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ABSTRACT

Generating 3D ligand molecules that bind to specific protein targets via diffusion
models has shown great promise for structure-based drug design. The key idea is to
disrupt molecules into noise through a fixed forward process and learn its reverse
process to generate molecules from noise in a denoising way. However, existing
diffusion models primarily focus on incorporating protein-ligand interaction infor-
mation solely in the reverse process, and neglect the interactions in the forward
process. The inconsistency between forward and reverse processes may impair
the binding affinity of generated molecules towards target protein. In this paper,
we propose a novel Interaction Prior-guided Diffusion model (IPDIFF) for the
protein-specific 3D molecular generation by introducing geometric protein-ligand
interactions into both diffusion and sampling process. Specifically, we begin by
pretraining a protein-ligand interaction prior network (IPNET) by utilizing the
binding affinity signals as supervision. Subsequently, we leverage the pretrained
prior network to (1) integrate interactions between the target protein and the molec-
ular ligand into the forward process for adapting the molecule diffusion trajectories
(prior-shifting), and (2) enhance the binding-aware molecule sampling process
(prior-conditioning). Empirical studies on CrossDocked2020 dataset show IPDIFF
can generate molecules with more realistic 3D structures and state-of-the-art bind-
ing affinities towards the protein targets, with up to -6.42 Avg. Vina Score, while
maintaining proper molecular properties. https://github.com/YangLing0818/IPDiff

1 INTRODUCTION

Structure-based drug design (SBDD) (Anderson, 2003) plays an important role in drug discovery.
Given a target protein and its 3D structure, we need to design ligand molecules in silico with desired
properties, such as high binding affinity to the target. This problem can be formulated as a conditional
generation task. Powerful deep generative models have already achieved promising results in SBDD
tasks. For example, Luo et al. (2021); Liu et al. (2022); Peng et al. (2022) propose to generate atoms
(and bonds) in an autoregressive way to form a ligand molecule, and Zhang et al. (2023) propose to
generate 3D molecules fragment by fragment. Particularly, recent diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) exhibit remarkable abilities to synthesize realistic ligand molecules
with high binding affinity to target proteins (Guan et al., 2023a; Lin et al., 2022; Schneuing et al.,
2022; Guan et al., 2023b). They usually perturb atom types and positions of ligand molecules (in the
forward process), and train an SE(3)-equivariant neural network to denoise the atom positions (resp.
types) considering the interactions with target protein (in the reverse process) for fitting the reversal
of the forward process.

We find that there is a discrepancy between the forward process and the reverse process regarding
the utilization of interactions between the target protein and the generated molecular ligands, which
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may limit the performance of the diffusion models for SBDD tasks. In the forward process, the
ways of injecting noises are the same for all training samples with different target proteins. In other
words, the differences of pocket binding sites between different training samples are neglected and
all the molecules are perturbed in the same way during the forward process. However, in the reverse
process, to generate ligand molecules that bind to specific receptors, the differences in pocket binding
sites are considered. Such a discrepancy introduces a bias that hinders the diffusion models from
fully capturing the interaction between pockets and ligand molecules, while such intermolecular
interaction is the essence of pocket-ligand binding.
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Figure 1: An illustration of forward (Equation (8)) and reverse diffusion steps (Equation (11))
incorporated with the interaction prior in IPDIFF, where Mt indicates the molecular ligand at time
step t, P0 indicates given protein pocket and F indicates the modeled interaction prior modeled by
IPNET as described in Sec. 4.1. The difference between previous diffusion-based SBDD methods
and IPDIFF are highlighted in red.

To eliminate this discrepancy, we propose a novel Interaction Prior-guided Diffusion model (IPDIFF)
to adaptively adjust the diffusion trajectories based on the specification of pocket-ligand interaction
prior as illustrated in Figure 1. Specifically, the pocket-ligand interaction prior is captured with a
pretrained neural network, named IPNET, which is supervised by binding affinity signals. Then we
design an effective learnable adapter to explicitly incorporate such pocket-ligand interactions into all
the timesteps in both forward and reverse processes for binding-aware trajectory adaptation (prior-
shifting). Thus the two processes are jointly optimized during training, and IPDIFF is theoretically
able to achieve better likelihood compared to previous molecular diffusion models. Besides, we
propose to enhance the denoising by explicit conditioning on the estimated protein-ligand complex
at the previous step in the reverse process (prior-conditioning), which is also powered by our
learned interaction prior network. To demonstrate the efficacy of our IPDIFF, we conduct extensive
experiments on CrossDocked2020 dataset. Empirical results show that our IPDIFF can generate
ligands that not only bind tightly to target pockets but also maintain proper molecular properties,
outperforming existing diffusion-based molecular diffusion models.

We highlight our main contributions as follows:

• We propose a novel 3D molecular diffusion model (IPDIFF) for SBDD where the pocket-
ligand interaction is explicitly considered in both forward and reverse processes.

• We propose prior-shifting that shifts the diffusion trajectories of the forward process based
on the interactions between pocket-binding sites and corresponding ligand molecules.

• We design prior-conditioning to enhance the reverse process by conditioning the denoising
of ligand molecules on the previously estimated protein-ligand interactions.

• IPDIFF achieves SOTA performance on CrossDocked2020 benchmark, and it can generate
the molecules with -6.42 Avg. Vina Score while maintaining proper molecular properties.

2 RELATED WORK

Structure-based Drug Design Structure-based drug design (Anderson, 2003) aims to generate
ligand molecules that bind to a given target protein and plays a critical role in the process of drug
discovery. Skalic et al. (2019); Xu et al. (2021) proposed to generate ligand molecules in the format of
SMILES conditioned on protein contexts. Tan et al. (2022) designed a flow model that can generate
validated molecular drugs in the format of 2D graph conditioned on sequence embedding of specific
targets. Ragoza et al. (2022b) voxelized molecules in atomic density grids and utilized VAE to
generate 3D ligand molecules on receptor binding sites. Luo et al. (2021); Liu et al. (2022); Peng
et al. (2022) proposed to generate atoms (and bonds) in 3D Euclidean space in an autoregressive
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way. Zhang et al. (2023) proposed to generate 3D ligand molecules fragment by fragment. Recently,
diffusion models have been applied to SBDD and achieved promising performance, which will be
introduced in more detail in the following paragraph. Our work focuses on improving 3D molecular
diffusion models for SBDD.

Diffusion Models for SBDD Guan et al. (2023a); Lin et al. (2022); Schneuing et al. (2022)
employ diffusion models to first generate atom types and positions, and then define the bonds as
post-processing. They propose to utilize SE(3)-equivariant neural network to denoise the ligand
molecules in the context of the protein-ligand complex, where the protein pocket is fixed. Schneuing
et al. (2022) additionally tries to generate compounds (i.e. the protein-ligand complex) by inpainting
conditioned on the pocket binding site. Guan et al. (2023b) further introduces decomposed priors
into diffusion models for SBDD inspired by traditional drug discovery and achieves high binding
affinity on average. Binding affinity, a critical evaluation metric in the process of drug discovery,
measures whether drugs bind their target proteins selectively and specifically. Though DecompDiff
(Guan et al., 2023b) has achieved exciting results, it heavily relies on external computation tools,
which employs AlphaSpace2 (Rooklin et al., 2015) to extract subpockets and produce pocket priors
when generating ligand molecules for new pockets. Differently from all the above, our molecular
diffusion model for the first time considers pockets, ligand molecules, and their interactions in both
forward and reverse processes. Moreover, our IPDIFF has no dependency on any external tools and
achieves higher binding affinities than all other methods.

3 PRELIMINARY

The SBDD task from the perspective of generative models can be defined as generating ligand
molecules which can bind to a given protein binding site. The target (protein) and ligand molecule
can be represented as P = {(xP

i ,v
P
i )}

NP
i=1 and M = {(xM

i ,vM
i )}NM

i=1 , respectively. Here NP

(resp. NM ) refers to the number of atoms of the protein P (resp. the ligand molecule M). x ∈ R3

and v ∈ RK denote the position and type of the atom respectively. In the sequel, matrices are
denoted by uppercase boldface. For a matrix X, xi denotes the vector on its i-th row, and X1:N

denotes the submatrix comprising its 1-st to N -th rows. For brevity, the ligand molecule is denoted
as M = [XM,VM] where XM ∈ RNM×3 and VM ∈ RNM×K , and the protein is denoted as
P = [XP ,VP ] where XP ∈ RNP×3 and VP ∈ RNP×K . The task can be formulated as modeling
the conditional distribution p(M|P). Recently, diffusion models (Ho et al., 2020; Rombach et al.,
2022; Song et al., 2020) have achieved promising performance in SBDD tasks (Guan et al., 2023a;
Schneuing et al., 2022; Lin et al., 2022). The types and positions of the ligand molecular atoms are
modeled by DDPMs (Ho et al., 2020), while the number of atoms NM is usually sampled from an
empirical distribution (Hoogeboom et al., 2022; Guan et al., 2023a) or predicted by a neural network
(Lin et al., 2022), and the chemical bonds are generated by the post-processing programs. And we
define βt (t = 1, . . . , T ) as fixed variance schedules, αt = 1 − βt, ᾱt =

∏t
s=1 αs, β̄t = 1 − ᾱt.

More detailed molecular diffusion processes can be found in Appendix A.

4 METHODS

As discussed in previous sections, we aim to incorporate protein-ligand interaction prior into 3D
molecular diffusion model for generating ligand molecules binding tightly to the given pockets. We
therefore propose IPDIFF, a novel diffusion-based model for binding-aware 3D molecule generation.
We first design a prior network IPNET to capture the interactions between pockets and ligands from
the perspective of both 3d structures and chemical properties, and pretrain it by binding affinity signals
(Sec. 4.1). Then, we take the pretrained IPNET as interaction prior to facilitate the binding-aware
ligand diffusion process. Two mechanisms, prior-conditioning and prior-shifting (Sec. 4.2), are
proposed in IPDIFF to fully utilize the protein-molecule interactions in both forward and reverse
processes of our diffusion framework.

4.1 LEARNING PROTEIN-LIGAND INTERACTION PRIOR WITH IPNET

IPNET consists of SE(3)-equivariant neural networks (Satorras et al., 2021) and cross-attention layers
(Borgeaud et al., 2022; Hou et al., 2019). Two shallow fully-connected SE(3)-equivariant neural
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Figure 2: The overall schematic diagram of IPDIFF. The pretrained IPNET are frozen during both
training and sampling process for providing interaction priors. The molecule M0 and M̂0|t are
utilized for extracting interaction prior in forward and reverse process, respectively. The M̂0|t is the
estimated molecule at the time step t of the sampling process due to the inaccessibility of M0, F
denotes the interactive representations and S denotes the position shifts of molecules.

networks are applied on the graphs of the protein GP and ligand molecule GM, respectively, to
learn the intramolecular interactions. And another shallow fully-connected SE(3)-equivariant neural
network is applied on the graphs of the complexes graph GC = GM ∪ GP which is constructed by
GM and GP , in order to modeling the intermolecular interactions. Given a ligand graph GM, the l-th
SE(3)-equivariant layer works as follows:

hM,l+1
i = hM,l

i +
∑

j∈NM (i)

fM,l
h

(∥∥∥xM,l
i − xM,l

j

∥∥∥ ,hM,l
i ,hM,l

j

)
, (1)

xM,l+1
i = xM,l

i +
∑

j∈NM (i)

Ä
xM,l
i − xM,l

j

ä
fM,l
x

(∥∥∥xM,l
i − xM,l

j

∥∥∥ ,hM,l+1
i ,hM,l+1

j

)
, (2)

where hM,l+1
i ∈ Rd and xM,l+1

i ∈ R3 are the SE(3)-invariant and SE(3)-equivariant hidden states
of the atom i of the ligand after the l-th SE(3)-equivariant layer, respectively. NM (i) stands for the
set of neighbors of atom i on GM, and the initial hidden state hM,0

i is obtained by an embedding
layer that encodes atom information. Given a protein graph GP , hP,l

i , xP,l
i and a complex graph GC ,

hC,l
i , xC,l

i can be derived in the same way.

In IPNET, an atom-wise cross-attention layer is introduced to model both intramolecular and inter-
molecular interactions of protein-ligand pairs, which essentially accounts for the binding affinity. The
SE(3)-invariant features HM,L ∈ RNM×d and HP,L ∈ RNP×d are firstly concatenated along with
the first dimension, and then concatenated with the SE(3)-invariant features HC,L ∈ R(NP+NM )×d

along with channel dimension and finally fed into MLP:

JF̃M, F̃PK = MLP(Concat([JHM,L1 ,HP,L1K,HC,L1 ])) (3)

where J·K denotes concatenation along the first dimension. Then, FM and FP are delivered to the
cross-attention layer for extracting interactions:

FM = Attn(Query(F̃M),Key(F̃P)) ·Value(F̃P) (4)

FP = Attn(Query(F̃P),Key(F̃M)) ·Value(F̃M) (5)

where the functions Attn, Query, Key, and Value compute the cross attention weights and the
query, key, and value matrices, respectively. The interactive representations of the ligand molecule
FM and protein FP are further aggregated into a global feature to predict their binding affinity:
SAff(P,M) := IPNET(P,M). Please refer to Appendix D.1 for pre-training details. Next, we will
describe how to utilize the prior network IPNET to facilitate the 3D molecular diffusion generation
with protein-molecule interactions in both the forward and reverse processes.
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4.2 PRIOR-GUIDED 3D MOLECULAR DIFFUSION MODEL

4.2.1 PRIOR-SHIFTING

We propose prior-shifting to shift the molecular diffusion trajectories on the positions of the ligand
molecules based on the protein-molecule interactions modeled by IPNET. Firstly, IPDIFF feeds the
ligand molecule M and the given pocket P into the pretrained prior network IPNET to extract the
interactive representations of protein FP and molecule FM. Then, a learnable neural network ψθ2(·)
is introduced for producing the interaction-based shift for adapting the positions of ligand molecules.
In practice, ψθ2(·) is 1-layer MLP which maps the updated molecule features with time step t to the
cumulative mean shift SM

t ∈ RNM×3 of the positions of ligand molecule:

SM
t = η · kt · ψθ2(F

M, t) (6)
where J·K denotes concatenation along the first dimension, kt is shift-mode coefficient and η is
shift-scale coefficient. We set the kt to

√
ᾱ · (1−

√
ᾱ). Since the shifts SM

t are the cumulative values,
this setting can keep the start point and the end point of the diffusion trajectories unchanged. η is
introduced to control the shift scales of diffusion trajectories, and we set η = 1 in our experiments.

More concretely, in the forward process, we adapt the molecular diffusion trajectories by injecting
the learned binding-related molecule representation as a mean shift at each time step (the differences
from the original molecular diffusion in Appendix A are highlighted in blue):

q(Mt|M0,P,FM
0 ) =

NM∏
i=1

N (xM
0,i;
»

1− β̄tx
M
0,i + sMt,i , β̄tI) · C(vM

0,i|(1− β̄t)v
M
0,i + β̄t/K), (7)

q(Mt|Mt−1,P,FM
0 ) =

NM∏
i=1

N (xM
t,i ;

√
1− βtx

M
t−1,i + sMt,i −

√
1− βts

M
t−1,i, βtI)·

C(vM
t,i |(1− βt)v

M
t−1,i + βt/K),

(8)

where N and C stand for the Gaussian and categorical distribution, respectively. And sMt,i denotes
the vector on the i-th row of SM

t . We shall prove these two definitions are consistent in Appendix B.
It is worth noting that, to fully exploit the interaction prior without introducing misleading noises,
we utilize the interactive representations FM

0 in Equations (6) to (8) in a teacher-forcing fashion,
where FM

0 is obtained by feeding the ground-truth protein-ligand pair JXM
0 ,XP

0 K, JVM
0 ,VP

0 K into
the pretrained IPNET:

JFM
0 ,FP

0 K = IPNET(JXM
0 ,XP

0 K, JVM
0 ,VP

0 K) (9)
Therefore, the corresponding shifted posterior can be analytically derived as follows:

q(Mt−1|Mt,M0,P,F
M
0 ) =

NM∏
i=1

N (xM
t−1,i; µ̃(x

M
t,i ,x

M
0,i, f

M
0,i ), β̃tI)·

C(vM
t−1,i|c̃(vM

t,i ,v
M
0,i)),

(10)

where µ̃(xM
t,i ,x

M
0,i, f

M
0,i ) =

√
ᾱt−1βt

1−ᾱt
xM
0,i +

√
αt(1−ᾱt−1)

1−ᾱt
(xM

t,i − sMt,i ) + sMt−1,i, β̃t = 1−ᾱt−1

1−ᾱt
βt,

αt = 1− βt, ᾱt =
∏t

i=1 αi, c̃(vt,i,v0,i) =
c∗∑K

k=1 c∗k
, and c∗(vt,i,v0,i) = [αtvt,i + (1−αt)/K]⊙

[ᾱt−1v0,i + (1− ᾱt−1)/K].

In the reverse process, since the ground-truth molecule XM
0 and VM

0 are inaccessible at the time
step t, we utilize the molecule M̂0|t+1 = [X̂M

0|t+1, V̂
M
0|t+1] estimated in the previous time step t+ 1

to substitute the M0 and feed it with P into the pretrained IPNET for obtaining the interactive repre-
sentation FM

0|t+1. And then we calculate the Ŝt from FM
0|t+1 according to the Equation (6). Similarly,

we calculate the Ŝt−1 from FM
0|t. Therefore, the reverse transition kernel can be approximated with

predicted atom types v̂0|t,i and atom positions x̂0|t,i as follows:

pθ1(Mt−1|Mt,P,F
M
0|t+1,F

M
0|t) =

NM∏
i=1

N (xM
t−1,i; µ̃(x

M
t,i , x̂

M
0|t,i, f

M
0|t+1,i, f

M
0|t,i), β̃tI)·

C(vM
t−1,i|c̃(vM

t,i , v̂
M
0|t,i)).

(11)
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where µ̃(xM
t,i ,x

M
0,i, f

M
0|t+1,i, f

M
0|t,i) =

√
ᾱt−1βt

1−ᾱt
xM
0,i +

√
αt(1−ᾱt−1)

1−ᾱt
(xM

t,i − ŝMt,i ) + ŝMt−1,i. In this way,
our IPDIFF can align molecular diffusion process with molecular sampling process regarding the
information utilization of target protein, and optimize the diffusion trajectories according to the
protein-molecule interaction.

4.2.2 PRIOR-CONDITIONING

In order to maximize the exploitation of protein-ligand interaction prior in the pretrained IPNET,
we propose prior-conditioning to condition the molecular sampling process on previously estimated
protein-molecule complex for facilitating the binding-aware molecular generation. Specifically, we
leverage the ligand atom embedding FM

0|t+1 and protein atom embedding FP
0|t+1 extracted by the

IPNET(M̂0|t+1,P) to enhance the embeddings at the time step t:

HM,0
t = Concat(H̃M

t ,FM
0|t+1), H

P,0
t = Concat(H̃P

t ,F
P
0|t+1). (12)

where H̃M
t (H̃P

t ) denotes the initial hidden states of the ligand (protein) at the time stpe t to be fed
into the first SE(3)-equivariant layer of the diffusion model. Actually, the molecule M̂0|t+1 estimated
at time step t+1 is supposed to be a candidate ligand with high binding affinity towards target protein,
especially when t+ 1 is large (i.e., the generative process nearly ends). Due to the inaccessibility of
M̂0|t+1 during the training phase, we directly utilize the ground truth molecule M to substitute it in
a teacher-forcing fashion.

3D Equivariant Molecular Diffusion We then apply a neural network with L2 layers on the k-nn
graph of the protein-ligand complex enhanced by our prior-conditioning (denoted as C = JM,PK,
where J·K denotes concatenation along the first dimension) to learn the geometric interactions between
the ligand atoms and the protein atoms. The hidden state HC

t and positions XC
t at the time step t are

updated as follows:

hC,l+1
t,i = hC,l

t,i +
∑

j∈NC(i)

fC,lh

(∥∥∥xC,l
t,i − xC,l

t,j

∥∥∥ ,hC,l
t,i ,h

C,l
t,j , e

C
ij

)
(13)

xC,l+1
t,i = xC,l

t,i +
∑

j∈NC(i)

Ä
xC,l
t,i − xC,l

t,j

ä
fC,lx

(∥∥∥xC,l
t,i − xC,l

t,j

∥∥∥ ,hC,l+1
t,i ,hC,l+1

t,j , eCij

)
· 1mol (14)

where NC(i) stands for the set of k-nearest neighbors of atom i on the protein-ligand complex graph,
eCij indicates the atom i and atom j are both protein atoms or both ligand atoms or one protein atom
and one ligand atom, and 1mol is the ligand atom mask since the protein atom coordinates are known
and thus supposed to remain unchanged during this update. We let HC,0

t := JHM,0
t ,HP,0

t K as the
representations incorporate the interaction information through the prior-conditioning mechanism as
described in Equation (12). Finally, we use V̂0|1 = softmax(MLP(HC,L2

0,1:NM
)) and X̂0|1 = XC,L2

0,1:NM

as the final prediction. We leave the details about the loss function and summarize the training and
sampling procedures of IPDIFF in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Baseline Methods For fully modeling protein-ligand interactions, we utilize the
protein-ligand pairs (complexes) in PDBbind v2016 dataset Liu et al. (2015) with binding affinity
signals to pretrain the IPNET. The PDBbind v2016 dataset consists of 3767 training complexes
and 290 testing complexes, and it is commonly employed in binding-affinity prediction tasks. For
molecular generation, following the previous work Luo et al. (2021); Peng et al. (2022); Guan et al.
(2023a), we train and evaluate IPDIFF on the CrossDocked2020 dataset (Francoeur et al., 2020).
The same data preparation and splitting as Luo et al. (2021) are employed, where the 22.5 million
docked binding complexes are refined to high-quality docking poses (RMSD between the docked pose
and the ground truth < 1Å) and diverse proteins (sequence identity < 30%). Specifically, 100, 000
protein-ligand pairs are utilized for training and 100 proteins for testing. In our study, we conduct
a comparative analysis of our model with five recent representative methods for SBDD. LiGAN
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(Ragoza et al., 2022a) is a CVAE model trained on an atomic density grid representation of protein-
ligand structures. AR (Luo et al., 2021) and Pocket2Mol (Peng et al., 2022) generate 3D molecules
atoms conditioned on the protein pocket and previous generated atoms in an autoregressive manner.
TargetDiff (Guan et al., 2023a) and DecomposeDiff (Guan et al., 2023b) are recent state-of-the-art
diffusion methods which generate atom coordinates and atom types in a non-autoregressive way.

Figure 3: Comparing the distribution
for distances of all-atom for reference
molecules in the test set (blue) and model
generated molecules (color). Jensen-
Shannon divergence (JSD) between two
distributions is reported.

Bond liGAN AR Pocket2
Mol

Target
Diff

Decomp
Diff ours

C−C 0.601 0.609 0.496 0.369 0.359 0.386
C=C 0.665 0.620 0.561 0.505 0.537 0.245
C−N 0.634 0.474 0.416 0.363 0.344 0.298
C=N 0.749 0.635 0.629 0.550 0.584 0.238
C−O 0.656 0.492 0.454 0.421 0.376 0.366
C=O 0.661 0.558 0.516 0.461 0.374 0.353
C:C 0.497 0.451 0.416 0.263 0.251 0.169
C:N 0.638 0.552 0.487 0.235 0.269 0.128

Table 1: Jensen-Shannon divergence be-
tween bond distance distributions of the
reference molecules and the generated
molecules, and lower values indicate better
performances. “-”, “=”, and “:” represent
single, double, and aromatic bonds, respec-
tively.

Evaluation Three perspectives: molecular structures, target binding affinity and molecular
properties are considered for evaluating generated molecular ligands. The Jensen-Shannon di-
vergences (JSD) in empirical distributions of atom/bond distances between the generated and the
reference molecules are calculated for evaluating the generated molecules in terms of molecular
structures. Following previous work Luo et al. (2021); Ragoza et al. (2022b); Guan et al. (2023a),
AutoDock Vina (Eberhardt et al., 2021) is utilized to compute the mean and median of binding-related
metrics, including Vina Score, Vina Min, Vina Dock and High Affinity. Vina Score directly estimates
the binding affinity based on the generated 3D molecules; Vina Min performs a local structure
minimization before estimation; Vina Dock involves an additional re-docking process and reflects
the best possible binding affinity; High affinity measures the ratio of how many generated molecules
binds better than the reference molecule per test protein. And we utilize the QED, SA, Diversity as
metrics following Luo et al. (2021); Ragoza et al. (2022a) for evaluating molecular properties. QED
is a simple quantitative estimation of drug-likeness combining several desirable molecular properties;
SA (synthesize accessibility) is a measure estimation of the difficulty of synthesizing the ligands;
Diversity is computed as average pairwise dissimilarity between all ligands generated by the given
pocket. All sampling and evaluation procedures are following Guan et al. (2023a) for fair comparison.

5.2 MAIN RESULTS

Generated Molecular Structures We compare the molecular structures of molecules generated
by our IPDIFF and the other representative methods. The all-atom pairwise distance distribution of
the generated molecules are plotted in Figure 3. And Tab. 1 presents the bond distributions of the
molecules generated by different methods compared against the corresponding reference empirical
distributions. And our IPDIFF achieves superior performance on major bond types compared to all
other methods, which demonstrating the ability of IPDIFF in generating stable molecular structures.

Target Binding Affinity and Molecule Properties We evaluate the effectiveness of IPDIFF by
comparing with two types of SBDD methods: non-diffusion methods and diffusion-based methods
in Tab. 2. Our IPDIFF significantly outperforms non-diffusion baselines in binding-related metrics.
Notably, IPDIFF also surpasses strong autoregressive method Pocket2Mol by a large margin of 24.9%,
16.0% and 19.9% in Avg. Vina Score, Vina Min and Vina Dock, respectively. Compared with the
state-of-the-art diffusion-based method DecompDiff, IPDIFF not only increases the binding-related
metrics Avg. Vina Score, Vina Min and Vina Dock by 13.2%, 5.8% and 2.1%, but also increases the
property-related metric Avg. QED and Avg. Diversity by 15.6% and 8.8%. In terms of high-affinity
binder, we find that on average 69.5% of the IPDIFF molecules show better binding affinity than
the reference molecule, which is significantly better than other baselines. These gains demonstrate
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that the proposed IPDIFF effectively utilize protein-ligand interaction priors from IPNET to enable
generating molecules with improved target binding affinity and molecular property.

Table 2: Summary of different properties of reference molecules and molecules generated by our
model and other non-diffusion (Non-Diff.) and diffusion-based (Diff.) baselines. (↑) / (↓) denotes a
larger / smaller number is better. Top 2 results are highlighted with bold text and underlined text,
respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -

Comp.
with
Non-
Diff.

LiGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78

AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71

IPDIFF -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.61 0.59 0.74 0.73

Comp.
with
Diff.

TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68

IPDIFF -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.61 0.59 0.74 0.73

Achieving Better Trade-off From Tab. 2, we can see a trade-off between binding-related metrics
and property-related metrics QED in previous methods. DecompDiff performs better than AR and
Pocket2Mol in binding-related metrics, but falls behind them in QED scores. In contrast, our IPDIFF
not only achieves the state-of-the-art binding-related scores but also maintains proper QED score
which is comparable to Pocket2Mol, achieving a better trade-off than DecompDiff. Nevertheless, we
put less emphasis on QED and SA because they are often applied as rough screening metrics in real
drug discovery scenarios, and it would be acceptable as long as they are within a reasonable range.
Figure 4 shows some examples of generated ligand molecules and their properties. The molecules
generated by our model have valid structures and reasonable binding poses to the target, which are
supposed to be promising candidate ligands. More ablation studies, experimental results and
visualized examples of generated molecules are present in the Appendices E and G.

5.3 MODEL ANALYSIS

Effect of Pretrained IPNET In IPDIFF, we leverage the protein-ligand interaction prior in pre-
trained IPNET to facilitate the molecular diffusion. Here we conduct ablation study on the effect of
our IPNET. We designed two types of IPNET: (1) IPNET, simultaneously considers the geometry
and sequence information in modeling interaction priors by simply stacking SE(3)-Equivariant layer
as described in Sec. 4.1, and (2) IPNET-Seq., replaces SE(3)-equivariant layers in IPNET with
graph attention layers (Velickovic et al., 2017) and only considers the sequence information by
taking [VM,VP ] as inputs, and then we applied these two types of IPNET into the training and
sampling process of IPDIFF. The results are present in Tab. 3. We can observe that even if only the
sequence-level interaction prior is utilized to guide the generation process of sequences and geometric
structures of IPDIFF, IPDIFF can achieve superior performance than the baseline model, especially in
the property-related metrics. It reveals that our IPDIFF does not rely heavily on the elaborate designs
of the IPNET. Moreover, we jointly train the IPNET with IPDIFF from scratch without pre-training.
We found that training whole model from scratch converges slowly on the same device that is used for
all the experiments. And the final performance is consistently worse than that with pre-training. The
main reason is that training generative models from scratch lacks explicit supervision (i.e., binding
affinity) for IPNET to model the accurate interaction prior. This demonstrates that the modeled
interaction prior through pretraining IPNET plays an important role in our method.

Effectiveness of Prior-Conditioning and Prior-Shifting Our primary hypothesis is that intro-
ducing the 3D protein-molecule interaction prior into both forward and reverse process benefits the
training and sampling efficiency, and thus improving the molecular generation performance in both
binding- and property-related metrics. To verify it, we conducting a set of experiments to showcase
the effectiveness of prior-conditioning and prior-shifting. All results are present in Tab. 4. We observe
that self-conditioning mechanism proposed by Chen et al. (2023) can not improve the generation
performance, because the estimated molecules from previous time step does not include the protein-
ligand interaction information for self refinement. In contrast, our prior-conditioning mechanism
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Vina: -6.83, QED: 0.26, SA: 0.58 Vina: -11.04, QED: 0.52, SA: 0.60Vina: -6.53, QED: 0.28, SA: 0.62

IPDiffDecompDiffReference

Vina: -7.93, QED: 0.47, SA: 0.55 Vina: -11.03, QED: 0.83, SA: 0.70Vina: -8.65, QED: 0.84, SA: 0.86

IPDiffDecompDiffReference

IPDiffDecompDiffReference

Vina: -6.01, QED: 0.65, SA: 0.75 Vina: -11.29, QED: 0.82, SA: 0.63Vina: -3.86, QED: 0.44, SA: 0.87

4yhj 2v3r

4keu
IPDiffDecompDiffReference

3li4

Vina: -5.09, QED: 0.65, SA: 0.63 Vina: -9.40, QED: 0.63, SA: 0.54Vina: -6.46, QED: 0.76, SA: 0.79

Figure 4: Examples of generated ligands for protein pockets (4yhj, 2v3r, 4keu and 3li4). Carbon
atoms in reference ligands, ligands generated by DecompDiff (Guan et al., 2023b) and IPDIFF are
visualized in green, blue and orange, respectively. Vina Score, QED and SA are reported.

significantly boosts both binding-related and property-related metrics by introducing informative
protein-ligand interaction knowledge from our pretrained IPNET. Besides, our prior-shifting also has
a notable improvement over baseline in binding-related metrics which reveals that prior-shifting can
effectively assist IPDIFF to generate ligand molecules binding tightly to the given protein pockets.
Kindly note that prior-shifting does significantly contribute to property-related metrics. This because
the prior-shifting is only equipped in position of molecular atoms, while property-related metrics
are less dependent to the geometry of the protein-ligand pair. Furthermore, simultaneously utilizing
prior-conditioning and prior-shifting in IPDIFF yields the best performance in both binding-related
and property-related metrics, which demonstrates the effectiveness of two mechanisms.

Table 3: Effect of the pretrained IPNET. (↑) / (↓) denotes a larger / smaller number is better. Top 2
results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57
IPNET w/o Pre-training -3.88 -4.98 -5.38 -5.80 -6.96 -7.20 43.2% 34.0% 0.39 0.39 0.58 0.57
IPNET-Seq -5.78 -6.95 -7.11 -7.53 -8.34 -8.56 69.0% 76.4% 0.57 0.58 0.55 0.54
IPNET -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.61 0.59

Table 4: The effect of prior-conditioning and prior-shifting mechanism. (↑) / (↓) denotes a larger /
smaller number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57
baseline + self-conditioning -4.94 -6.06 -6.18 -6.46 -7.43 -7.55 53.3% 51.7% 0.46 0.49 0.56 0.56
baseline + prior-conditioning -5.30 -6.17 -6.61 -6.81 -7.94 -8.01 60.6% 66.9% 0.52 0.53 0.62 0.61
baseline + prior-shifting -5.51 -6.39 -6.87 -7.09 -8.06 -8.24 64.4% 64.0% 0.48 0.48 0.56 0.56
IPDIFF -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.61 0.59

6 CONCLUSION

In this paper, we for the first time introduce target protein into both diffusion and sampling process,
and propose a novel Interaction Prior-guided Diffusion model (IPDIFF) for the protein-specific 3D
molecular generation. We design IPNET to learn protein-ligand interaction prior with the supervision
of binding affinity signals, which further is utilized to facilitate the binding-aware 3D molecular
diffusion generation with our proposed prior-shifting and prior-conditioning. Empirical studies on
CrossDocked2020 dataset show IPDIFF can generate molecules with more realistic 3D structures and
state-of-the-art binding affinities towards the protein targets, with up to -6.42 Avg. Vina Score, while
maintaining proper molecular properties. Moreover, we conduct extensive analysis experiments to
demonstrate the effectiveness and superiority of the proposed model.
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A CONVENTIONAL PROTEIN-AWARE 3D MOLECULAR DIFFUSION PROCESS

In the forward diffusion process, a small Gaussian noise is gradually injected into data as a Markov
chain. Because noises are only added on ligand molecules but not proteins in the diffusion process,
we denote the atom positions and types of the ligand molecule at time step t as XM

t and VM
t . The

diffusion transition kernel can be defined as follows:

q(Mt|Mt−1,P) =

NM∏
i=1

N (xM
t,i ;

√
1− βtx

M
t−1,i, βtI) · C(vM

t,i |(1− βt)v
M
t−1,i + βt/K), (15)

q(Mt|M0,P) =

NM∏
i=1

N (xM
i,0;
»
1− β̄tx

M
i,0, β̄tI) · C(vM

i,0 |(1− β̄t)v
M
i,0 + β̄t/K), (16)

where N and C stand for the Gaussian and categorical distribution respectively, βt is defined by fixed
variance schedules. The corresponding posterior can be analytically derived as follows:

q(Mt−1|Mt,M0,P) =

NM∏
i=1

N (xM
t−1,i; µ̃(x

M
t,i ,x

M
0,i), β̃tI) · C(vM

t−1,i|c̃(vM
t,i ,v

M
0,i)), (17)

where µ̃(xM
t,i ,x

M
0,i) =

√
ᾱt−1βt

1−ᾱt
xM
0,i+

√
αt(1−ᾱt−1)

1−ᾱt
xM
t,i , β̃t =

1−ᾱt−1

1−ᾱt
βt, αt = 1−βt, ᾱt =

∏t
s=1 αs,

c̃(vM
t,i ,v

M
0,i) =

c∗∑K
k=1 c∗k

, and c∗(vM
t,i ,v

M
0,i) = [αtv

M
t,i +(1−αt)/K]⊙ [ᾱt−1v

M
0,i +(1− ᾱt−1)/K].

In the approximated reverse process, also known as the generative process, a neural network param-
eterized by θ1 learns to recover data by iteratively denoising. The reverse transition kernel can be
approximated with predicted atom types v̂M

0|t,i and atom positions x̂M
0|t,i at time step t as follows:

pθ1(Mt−1|Mt,P) =

NM∏
i=1

N (xM
t−1,i; µ̃(x

M
t,i , x̂

M
0|t,i), β̃tI) · C(v

M
t−1,i|c̃(vM

t,i , v̂
M
0|t,i)). (18)

B PROOFS

B.1 DERIVATION OF FORWARD DIFFUSION KERNELS OF OUR IPDIFF

Since our IPDIFF is designed to better generate molecular ligands that bind tightly to the given
protein pockets, the prior-shifting is considered on the diffusion process of the molecular atoms’
positions only. For brevity, X denotes the molecular atom positions, and F0 denotes the ground-truth
interactive representations utilized in the forward process as described in Sec. 4.2.2.

Firstly, we have the marginal Gaussian for Xt−1 and Xt as described in Equation (7):

q(Xt−1|X0,P,F0) = N (Xt−1;
√
ᾱt−1X0 + St−1, (1− ᾱt−1)Σ), (19)

q(Xt|X0,P,F) = N (Xt;
√
ᾱtX0 + St, (1− ᾱt)Σ), (20)

St−1 = η · kt−1·ψθ2(F0, t− 1), St = η · kt · ψθ2(F0, t), (21)

we can assume that:

q(Xt|Xt−1,X0,P,F0) = N (Xt;AXt−1 + b,L−1), (22)

then, we can derive the marginal Gaussian for Xt according to Equations (19) and (22), for all t > 1:

q(Xt|X0,P,F0) = N (Xt;A(
√
ᾱt−1X0 + St−1) + b,L−1 + (1− ᾱt−1)AΣAT ) (23)

= N (Xt;
√
ᾱtX0 + St, (1− ᾱt)Σ), (24)

therefore, we can derive that:

A =
√
αtI, (25)

b = St −
√
αtSt−1, (26)

L−1 = [1− ᾱt − αt(1− ᾱt−1)]Σ = (1− αt)Σ, (27)
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and
q(Xt|Xt−1,X0,P,F0) = N (Xt;

√
αtXt−1 + St −

√
αtSt−1, βtΣ). (28)

Particularly, according to Equations (19) and (28), we have:

q(X1|X0,P,F0) = N (X1;
√
α1X0 + S1 −

√
α1S0, β1Σ), (29)

q(X2|X1,P,F0) = N (X2;
√
α2X1 + S2 −

√
α2S1, β2Σ), (30)

q(X2|X0,P,F0) = N (X2;
√
ᾱ2X0 + S2, (1− ᾱ2)Σ). (31)

from Equations (30) and (31), we can derive that:

q(X1|X0,P,F0) = N (X1;
√
α1X0 + S1, β1Σ), (32)

For making Equation (29) and Equation (32) matched, we set S0 = O.

B.2 DERIVATION OF THE POSTERIOR DISTRIBUTIONS OF THE SHIFTED FORWARD PROCESS

Following Luo (2022), For all t > 1, according to the Bayes’ rule:

q(Xt−1|Xt,X0,P,F0) (33)

=
q(Xt|Xt−1,X0,P,F0)q(Xt−1|X0,P,F0)

q(Xt|X0,P,F0)
(34)
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√
αtSt−1, βtΣ) · N (Xt−1;

√
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N (Xt;
√
ᾱtX0 + St, (1− ᾱt)Σ)

(35)
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2

(1− ᾱt−1)

− (Xt −
√
ᾱtX0 − St)

2

(1− ᾱt)
]}

(36)

=exp{−1

2
[
αtX

2
t−1 − 2

√
αtXtXt−1 + 2

√
αtXt−1St − αtXt−1St−1

1− αt

+
X2

t−1 − 2
√
αt−1Xt−1X0 − 2Xt−1St−1

1− ᾱt−1
]}+ C(X0,Xt)

(37)

∝exp{−1

2
[(

αt

1− αt
+

1

1− ᾱt−1
)X2

t−1 + 2(
−√

αtXt +
√
αtSt − αtSt−1

1− αt

−
√
αt−1X0 + St−1

1− ᾱt−1
)Xt−1]}

(38)

=exp{−1

2
(

1− ᾱt

(1− αt)(1− ᾱt−1)
)[X2

t−1

+ 2(

−√
αtXt+

√
αtSt−αtSt−1

1−αt
+

√
αt−1X0+St−1

1−ᾱt−1

1−ᾱt

(1−αt)(1−ᾱt−1)

)Xt−1]}
(39)

=exp{−1

2
(

1− ᾱt

(1− αt)(1− ᾱt−1)
)[X2

t−1

+ 2
(−√

αtXt +
√
αtSt − αtSt−1)(1− ᾱt−1)− (

√
αt−1X0 + St−1)(1− αt)

1− ᾱt
Xt−1]}

(40)

=exp{−1

2
(

1
1−ᾱt

(1−αt)(1−ᾱt−1)

)[X2
t−1

− 2(

√
ᾱt−1βt
1− ᾱt

X0 +

√
αt(1− ᾱt−1)

1− ᾱt
Xt −

√
αt

1− ᾱt−1

1− ᾱt
St + St−1)Xt−1]}

(41)

∝N (Xt−1;

√
ᾱt−1βt
1− ᾱt

X0 +

√
αt(1− ᾱt−1)

1− ᾱt
Xt −

√
αt

1− ᾱt−1

1− ᾱt
St + St−1,

(1− ᾱt−1)

1− ᾱt
βtΣ)

(42)
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As mentioned in Sec. 4.2.1, since the ground-truth molecule XM
0 and VM

0 are inaccessible at the
time step t of the reverse process, we utilize the molecule M̂0|t+1 = [X̂M

0|t+1, V̂
M
0|t+1] estimated

in the previous time step t + 1 to substitute the M0 and feed it with P into the pretrained IPNET

for obtaining the interactive representation FM
0|t+1. And then we calculate the Ŝt from FM

0|t+1

according to the Equation (6). Similarly, we calculate the Ŝt−1 from FM
0|t. In IPDIFF, we employ a

model ϕθ1(Xt, t) for predicting X0 directly. Then we can get the predicted posterior distributions
parameterized by θ1:

pθ1(Xt−1|Xt,F0|t+1,F0|t) =N (

√
ᾱt−1βt
1− ᾱt

ϕθ1(Xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
Xt

−
√
αt

1− ᾱt−1

1− ᾱt
Ŝt + Ŝt−1,

(1− ᾱt−1)

1− ᾱt
βtΣ).

(43)

B.3 DERIVATION OF THE TRAINING OBJECTIVES

According to Equation (42), the training objective can be represented as:

L =Eq{−logpθ1(X0|X1,F0|t+1,F0|t) +DKL[q(XT |X0,F0)∥pθ1(XT )]

+

T∑
t=2

DKL[q(Xt−1|Xt,X0,F0)∥pθ1(Xt−1|Xt,F0|t+1,F0|t)]}
(44)

For the first and the second terms, we can derive them as constants c and discard them in the objective
function. For the third term, we can derive it by Gaussian Keullback-Leibler divergence:

DKL[q(Xt−1|Xt,X0,F0)∥pθ1(Xt−1|Xt,F0|t+1,F0|t)]

=
1

2
∥
√
ᾱt−1βt
1− ᾱt

[ϕθ1(Xt, t)−X0] +
√
αt

1− ᾱt−1

1− ᾱt
(Ŝt − St) + (Ŝt−1 − St−1)∥2

(
1−ᾱt−1
1−ᾱt

βtΣ)−1
.

(45)

Assuming that St is Lipschitz continuous w.r.t X0, then we can simplify the Gaussian Keullback-
Leibler divergence:

1

2
∥
√
ᾱt−1βt
1− ᾱt

[ϕθ1(Xt, t)−X0] +
√
αt

1− ᾱt−1

1− ᾱt
(Ŝt − St) + (Ŝt−1 − St−1)∥( 1−ᾱt−1

1−ᾱt
βtΣ)−1

≤ct∥[ϕθ1(Xt, t)−X0] +
√
αt

1− ᾱt−1

1− ᾱt
(Ŝt − St) + (Ŝt−1 − St−1)∥

≤ct(∥[ϕθ1(Xt, t)−X0]∥+ ∥
√
αt

1− ᾱt−1

1− ᾱt
(Ŝt − St)∥+ ∥(Ŝt−1 − St−1)∥)

≤γt∥[ϕθ1(Xt, t)−X0]∥,
(46)

by the lipschitz continuity of Mahalanobis Distances and St. Here ct, γt are scaling factors. Finally,
the training objective of atom position at time step t− 1 are defined as follows:

L
(x)
t−1 =

1

2β̃2
t

NM∑
i=1

∥µ̃(xt,i,x0,i, f0,i)− µ̃(xt,i, x̂0,i, f0|t+1,i, f0|t,i)∥2 = γt

NM∑
i=1

∥x0,i − x̂0,i∥; (47)

where X̂0 and V̂0 are predicted from Xt and Vt, where γt is a scaling factor. And we use the same
objective function of atom type at time step t− 1 as Guan et al. (2023a):

L
(v)
t−1 =

NM∑
i=1

K∑
k=1

c̃(vt,i,v0,i)k log
c̃(vt,i,v0,i)k
c̃(vt,i, v̂0,i)k

; . (48)

Kindly recall that xt,i, vt,i, x̂0,i, v̂0,i, f0,i, f0|t+1,i and f0|t,i correspond to the i-th row of Xt, Vt,
X̂0, V̂0, F0,i, F0|t+1,i and F0|t,i, respectively. The final loss combines the above two losses with
a hyperparameter λ as: L = L

(x)
t−1 + λL

(v)
t−1. We summarize the training procedure of IPDIFF in

Algorithm 1 and highlight the differences from its counterpart, TargetDiff (Guan et al., 2023a), in
blue.
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B.4 THE BETTER LIKELIHOOD

We shall show that IPDIFF is theoretically able to achieve better likelihood compared to previous
diffusion models. As the exact likelihood is intractable, we aim to compare the optimal variational
bounds for negative log likelihoods (NLL). The objective function of IPDIFF at time step t is

Eqθ2
DKL(qθ2(xt−1|xt, x0, F0, P )||pθ1(xt−1|xt, F0|t+1, F0|t, P )) (49)

and its optimal solution is

min
θ1,θ2

Eqθ2
DKL(qθ2(xt−1|xt, x0, F0, P )||pθ1(xt−1|xt, F0|t+1, F0|t, P )) (50)

= minθ2 [minθ1Eqθ2
DKL(qθ2(xt−1|xt, x0, F0, P )||pθ1(xt−1|xt, F0|t+1, F0|t, P )) (51)

≤ minθ1EqDKL(q(xt−1|xt, x0, P )||pθ1(xt−1|xt, P )), (52)

where minθ1EqDKL(q(xt−1|xt, x0, P )||pθ1(xt−1|xt, P )) is the optimal loss of previous diffusion
models that do not use interactive representations F in the forward process. Similar inequality can be
obtained for t=1:

min
θ1,θ2

Eqθ2
− log pθ1(x0|x1, F0|1, P ) (53)

≤ min
θ1

Eq − log pθ1(x0|x1, P ) (54)

As a result, we have the following inequality by summing up the objectives at all time steps:

− Eq(x0|P ) log pθ1(x0|P ) (55)

≤ minθ1,θ2
∑
t>1

Eqθ2
DKL(qθ2(xt−1|xt, x0, F0, P )||pθ1(xt−1|xt, F0|t+1, F0|t, P ))

+Eqθ2 − log pθ1(x0|x1, F0|1, P ) + C

(56)

≤ minθ1

∑
t>1

EqDKL(q(xt−1|xt, x0, P )||pθ1(xt−1|xt, P )) + Eq − log pθ1(x0|x1, P ) + C (57)

where C is a constant defined by
√
ᾱT . Hence, IPDIFF has a tighter bound for the NLL, and thus

theoretically capable of achieving better likelihood, compared with the previous diffusion models.

C TRAINING AND SAMPLING PROCEDURE

We summarize the training and sampling procedure as Algorithms 1 and 2.

D IMPLEMENTATION DETAILS

D.1 DETAILS OF IPNET

Initialization of Inputs Following (Guan et al., 2023a), we use a one-hot element indicator {H,
C, N, O, S, Se} and one-hot amino acid type indicator (20 types) to represent each protein atom.
Similarly, each ligand atom are repsented with a one-hot element indicator {C, N, O, F, P, S, Cl}.
And an additional one-dimensional flag indicating whether the atoms belong to the protein or ligand
are introduced. Two 1-layer MLPs are used to map the input protein and ligand into 128-dim latent
spaces respectively.

Architectures The IPNET is designed to model the complex intramolecular and intermolecular
3D interactions between the atoms of proteins-ligand pairs. To achieve this, we use three shallow
SE(3)-equivariant neural networks for geometric message passing on the fully-connected graphs of
the protein, ligand and complexes (consists of protein and ligand), respectively. We then apply a cross
attention layer to the paired protein-ligand graph for learning the inter-molecule interactions. Finally,
we use a sum-pooling layer to extract a global representation of the protein-ligand pair by pooling all
atom nodes. And a two-layer MLP is introduced to predict the binding affinity SAff. More details
about the model architecture are provided in Tab. 6.
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Algorithm 1 Training Procedure of IPDIFF

Input: Protein-ligand binding dataset {P,M}Ni=1, learnable diffusion denoising model ϕθ1, learn-
able neural network ψθ2 and pretrained interaction prior network IPNET

1: while ϕθ1 and ψθ2 not converge do
2: JXM

0 ,XP
0 K, JVM

0 ,VP
0 K ∼ {P,M}Ni=1

3: t ∼ U(0, . . . , T )
4: Move the complex to make CoM of protein atoms zero
5: Obtain interactive features JFM

0 ,FP
0 K from IPNET:

JFM
0 ,FP

0 K = IPNET(JXM
0 ,XP

0 K, JVM
0 ,VP

0 K)
6: Perturb XM

0 to obtain XM
t with shifts SM

t :
ϵ ∼ N (0, I)
SM
t = η · kt · ψθ2(F

M
0 , t) (Equation (6))

XM
t =

√
ᾱtX

M
0 + SM

t +
√
1− ᾱtϵ

7: Perturb VM
0 to obtain VM

t :
g ∼ Gumbel(0, 1)
log cM = log(ᾱtV

M
0 + (1− ᾱt/K))

VM
t = onehot(argmaxi(gi + log cMi ))

8: Embed VM
t into H̃M,0

t , and embed VP
0 into H̃P,0

t (H̃P,0
0 = · · · = H̃P,0

T )
9: Obtain features JHM,0

t ,HP,0
t K through prior-conditioning:

JHM,0
t ,HP,0

t K = concat(JH̃M
t , H̃P

t K, JFM
0 ,FP

0 K) (Equation (12))
10: Predict (X̂M

0|t, V̂
M
0|t) from ϕθ1:

X̂M
0|t, V̂

M
0|t = ϕθ1(JXM

t ,XP
0 K, JHM,0

t ,HP,0
t K) (Equations (13) and (14))

11: Compute loss L with (X̂M
0|t, V̂

M
0|t) and (XM

0 ,VM
0 ) (Equations (47) and (48))

12: Jointly update θ1 and θ2 by minimizing L
13: end while

Training Details During the training, we use the Mean Squared Error (MSE) loss with respect to the
difference between the predicted and ground truth binding affinity scores as the optimization objective.
The binding affinity values of protein-ligand pairs range from 2.0 to 11.92. For avoiding information
leakage, we filter the training set by calculating the Tanimoto similarity with the molecules in the
testing set of CrossDocked2020, and the similarity threshold was set to 0.1. As a result, there are
23 complexes filtered out from the training set. We train IPNET on a single NVIDIA V100 GPU,
and we use the Adam as our optimizer with learning rate 0.001, betas = (0.95, 0.999), batch size 16.
The experiments are conducted on PDBBind v2016 dataset as mentioned in Sec. 5.1.

Evaluation of IPNET Following Li et al. (2021), we select Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Pearson’s correlation coefficient (R) and the standard deviation (SD) in
regression to measure the prediction error. Meanwhile, we use these metrics to select the pretrained
IPNET utilized in IPDIFF because we believe that the ability to predict the binding affinity is highly
related to the interaction modeling. The testing results of IPNET (in Tabs. 3 and 8) in binding
affinity prediction are present in Tab. 5. And we introduce two GNN-based binding affinity prediction
methods: GraphDTA Nguyen et al. (2021) and GNN-DTI (Lim et al., 2019) to make comparisons,
indicating the rationality of our model design.

Table 5: Performance of IPNET in binding affinity prediction. (↑) / (↓) denotes a larger / smaller
number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods RMSE (↓) MAE (↓) SD (↓) R (↑)

GraphDTA 1.562 1.191 1.558 0.697
GNN-DTI 1.492 1.192 1.471 0.736
IPNET-Seq. 1.566 1.263 1.547 0.704
IPNET (σ = 0) 1.612 1.317 1.589 0.683
IPNET (σ = 0.1) 1.544 1.239 1.516 0.718
IPNET (σ = 0.5) 1.439 1.140 1.386 0.771
IPNET (σ = 1) 1.641 1.332 1.590 0.683
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Algorithm 2 Sampling Procedure of IPDIFF

Input: The protein binding site P , the learned diffusion denoising model ϕθ1, the learned neural
network ψθ2 and pretrained interaction prior network IPNET

Output: Generated ligand molecule M that binds to the protein pocket P
1: Sample the number of atoms NM of the ligand molecule M as described in Sec. 3
2: Move CoM of protein atoms to zero
3: Sample initial ligand atom coordinates XM

T and atom types VM
T

4: Let JFM
0|T+1,F

P
0|T+1K = O, SM

T = O
5: for t in T, . . . , 1 do
6: Embed VM

t into H̃M,0
t , and embed VP

0 into H̃P,0
t (H̃P,0

0 = · · · = H̃P,0
T )

7: Obtain features JHM,0
t ,HP,0

t K through prior-conditioning:
JHM,0

t ,HP,0
t K = concat(JH̃M

t , H̃P
t K, JFM

0|t+1,F
P
0|t+1K) (Equation (12))

8: Predict (X̂M
0|t, V̂

M
0|t) from ϕθ1:

X̂M
0|t, V̂

M
0|t = ϕθ1(JXM

t ,XP
0 K, JHM,0

t ,HP,0
t K) (Equations (13) and (14))

9: Sample XM
t−1 from the shifted posterior pθ1(XM

t−1|XM
t ,XP

0 ,F
M
0|t+1): (Equation (11))

where z ∼ N (0, I)
SM
t−1 = η · kt−1 · ψθ2(F

M
0|t+1, t− 1) (Equation (6))

XM
t−1 =

√
ᾱt−1βt

1−ᾱt
X̂M

0|t +
√
αt(1−ᾱt−1)

1−ᾱt
(XM

t − SM
t ) + SM

t−1 +
»

1−ᾱt−1

1−ᾱt
βtz

10: Sample VM
t−1 from the posterior q(VM

t−1|V̂M
0|t,V

M
t ,VP

0 ) (Equation (18))
11: Obtain features JFM

0|t,F
P
0|tK through IPNET:

JFM
0|t,F

P
0|tK = IPNET(JX̂M

0|t,X
P
0 K, JV̂M

0|t,V
P
0 K)

12: end for

D.2 DETAILS OF OUR PRIOR-GUIDED DIFFUSION MODEL

Initialization of Inputs The representation of the atoms in the proteins and molecules is the same
as the representation used in IPNET Appendix D.1. A 4-dim one-hot vector indicating four bond
types: bond between protein atoms, ligand atoms, protein-ligand atoms or ligand-protein atoms is
introduced to representing the connection between atoms. And we introduce distance embeddings by
using the distance with radial basis functions located at 20 centers between 0 Å and 10 Å. Finally we
calculate the outer products of distance embedding and bond types to obtain the edge features.

Architectures At the l-th layer, we dynamically construct the protein-ligand complex with a k-
nearest neighbors (knn) graph based on coordinates of the given protein and the ligand from previous
layer. In practice, we set the number of neighbors kn = 32. As mentioned in Sec. 4.1, we apply
an SE(3)-equivariant neural network for message passing. The 9-layer equivariant neural network
consists of Transformer layers with 128-dim hidden layer and 16 attention heads. Following Guan
et al. (2023a), in the diffusion process, we select the fixed sigmoid β schedule with β1 = 1e−7 and
βT = 2e−3 as variance schedule for atom coordinates, and the cosine β schedule with s = 0.01
for atom types. The number of diffusion steps are set to 1000. We denote PCM and PSM as prior-
conditioning and prior-shifting mechanisms, repecitively. More details about the model architecture
are provided in Tab. 6.

Training Details Following Guan et al. (2023a), we use the Adam as our optimizer with learning
rate 0.001, betas = (0.95, 0.999), batch size 4 and clipped gradient norm 8. We balance the atom
type loss and atom position loss by multiplying a scaling factor λ = 100 on the atom type loss.
During the training phase, we add a small Gaussian noise with a standard deviation of 0.1 to protein
atom coordinates as data augmentation. We train the parameterized diffusion denoising model of our
IPDIFF on a single NVIDIA V100 GPU, and it could converge within 200k steps.
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Table 6: Details of both IPNET and Prior-Guided Diffusion Model in our IPDIFF

Network Module Backbone Input Dimensions Output Dimensions Blocks

IPNET

Protein Encoder EGNN NP × 128 NP × 128 2
Ligand Encoder EGNN NM × 128 NM × 128 2
Complex Encoder EGNN (NP +NM )× 128 (NP +NM )× 128 2
Interaction Layer Graph Attention Layer (NP +NM )× 128 (NP +NM )× 128 1
Pooling Sum-pooling (NP +NM )× 128 1× 128 1

IPNET-Seq.
Protein Encoder Graph Attention Layer NP × 128 NP × 128 2
Ligand Encoder Graph Attention Layer NM × 128 NM × 128 2
Complex Encoder Graph Attention Layer (NP +NM )× 128 (NP +NM )× 128 2
Interaction Layer Graph Attention Layer (NP +NM )× 128 (NP +NM )× 128 1
Pooling Sum-pooling (NP +NM )× 128 1× 128 1

Diffusion
Denoising Network

Position Dynamics Transformer (NP +NM )× 3 (NP +NM )× 3 9
Atom Type Dynamics Transformer (NP +NM )× 128 (NP +NM )× 128 9
PCM Fusion Layer MLP (NP +NM )× (128 + 128) (NP +NM )× 128 1
PSM Adapter Layer MLP NM × (128 + 1) NM × 3 1

Figure 5: Ablation study on diffusion step number. We compare 5 experiments described in Sec. 5.3
in terms of best validation loss, QED, SA and Vina Score under different diffusion steps settings.

E MORE ABLATION STUDIES

Effect of Diffusion Steps We conduct a set of experiments: (1) Exp1: the baseline model which
is obtained by removing prior-conditioning and prior-shifting mechanisms from IPDIFF; (2) Exp2:
the baseline model equipped with the self-conditioning mechanism which can be regarded as our
prior-conditioning mechanism without IPNET, (3) Exp3: the baseline model equipped with the
prior-conditioning mechanism as mentioned in Sec. 4.2.2, (4) Exp4: the baseline model equipped
with the prior-shifting mechanism as mentioned in Sec. 4.2.1, (5) Exp5: our IPDIFF, for comparing
the performance of Exp1-5 under different number of diffusion steps. We firstly train the models
with 200, 400, 600, 800, 1000 diffusion steps, and then evaluate the generated molecules by sampling
the same number of steps as training. As shown in Figure 5, the baseline model equipped with
prior-conditioning and prior-shifting mechanism can achieve better validation loss under each setting
of diffusion steps. Under the same setting, the validation loss can be viewed as a surrogate of
negative Evidence Lower Bound (ELBO) and lower validation loss means the model can better
approximate the data distribution (Guan et al., 2023b). The fact that the model trained with fewer
diffusion steps achieves lower validation loss is because it fits noises better at fewer time steps with
limited model capacity. Moreover, the comparison results demonstrate that our model equipped with
prior-conditioning and prior-shifting mechanism is able to generate high-quality ligand molecules
(high QED and SA, low Vina) even with fewer sampling steps. And we can find that as the number
of diffusion steps increases, the baseline model equipped with prior-conditioning and prior-shifting
mechanism improves more significantly on the Vina Score and SA.

Effect of the Shifting Scales As mentioned in Equation (6), the shift St at the time step t consists of
a coefficient kt and a 3-dim vector generated by a learnable neural network ϕ(·), where the coefficient
kt = η ·

√
ᾱ · (1−

√
ᾱ) and η is a hyper-parameter to adjust the scale of the shifts in the diffusion

trajectory. To inverstigate the effect of different shifting scales, we set the η to 5 values: (1) η = 0,
(2) η = 0.1, (3) η = 1, (4) η = 10, (5) η =

√
ᾱ · (1 −

√
ᾱ) and present the results in the Tab. 7.

It worth noting that η = 0 indicates the prior-shifting mechanism is removed from IPDIFF. We
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found that reducing the shifting scales in the whole diffusion trajectories (η = 0.1) can not bring
gains to IPDIFF, and enlarging the shifting scales (η = 10) even hurts the performance of IPDIFF in
property-related metrics. While highlighting the shifting scales in the middle diffusion trajectories
(η =

√
ᾱ · (1−

√
ᾱ)) will further improve the performance of IPDIFF on High Affinity. In practice,

we set η = 1.
Table 7: The effect of the different shifting scales on binding-related metrics. (↑) / (↓) denotes a
larger / smaller number is better. Top 2 results are highlighted with bold text and underlined text,
respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1%
η = 0 -5.30 -6.17 -6.61 -6.81 -7.94 -8.01 60.6% 66.9%
η = 0.1 -5.10 -5.93 -6.51 -6.63 -7.78 -7.91 62.7% 66.1%
η = 1 -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5%
η = 10 -5.84 -6.41 -6.87 -6.90 -7.91 -8.07 60.9% 61.1%
η =

√
ᾱ · (1−

√
ᾱ) -6.03 -6.71 -7.26 -7.31 -8.48 -8.51 70.3% 74.0%

Reducing The Gap between Training and Sampling Processes As described in Secs. 4.2.1
and 4.2.2, the interaction prior utilized in the training and sampling processes of IPDIFF are obtained
in different manners. Specifically, in the training process of IPDIFF, the ground-truth molecular
protein-ligand pairs are fed into the pretrained IPNET to obtain the interaction prior, while in the
sampling process of IPDIFF, the molecules predicted in the previous time step and given condition
pockets are utilized to obtain the interaction prior. In order to reduce the gap between the interaction
prior in training and sampling processes, especially when the molecules cannot be accurately estimated
with large noise during the sampling process, we add Gaussian noises z ∼ N (0, σ2I) to the position
of each atom in molecules during the training of IPNET, and control the scale of noises through σ.
The experimental results are present in Tab. 8. We observed that when no noises are introduced and
the introduced noises too large or too small lead to limited improvements. In practice, we set the
σ = 0.5.

Table 8: Effect of the noise scales in training process of IPNET. (↑) / (↓) denotes a larger / smaller
number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1%
σ = 0 -5.37 -6.47 -6.69 -6.81 -7.82 -7.90 60.1% 58.2%
σ = 0.1 -5.63 -6.80 -7.10 -7.36 -8.17 -8.35 64.7% 67.0%
σ = 0.5 -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5%
σ = 1 -3.89 -6.05 -6.20 -6.75 -7.84 -7.97 60.0% 58.4%

Performance of Generated Molecules with Different Number of Rotatable Bonds The Figure 6
presents the performance of generated molecules with the different number of rotatable bonds. And
we can observed that our method can achieve superior performance compared with TargetDiff, even
for the molecules with the large number of rotatable bonds (> 10),

Time Complexity For investigating the sampling efficiency, we report the inference time of our
model and other baselines for generating 100 valid molecules on average. Pocket2Mol, TargetDiff
and DecompDiff use 2037s, 1987s and 3218s, and our IPDIFF takes 3063s.

F FUTURE WORK

In this paper, we introduce a paradigm that combines a pretrained protein-ligand interaction model
with the diffusion models for SBDD. In Tab. 3, we have present that our IPNET can effectively
serve the downstream diffusion model even when it is solely pre-trained on sequential data. This is
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Figure 6: The performance of generated molecules with different number of rotatable bonds.

significant because precise geometric data is often scarce, while sequence data is abundant. This
finding suggests that we can further explore the integration of self-supervised or weakly-supervised
learning techniques in the training of IPNET solely relying on abundant sequential data, for extracting
general interaction-related information and effectively serving the downstream diffusion model.
These aspects make our model scalable and open up new possibilities for leveraging large-scale
sequence data in SBDD tasks. Moreover, It is necessary to evaluate our methods from different
evaluation perspectives. We will provide comprehensive experiments and analysis on the other
metrics, such as PoseCheck (Harris et al., 2023) and PoseBusters (Buttenschoen et al., 2023).

G MORE RESULTS

We provide the visualization of more ligand molecules generated by IPDIFF, comparing to both
reference and TargetDiff (Guan et al., 2023a), as shown in Figure 7.

We provide the source files containing generated molecules and the evaluation code that can reproduce
the results in Tab. 2 in the supplementary material.

We are committed to open source the code of training and inference as well as the pretrained model
upon paper acceptance.
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Vina: -8.10, QED: 0.33, SA: 0.62 Vina: -9.22, QED: 0.48, SA: 0.60 Vina: -11.09, QED: 0.74, SA: 0.60 Vina: -10.27, QED: 0.77, SA: 0.64Vina: -9.93, QED: 0.54, SA: 0.58

IPDiffDecompDiffReference

2azy

IPDiffDecompDiffReference

1phk

Vina: -8.23, QED: 0.34, SA: 0.40 Vina: -7.77, QED: 0.19, SA: 0.53 Vina: -12.39, QED: 0.65, SA: 0.59 Vina: -11.41, QED: 0.69, SA: 0.65Vina: -8.4, QED: 0.18, SA: 0.57

IPDiffDecompDiffReference

4zfa

Vina: -6.14, QED: 0.35, SA: 0.75 Vina: -2.65, QED: 0.63, SA: 0.79 Vina: -11.58, QED: 0.58, SA: 0.50 Vina: -13.07, QED: 0.60, SA: 0.51Vina: -6.10, QED: 0.41, SA: 0.92

IPDiffDecompDiffReference

1h0i

Vina: -5.29, QED: 0.52, SA: 0.63 Vina: -3.35, QED: 0.58, SA: 0.61 Vina: -10.03, QED: 0.65, SA: 0.58 Vina: -9.87, QED: 0.62, SA: 0.57Vina: -3.13, QED: 0.47, SA: 0.63

IPDiffDecompDiffReference

1afs

Vina: -7.27, QED: 0.58, SA: 0.46 Vina: -5.29, QED: 0.66, SA: 0.64 Vina: -9.66, QED: 0.69, SA: 0.58 Vina: -10.55, QED: 0.62, SA: 0.58Vina: -8.52, QED: 0.73, SA: 0.68

Figure 7: More examples of generated ligands for protein pockets. Carbon atoms in reference ligands,
ligands generated by DecompDiff (Guan et al., 2023b) and IPDIFF are visualized in green, blue and
orange, respectively. We report Vina Score, QED and SA for each molecule.
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