-wise Personalized Model and Vanilla FL Model.

• Accumulated Local Gradient: We have the local gradient update on the whole user’s
network:

h(r)
u =

E−1∑
e=0

η∇Lu(w
(r,e)
u ) = w(r,E)

u − w(r)
u . (14)

By decomposing into shared aggregation layer set θ(r)s,u, and personalized layer set θ(r)p,u, we
have the following:

h(r)
s,u =

E−1∑
e=0

η∇Lu(θ
(r,e)
s,u ) = θ(r,E)

s,u − θ(r)s,u, (15)

h(r)
p,u =

E−1∑
e=0

η∇Lu(θ
(r,e)
p,u ) = θ(r,E)

p,u − θ(r)p,u. (16)

As the local update on both vanilla and FedLAG remain the same, thus, we have the gradient
trajectories on both setting similar. For instance,

h(r)
p,u = h(r)

q,u. (17)

• Global Gradient Aggregation: For FedLAG, we have the two different update rules for
two different type of layers:

θ(r+1,0)
s,u =

1

U

U∑
u=1

θ(r)s,u = θ(r,0)s,u −
1

U

U∑
u=1

h(r)
s,u,

θ(r+1,0)
p,u =

1

U

U∑
u=1

θ(r)p,u = θ(r,0)p,u − h(r)
p,u. (18)

24



Under review as a conference paper at ICLR 2025

On Vanilla pFL, we have the same update rule for two different type of layers:

θ(r+1,0)
su =

1

U

U∑
u=1

θ(r)s,u = θ(r,0)s,u −
1

U

U∑
u=1

h(r)
s,u, (19)

θ(r+1,0)
q,u =

1

U

U∑
u=1

θ(r)p,u = θ(r,0)p,u −
1

U

U∑
u=1

h(r)
p,u. (20)

• Loss Function: Due to the definition of two models θs,u, θp,u, we can define the
Lu(θ

(r)
s,g),Lu(θ

(r)
p,g) are the two empirical loss that aim to design a global optimal models

w∗ = {θ∗s,u, θ∗p,u}, respectively. Therefore, we have Lu(w
(r)
LAG,u) = Lu(θ

(r)
s,g) + Lu(θ

(r)
p,g).

H.4 PROOF ON LEMMA 5.1

By leveraging Taylor approximation, we have the following loss estimation for joint model parameters
at each communication round. For the layer-wise personalized aggregation, we have:

Lu(θ
(r+1)
s,u , θ(r+1)

p,u )
(a)
= Lu(θ

(r+1)
s,u , θ(r)p,u) + (θ(r+1)

p,u − θ(r)p,u)∇θ
(r)
s,u
Lu(θ

(r)
s,u, θ

(r)
p,u) +O(η)

(b)
= Lu(θ

(r)
s,u, θ

(r)
p,u) + (θ(r+1)

s,u − θ(r)s,u)∇θ
(r)
s,u
Lu(θ

(r)
s,u, θ

(r)
p,u)

+ (θ(r+1)
p,u − θ(r)p,u)∇θ

(r)
p,u
Lu(θ

(r)
s,u, θ

(r)
p,u) +O(η)

= Lu(θ
(r)
s,u, θ

(r)
p,u) + (θ(r+1)

s,u − θ(r)s,u)

E−1∑
e=0

η∇
θ
(r,e)
s,u
Lu(θ

(r,e)
s,u , θ(r,e)p,u )

+ (θ(r+1)
p,u − θ(r)p,u)

E−1∑
e=0

η∇
θ
(r,e)
p,u
Lu(θ

(r,e)
s,u , θ(r,e)p,u )

= Lu(θ
(r)
s,u, θ

(r)
p,u) + (θ(r+1)

s,u − θ(r)s,u)h
(r)
s,u + (θ(r+1)

p,u − θ(r)p,u)h
(r)
p,u +O(η), (21)

where (a) and (b) hold due to the approximations of Lu(θ
(r+1)
s,u , θ

(r+1)
p,u ) according to θ

(r+1)
s,u and

θ
(r+1)
p,u , respectively. For normal update, we have:

Lu(θ
(r+1)
s,u , θ(r+1)

q,u )
(a)
= Lu(θ

(r)
s,u, θ

(r+1)
q,u ) + (θ(r+1)

q,u − θ(r)q,u)∇θ
(r)
s,u
Lu(θ

(r)
s,u, θ

(r)
q,u) +O(η)

(b)
= Lu(θ

(r)
s,u, θ

(r)
q,u) + (θ(r+1)

s,u − θ(r)s,u)∇θ
(r)
s,u
Lu(θ

(r)
s,u, θ

(r)
q,u)

+ (θ(r+1)
q,u − θ(r)q,u)∇θ

(r)
q,u
Lu(θ

(r)
s,u, θ

(r)
q,u) +O(η)

= Lu(θ
(r)
s,u, θ

(r)
q,u) + (θ(r+1)

s,u − θ(r)s,u)

E−1∑
e=0

η∇
θ
(r,e)
s,u
Lu(θ

(r,e)
s,u , θ(r,e)q,u )

+ (θ(r+1)
q,u − θ(r)q,u)

E−1∑
e=0

η∇
θ
(r,e)
q,u
Lu(θ

(r,e)
s,u , θ(r,e)q,u )

= Lu(θ
(r)
s,u, θ

(r)
q,u) + (θ(r+1)

s,u − θ(r)s,u)h
(r)
s,u + (θ(r+1)

q,u − θ(r)q,u)h
(r)
q,u +O(η)

(c)
= Lu(θ

(r)
s,u, θ

(r)
q,u) + (θ(r+1)

s,u − θ(r)s,u)h
(r)
s,u + (θ(r+1)

q,u − θ(r)q,u)h
(r)
p,u +O(η), (22)

where (a) and (b) hold due to the approximations of Lu(θ
(r+1)
s,u , θ

(r+1)
q,u ) according to θ

(r+1)
s,u and

θ
(r+1)
q,u , respectively. (c) holds according to the Equation 17. Specifically, in the one-step layer-wise

personalized aggregation, we want to estimate the divergence that loss function from LAG move
from the vanilla pFL. The difference between the two loss function after the update is measured
by subtracting Lu(θ

(r+1)
s,u , θ

(r+1)
p,u ) in Equation equation 21 from Lu(θ

(r+1)
s,u , θ

(r+1)
q,u ) in Equation
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equation 22 as follows:

Lu(θ
(r+1)
s,u , θ(r+1)

p,u )− Lu(θ
(r+1)
s,u , θ(r+1)

q,u )

=
(
Lu(θ

(r)
s,u, θ

(r)
p,u) + (θ(r+1)

s,u − θ(r)s,u)h
(r)
s,u + (θ(r+1)

p,u − θ(r)p,u)h
(r)
p,u

)
−
(
Lu(θ

(r)
s,u, θ

(r)
q,u) + (θ(r+1)

s,u − θ(r)s,u)h
(r)
s,u + (θ(r+1)

q,u − θ(r)q,u)h
(r)
p,u

)
+O(η)

= (θ(r+1)
p,u − θ(r+1)

q,u )h(r)
p,u + (θ(r)p,u − θ(r)q,u)h

(r)
p,u +O(η),

(a)
= (θ(r+1)

p,u − θ(r+1)
q,u )h(r)

p,u +O(η),

= −η(h(r)
p,u −

1

U

U∑
v=1

h(r)
p,v)

⊤h(r)
p,u +O(η),

= −η 1

U

U∑
v=1

(h(r)
p,u − h(r)

p,v)
⊤h(r)

p,u +O(η),

= −η 1

U

U∑
v=1

(∥h(r)
p,u∥2 − h(r)⊤

p,v h(r)
p,u) +O(η), (23)

where O(η) represents the remainder which depends on the variable η. (a) holds due to the model
are considered to be trained at the same starting position at each round r, thus θ(r)p,u = θ

(r)
q,u . Without

loss of generality, we assume that ∥h(r)
p,u∥ ≠ 0, and h

(r)
p,u = {h(r)

l,u |∀l ∈ Lp} then:

∥h(r)
p,u∥2 − h(r)⊤

p,v h(r)
p,u =

∑
l∈Lp

(∥h(r)
l,u∥

2 − h
(r)⊤
l,v h

(r)
l,u),

=
∑
l∈Lp

∥h(r)
l,u∥(∥h

(r)
l,u∥ − cosΦ(l)

u,v∥h
(r)
l,v ∥)

(a)
> 0, (24)

where Lp represents the layers that have gradient conflict and turned become personalized layers.
Due to the gradient conflict definition which has proposed in Definition 2.1, we have: cosΦ(l)

u,v < 0

as Φ(l)
u,v > π/2, which makes the inequality (a) hold. Hence, the above difference is negative, if η

is sufficiently small. As such, the difference between the vanilla FL and LAG loss functions is also
negative, if η is sufficiently small.
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H.5 PROOF ON LEMMA 6

From Lemma 5.1, we have

L(θ(r+1)
s,g , θ(r+1)

p,g )− L(θ(r+1)
s,g , θ(r+1)

q,g ) =
1

U

U∑
u=1

Lu(θ
(r+1)
s,u , θ(r+1)

p,u )− 1

U

U∑
u=1

Lu(θ
(r+1)
s,u , θ(r+1)

q,u )

= −η 1

U2

U∑
u=1

U∑
v=1

(
∥h(r)

p,u∥2 − h(r)⊤
p,v h(r)

p,u

)
(a)
= −η 1

U2

U∑
u=1

U∑
v=1

∑
l∈L

(
∥h(r)

l,u∥
2 − h

(r)
l,v · h

(r)
l,u

)
(b)
= −η 1

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

(
∥h(r)

l,u∥
2 −

(h
(r)
l,u) · h

(r)
l,v

∥h(r)
l,u∥∥h

(r)
l,v ∥
∥h(r)

l,u∥∥h
(r)
l,v ∥

)

= −η 1

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ −
h
(r)
l,u · h

(r)
l,v

∥h(r)
l,u∥∥h

(r)
l,v ∥
∥h(r)

l,v ∥
)

(c)
= −η 1

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
< 0,

(25)

where (a) holds according to the Lemma H.9 and (b) holds as the difference only be made on the
personalized layers θ(r)p,u. (c) holds according to Definition 2.1

Lemma H.9. Given two vector h(r)
p,v, h

(r)
p,u ∈ RP , we have following relationship:

h(r)⊤
p,v h(r)

p,u = h(r)
p,v · h(r)

p,u =

L∑
l=1

h
(r)
l,u · h

(r)
l,v , (26)

where P =
∑L

l=1 Pl is the number of parameters of the FL model, Pl is the number of parameters
on each layer l.

H.6 UPPER BOUNDARY ON LAYER-WISE LOSS IMPROVEMENT APPROXIMATION

Consider the inequality in Eq. equation 25. To find an upper boundary on the loss improvement, we
consider the maximal gradient norm h̃

(r)
p,u = argmax

h
(r)
l,u

∥h(r)
l,u∥. Thus, we have:

L(θ(r+1)
s,g , θ(r+1)

p,g )− L(θ(r+1)
s,g , θ(r+1)

q,g ) = −η 1

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)

= −ηEu,v

[ ∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)]

≤ −ηEu,v

[ ∑
l∈Lp

∥h̃(r)
p,u∥

(
∥h̃(r)

p,u∥ − cosΦ(l)
u,v∥h̃(r)

p,v∥
)]

= −ηEu,v

[
Lp∥h̃(r)

p,u∥
(
∥h̃(r)

p,u∥ − cosΦ(l)
u,v∥h̃(r)

p,v∥
)]

= −ηEu,v

[
Lp

L2
∥h̃(r)

u ∥
(
∥h̃(r)

u ∥ − cosΦ(l)
u,v∥h̃(r)

v ∥
)]

≤ −ηEu,v

[
∥h̃(r)

u ∥
(
∥h̃(r)

u ∥ − cosΦ(l)
u,v∥h̃(r)

v ∥
)]

. (27)
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Inequality in Eq. equation 27 proves that the improvement of layer-wise loss is upper-bounded by
the model gradient norm. Furthermore, the improvement on AI model depends on the percentage of
layers that required to be personalized rather than that of the number of layers. As a consequence, the
formula is agnostic to the over-parameterized of the AI model.

H.7 BOUNDING USER AGGREGATE GRADIENTS

Lemma H.10 ((Jhunjhunwala et al., 2023), Bounding user aggregate gradients on Vanilla FL).

1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
s,u )∥2 ≤ 3L2

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
s,g − w

(r)
VFL,g∥2 (28)

+ 6EL(∇L(w(r)
VFL,g)−∇L(w∗

g)) + 3Eσ2
∗. (29)

The lemma shows that the local gradient variance Lu(w
(r,e)
s,u ) on user u after E local epochs is

always bounded by a certain threshold.

Lemma H.11 (Bounding user aggregate gradients on Layer-wise Personalized FL).

1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
LAG,u)∥

2 ≤ 3L2

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,g − w

(r)
LAG,g∥

2 + 6EL
(
L(w(r) − L(w∗)

)
− 6ELη

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 3Eσ2

∗.

(30)

The lemma shows that the local gradient variance Lu(w
(r,e)
u ) on user u after E local epochs is

always bounded by a certain threshold.

Proof:

1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
LAG,u)∥

2

=
1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
LAG,u)−∇Lu(w

(r)
LAG,u) +∇Lu(w

(r)
LAG,u)−∇Lu(w

∗) +∇Lu(w
∗)∥2

≤ 3

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
LAG,u)−∇Lu(w

(r)
LAG,u)∥

2

︸ ︷︷ ︸
Q1

+
3

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r)
LAG,u)−∇Lu(w

∗)∥2︸ ︷︷ ︸
Q2

(31)

+
3

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
∗)∥2︸ ︷︷ ︸

Q3

. (32)

We derive Q1, Q2, Q3 as follows:

Q1 =
3

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
LAG,u)−∇Lu(w

(r)
LAG,u)∥

2 ≤ 3L2

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,g − w

(r)
LAG,g∥

2 (33)
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Q2 =
3

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r)
LAG,u)−∇Lu(w

∗)∥2

≤ 3

U

U∑
u=1

E−1∑
e=0

[
2L

(
∇Lu(w

(r)
LAG,u)−∇Lu(w

∗)
)
− ⟨∇Lu(w

∗), w
(r)
LAG,u − w∗⟩

]
(a)
=

6L

U

U∑
u=1

E−1∑
e=0

(
∇Lu(w

(r)
LAG,u)−∇Lu(w

∗)
)

= 6EL
( 1

U

U∑
u=1

∇Lu(w
(r)
LAG,u)−

1

U

U∑
u=1

∇Lu(w
∗)
)
= 6EL

(
∇L(w(r)

LAG,g)−∇L(w
∗)
)

(34)

Q3 =
3

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
∗)∥2 ≤ 3Eσ2

∗ (35)

Therefore, we have:

1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
u )∥2

≤ 3L2

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,g − w

(r)
LAG,g∥

2 + 6EL
(
L(w(r)

LAG,g)− L(w
∗)
)
+ 3Eσ2

∗. (36)

Base on H.4, we have:

1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
(r,e)
LAG,u)∥

2

≤ 3L2

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,g − w

(r)
LAG,g∥

2 + 6EL
(
L(w(r) − L(w∗)

)
− 6ELη

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 3Eσ2

∗. (37)
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H.8 BOUNDING USER DRIFT

Lemma H.12 ((Jhunjhunwala et al., 2023), Bounding user drift on Vanilla FL).

1

U

U∑
u=1

E−1∑
e=0

∥w(r)
u − w(r,e)

u ∥2 ≤ 12η2E2(E − 1)L(F (w(r))− F (w∗)) + 6η2E2(E − 1)σ2
∗. (38)

Lemma H.13 (Bounding user drift on Layer-wise Personalized FL).

1

U

U∑
u=1

E−1∑
e=0

∥w(r)
LAG,u − w

(r,e)
LAG,u∥

2 ≤ 12η2E2(E − 1)L(F (w(r))− F (w∗)) + 6η2E2(E − 1)σ2
∗.

(39)

Proof:

1

U

U∑
u=1

E−1∑
e=0

∥w(r)
LAG,u − w

(r,e)
LAG,u∥

2

= η2
1

U

U∑
u=1

E−1∑
e=0

∥
e∑

i=0

∇Lu(w
r,i
LAG,u)∥

2

≤ η2
1

U

U∑
u=1

E−1∑
e=0

e

e∑
i=0

∥∇Lu(w
r,i
LAG,u)∥

2

≤ η2E(E − 1)
1

U

U∑
u=1

E−1∑
e=0

∥∇Lu(w
r,e
LAG,u)∥

2

(a)

≤ η2E(E − 1)
[3L2

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,g − w

(r)
LAG,g∥

2 + 6EL
(
L(w(r) − L(w∗)

)
− 6ELη

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 3Eσ2

∗

]
(b)

≤ 1

2U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,g − w

(r)
LAG,g∥

2 + 6E2(E − 1)η2L
(
L(w(r) − L(w∗)

)
− 6E2(E − 1)η3

L

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 3η2E2(E − 1)σ2

∗, (40)

where (a) holds due to the Lemma H.11 and we have (b) due to the assumption with constraints
η2 ≤ 1

6EL . Therefore, we have:

1

U

U∑
u=1

E−1∑
e=0

∥w(r)
LAG,u − w

(r,e)
LAG,u∥

2 ≤ 12E2(E − 1)η2L
(
L(w(r) − L(w∗)

)
− 12E2(E − 1)η3

L

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 6η2E2(E − 1)σ2

∗

(41)
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H.9 PROOF ON THEOREM 5.3

We define h̄(r) = {h̄(r)
s , h̄

(r)
p }, where h̄

(r)
s , h̄

(r)
p represents the gradient update rules for shared

layers and personalized layers, respectively. Recall that the update of the global model can be
written as w

(r+1)
LAG,g = w

(r)
LAG,g − η 1

U

∑U
u=1 h̄

(r)
u . When disentangle into two distinguished models,

we have the update for shared layers as θ(r+1)
s,g = θ

(r)
s,g − η 1

U

∑U
u=1 h̄

(r)
s,u and personalized layers as

θ
(r+1)
p,g = θ

(r)
p,u − ηh̄

(r)
p,u. Therefore, we have:

E
[
∥w(r+1)

LAG,g − w∗∥2
]
= Eu∈U

[
∥θ(r+1)

s,g − θ∗s,g∥2
]
+ Eu∈U

[
∥θ(r+1)

p,u − θ∗p,g∥2
]

= ∥θ(r)s,g −
η

U

U∑
u=1

h(r)
s,u − θ∗s,g∥2 + Eu∈U

[
∥θ(r)p,u − ηh(r)

p,u − θ∗p,g∥2
]

= ∥θ(r)s,g − θ∗s,g∥2 + Eu∈U

[
∥θ(r)p,u − θ∗p,g∥2

]
− 2η⟨θ(r)s,g − θ∗s,g,

1

U

U∑
u=1

h(r)
s,u⟩

− 2ηEu∈U

[
⟨θ(r)p,u − θ∗p,g, h

(r)
p,u⟩

]
+ ∥ η

U

U∑
u=1

h(r)
s,u∥2 + Eu∈U

[
∥ηh(r)

p,u∥2
]

≤ ∥w(r)
LAG,g − w∗∥2 − 2η ⟨θ(r)s,g − θ∗s,g,

1

U

U∑
u=1

h(r)
s,u⟩︸ ︷︷ ︸

Q1

+η2
1

U

U∑
u=1

∥h(r)
s,u∥2︸ ︷︷ ︸

Q3

− 2η
1

U

U∑
u=1

⟨θ(r)p,u − θ∗p,g, h
(r)
p,u⟩︸ ︷︷ ︸

Q2

+η2
1

U

U∑
u=1

∥h(r)
p,u∥2︸ ︷︷ ︸

Q4

(42)

Bounding Q1: We have:

Q1 = ⟨θ(r)s,g − θ∗s,g,
1

U

U∑
u=1

h(r)
s,u⟩ =

1

U

U∑
u=1

⟨θ(r)s,g − θ∗s,g, h
(r)
s,u⟩

=
1

U

U∑
u=1

E−1∑
e=0

⟨θ(r)s,g − θ∗s,g,∇θ
(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩ (43)

We have:

⟨θ(r)s,g − θ∗s,g,∇θ
(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩ = ⟨θ

(r)
s,g − θ(r,e)s,g ,∇

θ
(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩︸ ︷︷ ︸

Q1
1

+ ⟨θ(r,e)s,g − θ∗s,g,∇θ
(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩︸ ︷︷ ︸

Q2
1

(44)

Next, we need to consider two terms Q1 and Q2. Take Q1
1 into consideration, due to the L-smooth in

Assumption H.1, we have:

Q1
1 = ⟨θ(r)s,g − θ(r,e)s,g ,∇

θ
(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩ ≥ Lu(θ

(r)
s,g)− Lu(θ

(r,e)
s,g )− L

2
∥θ(r)s,g − θ(r,e)s,g ∥2. (45)

Take Q2
1 into consideration, from Assumption H.2, we have:

Q2
1 = ⟨θ(r,e)s,g − θ∗s,g,∇θ

(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩ ≥ Lu(θ

(r,e)
s,g )− Lu(θ

∗
s,g) +

µ

2
∥θ(r,e)s,g − θ∗s,g∥2

≥ Lu(θ
(r,e)
s,g )− Lu(θ

∗
s,g). (46)

Therefore, adding the above inequalities equation 45 and equation 46 together, we have:

⟨θ(r)s,g − θ∗s,g,∇θ
(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩ ≥ Lu(θ

(r)
s,g)− (θ∗s,g)−

L

2
∥θ(r)s,g − θ(r,e)s,g ∥2 (47)
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Substituting equation 47 into equation 43, we have:

Q1 =
1

U

U∑
u=1

E−1∑
e=0

[
⟨θ(r)s,g − θ∗s,g,∇θ

(r,e)
s,u
Lu(w

(r,e)
LAG,u)⟩

]
≥ 1

U

U∑
u=1

E−1∑
e=0

[
Lu(θ

(r)
s,g)− Lu(θ

∗
s,g)−

L

2
∥θ(r)s,g − θ(r,e)s,g ∥2

]
= E

[
Lu(θ

(r)
s,g)− Lu(θ

∗
s,g)

]
− L

2U

U∑
u=1

E−1∑
e=0

∥θ(r)s,g − θ(r,e)s,g ∥2 (48)

Bounding Q2: We have:

Q2 =
1

U

U∑
u=1

⟨θ(r)p,u − θ∗p,g, h
(r)
p,u⟩ =

1

U

U∑
u=1

E−1∑
e=0

⟨θ(r)p,u − θ∗p,g,∇θ
(r,e)
p,u
Lu(w

(r,e)
LAG,u)⟩ (49)

We have:

⟨θ(r)p,u − θ∗p,g,∇θ
(r,e)
p,u
Lu(w

(r,e)
LAG,u)⟩ = ⟨θ

(r)
p,u − θ(r,e)p,u ,∇

θ
(r,e)
p,u
Lu(w

(r,e)
LAG,u)⟩︸ ︷︷ ︸

Q1
2

+ ⟨θ(r,e)p,u − θ∗p,g,∇θ
(r,e)
p,u
Lu(w

(r,e)
LAG,u)⟩︸ ︷︷ ︸

Q2
2

(50)

Take Q1
2 into consideration, due to the L-smooth in Assumption H.1, we have:

Q1
2 = ⟨θ(r)p,u − θ(r,e)p,u ,∇

θ
(r,e)
p,u
Lu(w

(r,e)
u )⟩ ≥ Lu(θ

(r)
p,u)− Lu(θ

(r,e)
p,u )− L

2
∥θ(r)p,u − θ(r,e)p,u ∥2 (51)

Take Q2
2 into consideration, from Assumption H.2, we have:

Q2
2 = ⟨θ(r,e)p,u − θ∗p,g,∇θ

(r,e)
p,u
Lu(w

(r,e)
u )⟩ ≥ Lu(θ

(r,e)
p,u )− Lu(θ

∗
p,g) +

µ

2
∥θ(r,e)p,u − θ∗p,g∥2

≥ Lu(θ
(r,e)
p,u )− Lu(θ

∗
p,g) (52)

Therefore, adding the above inequalities equation 51 and equation 52 together, we have:

⟨θ(r)p,u − θ∗p,g,∇θ
(r,e)
p,u
Lu(w

(r,e)
u )⟩ ≥ Lu(θ

(r)
p,u)− Lu(θ

∗
p,g)−

L

2
∥θ(r)p,u − θ(r,e)p,u ∥2 (53)

Substituting equation 53 into equation 49, we have:

Q2 =
1

U

U∑
u=1

E−1∑
e=0

⟨θ(r)p,u − θ∗p,g,∇θ
(r,e)
p,u
Lu(w

(r,e)
u )⟩

≥ 1

U

U∑
u=1

[E−1∑
e=0

Lu(θ
(r)
p,u)− Lu(θ

∗
p,g)−

L

2
∥θ(r)p,u − θ(r,e)p,u ∥2

]
=

E

U

U∑
u=1

[
Lu(θ

(r)
p,u)− Lu(θ

∗
p,g)

]
− L

2U

U∑
u=1

E−1∑
e=0

∥θ(r)p,u − θ(r,e)p,u ∥2 (54)

Bounding Q3: We have:

Q3 =
1

U

U∑
u=1

∥h(r)
s,u∥2 =

1

U

U∑
u=1

∥∥∥E−1∑
e=0

∇
θ
(r,e)
s,u
Lu(w

(r,e)
u )

∥∥∥2 (a)

≤ E

U

U∑
u=1

E−1∑
e=0

∥∥∥∇θ
(r,e)
s,u
Lu(w

(r,e)
u )

∥∥∥2
(b)

≤ 3EL2

U

U∑
u=1

E−1∑
e=0

∥θ(r,e)s,u − θ(r)s,u∥2 + 6E2L(Lu(θ
(r)
s,g)− Lu(θ

∗
s,g)) + 3E2σ2

s,∗. (55)

where (a) holds due to lemma H.5, and (b) holds due to lemma H.10.

32



Under review as a conference paper at ICLR 2025

Bounding Q4: We have:

Q4 =
1

U

U∑
u=1

∥h(r)
p,u∥2 =

1

U

U∑
u=1

∥∥∥E−1∑
e=0

∇
θ
(r,e)
s,u
Lu(w

(r,e)
u )

∥∥∥2 ≤ E

U

U∑
u=1

E−1∑
e=0

∥∥∥∇θ
(r,e)
s,u
Lu(w

(r,e)
u )

∥∥∥2
≤ 3E

U

U∑
u=1

E−1∑
e=0

∥∇
θ
(r,e)
p,u
Lu(w

(r,e)
u )−∇

θ
(r,e)
p,u
Lu(w

(r)
p,u)∥2

+
3E

U

U∑
u=1

E−1∑
e=0

∥∇
θ
(r)
p,u
Lu(w

(r)
p,u)−∇θ∗

p,g
Lu(w

∗)∥2 + 3E

U

U∑
u=1

E−1∑
e=0

∥∇θ∗
p,g
Lu(w

∗)∥2

≤ 3EL2

U

U∑
u=1

E−1∑
e=0

∥θ(r,e)p,u − θ(r)p,u∥2 +
6E2L

U

U∑
u=1

(
Lu(θ

(r)
p,u)− Lu(θ

∗)
)
+ 3E2σ2

p,∗ (56)

Combining equation 48, equation 54, equation 55, equation 56 together, we have:

E
[
∥w(r+1)

LAG,g − w∗∥2
]

= E
[
∥w(r)

LAG,g − w∗∥2
]
−Q1 +Q3 −Q2 +Q4

= E
[
∥w(r)

LAG,g − w∗∥2
]
− 2η

{
E
[
Lu(θ

(r)
s,g)− Lu(θ

∗
s,g)

]
− L

2U

U∑
u=1

E−1∑
e=0

∥θ(r)s,g − θ(r,e)s,g ∥2
}

︸ ︷︷ ︸
Q1

+ η2
{3EL2

U

U∑
u=1

E−1∑
e=0

∥θ(r,e)s,u − θ(r)s,u∥2 + 6E2L(Lu(θ
(r)
s,g)− Lu(θ

∗
s,g)) + 3E2σ2

s,∗

}
︸ ︷︷ ︸

Q3

− 2η
{E

U

U∑
u=1

[
Lu(θ

(r)
p,u)− Lu(θ

∗
p,g)

]
− L

2U

U∑
u=1

E−1∑
e=0

∥θ(r)p,g − θ(r,e)p,g ∥2
}

︸ ︷︷ ︸
Q2

+ η2
{3EL2

U

U∑
u=1

E−1∑
e=0

∥θ(r,e)p,u − θ(r)p,u∥2 +
6E2L

U

U∑
u=1

(
Lu(θ

(r)
p,u)− Lu(θ

∗)
)
+ 3E2σ2

p,∗

}
︸ ︷︷ ︸

Q4

= E
[
∥w(r)

LAG,g − w∗∥2
]
+

η2L

U

U∑
u=1

E−1∑
e=0

{
∥θ(r)s,g − θ(r,e)s,g ∥2 + ∥θ(r)p,g − θ(r,e)p,g ∥2

}
+

3Eη2L2

U

U∑
u=1

E−1∑
e=0

{
∥θ(r,e)s,u − θ(r)s,u∥2 + ∥θ(r,e)p,u − θ(r)p,u∥2

}
− 2

ηE

U

U∑
u=1

{[
Lu(θ

(r)
p,u)− Lu(θ

∗
p,g)

]
+

[
Lu(θ

(r)
s,g)− Lu(θ

∗
s,g)

]}
+

6E2η2L

U

U∑
u=1

{(
Lu(θ

(r)
s,g)− Lu(θ

∗
s,g)

)
+

(
Lu(θ

(r)
p,u)− Lu(θ

∗)
)}

+ 3E2η2σ2
∗. (57)

33



Under review as a conference paper at ICLR 2025

Combine together, we have:

E
[
∥w(r+1)

LAG,g − w∗∥2
]

= E
[
∥w(r)

LAG,g − w∗∥2
]
+

ηL

U

U∑
u=1

E−1∑
e=0

{
∥θ(r)s,g − θ(r,e)s,g ∥2 + ∥θ(r)p,g − θ(r,e)p,g ∥2

}
+

3Eη2L2

U

U∑
u=1

E−1∑
e=0

{
∥θ(r,e)s,u − θ(r)s,u∥2 + ∥θ(r,e)p,u − θ(r)p,u∥2

}
− 2

ηE

U

U∑
u=1

[
Lu(w

(r)
LAG,u)− Lu(w

∗)
]
+

6E2η2L

U

U∑
u=1

(
Lu(w

(r)
LAG,u)− Lu(w

∗)
)
+ 3E2η2σ2

∗

= E
[
∥w(r)

LAG,g − w∗∥2
]
+ (3Eη2L2 + ηL)

1

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,u − w

(r)
LAG,u∥

2

− 2
ηE

U
(1− 3EηL)

U∑
u=1

[
Lu(w

(r)
LAG,u)− Lu(w

∗)
]
+ 3E2η2σ2

∗

(a)

≤ E
[
∥w(r)

LAG,g − w∗∥2
]
+

2ηL

U

U∑
u=1

E−1∑
e=0

∥w(r,e)
LAG,u − w

(r)
LAG,u∥

2

− ηE

U

U∑
u=1

[
Lu(w

(r)
LAG,u)− Lu(w

∗)
]
+ 3E2η2σ2

∗

= E
[
∥w(r)

LAG,g − w∗∥2
]
+ 2ηL

{
12E2(E − 1)η2L

(
L(w(r) − L(w∗)

)
− 12E2(E − 1)η3

L

U2

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 6η2E2(E − 1)σ2

∗

}

− ηE

U

{ U∑
u=1

(
L(w(r)

g − L(w∗)
)
− η

U

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 3E2η2σ2

∗.

(58)
Rearrange terms, we have:

E
[
∥w(r+1)

LAG,g − w∗∥2
]

= E
[
∥w(r)

LAG,g − w∗∥2
]
+
(
24E2(E − 1)η3L2 − ηE

) 1

U

U∑
u=1

(
L(w(r)

LAG,u − L(w
∗)
)

− 1

U2

(
24E2(E − 1)η4L2 − η2E

) U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

)
+ 12η3E2(E − 1)Lσ2

∗ + 3E2η2σ2
∗. (59)

Here, (a) due to the assumption that η < 1
6EL . For local epoch E > 1, we have E ≥

√
3, which

means that 1
2
√
6E2L

< η < 1
6EL . Thus, we have 1

U2

(
24E2(E−1)η4L2−η2E

)
> 0, ∀η > 1

2
√
6E2L

(the proof is provided in Appendix I). Therefore, we can rewrite the term as:

∥w(r+1)
LAG,g − w∗∥2 ≤ ∥w(r)

LAG,g − w∗∥2 − ηE

3

(
L(w(r)

g − L(w∗)
)
+

[
3Eη2 + 12η3E2(E − 1)L

]
σ2
∗

− 24

U2
A

U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
p,u∥(∥h(r)

p,u∥ − cosΦ(l)
u,v∥h(r)

p,v∥), (60)

where A =
(
24E2(E − 1)η4L2 − η2E

)
> 0, thus, the algorithm always give a consistent improve-

ment gap to the global learning performance.
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Due to Lemma H.13 and Lemma H.11. Combine together, we have:

∥w(r+1)
LAG,g − w∗∥2 ≤ ∥w(r)

LAG,g − w∗∥2 − ηE

3

(
L(w(r)

g − L(w∗)
)
+

[
3Eη2 + 12η3E2(E − 1)L

]
σ2
∗

−O
( U∑

u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

))
. (61)

Moreover, we have η > 1
2
√
6E2L

> 1
2
√
6EL

(as E > 1). Therefore, we have Rearranging terms and
averaging over all rounds, we have:

∥w(r+1)
LAG,g − w∗∥2 ≤ ∥w(0)

LAG,g − w∗∥2 −
R−1∑
r=0

ηE

3

(
L(w(r)

g − L(w∗)
)
+

R−1∑
r=0

[
3Eη2 + 12η3E2(E − 1)L

]
σ2
∗

−O
( U∑

u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

))
. (62)

L(w(r)
g )− L(w∗) ≤ 3

RηE
∥w(0)

LAG,g − w∗∥2 − 3

RηE
∥w(r+1)

LAG,g − w∗∥2 + 3

ηE

[
3Eη2 + 12η3E2(E − 1)L

]
σ2
∗

−O
( U∑

u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

))

≤
3∥w(0)

LAG,g − w∗∥2

RηE
+ 9ησ2

∗ + 36η2E(E − 1)Lσ2
∗

−O
( U∑

u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

))
. (63)

As we have aggregated the layer-wise personalized model and global aggregate model back into
w

(r)
LAG,g , we can have:

L(w(R)
g )− L(w∗) ≤ O

(∥w(0)
g − w∗∥2

RηE

)
+O

(
ησ2

∗

)
+O

(
η2E(E − 1)Lσ2

∗

)
−O

( U∑
u=1

U∑
v=1

∑
l∈Lp

∥h(r)
l,u∥

(
∥h(r)

l,u∥ − cosΦ(l)
u,v∥h

(r)
l,v ∥

))
. (64)

This completes the proof.
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I PROOF ON CONSISTENT IMPROVEMENT GAP

Consider a second-degree polynomial function given by Y = AX2 − BX , where A > 0. Conse-
quently, we ensure Y > 0 under the condition X ∈ (−∞, 0] ∪ [B/A; +∞).
Next, we consider the function Y = E2(E − 1)η4L2 − η2E, and take η2 = X . This yields:

Y = 24E2(E − 1)L2X2 − EX. (65)

Given that E2(E − 1)L2 ≥ 0 for all E,L. To ensure Y > 0, we have to satisfy the following
condition:

X ≥ E

24E2(E − 1)L2
=

1

24E(E − 1)L2
. (66)

Substituting X back to η2, then we have

η2 ≥ 1

24E(E − 1)L2
. (67)

Accordingly, we

η ≥ 1

2
√
6EL

. (68)

Given that 1
2
√
6E2L

< η < 1
6EL , then, η ≥ 1

2
√
6E2L

> 1
2
√
6EL

, which holds that η always satisfy the
condition to have Y > 0.

J ANALYSIS ON COMPUTATIONAL COMPLEXITY OF ON-SERVER GRADIENT
ANALYSIS

We consider the time complexity of the feed-forward process of an AI model. Consider a model with
L hidden layers, denoted as {w1, w2, . . . , wdl

} representing the weights of each layer. For simple
approximation, we assume that all layers have same number of parameters, i.e., d1 = d2 = . . . =
dL = D.

We consider the feed-forwarding task of an AI model with a batch size of B.

To go through L layers, each layers have D parameters, we have to do y = WLD × x. Therefore, we
have the feed-forward process for a mini-batch with batch size B has time complexity O(L×D ×
B × S), where S is the data size.

Second, according to the personalized layers selection, the time complexity is around O(U × (U −
1)/2×D × L). If we consider a large number of users U = 1000, and due to the large DNN, we
use ImageNet as evaluations, where the average image dimensionality is 3× 469× 387 = 544509.
Therefore, we have the two complexity two process as follows:

• One iteration of feed-forward in a DNN with only one sample: O(L×D × 1× 544509).
• Personalized layers selection: O(500× 999×D × L).

It is obvious that the personalized layers selection is approximately same with the time consumption
of 1 iteration of feed-forward in DNN.

Finally, we survey and found that the inference time in Large DNN Model is trivial (≪ 1s/sample).
The detailed results can be found in (Liu et al., 2022, Table 1).
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K DETAILED ALGORITHMS

Algorithm 1: Layer-wise Gradient Analysis supported pFL
Require :Initialize users’ weights, number of users U .

1 while not converge at round r do
2 On-user Training
3 for each user u ∈ {1, 2, . . . , U} do
4 for epoch e ∈ E do
5 Sample mini-batch ζ from local data Du

6 Calculate gradient g(r,e)u = ∇L(w(r,e)
u , ζ)

7 Update user’s model w(r,e+1)
u = w

(r,e)
u − ηg

(r,e)
u .

8 end for
9 Upload user’s model w(r,E)

u to server.
10 end for
11 On-server Training
12 Find personalized layers Lp from users’ model parameters via Algorithm 2.
13 Aggregate users model by w

(r+1)
g = 1

U

∑U
u=1 w

(r,E)
u and save to storage to calculate the

gradient for the next round.
14 Broadcast aggregated models to local users
15 for each layer l ∈ Lp do
16 Update the local model of user u as follows:
17

θ
(r+1)
l,u =

{
θ
(r,E)
l,u , if l ∈ Lp,
1
U

∑U
u=1 θ

(r,E)
l,u , otherwise.

18 end for
19 end while

Algorithm 2: Layer-wise Gradient Divergence Analysis

Require :users’ models w(r,E)
1 , w

(r,E)
2 , . . . , w

(r,E)
U collected in round r, previous models

w
(r)
1 , w

(r)
2 , . . . , w

(r)
U stored from last round, threshold ξ, number of personalized layers

k.
1 On-server Training
2 for all layers l ∈ {1, 2, . . . , L} do
3 Calculate h

(r)
l,u from w

(r,E)
u , w(r)

u via Eq. equation 2.

4 Make pairs {h(r)
l,u , h

(r)
l,v }, ∀u, v ∈ U , u ̸= v.

5 Obtain cosine according to each cosϕ
(r)
l (u, v).

6 Calculate GCξ(l) according to Eq. equation 3.
7 end for
8 Assign layer with top k highest GCξ(l) to Lp.
9 Return: Lp
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