
Accelerated Vertical Federated Adversarial Learning
through Decoupling Layer-Wise Dependencies

Tianxing Man1∗ Yu Bai1∗ Ganyu Wang2 Jinjie Fang1

Haoran Fang1 Bin Gu1† Yi Chang1,3,4†

1School of Artificial Intelligence, Jilin University, China
2Western University, Canada

3International Center of Future Science, Jilin University, China
4Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China

{mantx, gubin, yichang}@jlu.edu.cn {gwang382}@uwo.ca
{baiy23, fangjj24, fanghr24}@mails.jlu.edu.cn

Abstract

Vertical Federated Learning (VFL) enables participants to collaboratively train
models on aligned samples while keeping their heterogeneous features private and
distributed. Despite their utility, VFL models remain vulnerable to adversarial
attacks during inference. Adversarial Training (AT), which generates adversarial ex-
amples at each training iteration, stands as the most effective defense for improving
model robustness. However, applying AT in VFL settings (VFAL) faces significant
computational efficiency challenges, as the distributed training framework necessi-
tates iterative propagations across participants. To this end, we propose DecVFAL
framework, which substantially accelerates VFAL training through a dual-level
Decoupling mechanism applied during adversarial sample generation. Specifically,
we first decouple the bottom modules of clients (directly responsible for adver-
sarial updates) from the remaining networks, enabling efficient lazy sequential
propagations that reduce communication frequency through delayed gradients.
We further introduce decoupled parallel backpropagation to accelerate delayed
gradient computation by eliminating idle waiting through parallel processing across
modules. Additionally, we are the first to establish convergence analysis for VFAL,
rigorously characterizing how our decoupling mechanism interacts with existing
VFL dynamics, and prove that DecVFAL achieves an O(1/

√
K) convergence rate

matching that of standard VFLs. Experimental results show that DecVFAL ensures
competitive robustness while significantly achieving about 3 ∼ 10× speed up.

1 Introduction

Federated learning (FL) enables collaborative training of deep learning models among distributed
participants without sharing raw data [51]. Most FL research considers Horizontal Federated Learning
(HFL), which assumes distributed clients possess data with identical features but varying sample
spaces [80]. Vertical Federated Learning (VFL) assumes distributed clients share the same samples
but have different features [44, 66]. VFL model comprises a server-maintained top model and
client-side bottom models that map local data features to embeddings. During inference, each client
computes the local embeddings and uploads to the server through a communication channel for
prediction [44]. Due to its advantages in facilitating data collaboration across multiple industries,

∗Equal Contribution.
†Corresponding Authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

VFL has gained increasing attention in various domains such as recommendation systems [13, 75],
finance [46, 7], healthcare [58, 6], and emerging applications [60, 19].

Threat model. Machine Learning (ML) models have demonstrated vulnerability to adversarial
attacks, carefully crafted inputs designed to induce misclassification during inference. Distributed
deployment inherently exposes VFL model to additional security threats [24, 16]. Adversarial attacks
in VFL can manifest in multiple forms during inference: via third-party adversary intercepting and
altering embeddings during client-server communication [16], or through malicious or colluding
clients perturbing local features of raw data [52, 53]. The details of the threat model are presented
in Appendix A.3. These diverse attacks underscore the unique security challenges in VFL systems,
motivating the urgent need to address the VFL robustness problem.

Figure 1: Comparison of computation efficiency
for adversarial sample updates: VFL with PGD
(up) versus DecVFAL (down). M1,M2,M3 are
the layer-wise modules of VFL model. DecVFAL
updates examples 4×3 times in approximately the
same time as performing 2 PGD updates.

Extensive research has been conducted on de-
fenses against adversarial attacks, with Adver-
sarial Training (AT) emerging as the most em-
pirically robust approach to date [61]. AT is a
min-max robust training method that minimizes
the worst-case training loss at generated adver-
sarial examples [49]. The objective function
of AT is defined in Eq. (3.1). The deployment
of AT in the FL, termed Federated Adversar-
ial Learning (FAL), has garnered attention [40].
In HFL where participants maintain complete
model copies [40], studies integrate AT into
clients’ local training [40, 14, 1, 83, 77]. How-
ever, for applying AT in VFL settings (VFAL),
models are partitioned across server and clients,
requiring multiple communications for adver-
sarial sample generation—an aspect that has re-
ceived limited research attention.

Observation. As shown in Figure 1-up, inherent sequential dependencies across layers cause
modules to remain idle until receiving necessary information (embeddings or gradients) from adjacent
modules. Assuming M3 is server model and M1, M2 are the modules of client models, VFAL can
exhibit more substantial idle waiting due to frequent server-client communications. Consequently, the
training time for VFAL significantly exceeds that of regular VFLs. To illustrate (Figure 2-(a), r = 20),
VFAL using PGD-20 (Projected Gradient Descent) requires about 20 times more computational cost
than regular VFL due to 20 iterations needed to generate adversarial example. Taking into account
this, a natural question arises: In light of the intensive adversarial sample generation and inherent
sequential dependencies cross participants, how can we accelerate VFAL training while maintaining
robust performance?

To tackle the computational efficiency challenge in training robust VFL models, we propose DecV-
FAL, an accelerated VFAL framework through a novel Decoupled backpropagation incorporating a
dual-level decoupled mechanism for adversarial sample generation (Figure 2-(b)). DecVFAL first
decouples the bottom module fM1

(responsible for adversarial updates) from the remaining network,
enabling lazy sequential backpropagation. This approach fixes the partial derivatives (δfM1

) while
utilizing current gradients at the bottom module (∇ηfM1

) to perform multiple sequential sample
updates without requiring frequent client-server communications. Simultaneously, DecVFAL intro-
duces decoupled parallel backpropagation to update partial derivatives in the remaining modules
asynchronously using module-wise delayed gradients, eliminating idle waiting times and enabling
truly parallel computation across all modules. Furthermore, by formulating AT as a dynamical system
[39], we provide the convergence analysis for DecVFAL, accounting for multi-source approximation
gradients from decoupling mechanisms and VFL architecture.

Contributions. In summary, the contributions of our paper are:

• We propose DecVFAL, a novel dual-level decoupling framework that comprehensively
addresses VFAL’s computational bottlenecks. DecVFAL reduces communication complexity
from r (≈ M × N) to M rounds while eliminating idle waiting through asynchronous
parallel processing, achieving substantial speedup without sacrificing robustness.

2

• We provide the first convergence analysis for VFAL, overcoming the challenge of han-
dling multi-source approximation gradients from both decoupling mechanisms and VFL
framework. We rigorously prove that DecVFAL achieves an O(1/

√
K) convergence rate

matching standard VFL.

• Experimental evaluation on multiple datasets demonstrates that DecVFAL achieves 3 ∼ 10×
speedup compared to existing VFAL methods while maintaining competitive robust accuracy,
making robust VFL training practically feasible for real-world deployment.

Chain Rule:

f

...

Server

Client (1) Client (2)

Model Updating

...

 Adversarial Sample Updates Model Updating

Lazy Sequential BackpropagationDecoupled Parallel Backpropagation

...

f f

f

f f f

f

......

(a) (b)

Adversarial
Sample

Adversarial
Sample

Raw
Sample

Raw
Sample

Backward
Propagation

Forward
Propagation

Raw
Sample

Error
Gradient Module

f VFL
Model

Adversarial
Sample

,

Times Updates without Communications

...

Timely DelayedDelayed

Pa
ra
lle
lCommunication

Communication

Times

Times

 Adversarial Sample Updates

Figure 2: The conceptual comparison between VFAL with PGD (a) and DecVFAL (b): DecVFAL
accesses the data M ×N times with only M server-client communications, each backpropagation is
accelerated through the decoupling mechanism. In contrast, PGD necessitates r full backpropagations
to perform r adversarial sample updates. (δMk

represents the error gradient δfMk
for simplicity).

2 Related Works

Accelerating Adversarial Training. PGD-based AT methods [49] demonstrate superior defensive
capabilities but present significant computational challenges. Acceleration approaches include FreeAT
[55], which combines model and adversarial updates in a single backward pass; FreeLB [82], which
accumulates gradients before parameter updates; and YOPO [76], which restricts updates to the
first layer. Alternative FGSM-based acceleration methods like ATAS [70] and FastAT [25] offer
computational advantages but struggle to achieve optimal robustness due to their reliance on single
gradient steps. Importantly, these existing solutions target centralized training paradigms and fail to
address the unique computational efficiency challenges in cross-participant VFAL.

Decouple Training. Decoupled training has emerged as effective methods for improving computa-
tional efficiency by addressing the inherently sequential propagation in neural networks. ADMM [59]
decomposes optimization into parallel subproblems. Synthetic Gradients [28] enable asynchronous
updates through gradient prediction. Delayed Gradient Method [27, 26, 81] temporal shifts in gradient
computation for parallel processing and Lifted Machines [20, 36] transform network architecture
to enhance parallelization. Notably, these techniques have yet to be applied to adversarial example
generation, which is the most computationally intensive component of AT.

3 Preliminaries

Notations. A standard synchronous VFL framework comprising one central server and C clients
[44]. We consider a classifier implemented as a T -layer deep neural network f(Θ;x), where x repre-
sents the input features and Θ denotes the set of trainable parameters. The training dataset is denoted as
{(x0,i, yi)}Si=1, with S representing the total number of samples. Each sample is composed of features
from different clients, specifically x0,i = [x0,i,(1), . . . , x0,i,(C)]. The classifier comprises client mod-
els [f(1), . . . , f(C)] parameterized by [θ(1), . . . , θ(C)] and a server model fs parameterized by ψ. The
classifier function is expressed as f(Θ, x0,i) = fs{ψ; f(1)[θ(1);x0,i,(1)], . . . , f(C)[θ(C);x0,i,(C)]}.
We give the list of notations in Table B.1.

3

Adversarial Training. AT optimizes the parameters Θ of a neural network f on adversarially
perturbed inputs, thereby increasing robustness against test-time attacks [49]. This process involves
solving a minimax problem on the cross-entropy loss:

min
Θ

max
∥ηi∥∞≤ϵ

S∑
i=1

L(f(Θ, xi + ηi); yi), (3.1)

where L(·; y) is the loss function, ηi represents the adversarial perturbation, bounded by a non-
negative scalar value ϵ that constrains the perturbation’s magnitude.

Definition 1 (Vertical Federated Adversarial Learning). Building upon the standard VFL
models and the minimax problem in AT, a T -layer neural network f is defined recursively as:
xt = ft(xt−1,Θt), t = 1, . . . , T , where xt are the output of the t-th layer, Θt are the parameters of
layer ft, Θ denotes the concatenation of (Θt)1≤t≤T . VFAL addresses the following problem:

min
Θ

max
∥ηi∥∞≤ϵ

S∑
i=1

L(xT,i; yi) +
S∑
i=1

T∑
t=1

Rt(Θt, xt−1,i),

subject to x1,i = f1(Θ1, x0,i + ηi), xt,i = ft(Θt, xt−1,i).

(3.2)

where xT,i is the output of the last layer fT : xT,i = f(Θ;x0,i+ ηi) = fT (ΘT ; fT−1(ΘT−1; . . . f1(Θ1;x0,i+
ηi) . . .)), Rt is a potential regularization term for layer ft. Assume tc is the number of client model layers, for
tc < t ≤ T , Θt = ψt−tc are the server model parameters; for 0 < t ≤ tc, Θt = [θt,(1), . . . , θt,(C)] are the
client model parameters. ηi = ηi,(1), . . . , ηi,(C) represents adversarial perturbations on sample i.

Backward Locking. In VFAL’s distributed setting, a T -layer neural network is partitioned intoMK modules.
The partial derivatives computation in module fMk depends on error gradients from module fMk+1 . This
creates a "lock" preventing modules from updating until receiving backward results from dependent modules. As
shown in Figure 2-(a), each adversarial example update in VFAL requires sequential gradient propagation from
output to input layer, significantly increasing computational overhead due to cross-participant communication.

4 Methods

To address the training efficiency bottleneck, DecVFAL introduces a dual-level decoupled mechanism that
utilizes module-wise staleness to untether the dependencies across layers inherent in VFAL. As shown in Figure
2-(b), DecVFAL utilizes delayed gradients to eliminate backward locking, enabling module-wise asynchronous
backpropagation. It restricts perturbation update propagations to the bottom model to reduce full propagations
and utilizes gradients from disparate iterations to achieve parallel backward computation.

4.1 Lazy Sequential Backpropagation

A key observation in VFAL is that the adversarial perturbation is directly coupled with the bottom module
of the network. This insight allows us to decouple the bottom module fM1 and the remaining modules
fM̃1

(ΘM̃1
;xM1), where fM̃1

= fM2 ◦ fM3 ◦ . . . fMK , and xM1 is the output of bottom module. The
VFAL classifier can be rewritten as: f(Θ;x0 + η) = fM̃1

(ΘM̃1
; fM1(ΘM1 , x0 + η). PGD-based AT (PGD-r)

involves r sweeps of forward and backward propagation to generate an adversarial example, resulting in extensive
computational cost. To mitigate this, we introduce a "lazy" backpropagation mechanism by freezing the partial
derivatives δfM1

of the remaining modules as a slack variable pM1
3:

pM1 =∇fM̃1

(
L(fM̃1

(fM1(ΘM1 ;x0 + η)), y)
)
· ∇fM1

(
fΘ̃M1

(fM1(ΘM1 ;x0 + η))
)
, (4.1)

where pM1 is obtained after each full backpropagation. The perturbation η is updated using pM1 and N -step
gradient ascent, while keeping the network parameters Θ fixed (lines 7-11 in Algorithm 1). As shown in Figure
1, DecVFAL accesses the data M ×N times for each adversarial example generation while only requiring M
full forward and backward propagation, where M ≪ r.

This frozen slack variable introduces an oracle error in adversary updating, resulting in a delayed gradient.
Inspired by the optimal control theory [38, 39, 54] and under Assumptions in (B.2), we bound costate difference
at bottom module in Lemma 1.
Lemma 1. Bound the costate/gradient difference at the bottom module. There exists a constant G′ dependent
on T and K such that for all n ∈ {0, . . . , N}, m ∈ {0, . . . ,M}, and i ∈ {1, . . . , S}:∥∥∥pm−τ1,0

M1,i
− pm,NM1,i

∥∥∥ ≤ G′αη (MKN − 1) , (4.2)

3 This is inspired by YOPO [76], but extends beyond first-layer limitations to support multi-layer modules,
offering greater flexibility of network partitioning in VFAL settings.

4

where G′ = TKT+1(KT + T (T − 1)K2T−2 + TK2T), pm−τ1,0
M1,i

is the delayed gradient to the first module
M1 at iteration m, τ1 is the delay of moduleM1 raised from parallel backpropagation.

4.2 Decoupled Parallel Backpropagation

We decouple backpropagation across the entire network using delayed gradients, enabling parallel updates of
the partial derivatives in the remaining modules. The forward pass is performed from module 1 to module
MK . In backward pass, all modules except the last one store delayed error gradients to perform the backward
computation without locking. The module fMk keeps the stale error gradient δL

m−τk
δxMk

, τk = MK −Mk.
While lazy backpropagation in the bottom modules, backward computation in the remaining modules fMk is:

δLm−τk

δxt−1
=

δxt
δxt−1

δLm−τk

δxt
, t ∈ (tMk−1 , tMk]. (4.3)

Each module receives a gradient from its dependent module for subsequent computation. The gradients across
modules exhibit varying time delays. Moving from module 1 toMK , the corresponding time delays τk decrease
from MK − 1 to 0, delay 0 indicates up-to-date gradients. This mechanism breaks the backward locking
constraint, enabling decoupled parallel backpropagation.

For private guarantee4, We implement DecVFAL within VFL-CZOFO, a hybrid cascaded VFL framework
[62] with Zeroth Order Optimization (ZOO) and compression, and analyze the errors caused by multi-source
approximate gradients due to existing VFL techniques and DecVFAL in Lemma 2.

Lemma 2. Bound the gradient to η. Under hybrid cascaded VFL, the gradient ∇ηA respect to η involves
estimation gradient∇ηÂ from ZOO (Appendix A.5) and compression gradient ∇̂ηA (Appendix A.6). Under the
Assumption 1, and Lemma 3, 5, at the i-th sample and k-th iteration, the pseudo-partial derivative for η satisfies
the following inequality η̂i = argmin

m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥, we define G = KG′, αx < 1

Lηη
then:

E
∥∥∥∇̂ηÂi(η̂i, ψi, θi)∥∥∥2

≤
[
D(X)L

2
ηη

(
1 −

z

Lηη

)MN+1

+
2G2

Lηη
(MKN − 1)

2

(
2

z
+

1

2Lηη

)]
× 3

(
H

2
θCEk +

L2µ2d2

4
+K

2

)
.

(4.4)

Algorithm 1: DecVFAL algorithm
Input: Learning rates αη , αψ , αθ; Train set {X,Y }.
Output: Model parameters Θ = {θ(1), θ(2), . . . , θ(C), ψ}.

1 Initialization: Clients and Server initialize model parameters θ(1), θ(2), . . . , θ(C), ψ.
2 while not convergent do
3 Randomly select a sample x;
4 for m = 1 to M do
5 Lm ← f(x0 + ηm,n);
6

7

Decoupled Parallel Backpropagationfor k = 1 toMK in parallel do
if k = 1 then

Lazy Sequential Propagationfor n = 0 to N-1 do
xm,nM1

← fM1(x0 + ηm,n);
Updates adversarial perturbation: ηm,n+1 ← ηm,n+αηpM1∇ηfM1 ;

Backward computation with delayed gradient:
δLm−τk
δxt−1

← δxt
δxt−1

δLm−τk
δxt

, t ∈ (tMk−1 , tMk];

8 for each client c do
9 Update client model parameters: θk+1

(c) ← θk(c) − αθ∇θL(f(x0 + ηm,n));

10 Update server model parameters: ψk+1 ← ψk − αψ∇ψL(f(x0 + ηm,n));

4According to [62], due to the introduction of ZOO, DecVFAL satisfies differential privacy guarantee.

5

4.3 Algorithm

Algorithm 1 implements DecVFAL framework within the VFL setting where clients and server collaboratively
train a robust model. In each iteration, after randomly selecting a sample x, the framework performs M full
propagations where all modules across clients and server operate in parallel. For each moduleMk, partial
derivatives are computed using delayed gradients δLm−τk/δxt with delay τk =MK −Mk. Simultaneously,
the bottom module (typically at client side) performs N adversarial perturbation updates through lazy sequential
propagation: ηm,n+1 ← ηm,n + αηpM1∇ηfM1 , using a fixed gradient pM1 without requiring additional
client-server communications. After adversarial example generation, clients update their parameters θ(c) and the
server updates its parameter ψ, completing one training iteration.

4.4 Acceleration of DecVFAL

DecVFAL accelerates VFAL training through our dual-level decoupling mechanism. The lazy sequential back-
propagation enables M ×N adversarial sample updates while requiring only M full propagations, empirically
achieving comparable robustness to PGD-r when M ×N is slightly larger than r. For a standard full propaga-
tion taking time T , our decoupled parallel backpropagation reduces this to T

MK
by eliminating idle waiting.

Unlike prior research [27, 26] that uses delayed gradients solely for model training (limiting acceleration to
Tfor + Tback

MK
), our method enables concurrent forward and backward propagation during adversarial sample

generation since parameters remain constant. Ideally, this further reduces computation time to T
MK

.

5 Convergence Analysis

Assumptions. The formal definition and detailed discussion of the assumptions are in Appendix B.2. We make
several crucial assumptions: the functions ft, fc, L, and Rt are K-Lipschitz continuous in x, uniformly with
respect to θ and ψ, the gradient of the adversarial loss function, ∇Ai(η, ψ, θ), satisfies Lipschitz conditions
(Assumption 1); the adversarial loss function Ai(η, ψ, θ) possesses an unbiased gradient (Assumption 2) and is
characterized by bounded Hessian matrices Hψ and Hθ (Assumption 3), as well as bounded block-coordinate
gradients Qψ and Qθ (Assumption 4); Ai(η, ψ, θ) exhibits z-strong concavity with respect to η (Assumption 5).

Theorem 1. Under Assumptions (1–5), if the step sizes satisfy αη < 1/Lηη , αm = min {αψ, αθ}, αM =
max {αψ, αθ}, αMαm <∞, with η∗i = argmaxη Ai(η, ψ, θ), Λ = R

(
η∗,0, ψ0, θ0

)
− infk(R

(
η∗,k, ψk, θk

)
),

L⋆ = max{L,Lψ, Lθ, Lψη, Lθη}, ξθ = {1 + LθαM}, and ξψ = {1 + LψαM}, then:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
≤ I1 + I2 + Ep + Ec + Ez, (5.1)

where π(M,N) = D(X)L2
ηη

(
1− z

Lηη

)MN+1

+ 2G2

Lηη
[MKN − 1]2

(
2
z
+ 1

2Lηη

)
, and:

I1 =
2Λ

αmK
(first-order optimization convergence term),

I2 =
2L⋆α

2
M (σ2

ψ + σ2
θ)

αm
(stochastic gradient descent term),

Ez = µ2

[
3αMξθL

2
⋆d

2

4αm
+

3π(M,N)L2
⋆d

2aM (ξψ/2 + 3ξθ/4)

amz2

]
(zeroth-order error term),

Ec = E
αM
αm

(
2ξψH

2
ψC + 3ξθQ

2
θH

2
θC +

3H2
θCπ(M,N)(2ξψ + 3ξθ)L

2
⋆

z2

)
(compression error term),

Ep =
3αMK

2π(M,N)

αmz2
(2ξψ + 3ξθ)L

2
⋆ (decoupled backpropagation error term).

Corollary 1. If we choose αθ and αψ as 1√
K , µ = 1

K
1
4

, E = O(1√
K), Γ = O(1√

K), we derive the sublinear
convergence rate:

1

K

K−1∑
k=0

E
[
||∇R

(
η
∗,k
, ψ
k
, θ
k
)
||2
]
≤ O(

1
√
K

) + O(
NMK

M
). (5.2)

Remark 1. The bias term O(NMK
M

) reveals a direct trade-off between model modularity and performance.
As the number of modules MK increases, the bias grows proportionally, which aligns with our empirical
observations in Table 7.
Remark 2. For fixedMK , the bias term exhibits properties analogous to those identified in [54]. π(M,N) is
monotonically decreasing with respect to M and convex with respect to N . This functional behavior implies an

6

optimal strategy: maximizing M subject to communication budget, while carefully calibrating N to the critical
point where marginal returns diminish. Our ablation studies (Figure 5)validate these theoretical findings.

Proof Sketch. Our proof begins by recasting the original min-max optimization problem as a Hamiltonian
system (Appendix A.4). The convergence analysis hinges on three distinct types of approximate gradients:
delayed gradient (Lemma 1 and Lemma 2), compression gradient (Lemma 5), and estimated gradient (Lemma 3).
We establish the global convergence of the framework by proving that the loss function L(η, ψ, θ) is L-smooth
(Assumption 1). Through a comprehensive analysis of the M loop, N loop, and outer loop dynamics, we prove
the asymptotic convergence of model parameters (Theorem 1). The complete convergence analysis of DecVFAL,
with detailed proofs, is presented in Appendix B.

6 Experiments

We extensively evaluated DecVFAL against diverse baseline VFAL methods. Ablation studies were conducted
to analyze component contributions. Detailed procedures are available in Appendix C, and the code is accessible
at https://github.com/workelaina/DecVFAL.git.

6.1 Experiment Setups

Datasets. Real-world VFL datasets are proprietary and not publicly accessible. Therefore, we utilized three
public datasets instead for our main experiments: MNIST [34], CIFAR-10 [31], large scale dataset CIFAR-100
[31], and Tiny-ImageNet [33] (Appendix C.6). These datasets were vertically partitioned among all participants,
with each client retaining a portion of features for each sample, while the server exclusively held the labels.
Detailed information about the dataset partitioning can be found in Section C.1.

Baselines. We deploy the baseline algorithms and DecVFAL in a hybrid cascaded VFL framework, syn-
chronous VFL-CZOFO [62]. The implemented AT algorithms include PGD-r [49], and the accelerated AT
methods: FreeAT-r [55], FreeLB-r [82], and YOPO-m-n [76]. Additionally, we integrated data parallelism,
model parallelism, and asynchronous mechanisms with PGD, resulting in DP-PGD, MP-PGD, and Asy-PGD,
respectively. We also compare with FGSM-based accelerated AT methods, ATAS [70], FastAT [25].

Adversarial attack. Following the threat model in VFL (Appendix A.3), we employ various adversarial attack
methods including FGSM [32], PGD-r [49], and CW [4]. We also simulate scenarios where malicious clients
cannot directly obtain gradients and implement black-box attacks: CERTIFY (CER) [11], zero-order-based
FGSM (ZO-FGSM) and PGD (ZO-PGD) [8]. Additionally, Considering the case of the third-party adversary,
we employ adversarial attacks that corrupt embeddings using different corrupted client selection methods:
Thompson Sampling with Empirical Maximum Reward (E-TS) [16] and All Corruption Pattern (ALL).

Training procedures. We deployed a VFL setup with one server and two clients for the experiments. For the
MNIST dataset, each client used a two-layer perceptron 5 and the server employed a single-layer perceptron,
with the model partitioned into three modules and trained using batch size 32. On CIFAR-10, while the server
maintained a single-layer perceptron, each client utilized ResNet-18 6 divided into two modules (first layer and
remaining layers), creating a three-module structure across participants with batch size 80. For CIFAR-100, we
used ResNeXt-50 on client sides, similarly partitioned into three modules. Additional experiments with ResNet-
18 on MNIST followed the same partitioning scheme as CIFAR-10. All models were trained to convergence
using Adam optimizer with a fixed learning rate of 0.0001 for fair comparison. Detailed parameter settings and
hardware specifications for the training procedures are summarized in Appendix C.3 and Table 13.

6.2 Evaluation on computational efficiency

Figure 3: MNIST
training-testing curves

Figure 4: CIFAR-10
training-testing curves

For each dataset, we trained models to converge
and plotted training and testing curves in Figures
3 and 4. DecVFAL achieved better test accuracy
than other baseline algorithms in significantly less
time on MNIST. Due to setting close parameters to
specify the number of full propagations (Table 11)
for CIFAR10, DecVFAL achieved a convergence
speed comparable to FreeAT and FreeLB, while
delivering better robustness, as shown in Table 2.

5For different model architectures, we conduct experiments with ResNet on MNIST (Appendix C.5).
6Residual connections naturally align with dynamical systems theory [9, 68], where entire residual blocks

function as single dynamical units.

7

https://github.com/workelaina/DecVFAL.git

6.3 Evaluation on Robustness

For the MNIST dataset, DecVFAL demonstrates the most optimal trade-off between computational efficiency
and model robustness. As shown in Table 1, DecVFAL achieves the best robust performance while requiring
only 1/10 of the training time per epoch compared to standard PGD adversarial training. Similarly for CIFAR-10,
the results in Table 2 show that DecVFAL achieves comparable robust performance under most adversarial
attacks while requiring only 1/3 of the training time per epoch compared to PGD. These results consistently
demonstrate the effectiveness of DecVFAL in balancing computational efficiency with model robustness.

Table 1: Results of MNIST Robust Training

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Methods Accuracy FGSM PGD CW CER ZO-FGSM ZO-PGD ALL E-TS (s/epoch)

None 96.46 47.75 8.58 56.75 56.37 55.97 60.44 36.01 40.27 106.86
PGD 92.31 74.90 57.85 90.09 88.92 87.30 83.37 36.71 41.23 3484.57

FreeAT 92.68 67.29 41.33 85.11 84.13 83.51 80.18 19.01 20.82 853.64
FreeLB 93.77 57.18 18.76 85.30 82.47 82.30 79.73 65.33 71.11 3459.81
YOPO 96.13 86.36 73.52 92.49 91.63 91.17 88.06 79.81 84.84 629.43

DP-PGD 93.28 78.64 60.97 88.40 86.60 86.49 82.84 51.72 56.68 3451.44
MP-PGD 93.11 75.23 48.98 78.82 76.65 76.28 76.19 48.11 54.67 3423.91
Asy-PGD 91.25 72.40 50.41 84.53 82.55 82.10 79.50 38.42 42.99 3724.47
NoLazy 90.17 72.58 55.53 89.76 85.32 77.03 50.96 26.66 26.05 317.78

DecVFAL 96.30 91.62 77.68 92.84 91.91 92.13 89.21 92.20 94.53 355.16

Table 2: Results of CIFAR-10 Robust Training

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Methods Accuracy FGSM PGD CW CER ZO-FGSM ZO-PGD ALL E-TS (s/epoch)

None 83.93 53.32 55.42 62.59 50.39 52.38 55.58 76.06 78.93 70.03
PGD 78.00 59.08 68.47 76.73 70.00 70.32 70.56 69.54 72.67 296.35

FreeAT 80.09 63.63 61.93 77.01 68.99 70.99 71.85 71.44 74.86 252.11
FreeLB 81.58 52.09 54.91 63.70 53.91 56.92 59.17 76.30 78.70 301.43
YOPO 75.34 58.80 68.11 74.68 70.10 69.97 69.96 64.38 69.05 297.45

DP-PGD 75.47 59.37 68.24 74.56 69.79 69.74 70.04 66.19 69.42 331.93
MP-PGD 74.92 59.38 68.14 74.30 69.92 69.53 69.90 64.70 68.66 334.48
Asy-PGD 73.32 57.00 66.61 72.48 67.56 67.93 67.83 63.36 67.83 331.45
DecVFAL 81.83 63.69 68.59 74.72 71.31 71.05 72.07 74.93 77.75 98.99

6.4 Experiments on Real-World Datasets

Table 3: Results of robust training on real-world datasets

Methods COVID-19 Credit Fraud Speedup
Clean PGD AA Clean PGD AA vs PGD

None 98.19 0.00 0.00 92.45 2.86 3.38 –
PGD 69.20 67.39 66.30 88.28 42.19 49.48 1.00×
FreeAT 77.53 50.54 40.76 92.44 40.36 5.72 2.54× / 1.33×
YOPO 77.90 66.49 58.51 90.10 32.29 22.39 3.39× / 2.00×
DecVFAL 88.22 62.86 44.75 89.58 47.13 47.39 3.72× / 2.35×

To further validate the generality of our
framework in practical federated appli-
cations, we conducted experiments on
two real-world datasets: COVID-19 Im-
age Data Collection [50] and Credit Card
Fraud Detection [3]. These datasets are
widely used in healthcare and financial
anomaly detection scenarios, where data
are naturally vertically partitioned across
organizations. We simulated two clients,
each holding disjoint feature subsets of the
same samples. All methods shared identical hyperparameters as in previous experiments. Table 3 summarizes the
robustness and efficiency performance on both datasets. Across both settings, DecVFAL consistently delivers the
best robustness–efficiency trade-off. On the COVID-19 dataset, it achieves a 3.72× speedup relative to standard
PGD while maintaining comparable robust accuracy under multiple attacks. On the Credit dataset, DecVFAL
achieves a 2.35× speedup with strong adversarial robustness, outperforming prior acceleration methods.

6.5 Experiments on large dataset

8

Table 4: Results of CIFAR-100 Robust Training

Training Robust Accuracy (%) Train Time
Metheds Clean FGSM PGD ZO-PGD ETS (s/epoch)

None 53.55 16.89 9.84 27.07 32.51 123.65
PGD 51.09 39.46 39.15 45.40 27.82 1106.19

FreeAT 54.06 36.30 35.17 47.54 43.32 946.83
FreeLB 54.35 15.30 8.19 21.91 45.12 935.29
YOPO 51.91 37.44 36.00 46.02 31.65 587.70

DP-PGD 49.55 35.02 37.72 43.45 23.81 1098.77
MP-PGD 48.48 35.99 35.52 41.70 16.19 1150.38
Asy-PGD 51.19 39.83 39.36 45.91 25.00 1115.73
DecVFAL 54.33 43.43 43.24 49.60 49.57 446.26

We further evaluate the robustness results of DecV-
FAL on CIFAR-100, which is a more difficult dataset
with more classes. As shown in Table 4, DecVFAL
achieves the highest robust accuracy against all types
of adversarial attacks, while reducing training time
to only 1/3 of standard PGD. Although FreeAT and
FreeLB perform slightly better on clean data, they
show significant performance degradation under ad-
versarial attacks. This degradation occurs primarily
because their simultaneous updates of model parame-
ters and adversarial samples lead to overfitting, high-
lighting the advantage of DecVFAL.

6.6 Comparison with FGSM-based Methods

Table 5: Comparison with FGSM-based methods

Method Time (h) ε = 4/255 ε = 8/255 ε = 12/255

PGD-10 AA PGD-10 AA PGD-10 AA
PGD-10 8.23 68.47 63.08 44.61 34.55 34.59 16.29
FastAT 1.45 63.61 57.69 40.41 30.62 30.58 14.20
ATAS 1.85 66.23 61.08 42.56 32.46 32.85 15.30

DecVFAL-6-2 2.75 68.59 62.34 46.27 36.48 36.14 18.72
DecVFAL-3-3 1.45 66.19 60.58 42.96 31.76 31.98 15.11

We also compared with com-
putationally efficient FGSM-
based methods (FastAT and
ATAS). Table 5 presents the
results across different pertur-
bation budgets. DecVFAL-6-
2 consistently achieves supe-
rior robustness while requir-
ing only 1/3 of PGD’s training
time. Notably, DecVFAL-3-3 matches FastAT’s training efficiency while delivering better robustness, demon-
strating DecVFAL balances computational efficiency and model robustness through its configurable parameters.

6.7 Ablation Study

Impact of the number of clients C. We conducted additional experiments on the MNIST dataset by varying
the number of clients C among 3, 5, and 7. DecVFAL consistently achieved superior robustness and enhanced
computational efficiency across all client configurations compared to baseline methods. Additionally, we tested
DecVFAL and baselines against third-party attacks in a 7-client setting, including corruption pattern selection
and malicious client scenarios (see Appendix 6.7). DecVFAL still demonstrated better robust performance.

Table 6: Results for different number of clients C

No. Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Clients Methods Accuracy PGD FGSM CW CER ZO-FGSM ZO-PGD ALL (s/epoch)

3 PGD 98.05 64.56 82.83 96.02 96.46 93.98 94.72 89.56 1015.80
5 PGD 96.78 69.50 84.51 93.00 95.20 92.36 93.08 78.62 1145.63
7 PGD 96.18 63.86 79.96 90.96 93.30 90.37 94.12 69.36 1158.11

3 DecVFAL 98.67 80.82 89.50 97.28 97.90 96.03 96.97 93.83 88.29
5 DecVFAL 98.30 76.52 87.39 97.34 97.54 93.85 95.73 91.87 92.93
7 DecVFAL 96.84 76.57 87.17 83.90 96.21 93.23 90.80 81.21 94.83

Table 7: Results of the diverse number of modules

Robust Accuracy (%)
Split Positions for Modules Clean FGSM PGD

[: 1 : 18 : 19] 98.90 48.79 57.49
[: 1 : 9 : 18 : 19] 98.71 45.88 55.55

[: 1 : 9 : 13 : 18 : 19] 98.58 44.32 53.42
[: 1 : 5 : 9 : 13 : 18 : 19] 98.69 47.09 45.49

[: 1 : 5 : 9 : 13 : 17 : 18 : 19] 98.22 38.44 40.63

Impact of the number of modulesMK . To verify
the impact of the number of modulesMK , we con-
ducted additional experiments on the MNIST dataset.
Each client employed a ResNet-18 model, which was
partitioned into varying numbers of modules: 2, 3,
4, 5, and 6. All configurations were trained for an
identical number of epochs. As indicated by Remark
1, increasing the number of modules leads to larger
errors in the gradient of η, which in turn negatively im-
pacts the algorithm’s accuracy. This is demonstrated
by the results shown in Table 7.

Impact of lazy propagation. We evaluated the effectiveness of lazy propagation on the MNIST dataset
using DecVFAL framework (M=5, N=10). By setting N=1, we implemented a variant without lazy propagation,
denoted as "Nolazy". As shown in Table 1, Nolazy only updates each sample 5 times to generate adversarial
examples. While the decoupled parallel propagation still provides some training time advantage, the overall
model performance cannot be guaranteed under this configuration.

Limitation of the setting of M and N . We conducted experiments on the MNIST dataset to explore the
dependence on parameters M and N . Figure 5 illustrate the change in accuracy with a fixed M = 3, 5, 8, 10,
respectively, while varying N . The performance exhibits a non-monotonic relationship with N , as analyzed in

9

Remark 2. Initially, performance improves as N increases, however, beyond a certain threshold, it deteriorates
significantly. This pattern emphasizes the critical importance of optimal N selection to maintain model accuracy.

Impact of split position. We conducted additional experiments on MNIST to evaluate the effect of different
split positions. The server model is still kept as a single-layer perceptron, while each client utilized a ResNet-18
model that is split into two modules at various positions. The results in Table 8 demonstrate that DecVFAL
performs well across various split positions compared to PGD. However, as more layers are included in the
bottom module during lazy sequential backpropagation, the computational load increases, leading to longer
training time.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
N

60

65

70

75

80

85

90

95

100

Ac
c(

%
)

M=10, varying N
M=8, varying N
M=5, varying N
M=3, varying N

Figure 5: Result of fixed M and varying N

Table 8: Results of different split positions

Split Positions Robust Accuracy (%) Train Time
[: M1 : M2 : M3] Clean FGSM PGD (s/epoch)

[: 1 : 18 : 19] 98.90 48.79 57.49 107.54
[: 5 : 18 : 19] 98.77 43.03 42.98 226.76
[: 9 : 18 : 19] 98.75 41.33 49.77 318.12
[: 13 : 18 : 19] 98.83 39.73 43.46 431.14
[: 17 : 18 : 19] 98.43 36.36 45.88 538.65

PGD 98.48 32.53 41.93 575.45

Evaluation under attacks involving corruption pattern selection. To further assess our framework’s resilience
in more complex attack scenarios, we conducted experiments on the MNIST dataset using seven clients.
Specifically, we evaluated DecVFAL and baseline methods against attacks involving corruption pattern selection.
In this setup, adversaries could selectively corrupt client data or communications. The server model remained a
single-layer perceptron. We implemented various corruption patterns, including E-TS, RC, and FC. As shown in
Table 9, the results demonstrated that even under these challenging conditions, DecVFAL maintained superior
performance compared to baseline methods.

Table 9: Results of evaluation under attacks with various corruption patterns.
Corrupted clients: 1/7

Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD E-TS FC RC

PGD 92.238 94.01 93.85 94.091 94.03 93.399 88.842 88.922 88.982
DecVFAL 95.613 96.575 96.795 96.605 96.585 96.044 93.048 93.87 93.219

Corrupted clients: 3/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD E-TS FC RC

PGD 79.888 87.099 93.359 94.101 92.819 92.758 77.364 78.105 77.754
DecVFAL 86.569 92.949 96.044 96.404 95.543 94.922 84.816 85.577 84.685

Corrupted clients: 5/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD E-TS FC RC

PGD 64.724 80.689 91.526 93.279 90.935 91.587 69.03 68.53 69.111
DecVFAL 78.235 87.31 91.987 96.044 93.049 94.121 75.972 76.062 76.322

7 Conclusions

This paper presented DecVFAL, a framework that significantly accelerates VFAL while maintaining robustness.
DecVFAL incorporates a dual-level decoupled mechanism to enable lazy sequential and decoupled parallel
backpropagation for adversarial example generation. This approach maintains the same theoretical convergence
rate of O(1/

√
K) as regular VFLs while providing acceleration in each iteration, resulting in significant

empirical improvements with 3-10 fold speedup across various datasets. Comprehensive experiments demonstrate
DecVFAL’s effectiveness across various neural architectures and VFL configurations.

Acknowledgement

Dr. Yi Chang was supported by the National Key R&D Program of China under Grant No. 2023YFF0905400,
and the National Natural Science Foundation of China through grants No. U2341229 and No. 62076138.

10

References
[1] Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial

lens. In: International conference on machine learning. pp. 634–643. PMLR (2019)

[2] Cai, D., Fan, T., Kang, Y., Fan, L., Xu, M., Wang, S., Yang, Q.: Accelerating vertical federated learning.
IEEE Transactions on Big Data p. 1–10 (2024). https://doi.org/10.1109/tbdata.2022.3192898, http:
//dx.doi.org/10.1109/TBDATA.2022.3192898

[3] Carcillo, F., Le Borgne, Y.A., Caelen, O., Kessaci, Y., Oblé, F., Bontempi, G.: Combining unsupervised
and supervised learning in credit card fraud detection. Information sciences 557, 317–331 (2021)

[4] Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 ieee symposium
on security and privacy (sp). pp. 39–57. Ieee (2017)

[5] Castiglia, T.J., Das, A., Wang, S., Patterson, S.: Compressed-vfl: Communication-efficient learning with
vertically partitioned data. In: International Conference on Machine Learning. pp. 2738–2766. PMLR
(2022)

[6] Cha, D., Sung, M., Park, Y.R., et al.: Implementing vertical federated learning using autoencoders: Practical
application, generalizability, and utility study. JMIR medical informatics 9(6), e26598 (2021)

[7] Chen, C., Zhou, J., Wang, L., Wu, X., Fang, W., Tan, J., Wang, L., Liu, A.X., Wang, H., Hong, C.:
When homomorphic encryption marries secret sharing: Secure large-scale sparse logistic regression
and applications in risk control. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. pp. 2652–2662 (2021)

[8] Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM
workshop on artificial intelligence and security. pp. 15–26 (2017)

[9] Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations.
Advances in neural information processing systems 31 (2018)

[10] Chen, W., Ma, G., Fan, T., Kang, Y., Xu, Q., Yang, Q.: Secureboost+: A high performance gradient
boosting tree framework for large scale vertical federated learning. arXiv preprint arXiv:2110.10927 (2021)

[11] Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via randomized smoothing. In:
Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 97, pp. 1310–1320. PMLR (09–15 Jun 2019),
https://proceedings.mlr.press/v97/cohen19c.html

[12] Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-
free attacks. In: International conference on machine learning. pp. 2206–2216. PMLR (2020)

[13] Cui, J., Chen, C., Lyu, L., Yang, C., Li, W.: Exploiting data sparsity in secure cross-platform social
recommendation. Advances in Neural Information Processing Systems 34, 10524–10534 (2021)

[14] Deng, Y., Kamani, M.M., Mahdavi, M.: Distributionally robust federated averaging. Advances in neural
information processing systems 33, 15111–15122 (2020)

[15] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2019)

[16] Duanyi, Y., Li, S., Ye, X., Liu, J.: Constructing adversarial examples for vertical federated learning:
Optimal client corruption through multi-armed bandit. In: The Twelfth International Conference on
Learning Representations (2023)

[17] Fu, C., Zhang, X., Ji, S., Chen, J., Wu, J., Guo, S., Zhou, J., Liu, A.X., Wang, T.: Label inference attacks
against vertical federated learning. In: 31st USENIX security symposium (USENIX Security 22). pp.
1397–1414 (2022)

[18] Gao, X., Jiang, B., Zhang, S.: On the information-adaptive variants of the admm: an iteration complexity
perspective. Journal of Scientific Computing 76, 327–363 (2018)

[19] Ge, N., Li, G., Zhang, L., Liu, Y.: Failure prediction in production line based on federated learning: an
empirical study. Journal of Intelligent Manufacturing 33(8), 2277–2294 (2022)

[20] Gu, F., Askari, A., El Ghaoui, L.: Fenchel lifted networks: A lagrange relaxation of neural network training.
In: International Conference on Artificial Intelligence and Statistics. pp. 3362–3371. PMLR (2020)

11

http://dx.doi.org/10.1109/TBDATA.2022.3192898
http://dx.doi.org/10.1109/TBDATA.2022.3192898
https://proceedings.mlr.press/v97/cohen19c.html

[21] Haddadpour, F., Mahdavi, M.: On the convergence of local descent methods in federated learning. arXiv
preprint arXiv:1910.14425 (2019)

[22] Huang, F., Gao, S., Pei, J., Huang, H.: Nonconvex zeroth-order stochastic admm methods with lower
function query complexity. arXiv preprint arXiv:1907.13463 (2019)

[23] Huang, F., Gao, S., Pei, J., Huang, H.: Accelerated zeroth-order momentum methods from mini to minimax
optimization. arXiv preprint arXiv:2008.08170 3 (2020)

[24] Huang, W., Ye, M., Shi, Z., Wan, G., Li, H., Du, B., Yang, Q.: Federated learning for generalization,
robustness, fairness: A survey and benchmark. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2024)

[25] Huang, Z., Fan, Y., Liu, C., Zhang, W., Zhang, Y., Salzmann, M., Süsstrunk, S., Wang, J.: Fast adversarial
training with adaptive step size. IEEE Transactions on Image Processing 32, 6102–6114 (2023)

[26] Huo, Z., Gu, B., Huang, H.: Training neural networks using features replay. Advances in Neural Information
Processing Systems 31 (2018)

[27] Huo, Z., Gu, B., Huang, H., et al.: Decoupled parallel backpropagation with convergence guarantee. In:
International Conference on Machine Learning. pp. 2098–2106. PMLR (2018)

[28] Jaderberg, M., Czarnecki, W.M., Osindero, S., Vinyals, O., Graves, A., Silver, D., Kavukcuoglu, K.:
Decoupled neural interfaces using synthetic gradients. In: International conference on machine learning.
pp. 1627–1635. PMLR (2017)

[29] Jin, X., Chen, P.Y., Hsu, C.Y., Yu, C.M., Chen, T.: Cafe: Catastrophic data leakage in vertical federated
learning. Advances in Neural Information Processing Systems 34, 994–1006 (2021)

[30] Khan, A., ten Thij, M., Wilbik, A.: Communication-efficient vertical federated learning. Algorithms 15(8),
273 (2022)

[31] Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep., University of Toronto
(2009)

[32] Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236 (2016)

[33] Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

[34] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition.
In: Proceedings of the IEEE. vol. 86, pp. 2278–2324. IEEE (1998)

[35] LeCun, Y., Touresky, D., Hinton, G., Sejnowski, T.: A theoretical framework for back-propagation. In:
Proceedings of the 1988 connectionist models summer school. vol. 1, pp. 21–28 (1988)

[36] Li, J., Fang, C., Lin, Z.: Lifted proximal operator machines. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 33, pp. 4181–4188 (2019)

[37] Li, M., Chen, Y., Wang, Y., Pan, Y.: Efficient asynchronous vertical federated learning via gradient predic-
tion and double-end sparse compression. In: 2020 16th international conference on control, automation,
robotics and vision (ICARCV). pp. 291–296. IEEE (2020)

[38] Li, Q., Chen, L., Tai, C., Weinan, E.: Maximum principle based algorithms for deep learning. Journal of
Machine Learning Research 18(165), 1–29 (2018)

[39] Li, Q., Hao, S.: An optimal control approach to deep learning and applications to discrete-weight neural
networks. In: International Conference on Machine Learning. pp. 2985–2994. PMLR (2018)

[40] Li, X., Song, Z., Yang, J.: Federated adversarial learning: A framework with convergence analysis. In:
International Conference on Machine Learning. pp. 19932–19959. PMLR (2023)

[41] Liu, J., Xie, C., Kenthapadi, K., Koyejo, S., Li, B.: Rvfr: Robust vertical federated learning via feature
subspace recovery. In: NeurIPS Workshop New Frontiers in Federated Learning: Privacy, Fairness,
Robustness, Personalization and Data Ownership (2021)

[42] Liu, S., Kailkhura, B., Chen, P.Y., Ting, P., Chang, S., Amini, L.: Zeroth-order stochastic variance reduction
for nonconvex optimization. Advances in Neural Information Processing Systems 31 (2018)

12

[43] Liu, Y., Kang, Y., Xing, C., Chen, T., Yang, Q.: A secure federated transfer learning framework. IEEE
Intelligent Systems 35(4), 70–82 (2020)

[44] Liu, Y., Kang, Y., Zou, T., Pu, Y., He, Y., Ye, X., Ouyang, Y., Zhang, Y.Q., Yang, Q.: Vertical federated
learning: Concepts, advances, and challenges. IEEE Transactions on Knowledge and Data Engineering
(2024)

[45] Liu, Y., Zou, T., Kang, Y., Liu, W., He, Y., Yi, Z., Yang, Q.: Batch label inference and replacement attacks
in black-boxed vertical federated learning. arXiv preprint arXiv:2112.05409 (2021)

[46] Long, G., Tan, Y., Jiang, J., Zhang, C.: Federated learning for open banking. In: Federated learning:
privacy and incentive, pp. 240–254. Springer (2020)

[47] Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Advances in neural
information processing systems 30 (2017)

[48] Luo, X., Wu, Y., Xiao, X., Ooi, B.C.: Feature inference attack on model predictions in vertical federated
learning. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE). pp. 181–192. IEEE
(2021)

[49] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

[50] Maguolo, G., Nanni, L.: A critic evaluation of methods for covid-19 automatic detection from x-ray images.
Information fusion 76, 1–7 (2021)

[51] McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A.: Federated learning of deep networks using model
averaging. arXiv preprint arXiv:1602.05629 2, 2 (2016)

[52] Pang, Q., Yuan, Y., Wang, S., Zheng, W.: Adi: Adversarial dominating inputs in vertical federated learning
systems. arXiv preprint arXiv:2201.02775 (2022)

[53] Qiu, P., Zhang, X., Ji, S., Du, T., Pu, Y., Zhou, J., Wang, T.: Your labels are selling you out: Relation leaks
in vertical federated learning. IEEE Transactions on Dependable and Secure Computing (2022)

[54] Seidman, J.H., Fazlyab, M., Preciado, V.M., Pappas, G.J.: Robust deep learning as optimal control: Insights
and convergence guarantees. Proceedings of Machine Learning Research (2020)

[55] Shafahi, A., Najibi, M., Ghiasi, M.A., Xu, Z., Dickerson, J., Studer, C., Davis, L.S., Taylor, G., Goldstein,
T.: Adversarial training for free! Advances in neural information processing systems 32 (2019)

[56] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback.
Journal of Machine Learning Research 18(52), 1–11 (2017)

[57] Sokolov, A., Hitschler, J., Ohta, M., Riezler, S.: Sparse stochastic zeroth-order optimization with an
application to bandit structured prediction. arXiv preprint arXiv:1806.04458 (2018)

[58] Song, Y., Xie, Y., Zhang, H., Liang, Y., Ye, X., Yang, A., Ouyang, Y.: Federated learning application on
telecommunication-joint healthcare recommendation. In: 2021 IEEE 21st International Conference on
Communication Technology (ICCT). pp. 1443–1448. IEEE (2021)

[59] Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training neural networks without
gradients: A scalable admm approach. In: International conference on machine learning. pp. 2722–2731.
PMLR (2016)

[60] Teimoori, Z., Yassine, A., Hossain, M.S.: A secure cloudlet-based charging station recommendation for
electric vehicles empowered by federated learning. IEEE Transactions on Industrial Informatics 18(9),
6464–6473 (2022)

[61] Tramèr, F., Boneh, D., Kurakin, A., Goodfellow, I., Papernot, N., McDaniel, P.: Ensemble adversarial
training: Attacks and defenses. In: 6th International Conference on Learning Representations, ICLR
2018-Conference Track Proceedings (2018)

[62] Wang, G., Gu, B., Zhang, Q., Li, X., Wang, B., Ling, C.X.: A unified solution for privacy and communi-
cation efficiency in vertical federated learning. Advances in Neural Information Processing Systems 36
(2024)

[63] Wang, G., Zhang, Q., Xiang, L., Wang, B., Gu, B., Ling, C.: Secure and fast asynchronous vertical
federated learning via cascaded hybrid optimization. arXiv preprint arXiv:2306.16077 (2023)

13

[64] Wang, G.: Interpret federated learning with shapley values. arXiv preprint arXiv:1905.04519 (2019)

[65] Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., Gu, Q.: On the convergence and robustness of adversarial
training. arXiv preprint arXiv:2112.08304 (2021)

[66] Wei, K., Li, J., Ma, C., Ding, M., Wei, S., Wu, F., Chen, G., Ranbaduge, T.: Vertical federated learning:
Challenges, methodologies and experiments. arXiv preprint arXiv:2202.04309 (2022)

[67] Weinan, E., Han, J., Li, Q.: A mean-field optimal control formulation of deep learning. arXiv preprint
arXiv:1807.01083 (2018)

[68] Weinan, E.: A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics 1(5), 1–11 (2017)

[69] Weng, H., Zhang, J., Xue, F., Wei, T., Ji, S., Zong, Z.: Privacy leakage of real-world vertical federated
learning. arXiv preprint arXiv:2011.09290 (2020)

[70] Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial training. arXiv preprint
arXiv:2001.03994 (2020)

[71] Wu, Z., Li, Q., He, B.: Practical vertical federated learning with unsupervised representation learning.
IEEE Transactions on Big Data (2022)

[72] Xie, L., Liu, J., Lu, S., Chang, T.H., Shi, Q.: An efficient learning framework for federated xgboost using
secret sharing and distributed optimization. ACM Transactions on Intelligent Systems and Technology
(TIST) 13(5), 1–28 (2022)

[73] Xu, W., Fan, H., Li, K., Yang, K.: Efficient batch homomorphic encryption for vertically federated xgboost.
arXiv preprint arXiv:2112.04261 (2021)

[74] Yang, S., Ren, B., Zhou, X., Liu, L.: Parallel distributed logistic regression for vertical federated learning
without third-party coordinator. arXiv preprint arXiv:1911.09824 (2019)

[75] Yuan, H., Ma, C., Zhao, Z., Xu, X., Wang, Z.: A privacy-preserving oriented service recommendation
approach based on personal data cloud and federated learning. In: 2022 IEEE International Conference on
Web Services (ICWS). pp. 322–330. IEEE (2022)

[76] Zhang, D., Zhang, T., Lu, Y., Zhu, Z., Dong, B.: You only propagate once: Accelerating adversarial
training via maximal principle. Advances in neural information processing systems 32 (2019)

[77] Zhang, G., Lu, S., Zhang, Y., Chen, X., Chen, P.Y., Fan, Q., Martie, L., Horesh, L., Hong, M., Liu, S.:
Distributed adversarial training to robustify deep neural networks at scale. In: Uncertainty in artificial
intelligence. pp. 2353–2363. PMLR (2022)

[78] Zhang, J., Guo, S., Qu, Z., Zeng, D., Wang, H., Liu, Q., Zomaya, A.Y.: Adaptive vertical federated learning
on unbalanced features. IEEE Transactions on Parallel and Distributed Systems 33(12), 4006–4018 (2022)

[79] Zhang, Q., Gu, B., Dang, Z., Deng, C., Huang, H.: Desirable companion for vertical federated learning:
New zeroth-order gradient based algorithm. In: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. pp. 2598–2607 (2021)

[80] Zhao, J., Zhu, X., Wang, J., Xiao, J.: Efficient client contribution evaluation for horizontal federated learn-
ing. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 3060–3064. IEEE (2021)

[81] Zhao, X., Zhang, H., Huo, Z., Gu, B.: Accelerated on-device forward neural network training with
module-wise descending asynchronism. Advances in Neural Information Processing Systems 36 (2024)

[82] Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., Liu, J.: Freelb: Enhanced adversarial training for
natural language understanding. arXiv preprint arXiv:1909.11764 (2019)

[83] Zizzo, G., Rawat, A., Sinn, M., Buesser, B.: Fat: Federated adversarial training. arXiv preprint
arXiv:2012.01791 (2020)

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate our three key contributions: (1) proposing
DecVFAL framework with dual-level decoupling mechanism, (2) establishing the first convergence
analysis for VFAL, and (3) demonstrating empirical results showing 3-10× speedup while maintaining
robustness. These claims are supported by theoretical analysis in Section 5 and experimental results in
Section 6.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 5 (Convergence Analysis), we discuss the limitations through Remark 1, which
reveals a direct trade-off between model modularity and performance. We also discuss in Appendix
B.2 the assumptions that bound our theoretical guarantees. Additionally, Section 6.6 (Ablation Study)
empirically shows the limitations of our method when increasing the number of modules.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: Our theoretical results are presented in Section 5 with assumptions clearly stated.
Lemmas 1-7 and Theorem 1 are presented with complete proofs in Appendix B. All assumptions (B.2)
are formally defined and referenced in the statements of theorems, and proofs follow a step-by-step
approach with proper cross-referencing.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 6 and Appendix C provide comprehensive details on experimental setups,
including dataset descriptions (C.1), adversarial attack configurations (C.2), hyperparameters (C.3),
hardware specifications (C.4), and model architectures. Tables 9-11 list specific hyperparameters used
for training and evaluation, enabling reproducibility.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our code is available at the anonymous repository
https://anonymous.4open.science/r/DecVFAL-F5E4/ as mentioned in Section 6. We use pub-
licly accessible datasets (MNIST, CIFAR-10, CIFAR-100, Tiny-ImageNet) and provide detailed
instructions on the implementation of DecVFAL in both the main paper and supplementary materials.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 6.1 and Appendix C provide comprehensive experiment details. We specify
model architectures, training procedures, optimizer configurations (Adam with learning rate 0.0001),
data partitioning methods, and evaluation metrics. Tables 9 and 10 in Appendix C list specific
hyperparameters for adversarial training and attacks.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

15

Justification: While we report comprehensive results across multiple datasets and attack methods in
Tables 1-6, we do not explicitly include error bars or confidence intervals. Our experiments were run
with fixed random seeds for reproducibility, and the consistent performance improvements across
multiple datasets and settings support our claims.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Table 11 in Appendix C.4 provides detailed hardware specifications for each experiment,
including CPU and GPU configurations. Training time per epoch is reported for each method in Tables
1-3, providing clear metrics on computational efficiency.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research focuses on improving computational efficiency and robustness of privacy-
preserving machine learning frameworks (VFL), which aligns with the ethical principles of privacy
protection and enhanced security. We use public benchmark datasets and do not collect or use any
personally identifiable information.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [No]

Justification: The paper primarily focuses on the technical aspects of accelerating robust VFL. While
we acknowledge that our work has positive implications for privacy-preserving and secure machine
learning deployments, we did not include a dedicated discussion of broader societal impacts. Future
versions will include this discussion.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Our work focuses on efficiency improvements for vertical federated learning and does
not release high-risk models or datasets. We use standard benchmark datasets (MNIST, CIFAR-10,
CIFAR-100, Tiny-ImageNet) and our method aims to enhance security against adversarial attacks
rather than create risks.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly cite the original papers for all datasets (LeCun et al. for MNIST, Krizhevsky
for CIFAR, Le & Yang for Tiny-ImageNet) and adversarial attack methods used in our experiments.
All datasets used are publicly available for research purposes and we use them within their intended
use.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: Our anonymous code repository (https://anonymous.4open.science/r/DecVFAL-F5E4/)
includes documentation for the DecVFAL framework and implementation details. Our framework
builds upon established VFL architectures with novel decoupling mechanisms, and all components are
documented in both the paper and repository.

14. Crowdsourcing and research with human subjects

16

https://neurips.cc/public/EthicsGuidelines

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing or human subjects. All experiments are
computational, using public benchmark datasets and evaluating algorithmic performance.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects or require IRB approval. Our work focuses
on algorithmic improvements to vertical federated learning systems using public benchmark datasets.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: Our research does not use LLMs as a component of our methods. Our work focuses on
adversarial robustness in vertical federated learning with image classification datasets, and does not
involve language models in any capacity.

17

Appendix Contents
A Background . 19

A.1 Vertical Federated Learning . 19
A.2 Vertical Federated Adversarial Learning . 19
A.3 Threat Model .19
A.4 Adversarial Training as a Dynamical System . 20
A.5 Zeroth Order Optimization .21
A.6 Communication Compression . 21

B Convergence Analysis . 22

B.1 Notations . 22
B.2 Assumptions . 23
B.3 Proposition . 23
B.4 Definition . 24
B.5 Lemma . 24
B.6 Theorem . 27

C Experiment Details . 32

C.1 Dataset Details . 32
C.2 Adversarial Attack . 32
C.3 Hyperparameters . 32
C.4 Environment . 32
C.5 Performance across Various NN Architectures . 33
C.6 Experiments on Tiny-ImageNet . 33

18

A Background

A.1 Vertical Federated Learning

VFL encompasses a range of architectural designs tailored for collaborative machine learning across multiple
parties. These architectures, distinguished by data and parameter distribution, as well as the trainability of
the server model, include Aggregated Vertical Federated Learning (aggV FL) [17, 45], where client parties
contribute intermediate results aggregated through a non-trainable function in the server party; Aggregated
Vertical Federated Learning with Central Features (aggV FLc), similar to aggVFL but incorporating its own
features; Split Vertical Federated Learning (splitV FL) [17, 29, 41], featuring a trainable server model pro-
cesses intermediate results from passive parties; and Split Vertical Federated Learning without Local Features
(splitV FLc), where the server party doesn’t provide any features to the model but relies solely on intermediate
results from client parties.

Because VFL is a collaboration system that requires parties to exchange gradient or model level information, it has
been of great research interest to study communication efficiency, and data privacy protection. Various strategies
are adopted to heighten communication efficiency, typically involving reducing the cost of coordination and
compressing the data transmitted between parties, such as multiple client updates [78], asynchronous coordination
[37], one-shot communication [71], and data compression [5, 37]. In terms of data privacy protection, VFL
relies on cutting-edge technologies like Homomorphic Encryption (HE) [74], Multi-Party Computation (MPC)
[72, 43], and Differential Privacy (DP) [62] to preserve data privacy.

A.2 Vertical Federated Adversarial Learning

Emerging research has investigated the distinct challenges posed by adversarial attacks in the context of VFL [24].
Due to the distributed nature, VFL struggles to ensure client trustworthiness and thus renders it highly susceptible
to adversarial perturbations, underscoring the pressing need for enhanced VFL model robustness[24], this is
particularly evident in neural network models. Prior works have proposed that adversaries (third-party or client
party) can generate adversarial samples by introducing manipulated perturbations to raw data or embeddings in
the corrupted clients, aiming to mislead the inference of VFL models [48, 69, 53, 17]. However, existing VFL
defense mechanisms based on cryptographic [45] and non-cryptographic [41] only concentrate on mitigating
inference attacks and backdoor attacks while neglecting adversarial attacks.

A.3 Threat Model

In the context of VFL, we focus on untargeted adversarial attacks, constructed during the inference phase. The
adversary’s objective is to corrupt samples whose original prediction is yu, causing the server model to output
ŷ ̸= yu. We categorize these adversarial attacks into two primary scenarios:

• Malicious (colluding) clients. In this scenario, we consider the presence of malicious (colluding)
clients acting as adversary. During the attack, all malicious clients (one or more) collaboratively and
simultaneously generate the adversarial feature partition. The attacks are further classified based on
the level of knowledge these clients possess:

– White-box adversarial attack. Under relaxed protocol, clients have access to the server model
fs and the output of all clients xtc . This protocol could occur when the client needs to make
interpretable decisions based on the server model’s parameters [48, 64, 47]. This implies the
malicious clients have the necessary information to calculate the partial gradient to the features.

– Black-box adversarial attack. Under basic VFL protocol, all participants keep their private data
(e.g., labels and features), as well as the server model fs and client models {f(c)}Cc=1 local
during inference. Clients can only receive the final prediction results ŷ and cannot directly obtain
the gradient, thus necessitating the use of black-box methods to approximate it.

• Third party adversary. We also consider an adversary as a third party in VFL inference, who can
access, replay, and manipulate messages on the communication channel between two endpoints, where
embeddings and predictions are exchanged. Third-party adversaries usually cannot achieve access to
top model parameters, thus this scenario generally falls under the black-box attack category. Due to
resource constraints, previous work assumed that the adversary can corrupt at most Ca ≤ C clients
[16].

19

A.4 Adversarial Training as a Dynamical System

With the link between optimal control and deep learning [39], research recast neural networks as dynamical
systems and formulated the robust optimization problem as an optimal control problem [54]:

min
Θ1,...,ΘT

max
η1,...,ηS

S∑
i=1

L(xT,i, yi) +
S∑
i=1

T−1∑
t=0

Rt(xt,i,Θt)

subject to xt+1,i = f t(xt,i,Θt), i = 1, . . . ,S, t = 1, . . . , T − 1

x1,i = f0(x0,i + ηi,Θ0), i = 1, . . . ,S

(A.1)

where xt ∈ Rdt represents the states (i.e., the input of the t-th layer), f t : Rdt × Θt → Rdt+1 is the state
transition map, Θt are the trainable control parameters, Θ denotes the concatenation of (Θt)0≤t≤T−1, and
the initial conditions are provided by the inputs to the network, x0,i. According to the two-player Pontryagin
Maximum principle, proved in [76], we define the Hamiltonians: H0(x, p, θ, η) := pT f0(x+ η, θ)−R0(x, θ)
and Ht(x, p, θ) := pT ft(x, θ)−Rt(x, θ), then there exists an optimal costate trajectory p∗t , satisfied:

x∗t+1 = ∇pHt(x∗t , p∗t+1, θ
∗
t) x∗0 = x0 + η∗ (A.2)

p∗t = ∇xHt(x∗t , p∗t+1, θ
t,∗) p∗T = −∇L(x∗T , y) (A.3)

where Θ∗ := {θ0,∗, . . . θT−1,∗} is the solution of the problem (A.1).

Due to the compositional structure, feed-forward deep neural networks can be viewed as dynamical systems.
This approach has been recently explored in several papers, which leverage this interpretation to propose new
training algorithms [68, 38, 67, 76].

According to equation A.1, the two-player Pontryagin Maximum principle, proved in [76], gives necessary
conditions for an optimal setting of the parameters θ∗, perturbations η∗1 , . . . , η∗S , and corresponding trajectories
{x∗t,i}. Define the Hamiltonians

Ht(x, p, θ) := p⊤ft(x, θ)−Rt(x, θ), t = 1, . . . , T − 1

H0(x, p, θ, η) := p⊤f0(x+ η, θ)−R0(x, θ)
(A.4)

The two-player maximum principle says in this case that if Φ, ft, and Rt are twice continuously differentiable,
with respect to x, uniformly bounded in x and t along with their partial derivatives, and the image sets
{ft(x, θ)|θ ∈ Rmt} and {Rt(x, θ)|θ ∈ Rmt} are convex for all x and t, then there exists an optimal costate
trajectory p∗t such that the following dynamics are satisfied

x∗t+1,i = ∇pHt(x
∗
t,i, p

∗
t+1,i, θ

∗
t), x∗1,i = ∇pH0(x0,i, p

∗
1,i, θ

∗
0 , η

∗
i)

p∗t,i = ∇xHt(x
∗
t,i, p

∗
t+1,i, θ

∗
t), p∗T,i = −∇xΦ(x∗T,i, yi)

(A.5)

and the following Hamiltonian condition for all θt ∈ Rmt and ηi ∈ X

Ht(x
∗
t,i, p

∗
t+1,i, θt) ≤

S∑
i=1

Ht(x
∗
t,i, p

∗
t+1,i, θ

∗
t), t = 1, . . . , T − 1

S∑
i=1

H0(x
∗
t,i, p

∗
t+1,i, θt, η

∗
i) ≤

S∑
i=1

H0(x
∗
t,i, p

∗
t+1,i, θ

∗
t , η

∗
i) ≤

S∑
i=1

H0(x
∗
t,i, p

∗
t+1,i, θ

∗
t , ηi)

(A.6)

These necessary optimality conditions can be used to design an iterative algorithm of the following form. For
each data point i ∈ {1, . . . , S},

1. Compute the state and costate trajectories {xi,t} and {pi,t} from the dynamics, keeping θt and ηi
fixed:

x
(η)
t+1,i = ∇pHt(x

(η)
t,i , p

(η)
t+1,i, θt)

x
(η)
1,i = ∇pH0(x0,i, p

(η)
1,i , θ0, η)

2. p(η)t,i = ∇xHt(x
(η)
t,i , p

(η)
t+1,i, θt), p

(η)
T,i = −∇xΦ(x

(η)
T,i, yi)

3. Minimize the Hamiltonian H0(xt, i, pt+ 1, i, θt, ηi) with respect to ηi

4. Maximize the sum of Hamiltonians
∑S
i=1Ht(xt, i, pt+ 1, i, θt) with respect to θt for all t

20

As was noticed as early as [35], it can be seen from the chain rule that the backward costate dynamics are
equivalent to backpropagation through the network. With this interpretation, the gradient of the total loss for the
i-th data point with respect to the adversary ηi can be written as∇ηf0(x0,i + ηi, θ0)

⊤p
(η)
1,i . For a fixed value

of θ0, performing gradient descent on H0 to find a worst-case adversarial perturbation can be expressed as the
following updates, where α > 0 is a step size:

η
(ℓ+1)
i = η

(ℓ)
i − α∇ηf0(x0,i + η

(ℓ)
i , θ0)

⊤p
(η)
1,i (A.7)

An important observation made in [76] is that the adversary is only present in the first layer Hamiltonian
condition and this function can be minimized by computing gradients only with respect to the first layer of
the network. More explicitly, instead of using p(η)ℓ,1 , as in the updates above, we could instead use p(η)0,1 and the
updates

η
(ℓ+1)
i = η

(ℓ)
i − α∇ηf0(x0,i + η

(ℓ)
i , θ0)

⊤p
(η)
0,1 (A.8)

This removes the need to do a full backpropagation to recompute the costate p(η)ℓ,1 for every update of η(ℓ)i , at the
cost of now being an approximate gradient.

A.5 Zeroth Order Optimization

ZOO methods [23, 22] have been developed to effectively solve many ML problems for which obtaining explicit
gradient expressions is difficult or infeasible. Such problems include structure prediction tasks, where explicit
gradients are challenging to derive [57], as well as bandit and black-box learning problems [56, 42], where
obtaining explicit gradients is not feasible. Specifically, ZOO relies solely on function values for optimization,
eschewing the need for explicit gradients.

Formally, given a function f(x) with input x, the gradient∇f(x) can be estimated using ZOO. One common
approach is to sample random perturbations u within the domain of f and evaluate the function shifts. The ZO
gradient estimator ∇̂f(x) is given by:

∇̂f(x) = 1

q

q∑
j=1

[f(x+ µuj)− f(x)]
uj
µ

(A.9)

where µ serves as a scaling factor for the random perturbation, while uj represents the j-th random perturbation
sampled from a distribution p across the domain of f . The parameter q denotes the number of random samples
employed for estimation. Normalizing the perturbation by uj

µ
ensures the estimator’s unbiasedness. The

expectation of the Zeroth Order (ZO) gradient estimator yields an unbiased estimate of the true gradient,
expressed as E[∇̂f(x)] = ∇f(x), provided that the samples uj are drawn from a distribution with a mean of
zero.

The application of ZOO to VFL has been discussed, highlighting its specific properties such as model applicability
[79], privacy security concerns [42], and considerations regarding communication cost and computational
efficiency [62].

A.6 Communication Compression

Compression is a pivotal technique in VFL that aims to mitigate communication overhead by reducing the
volume of data transmitted among participating parties. In the context of neural network-based VFL algorithms,
high-dimensional input vectors are inherently mapped onto lower-dimensional representations, which serve a
natural compression purpose. However, to further enhance communication efficiency, specialized dimensionality
reduction techniques are often integrated. Several VFL frameworks have been proposed to incorporate compres-
sion techniques: AVFL [2] leverages PCA to compress the data before transmission, reducing the communication
load. CE-VFL [30] employs both PCA and autoencoders to learn latent representations from raw data, which are
then used for model training. SecureBoost+ [10] and eHE-SecureBoost [73] encode encrypted gradients into
a compact form, minimizing the number of cryptographic operations and the data transmission size. C-VFL
[5] introduces an arbitrary compression scheme to VFL, offering a theoretical analysis of how compression
parameters impact the overall system efficiency.

Compression techniques play a critical role in VFL by enabling more efficient data transmission without
compromising the integrity of the learning process. The selection of an appropriate compression method
is contingent upon the specific requirements of the VFL scenario, including the sensitivity of the data, the
computational resources available, and the desired balance between communication efficiency and model
performance.

21

B Convergence analysis

B.1 Notations

Notations Definitions
Neural Network Classifier

S The number of samples
f Neural network model
Θ Model Parameters
xi, yi Input sample and corresponding label
B, B The mini-batch B with size B
E Expectation
k ∈ {1, 2, . . . ,K} Iteration index for parameter updating

Vertical Federated Learning
C The number of clients
f(1), f(2), . . . , f(C) Client models
θ = {θ(1), θ(2), . . . , θ(C)} Client model parameters
fs Server model
ψ Server model parameters
L Loss function
f = {fs, f(1), f(2), . . . , f(C)} The complete VFL model
αψ Learning rate for server model parameters
αθ Learning rate for client model parameters

Adversarial Training
A Adversarial Loss Function
GB(η, ψ, θ)

1
B

∑
i∈B Ai(ηi, ψi, θi)

R(η, ψ, θ) 1
S
∑
i∈S Ai(ηi, ψi, θi)

η∗i argmaxη Ai(η, ψ, θ)

η Adversarial perturbation
Π Projection operator
αη Learning rate for adversarial sample
ℓ Iteration index for adversarial sample updates
x0,i = {x0,i,(1), x0,i,(2), . . . , x0,i,(C)} The sample i with features from all clients
ηi = {ηi,(1), ηi,(2), . . . , ηi,(C)} The adversarial perturbation for sample i from all

clients
Optimal Control Formulation of Deep Learning

Ht Hamiltonian function for layer t
pt = {pt,(1), pt,(2), . . . , pt,(C)} Costates at layer t
T Number of layers in the neural network
t = 0, 1, . . . , T − 1 Layer indices
f t State transition map for layer t
xt = {xt,(1), xt,(2), . . . , xt,(C)} States at layer t
Θt Trainable parameters for layer t

Decoupled parallel Backpropagation
MK The number of divided modules
ts The number of server model’s layers
tc The number of client model’s layers
f = {f1, f2, . . . , ftc , . . . , fT−1} The VFL model from layer-wise view
θ = {Θ1,Θ2, . . . ,Θtc} Client model parameters from layer-wise view
xtc The output of all clients
fθ̃1 , fM̃1

Client model network excluding the first layer/module
Lazy Sequential Backpropagation

M Number of iterations for full propagations
N Number of iterations for propagations in bottom mod-

ule
Rt Regularizer for layer t
fΘ̃1

, fM̃1
The VFL model excluding the first layer/module

xm,nt,i The state/output of sample i at layer t in m,n iteration
pm,nt,i The costate/gradient of sample i at layer t in m,n

iteration
Zoreth Order Gradient Estimation

µ Smoothing parameter
u Random vector
q Query budget for gradient estimation
{δji }

q
j=1 Loss difference

∇̂A(η, ψ, θ) Estimation Gradient from ZOO
Compressor

C(·)b Compressor compressing information to b bits
∇Â(η, ψ, θ) Compression Gradient

Table 10: Table of Notations

22

B.2 Assumptions

Assumption 1. Lipschitz Gradient: There exists a constant K > 0 such that for all t ∈ 1, . . . , tc, . . . , T , the
functions ft, fc, L, and Rt are K-Lipschitz in x, uniformly in θ and ψ. For all each sample i ∈ 1, . . . ,S, the
function∇ηAi(η, ψ, θ),∇ψAi(η, ψ, θ),∇θAi(η, ψ, θ) satisfy the following Lipschitz conditions:

||∇ηAi(η, ψ′, θ)−∇ηAi(η, ψ, θ)||≤ Lηψ||ψ′ − ψ||. (B.1)

||∇ηAi(η, ψ, θ′)−∇ηAi(η, ψ, θ)||≤ Lηθ||θ′ − θ||. (B.2)

||∇ψAi(η′, ψ, θ)−∇ψAi(η, ψ, θ)||≤ Lψη||η′ − η||. (B.3)

||∇ψAi(η, ψ, θ′)−∇ψAi(η, ψ, θ)||≤ Lψθ||θ′ − θ||. (B.4)

||∇θAi(η′, ψ, θ)−∇θAi(η, ψ, θ)||≤ Lθη||η′ − η||. (B.5)

||∇θAi(η, ψ′, θ)−∇θAi(η, ψ, θ)||≤ Lθψ||ψ′ − ψ||. (B.6)

Assumption 2. Unbiased Gradient and Bounded Variance: There exists σψ > 0 and σθ > 0 , the stochas-
tic gradients are unbiased, i.e. Ei∇ψGi(η, ψ, θ) = ∇ψR(η, ψ, θ),Ei∇θGi(η, ψ, θ) = ∇θR(η, ψ, θ), i =
1, . . . , B and satisfy:

E||∇ψGB(η, ψ, θ)−∇ψR(η, ψ, θ)||2≤ σ2
ψ. (B.7)

E||∇θGB(η, ψ, θ)−∇θR(η, ψ, θ)||2≤ σ2
θ . (B.8)

Assumption 1, 2 are the basic assumptions for solving the non-convex optimization problem with stochastic
gradient descent[63][21].
Assumption 3. Bounded Hessian: The Hessian for Ai(η, ψ, θ) is bounded, i.e.there exist positive constants
Hψ and Hθ for Ai(η, ψ, θ), ψ and θ, the following inequalities holds:

||∇2
ψAi(ηi, ψ, θ)||≤ Hψ. (B.9)

||∇2
[θ,x0,i]Ai(ηi, ψ, θ)||≤ Hθ. (B.10)

Assumption 4. Bounded Block-coordinate Gradient: The gradient of all the participants’ local output w.r.t.
their local input is bounded, i.e. for, all i ∈ 1, . . . ,S there exist positive constants Qψ and Qθ satisfies the
following inequalities:

||∇[ψ]Ai(ηi, ψ, θ)||≤ Qψ. (B.11)
||∇θAi(ηi, ψ, θ)||≤ Qθ. (B.12)

Assumption 3, 4 are the fundamental assumptions for bounding the compression loss. Compression introduces
errors into the input of the loss function; therefore, with a bounded Hessian, we can determine the maximum
effect of these errors on the loss. Additionally, bounding the block-coordinated gradient is a common practice in
VFL analysis. This approach helps constrain the entire model’s gradient when the gradients of other parts have
been bounded [62][5].
Assumption 5. z-Strongly Concave: If function Ai(η, ψ, θ) is z-strongly concave for η, then for all ψ and θ,
the following inequalities satisfy:

||η′ − η||≤ (1/z)||∇ηAi(η, ψ, θ)||. (B.13)

Assumption 5 made in previous results on convergence of robust training [65] and is justified through the
reformulation of robust training as distributionally robust optimization. It helps us to bound the delayed gradient
of η.

B.3 Proposition

Proposition 1. Under Assumption 1 and Assumption 5, the loss function R(η′, ψ, θ) is Lψ-smooth for ψ,
Lθ-smooth for θ, and the following inequality holds for all ψ, ψ′, θ, and θ′:

R
(
η′, ψ′, θ′

)
−R (η, ψ, θ) ≤

〈
∇θR (η, ψ, θ) , θ′ − θ

〉
+
Lθ
2

∥∥θ′ − θ∥∥2
+
〈
∇ψR (η, ψ, θ) , ψ′ − ψ

〉
+
Lψ
2

∥∥ψ′ − ψ
∥∥2 . (B.14)

where Lψ = Lψψ +
LψηLηψ

z
and Lθ = Lθθ +

LθηLηθ
z

. This assumption is consistent with Proposition 1 in
[54]. This can help us to connect the N-loop and M-loop.
Proposition 2. The classical back-propagation-based gradient descent algorithm can be viewed as an algorithm
attempting to solve the PMP[76]. The costate processes p∗t and the gradient∇xtA(η, ψ, θ) satisfy the following
equation:

pt = −∇xtA(η, ψ, θ). (B.15)

23

B.4 Definition

Definition 1. Compression Error (forward message) Considering sample i, we can define the compression
error of C(·)b: ec,i, c ∈ 1, 2, ..., C, i.e. ec,i = C(xtc,c,i)b − xtc,c,i. We denote the expected norm of the error
from the client c at global iteration k as Ekc,i = E||ekc,i||2, and Ek = maxc Ekc,i. Since all client operations are
synchronized, the error from all clients is eki = (ek1,i, e

k
2,i, ..., e

k
C,i). Then, the expected norm of the error from

all clients:

E||eki ||2 = E||(ek1,i, ek2,i, ..., ekC,i)||2

≤
C∑
c=1

E||ekc,i||2

≤ CEk. (B.16)

B.5 Lemma

Lemma 3. Zeroth-Order Optimization. For arbitrary f in problem (P), the following conditions hold:
1) fµ(x) is continuously differentiable, its gradient is Lµ-Lipschitz continuous with Lµ ≤ L:

∇fµ(x) = Eu[∇̂f(x)], (B.17)

where u is drawn from the uniform distribution over the unit Euclidean sphere, fµ(x) = E(f(x+ µu)) is the
smooth approximation of f .
2) For any x ∈ Rd, the following inequalities satisfy:

||∇fµ(x)−∇f(x)||2≤
L2µ2d2

4
. (B.18)

Proof of this lemma is provided in [42, 18].

Lemma 4. Bound the costate difference at the bottom module. There exists a constant G′ dependent on T and
K such that for all n ∈ {0, . . . , N}, m ∈ {0, . . . ,M}, and i ∈ {1, . . . , S}:∥∥∥pm−τ1,0

M1,i
− pm,NM1,i

∥∥∥ ≤ G′αη (MKN − 1) . (B.19)

Where G′ = TKT+1(KT + T (T − 1)K2T−2 + TK2T), m is the iteration index of full propagation.

Proof: This lemma bounds the difference of the costates of the first module in the adversary’s N -loop. We
fix the data point i, and for ease of notation drop the dependence of state variables on the index i, while also
suppressing the notational dependence on Θ for all functions, as Θ is fixed during the updates for the adversary
η. We define xt and pt as the state and costate trajectories generated from the initial condition x0 + η. We
additionally define δpℓt := p0t − pℓt and δxℓt := x0t − xℓt , ℓ is the iteration index of example updates. We first
prove bounds on ∥pℓt∥ and ∥δxℓt∥.

Applying Assumption (1), we have:

∥pℓT ∥ ≤ ∥−∇Φ(xℓT , y)∥≤ K. (B.20)

∥pℓt∥ = ∥∇xHt(xℓt, pℓt+1, θt)∥

≤ ∥pℓt+1∥∥∇xft(xℓt, θt)∥+∥∇xRt(xℓt)∥

≤ K∥pℓt+1∥+K

≤ K +K2 + . . .+KT−t+1

≤ KT−t+1(T − t+ 1). (B.21)

Next, from Assumption (1), we have ∥δxℓ1∥= ∥f1(x0 + η0)− f1(x0 + ηℓ)∥≤ K∥η0 − ηℓ∥. By induction, we
have:

∥δxℓt∥≤ Kt∥η0 − ηℓ∥. (B.22)

To bound ∥p0M1
− pℓM1

∥, we first note that ∥δpℓT ∥= ∥∇Φ(xℓT)−∇Φ(x0T)∥≤ K∥δxℓT ∥. We write:

24

∥δpℓt∥=∥∇xHt(x
0
t , p

0
t+1)−∇xHt(x

ℓ
t, p

ℓ
t+1)∥

=∥∇xHt(x
0
t , p

0
t+1)−∇xHt(x

ℓ
t, p

0
t+1) +∇xHt(x

ℓ
t, p

0
t+1)−∇xHt(x

ℓ
t, p

ℓ
t+1)∥

=∥⟨p0t+1,∇xft(x0t)−∇xft(xℓt)⟩+ ⟨p0t+1 − pℓt+1,∇xft(xℓt)⟩+∇xRt(xℓt)−∇xRt(x0t)∥

≤KT−1

(
K∥δxℓT ∥+

T−1∑
t=1

(KT−t+1

(T − t) +K)∥δxℓt∥

)
. (B.23)

Applying (B.22), we have:

∥δpℓM1
∥≤ (KT + T (T − 1)K2T−2 + TK2T)∥η0 − ηℓ∥. (B.24)

η updates with the form:

ηℓ+1 = ηℓ − αη∇ηfM1(x0 + ηℓ, θM1)
⊤p0M1

. (B.25)

Applying Assumption (1) and (B.21), we have:

∥η0 − ηℓ∥≤ KT+1Tαη(ℓ− 1). (B.26)

Finally, substituting with (B.26) gives us the desired result:

∥p0M1,i − p
ℓ
M1,i∥≤ G

′αη(ℓ− 1), (B.27)

where G′ = TKT+1(KT + T (T − 1)K2T−2 + TK2T).

Then, We are going to bound
∥∥∥pm−τ1,0

M1,i
− pm,NM1,i

∥∥∥:∥∥∥pm−τ1,0
M1,i

− pm,NM1,i

∥∥∥ =
∥∥∥pm−τ1,0

M1,i
− pm,0M1,i

+ pm,0M1,i
− pm,NM1,i

∥∥∥
(a)

≤
∥∥pm−τ1,0

M1,i
− pm,0M1,i

∥∥+ ∥∥∥pm,0M1,i
− pm,NM1,i

∥∥∥
(b)

≤ G′αη(τ1N) +G′αη(N − 1)

≤ G′αη [(τ1 + 1)N − 1]

≤ G′αη [MKN − 1] , (B.28)

where, (a) is obtained using the triangle inequality, (b) is obtained using (B.27), for each M -loop, the adversary
is updated N times. Proof completes.

Lemma 5. Bound Compression Error. Under Assumption 3, 4, and Definition 1, the norm of the difference
between the loss function value with and without compression error is bounded:

E||∇ψÂi(η, ψ, θ)−∇ψAi(η, ψ, θ)||≤ H2
ψCEk, (B.29)

E||∇θÂi(η, ψ, θ)−∇θAi(η, ψ, θ)||≤ Q2
θH

2
θCEk, (B.30)

E||∇xtc Âi(η, ψ, θ)−∇xtcAi(η, ψ, θ)||≤ H
2
θCEk. (B.31)

The proof of this lemma proceeds same to Lemma D.4 in [62].

Lemma 6. Bound the gradient for η. Due to the communication between the clients and the server involved in
the update process of adversarial examples, the gradient∇ηA respect to η involves estimation gradient∇ηÂ
from ZOO and compression gradient ∇̂ηA. Under the Assumption 1, and Lemma 3, 5, at the i-th sample and
k-th iteration, the pseudo-partial derivative for η satisfies the following inequality:

η̂i = argmin
m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥ ,

E
∥∥∥∇̂ηÂi(η̂i, ψi, θi)∥∥∥2 ≤ [D(X)L2

ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[(MKN − 1]2

(
2

z
+

1

2Lηη

)]

× 3

(
H2
θCEk +

L2µ2d2

4
+K2

)
. (B.32)

where G = KG′, αx < 1
Lηη

, and η ∈ X .

25

Proof:
According to the chain rule, we note that ∇̂ηÂi(η̂i, ψi, θi) can be split as follows:

E
∥∥∥∇̂ηÂi(η̂i, ψi, θi)∥∥∥2 = E||∇ηxtc,i∇̂xtc Âi(η̂, ψi, θi)||

2

≤ E||∇ηxtc,i||
2︸ ︷︷ ︸

a

E||∇̂xtc Âi(η̂, ψi, θi)||
2︸ ︷︷ ︸

b

. (B.33)

For (a): we view the clients’ networks as an independent model. From Proposition 2, we can get the following:

||pm,ntc,i
||= ||−∇xtcAi(η

m,n
i , ψi, θi)||≤ K, (B.34)

where m = 1, 2, ...,M denotes M -loop index, n = 1, 2, ..., N denotes N -loop index.

According to the Lemma 8 in [54], we drop the dependence of all functions on Θ and the data point index i
for the proof. The N -loop of the adversary’s updates can be written as (B.25). Recall that the true gradient of
A(ηm,N) is

∇ηA(ηm,N) = ∇ηfM1(x+ η)⊤pm,NM1
. (B.35)

We will bound the maximum difference of the update vector to the true gradient over the iterations of the
adversary’s updates. In this sense, the adversary’s updates can be viewed as a standard gradient method with an
inexact gradient oracle. We write

∥∇ηfM1(x+ η)⊤pm−τ,0
M1

−∇ηA(ηm,N)∥=∥∇ηfM1(x+ η)⊤pm−τ,0
M1

−∇ηfM1(x+ η)⊤pm,NM1
∥

≤∥pm−τ,0
1, − pm,N1 ∥∥∇ηfM1(x+ η)⊤∥

≤KG′αη [(MKN − 1]

=Gαη [MKN − 1] . (B.36)

We now appeal to an inexact oracle convergence result in [15]. Given a concave function f(x′) and a point x′,
we define a (δ, µ, L) oracle as returning a vector g(x′) such that the following inequality holds:

µ

2
∥x′ − x∥2≤ f(x′)− f(x) + ⟨g(x′), x′ − x⟩ ≤ L

2
∥x′ − x∥2+δ. (B.37)

It can be shown that if we have an approximate gradient bound of the form (B.36), and A is Lηη-smooth
(Assumption 1) and z-strongly concave in η (Assumption 5), then the updates for the adversary are created by a
(δ, z/2, 2Lηη)-oracle, where

δ = G2α2
η [MKN − 1]2

(
2

z
+

1

2Lηη

)
. (B.38)

Letting αη < 1/Lηη and applying Theorem 4 in [15], along with the inequality ∥∇A(η̂)∥2≤
2Lηη(maxη A(η)−A(η̂)) from the Lηη smoothness of A in η gives

∥∇ηA(η̂, θ)∥2 ≤ L2
ηη∥η0,0 − η∗∥2

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[MKN − 1]2

(
2

z
+

1

2Lηη

)
≤ D(X)L2

ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[MKN − 1]2

(
2

z
+

1

2Lηη

)
, (B.39)

where η∗ is the true solution to the inner maximization problem. Since we initialize η0,0 ∈ X , we have that
∥η0,0 − η∗∥2≤ D(X). We can get:

E||∇ηxtc,i||
2≤ D(X)L2

ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[MKN − 1]2

(
2

z
+

1

2Lηη

)
. (B.40)

For (b): we use Lemma 3, and Assumption 1:

E||∇̂xtc Âi(η̂i, ψi, θi)||
2

≤ 3E||∇̂xtc Âi(η̂i, ψi, θi)− ∇̂xtcAi(η̂i, ψi, θi)||
2+3E||∇̂xtcAi(η̂i, ψi, θi)−∇xtcAi(η̂i, ψi, θi)||

2

+ 3E||∇xtcAi(η̂i, ψi, θi)||
2

≤ 3(H2
θCEk +

L2µ2d2

4
+K2). (B.41)

Substituting (a) and (b) completes the proof.

26

Lemma 7. Connecting Gradients. Under the Assumption 1, Assumption 5,and Lemma 2, the following
inequality can be obtained:

E||∇ψGB(η̂, ψ, θ)−∇ψGB(η∗, ψ, θ)||2≤
L2
ψη · ζk

z2
, (B.42)

E||∇θGB(η̂, ψ, θ)−∇θGB(η∗, ψ, θ)||2≤
L2
θη · ζk

z2
, (B.43)

where ζk = 3(H2
θCEk + L2µ2d2

4
+K2)π(M,N),

π(M,N) =

{
D(X)L2

ηη

(
1− z

Lηη

)MN+1

+ 2G2

Lηη
[MKN − 1]2

(
2
z
+ 1

2Lηη

)}
.

Proof:
Under Assumption 1, Assumption 5, and Lemma 2, for server model parameters ψ, we can get:

E||∇ψGB(η̂, ψ, θ)−∇ψGB(η∗, ψ, θ)||2 ≤
1

B

∑
i∈B

E||∇ψAi(η̂i, ψi, θi)−∇ψAi(η∗i , ψi, θi)||2

≤
L2
ψη

B

∑
i∈B

E||η̂i − η∗i ||2

≤
L2
ψη

Bz2

∑
i∈B

E||∇ηAi(η̂i, ψi, θi)||2

≤
L2
ψη · ζk

z2
. (B.44)

Similar to the proof for ψ in (B.44), for client model parameters θ, we get:

E||∇θGB(η̂, ψ, θ)−∇θGB(η∗, ψ, θ)||2≤
L2
θη · ζk

z2
. (B.45)

B.6 Theorem

Theorem 1. Bound the Global Update Round. When the parameters are updated with the perturbations:

η̂i = argmin
m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥ . (B.46)

The gradient of η̂i is bounded:

E||∇̂ηÂi(η̂i, ψi, θi)||2≤ ζk, (B.47)

where ζk = 3(H2
θCEk + L2µ2d2

4
+K2)π(M,N),

π(M,N) =

{
D(X)L2

ηη

(
1− z

Lηη

)MN+1

+ 2G2

Lηη
[MKN − 1]2

(
2
z
+ 1

2Lηη

)}
.

The global iterates satisfy:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ (
2Λ

αmK
) + (

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
)

+ E αM
αm

[
2(1 + LψαM)H2

ψC + 3(1 + LθαM)Q2
θH

2
θC +

3H2
θCπ(M,N)

z2
(2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη)

]
+ µ2(

3αM (1 + LθαM)L2d2

4αm
+

3π(M,N)L2d2aM (1 + LψαM)L2
ψη

2amz2
+

9π(M,N)L2d2aM (1 + LθαM)L2
θη

4amz2
)

+
3αMK

2π(M,N)

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
. (B.48)

Proof:

For the gradient respect to ψ, there exists compression error, but no estimation error: ∇ψĜB(η̂k, ψk, θk) :=
(1/B)

∑
i∈B∇ψÂi(η̂

k
i , ψ

k
i , θ

k
i), where η̂ki is the output of the adversary’s inner problem at iteration k, η̂ki and

27

∇ψĜB(η̂k, ψk, θk) satisfy the following equations:

η̂i = argmin
m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥ (B.49)

ψk+1 = ψk − αψ · ∇ψĜB(η̂k, ψk, θk). (B.50)

For the gradient respect to θ, there exist compression error and estimation error: ∇̂θĜB(η̂k, ψk, θk) :=

(1/B)
∑
i∈B ∇̂θÂi(η̂

k
i , ψ

k
i , θ

k
i), the ∇̂θĜB(η̂k, ψk, θk) satisfy the following equation:

θk+1 = θk − αθ · ∇̂θĜB(η̂k, ψk, θk). (B.51)

Furthermore,∇ψGB(η∗,k, ψk, θk) and∇θGB(η∗,k, ψk, θk) are true stochastic gradients,∇ψR(η∗,k, ψk, θk)
and∇θR(η∗,k, ψk, θk) are true full gradients.
We begin with the inequality for the L-smoothness of ∇R(η∗,k, ψk, θk), and apply Proposition1, k ∈
0, 1, ...,K is the iteration indice, we can get:

R
(
η∗,k+1, ψk+1, θk+1

)
−R

(
η∗,k, ψk, θk

)
≤
〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥∥ψk+1 − ψk
∥∥∥2︸ ︷︷ ︸

a

+
〈
∇θR

(
η∗,k, ψk, θk

)
, θk+1 − θk

〉
+
Lθ
2

∥∥∥θk+1 − θk
∥∥∥2 .︸ ︷︷ ︸

b

(B.52)

For (a):〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥∥ψk+1 − ψk
∥∥∥2

=
〈
∇ψR

(
η∗,k, ψk, θk

)
,−αψ · ∇ψĜB(η̂k, ψk, θk)

〉
+
Lψα

2
ψ

2

∥∥∥∇ψĜB(η̂k, ψk, θk)∥∥∥2
= −αψ(1−

Lψαψ
2

)||∇ψR
(
η∗,k, ψk, θk

)
||2+

Lψα
2
ψ

2
||∇ψĜB(η̂k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψĜB(η̂k, ψk, θk)

〉
= −αψ(1−

Lψαψ
2

)||∇ψR
(
η∗,k, ψk, θk

)
||2+

Lψα
2
ψ

2
||∇ψĜB(η̂k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

〉
+ αψ(1− Lψαψ)

〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψGB(η∗,k, ψk, θk)−∇ψĜB(η̂k, ψk, θk)

〉
≤ −αψ(1−

Lψαψ
2

)||∇ψR
(
η∗,k, ψk, θk

)
||2+Lψα2

ψ||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

+ Lψα
2
ψ||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

〉
+
αψ
2

(1− Lψαψ)||∇ψR
(
η∗,k, ψk, θk

)
||2+αψ

2
(1− Lψαψ)||∇ψGB(η∗,k, ψk, θk)−∇ψĜB(η̂k, ψk, θk)||2

= −αψ
2
||∇ψR

(
η∗,k, ψk, θk

)
||2+αψ

2
(1 + Lψαψ)||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

+ Lψα
2
ψ||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

〉
. (B.53)

Note that E
[
∇ψGB(η∗,k, ψk, θk)

]
= ∇ψR

(
η∗,k, ψk, θk

)
, where the expectation is taken over the randomness

of the mini-batch sampling. We can get:

E
[
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

]
= 0. (B.54)

28

Then, we can get:

E
[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥∥ψk+1 − ψk
∥∥∥2]

≤ −αψ
2

E
[
||∇ψR

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2

(1 + Lψαψ)E
[
||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

]
+ Lψα

2
ψE
[
||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2
]
. (B.55)

Under Assumption 2, we can get:

E
[
||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2
]
≤ σ2

ψ. (B.56)

Furthermore, under Lemma 5 and Lemma 7, we can get:

E
[
||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

]
≤ 2E

[
||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η̂k, ψk, θk)||2

]
+ 2E

[
||∇ψGB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

]
≤ 2H2

ψCEk + 2
L2
ψη · ζk

z2
. (B.57)

Finally, we can be obtained:

E
[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥∥ψk+1 − ψk
∥∥∥2]

≤ −αψ
2

E
[
||∇ψR

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2

(1 + Lψαψ)(2H
2
ψV Ek + 2

L2
ψη · ζk

z2
) + Lψα

2
ψσ

2
ψ. (B.58)

For (b), similar to the proof for ψ in B.55), for θ, we can get:

E
[〈
∇θR

(
η∗,k, ψk, θk

)
, θk+1 − θk

〉
+
Lψ
2

∥∥∥θk+1 − θk
∥∥∥2]

≤ −αθ
2
E
[
||∇θR

(
η∗,k, ψk, θk

)
||2
]
+
αθ
2
(1 + Lθαθ)E

[
||∇̂θĜB(η̂k, ψk, θk)−∇θGB(η∗,k, ψk, θk)||2

]
+ Lθα

2
θE
[
||∇θGB(η∗,k, ψk, θk)−∇θR

(
η∗,k, ψk, θk

)
||2
]

+ αθ(1− Lθαθ)E
[
∇θR

(
η∗,k, ψk, θk

)
,∇θR

(
η∗,k, ψk, θk

)
−∇θGB(η∗,k, ψk, θk)

]
. (B.59)

Under Assumption 2, we can get:

E
[
nablaθR

(
η∗,k, ψk, θk

)
,∇θR

(
η∗,k, ψk, θk

)
−∇θGB(η∗,k, ψk, θk)

]
= 0 (B.60)

E
[
||∇θGB(η∗,k, ψk, θk)−∇θR

(
η∗,k, ψk, θk

)
||2
]
≤ σ2

θ . (B.61)

Furthermore, under Lemma 3, Lemma 5 and Lemma 7, we can get:

E
[
||∇̂θĜB(η̂k, ψk, θk)−∇θGB(η∗,k, ψk, θk)||2

]
≤ 3E

[
||∇̂θĜB(η̂k, ψk, θk)−∇θĜB(η̂k, ψk, θk)||2

]
+ 3E

[
||∇θĜB(η̂k, ψk, θk)−∇θGB(η̂k, ψk, θk)||2

]
+ 3E

[
||∇θGB(η̂k, ψk, θk)−∇θGB(η∗,k, ψk, θk)||2

]
≤ 3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
. (B.62)

Finally, we can be obtained:

E
[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥∥ψk+1 − ψk
∥∥∥2]

≤ −αθ
2
E
[
||∇θR

(
η∗,k, ψk, θk

)
||2
]
+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
) + Lθα

2
θσ

2
θ .

(B.63)

29

Substituting a) and b), we can get:

E
[
R
(
η∗,k+1, ψk+1, θk+1

)
−R

(
η∗,k, ψk, θk

)]
≤ E

[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥∥ψk+1 − ψk
∥∥∥2]

+ E
[〈
∇θR

(
η∗,k, ψk, θk

)
, θk+1 − θk

〉
+
Lθ
2

∥∥∥θk+1 − θk
∥∥∥2]

≤ −αψ
2

E
[
||∇ψR

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2

(1 + Lψαψ)(2H
2
ψCEk + 2

L2
ψη · ζk

z2
) + Lψα

2
ψσ

2
ψ

− αθ
2
E
[
||∇θR

(
η∗,k, ψk, θk

)
||2
]
+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
) + Lθα

2
θσ

2
θ .

(B.64)

Since ψ and θ are updated synchronously in the outer loop, we take αm = min {αψ, αθ}, and combine the
gradient:

E
[
R
(
η∗,k+1, ψk+1, θk+1

)
−R

(
η∗,k, ψk, θk

)]
≤ −αm

2
E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2

(1 + Lψαψ)(2H
2
ψCEk + 2

L2
ψη · ζk

z2
) + Lψα

2
ψσ

2
ψ

+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
) + Lθα

2
θσ

2
θ . (B.65)

Summing these inequalities from k = 0 to K − 1, take E = max
k=0,...,K−1

(Ek), and then ζ = max
k=0,...,K−1

(ζk):

1

K

K−1∑
k=0

αm
2

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ 1

K

K−1∑
k=0

E
[
R
(
η∗,k, ψk, θk

)
−R

(
η∗,k+1, ψk+1, θk+1

)]
+
αψ
2

(1 + Lψαψ)(2H
2
ψCE + 2

L2
ψη · ζ
z2

) + Lψα
2
ψσ

2
ψ

+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) + Lθα
2
θσ

2
θ

= E
[
R
(
η∗,0, ψ0, θ0

)
−R

(
η∗,K, ψK, θK

)]
+
αψ
2

(1 + Lψαψ)(2H
2
ψCE + 2

L2
ψη · ζ
z2

) + Lψα
2
ψσ

2
ψ

+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) + Lθα
2
θσ

2
θ . (B.66)

Then, we define Λ = R
(
η∗,0, ψ0, θ0

)
− infk(R

(
η∗,k, ψk, θk

)
) and αM = max {αψ, αθ}:

30

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ 2Λ

αmK
+
αψ(1 + Lψαψ)

αm
(2H2

ψCE + 2
L2
ψη · ζ
z2

) +
2Lψα

2
ψσ

2
ψ

αm

+
αθ(1 + Lθαθ)

αm
(3
L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) +
2Lθα

2
θσ

2
θ

αm

≤ 2Λ

αmK
+
αM (1 + LψαM)

αm
(2H2

ψCE + 2
L2
ψη · ζ
z2

) +
2Lψα

2
Mσ

2
ψ

αm

+
αM (1 + LθαM)

αm
(3
L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) +
2Lθα

2
Mσ

2
θ

αm

= (
2Λ

αmK
+

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
) +

αM
αm

[
2(1 + LψαM)H2

ψCE + 3(1 + LθαM)Q2
θH

2
θCE

]
+

3αM (1 + LθαM)L2µ2d2

4αm
+
αMτ

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
= (

2Λ

αmK
+

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
) + E αM

αm

[
2(1 + LψαM)H2

ψC + 3(1 + LθαM)Q2
θH

2
θC
]

+ µ2 3αM (1 + LθαM)L2d2

4αm
+
αMτ

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
= (

2Λ

αmK
) + (

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
)

+ E αM
αm

[
2(1 + LψαM)H2

ψC + 3(1 + LθαM)Q2
θH

2
θC +

3H2
θCπ(M,N)

z2
(2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη)

]
+ µ2(

3αM (1 + LθαM)L2d2

4αm
+

3π(M,N)L2d2aM (1 + LψαM)L2
ψη

2amz2
+

9π(M,N)L2d2aM (1 + LθαM)L2
θη

4amz2
)

+
3αMK

2π(M,N)

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
. (B.67)

Corollary 1 According to Theorem 1:If we choose αθ and αψ as O(1√
K), µ = O(1

K
1
4
), E = O(1√

K),

Γ = O(1√
K), we can derive the sublinear convergence rate:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
≤ O(1√

K
) +O(NMK

M
). (B.68)

Proof:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ O(1√
K
)[(2Λ) + (2Lψσ

2
ψ + 2Lθσ

2
θ)

+ 2(1 + LψαM)H2
ψC + 3(1 + LθαM)Q2

θH
2
θC +

3H2
θCπ(M,N)

z2
(2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη)

+ (
3αM (1 + LθαM)L2d2

4αm
+

3π(M,N)L2d2aM (1 + LψαM)L2
ψη

2amz2
+

9π(M,N)L2d2aM (1 + LθαM)L2
θη

4amz2
)]

+
3K2π(M,N)

z2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
= O(1√

K
) +O(NMK

M
). (B.69)

31

C Experiment Details

C.1 Dataset details

Our experiments were constricted on public datasets MNIST and CIFAR10:

• MNIST [34]: A benchmark dataset for image classification, comprising 60,000 examples for training
and 10,000 examples for testing.

• CIFAR10 [31]: Another public dataset for image classification that consists of 60,000 images
categorized into 10 classes.

• CIFAR100 [31]: Another public dataset for image classification that consists of 60,000 images
categorized into 100 classes.

• Tiny-ImageNet [33]: A scaled-down version of ImageNet that contains 200 classes with 500 training
images, 50 validation images, and 50 test images per class. Each image has a resolution of 64×64
pixels, providing a more challenging benchmark than MNIST and CIFAR datasets.

To simulate the VFL scenario, we allocated distinct features to each party based on the described methodology
in prior works [48, 53, 17]. We partition the last dimension of the features according to the feature proportion of
each client. We use masking to ensure that each client receives distinct features.

C.2 Adversarial attack

To validate robustness, we employed a suite of adversarial attack methods. FGSM is a fast, non-iterative attack
[32]; PGD-r iteratively perturbs input data using gradient information to maximize the model’s loss [49]; and
CW uses a custom loss function to ensure minimal perturbations while achieving misclassification [4]. CERTIFY
(CER) generates adversarial perturbations with Gaussian noise [11]. For black-box attacks, we combined
adversarial methods with zeroth-order optimization: FGSM (ZO-FGSM) and PGD (ZO-PGD) [8]. We also
considered scenarios involving a third-party adversary, corrupting embeddings using different client selection
strategies, including Thompson Sampling with Empirical Maximum Reward (E-TS) [16] and All Corruption
Patterns (ALL).

C.3 Hyperparameters

For the parameter updates of both the server and client models, we have adopted the Adam optimizer with a
uniform learning rate of αψ = αθ = 0.0001.

Moreover, We follow the hyperparameters choices of [4, 12, 32, 55, 76, 82] for training.

Table 11: Hyperparameters for Adv. Training

Dataset Client batch ZOO Compress Adv. DecVFAL PGD FreeAT FreeLB
Model size q µ type bit ϵ σ m n n n n

MNIST MLP 32 100 0.05 scale 2 0.02 0.002 5 10 40 8 40
CIFAR10 ResNet-18 80 200 0.5 scale 2 8/255 1/255 6 2 10 8 10
MNIST ResNet-18 32 100 0.05 scale 2 0.3 0.35 6 8 40 8 40

CIFAR100 ResNeXt-50 80 1000 0.5 scale 8 3/255 0.4/255 5 3 10 8 10

Table 12: Hyperparameters for Attack

Dataset Client ZOO FGSM PGD CW CER ZO-FGSM ZO-PGD ALL & E-TS
Model q µ ϵ n ϵ σ n σ c ϵ ϵ n ϵ σ n ϵ σ

MNIST MLP 100 0.05 16/255 40 24/255 4/255 100 0.32 0.5 128/255 64/255 40 96/255 12/255 10 96/255 12/255
CIFAR10 ResNet-18 200 0.05 0.01 10 8/255 1/255 100 128/255 0.8 64/255 32/255 40 32/255 2/255 10 32/255 64/255
MNIST ResNet-18 100 0.05 96/255 40 64/255 2/255 100 0.8 0.5 204/255 64/255 40 153/255 16/255 40 128/255 16/255

CIFAR100 ResNeXt-50 100 0.05 1/255 10 1/255 0.2/255 100 3/255 0.8 3/255 16/255 10 3/255 0.4/255 10 16/255 2/255

C.4 Environment

In our experiments, we utilized the following software environment: PyTorch version 2.2.1, CUDA version 12.1,
and Python version 3.11. The hardware specifications are detailed in Table 13.

32

Table 13: Hardware Specifications

Experiment Description CPU GPU

MNIST Robust Training AMD EPYC 7551P A4000*1
CIFAR-10 Robust Training AMD EPYC 7452 4090*4
CIFAR-100 Robust Training AMD EPYC 7452 4090*4
Performance across various NN architectures Intel E5-2683 v4 4090*1
Impact of split position AMD EPYC 7J13 4090*4
Impact of the number of modules AMD EPYC 7J13 4090*4
Impact of the number of the clients Intel Platinum 8336C 4090*8
Limitation of the setting of M and N Intel Fold 6430 4090*8

C.5 Performance across various NN architectures.

We expanded our experiments by incorporating ResNet18 on the MNIST dataset, introducing a different
architectural context for evaluating our framework. Similar as experiments in CIFAR-10, the entire model is
partitioned into three modules: the first layers of the client models, the remaining layers of the client models,
and the server’s single-layer perceptron. As shown in Table 14, DecVFAL achieves the best robust performance
while requiring only one-seventh of the training time per epoch for PGD adversarial training.

Table 14: Results of MNIST Robust Training with Resnet-18
Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Methods Accuracy FGSM PGD CW CER ZO-FGSM ZO-PGD ALL E-TS (s/epoch)

None 98.66 56.56 12.26 20.99 68.37 48.67 71.43 47.96 75.71 90.86
PGD 98.23 84.73 74.74 21.16 83.98 38.21 83.69 44.56 72.49 1180.74

FreeAT 98.44 79.47 82.20 52.33 90.82 94.84 89.04 46.52 70.15 332.63
FreeLB 98.82 70.81 40.68 31.53 80.05 36.51 81.27 65.91 87.07 1419.10
YOPO 98.72 83.11 82.13 21.30 87.44 54.13 87.33 71.05 88.98 240.62

DP 98.63 80.20 66.63 29.80 80.63 42.68 81.55 44.77 70.31 1175.02
MP 98.12 81.38 74.47 36.31 86.42 53.64 84.84 50.38 74.10 1181.69

Asy-PGD 98.05 79.42 76.27 27.57 85.93 42.63 84.71 57.95 80.16 1167.09
DecVFAL 98.98 89.00 83.20 50.80 93.91 90.95 91.17 70.42 84.14 167.89

C.6 Experiments on Tiny-ImageNet

To evaluate the scalability of DecVFAL to more complex datasets, we conducted experiments on Tiny-ImageNet
using similar AT methods. Table 15 presents the robustness performance and training time across different
perturbation budgets. DecVFAL-3-2 consistently outperforms FastAT and FreeAT, achieving robust accuracy
comparable to or better than ATAS while requiring less training time. Notably, DecVFAL’s performance is
close to standard PGD-5 with approximately half the training time. These results demonstrate that DecVFAL
maintains its computational advantages and robustness benefits when applied to more challenging datasets
with higher resolution images and increased class complexity, further confirming its practicality for real-world
deployments.

Table 15: Experimental results on Tiny-ImageNet

Method Time (h) ε = 1/255 ε = 2/255 ε = 4/255

PGD-5 AA PGD-5 AA PGD-5 AA
PGD-5 8.03 34.17 32.89 28.39 24.14 16.48 11.47
FreeAT-4 7.53 29.45 27.78 21.67 16.66 9.27 4.97
FastAT 4.64 24.04 22.42 19.45 15.27 10.52 6.18
ATAS 5.22 32.83 31.57 27.17 22.24 16.25 10.25
DecVFAL-3-2 4.30 33.41 31.85 27.95 23.11 16.74 10.93

33

	Introduction
	Related Works
	Preliminaries
	Methods
	Lazy Sequential Backpropagation
	Decoupled Parallel Backpropagation
	Algorithm
	Acceleration of DecVFAL

	Convergence Analysis
	Experiments
	Experiment Setups
	Evaluation on computational efficiency
	Evaluation on Robustness
	Experiments on Real-World Datasets
	Experiments on large dataset
	Comparison with FGSM-based Methods
	Ablation Study

	Conclusions
	Background
	Vertical Federated Learning
	Vertical Federated Adversarial Learning
	Threat Model
	Adversarial Training as a Dynamical System
	Zeroth Order Optimization
	Communication Compression

	Convergence analysis
	Notations
	Assumptions
	Proposition
	Definition
	Lemma
	Theorem

	Experiment Details
	Dataset details
	Adversarial attack
	Hyperparameters
	Environment
	Performance across various NN architectures.
	Experiments on Tiny-ImageNet

