BYOL-Explore:
Exploration by Bootstrapped Prediction

Abstract

We present BYOL-Explore, a conceptually simple yet general approach for curiosity-driven exploration in visually-complex environments. BYOL-Explore learns a world representation, the world dynamics, and an exploration policy all-together by optimizing a single prediction loss in the latent space with no additional auxiliary objective. We show that BYOL-Explore is effective in DM-HARD-8, a challenging partially-observable continuous-action hard-exploration benchmark with visually-rich 3-D environments. On this benchmark, we solve the majority of the tasks purely through augmenting the extrinsic reward with BYOL-Explore’s intrinsic reward, whereas prior work could only get off the ground with human demonstrations. As further evidence of the generality of BYOL-Explore, we show that it achieves superhuman performance on the ten hardest exploration games in Atari while having a much simpler design than other competitive agents.

1 Introduction

Exploration is essential to reinforcement learning (RL) [67], especially when extrinsic rewards are sparse or hard to reach. In rich environments, the variety of meaningful directions of exploration makes it impractical to visit everything. Thus, the question becomes: how can an agent determine which parts of the environment are interesting to explore? One promising paradigm to address this challenge is curiosity-driven exploration. It consists of (i) learning a predictive model of some information about the world, called a world model, and (ii) using discrepancies between predictions of the world model and real experience to build intrinsic rewards [59, 65, 60, 34, 51, 52, 2]. An RL agent optimizing these intrinsic rewards drives itself towards states where the world model is incorrect or imperfect, generating new trajectories on which the world model can be improved. In other words, the properties of the world model influence the quality of the exploration policy, which in turn gathers new data to shape the world model itself. Thus, it can be important not to treat learning

*Equal contribution.
the world model and learning the exploratory policy as two separate problems, but instead as a single joint problem to solve.

In this paper, we present BYOL-Explore, a curiosity-driven exploration algorithm whose appeal resides in its conceptual simplicity, generality, and high performance. BYOL-Explore learns a world model with a self-supervised prediction loss, and uses the same loss to train a curiosity-driven policy, thus using a single learning objective to solve both the problem of building the world model’s representation and the curiosity-driven policy. Our approach builds upon Bootstrap Your Own Latent (BYOL), a latent-predictive self-supervised method which predicts an older copy of its own latent representation. This bootstrapping mechanism has already been successfully applied in computer vision [20, 50], graph representation learning [71], and representation learning in RL [24, 62]. However, the latter works focus primarily on using the world-model for representation learning in RL whereas BYOL-Explore takes this one step further, and not only learns a versatile world model but also uses the world model’s loss to drive exploration.

We evaluate BYOL-Explore on DM-HARD-8 [22], a suite of 8 complex first-person-view 3-D tasks with sparse rewards. These tasks demand efficient exploration since in order to reach the final goal and obtain the reward they require completing a sequence of precise, orderly interactions with the physical objects in the environment, unlikely to happen under a vanilla random exploration strategy (see Fig. 2 and the videos in supplementary materials). To show the generality of our method we also evaluate BYOL-Explore on the ten hardest exploration Atari games [5]. In all these domains, BYOL-Explore outperforms other prominent curiosity-driven exploration methods, such as Random Network Distillation (RND) [8] and Intrinsic Curiosity Module (ICM) [51]. In DM-HARD-8, BYOL-Explore achieves human-level performance in the majority of the tasks using only the extrinsic reward augmented with BYOL-Explore’s intrinsic reward, whereas previously significant progress required human demonstrations [22]. Remarkably, BYOL-Explore achieves this performance using only a single world model and a single policy network concurrently trained across all tasks. Finally, as further evidence of its generality, BYOL-Explore achieves superhuman performance in the ten hardest exploration Atari games [5] while having a simpler design than other competitive agents, such as Agent57 [3, 4] and Go-Explore [14, 15].

2 Related Work

There is a large body of research in building world models either for planning [66, 63, 27, 26, 61], representation learning [62, 24, 41, 19] or curiosity-driven exploration [59, 68, 60, 54, 51, 52, 2, 63, 21, 65]. Most works consider world models that predict the entire observations [58, 48, 16, 19], which necessitates a loss in pixel space when observations are visually complex images. Some works have considered predicting latent representations, whether they are random projections [7, 8], or learned representations from a separate model, such as an inverse dynamics model [51] or an auto-encoder [25] [7]. Finally, some RL works [61] have focused on predicting lower-dimensional quantities such as the extrinsic reward, the action-selection policy, and the value function to build a world model.

Our BYOL-Explore’s world model operates in latent space and uses the same loss both for representation and intrinsic reward, simplifying and unifying representation learning and exploration. BYOL-Explore’s world model is derived from recent self-supervised representation learning methods [20, 56, 55, 71] and is similar to the ones in self-supervised RL [62, 24]. These previous works focused on the benefit of shaping representations for policy learning and have not looked into exploration. We build on this previous work to show that we can take the impact of a good representation technique further and use it to drive exploration.

While our approach belongs to the curiosity-driven exploration paradigm [50, 42, 49, 59, 5, 68, 60, 44, 51, 52, 2, 63], other exploration paradigms have also been proposed. The maximum entropy paradigms try to steer the agent to a desired distribution of states (or state-action pairs) that maximizes the entropy of visited states [29, 69, 70, 23]. The goal-conditioned paradigm has the agent set its own goal to drive exploration [57, 1, 47, 53, 12, 52, 28, 15, 54, 80, 53]. The reward-free exploration

2Contrary to Agent57, BYOL-Explore neither requires episodic memory nor using an additional bandit mechanism to mix long-term and short-term rewards. As opposed to Go-Explore, we do not have to explicitly keep in memory a set of diverse goal-states to visit, which requires setting additional hyper-parameters that are environment-dependent.
paradigm consists of training an agent to explore the environment such that it would be able to produce a near-optimal policy for any possible reward function \[37, 39, 45, 78, 79, 81\].

3 Method

Our agent has three components: a self-supervised latent-predictive world-model called BYOL-Explore, a generic reward normalization and prioritization scheme, and an off-the-shelf RL agent that can optionally share its own representation with BYOL-Explore’s world model.

3.1 Background and Notation

We consider a discrete-time interaction process \([44, 35, 36, 13]\) between an agent and its environment where, at each time step \(t \in \mathbb{N}\), the agent receives an observation \(o_t \in O\) and generates an action \(a_t \in A\). We consider an environment with stochastic dynamics \(p : \mathcal{H} \times A \rightarrow \Delta_O\) that maps a history of past observations-actions and a current action to a probability distribution over future observations. More precisely, the space of past observations-actions is \(\mathcal{H} = \bigcup_{t \in \mathbb{N}} \mathcal{H}_t\) where \(\mathcal{H}_0 = O\) and \(\forall t \in \mathbb{N}^*, \mathcal{H}_{t+1} = \mathcal{H}_t \times A \times O\). We consider policies \(\pi : \mathcal{H} \rightarrow \Delta_A\) that maps a history of past observations-actions to a probability distribution over actions. Finally, an extrinsic reward function \(r_e : \mathcal{H} \times A \rightarrow \mathbb{R}\) maps a history of past observations-actions to a real number.

3.2 Latent-Predictive World Model

BYOL-Explore world model is a multi-step predictive world model operating at the latent level. It is inspired by the self-supervised learning method BYOL in computer vision and adapted to interactive environments (see Section 3.1). Similar to BYOL, BYOL-Explore model trains an online network using targets generated by an exponential moving average (EMA) target network. However, BYOL obtains its targets by applying different augmentations to the same observation as the online representation, whereas BYOL-Explore model gets its targets from future observations processed by an EMA of the online network, with no hand-crafted augmentation. Also BYOL-Explore model uses a recurrent neural network (RNN) \([33, 11]\) to build the agent state, i.e., the state of RNN, from the history of observations, whereas the original BYOL only uses a feed-forward network for encoding the observations. In the remainder of this section, we will explain: (i) how the online network builds future predictions, (ii) how targets for our predictions are obtained through a target network, (iii) the loss used to train the online network, and (iv) how we compute the uncertainties of the world model.

\[
\mathcal{L}_{BYOL-Explore}(\theta, t) = \frac{1}{K} \sum_{k=1}^{K} \left\| \frac{g(\theta, b_{t,k})}{\|g(\theta, b_{t,k})\|_2} - s_g \left(\frac{f_\theta(\theta, a_{t+k})}{\|f_\theta(\theta, a_{t+k})\|_2} \right) \right\|^2_2
\]

Figure 1: BYOL-Explore’s Neural Architecture (see main text for details).

3 We write \(\Delta_Y\) the set of probability distributions over a set \(Y\).
To counter the non-stationarity of the uncertainties during training, we adopt the same reward via an EMA update \(\phi \). We use the world model uncertainties methods learn non-trivial representations see, e.g., [72, 76].

3.3 Reward Normalization and Prioritization Scheme

Reward Normalization. We use the world model uncertainties \(\ell t \) to generate an intrinsic reward. To counter the non-stationarity of the uncertainties during training, we adopt the same reward normalization scheme as RND [8] and divide the raw rewards \((\ell t)T−2 j=0 B−1 \) by an EMA estimate of their standard deviation \(\sigma \). The normalized rewards are \(\ell t / \sigma \). Details are provided in App. A.3.
Reward Prioritization. In addition to normalizing the rewards, we can optionally prioritize them by optimizing only the rewards with highest uncertainties and nullifying rewards with the lowest uncertainties. Because of the transient nature of the intrinsic rewards, this allows the agent to focus first on parts of the environment where the model is not accurate. Later on, if the previously nullified rewards remain, they will naturally become the ones with highest uncertainties and be optimized. This mechanism allows the agent to optimize only the source of high uncertainties and not optimize all sources of uncertainties at once. To do so, let us denote by μ_{ℓ}/σ_{ℓ}, the adjusted EMA mean relative to the successive batch of normalized rewards $((\ell_{j}/\sigma_{\ell})_{j=0}^{T-2})_{j=0}^{B-1}$. We use μ_{ℓ}/σ_{ℓ} as a clipping threshold separating high and low-uncertainty rewards. Then, the clipped and normalized reward that plays the role of intrinsic reward is: $r_{i,t}^{j} = \max(\ell_{i}/\sigma_{\ell} - \mu_{\ell}/\sigma_{\ell}, 0)$.

3.4 Generic RL Algorithm and Representation Sharing

BYOL-Explore can be used in conjunction with any RL algorithm for training the policy. In addition to providing an intrinsic reward, BYOL-Explore can further be used to shape the representation learnt by the RL agent by directly sharing some components of the BYOL-Explore world model with the RL model. For instance, consider a recurrent agent composed of an encoder f_{ψ}, an RNN cell h_{ψ}, a policy head π_{θ} and a value head ν_{θ} that are shaped by an RL loss. Then, we can share the weights θ of the BYOL-Explore world model and the weights ψ of the RL model at the level of the encoder and the RNN cell: $f_{\psi} = f_{\theta}$ and $h_{\psi} = h_{\theta}$, and let the joint representation be trained via both the RL loss and BYOL-Explore. In our experiments, we will show results for both the shared and unshared settings. Architectural details are provided in Appendix A

4 Experiments

We evaluate the algorithms on benchmark task-suites known to contain hard exploration challenges. These benchmarks have different properties in terms of the complexity of the observations, partial observability, and procedural generation, allowing us to test the generality of our approach.

Atari Learning Environment [6]. This is a widely used RL benchmark, comprising approximately 50 Atari games. These are 2-D, fully-observable, (fairly) deterministic environments for most of the games but have a very long optimization horizon (episodes last for an average of 10000 steps) and complex observations (preprocessed greyscale images which are 84×84 byte arrays). We select the 10 hardest exploration games [3] to conduct our experiments: Alien, Freeway, Gravitar, Hero, Montezuma’s Revenge, Pitfall, Private Eye, Qbert, Solaris and Venture.

Hard-Eight Suite [22]. This benchmark comprises 8 hard exploration tasks, originally built to emphasize the difficulties encountered by an RL agent when learning from sparse rewards in a procedurally-generated 3-D world with partial observability, continuous control, and highly variable initial conditions. Each task requires the agent to interact with specific objects in its environment in order to reach a large apple that provides reward (see Fig. 2). Being procedurally-generated, properties such as object shapes, colors, and positions are different every episode. We provide videos in the supplementary materials to ground the difficulty of these tasks. Note that the current best RL agents that solve these tasks require a small (but non-zero) amount of human expert demonstrations. Without demonstrations or reward shaping, state-of-the-art deep RL algorithms, such as R2D2 [38], do not get positive reward signal on any of the tasks. In our case, we train a single RL agent and a single world model to tackle the 8 tasks all-together, making for a challenging multi-task setting.

4.1 Experimental Setup

At a high level, BYOL-Explore has 4 main hyper-parameters: the target network EMA parameter α, the open-loop horizon K, choosing to clip rewards and to share the BYOL-Explore representation with the RL network. To better understand what part of BYOL-Explore is essential to perform well, we run 4 ablations. Each ablation corresponds to BYOL-Explore where only one hyper-parameter has been changed. The 4 ablations are namely Fixed-targets where the target network EMA parameter is set to $\alpha = 1$, Horizon=1 where the horizon is set to $K = 1$, No clipping where we do not use clipping for the intrinsic rewards and No sharing where we trained separately the RL network and the
BYOL-Explore’s world model. In addition to BYOL-Explore, we also run as prominent baselines RND, ICM (see App. B for details), and pure RL which is an RL agent only using extrinsic rewards.

Finally, we run experiments on two different evaluation regimes. The first regime uses a mixed reward function \(r_t = r_{e,t} + \lambda r_{i,t} \) which is a linear combination of the normalized extrinsic rewards \(r_{e,t} \) and intrinsic rewards computed by the agent \(r_{i,t} \) with mixing parameter \(\lambda \). This may be the most important regime for a practitioner as we can see if our intrinsic rewards help improve performance, with respect to the extrinsic rewards, compared to the pure RL agent. The second regime is fully self-supervised where only the intrinsic reward \(r_{i,t} \) is optimized. This regime gives us a sense of how pure exploration methods perform in complex environments.

Choice of RL algorithm. We use VMPO [64] as our RL algorithm. VMPO is an efficient on-policy optimization method that has achieved strong results across both discrete and continuous control tasks, and is thus applicable to all of the domains we consider. Further details regarding the RL algorithm setup and hyperparameters are provided in Appendix C.

Performance Metrics. We evaluate performance in terms of the agent score at a number of observations/frames \(t \), \(\text{Agent score}(t) \), as measured by undiscounted episode return. The number of frames \(t \) corresponds to all the frames generated by all the actors by interacting with the environment, even the skipped ones. Frames/observations can be skipped if there is an action repeat which is the case in Atari where the action repeat is of 4.

We define the highest agent score through training as \(\text{Agent score} = \max_t \text{Agent score}(t) \), as done in [18,3]. We define, for each game, the Human Normalized Score (HNS) at number of frame \(t \):
\[
\text{HNS}(t) = \frac{\text{Agent score}(t) - \text{Random score}}{\text{Human score} - \text{Random score}}
\]
as well as the HNS over the whole training: \(\text{HNS} = \max_t \text{HNS}(t) \). A HNS higher than 1 means superhuman performance on a specific task. We similarly define the CHNS Score as HNS clipped between 0 and 1.

4.2 Atari Results

In these experiments, we set the target EMA rate \(\alpha = 0.99 \) and open-loop horizon \(K = 8 \). We use \(\lambda = 0.1 \) to combine the intrinsic and extrinsic rewards. We follow the classical 30 random no-ops evaluation regime [46,73], and average performance over 10 episodes and over 3 seeds. This evaluation regime does not use sticky actions [43].

Fig.3 (left) shows that BYOL-Explore is almost superhuman on the 10-hardest exploration games and outperforms the different baselines of RND, ICM, and pure RL. Fig.3 (right) compares BYOL-Explore against its ablations to gain finer insights into our method. The **No clipping** ablation performs comparably, showing that the prioritization of intrinsic rewards is not necessary on Atari tasks. Similarly, the **Horizon=1** ablation performs slightly better, indicating that simply predicting one-step latents is sufficient to explore efficiently on the fully-observable Atari tasks. The **Fixed Targets** ablation performs much worse, showing that our approach of predicting learned targets (rather than
Figure 3: Mean CHNS(t) score across the tasks in Atari. **Left:** BYOL-Explore and the baselines in the mixed regime for Atari. **Right:** BYOL-Explore and its ablations in the mixed regime.

fixed random projections) is vital for good performance. It is also worth noting that all the ablations except *Fixed Targets* outperform all of our baselines, demonstrating the robustness of our approach.

Finally, because the *Horizon=1* ablation was close to superhuman on Atari, we run the same configuration but double the length of the sequences on which we train from 64 to 128 (also doubling memory requirements while learning). With this small adjustment, this agent (BYOL-Explore (big)) becomes superhuman on all of the 10-hardest exploration games.

Purely intrinsic exploration. We test how BYOL-Explore behaves when only given intrinsic rewards without any extrinsic signal on the well-known Montezuma’s Revenge game. We measure exploratory behavior in terms of the number of different rooms of the dungeon the agent is able to explore over its lifetime. Note that accessing later rooms requires navigating complex dynamics such as collecting keys to open doors, avoiding enemies, and carefully traversing rooms filled with traps such as timed lasers. Figure 4 shows how much room coverage is achieved during training when no extrinsic reward is used, showing that BYOL-Explore explores further than the best result reported by RND [8]. Importantly, we use the episodic setting for intrinsic rewards whereas the published RND results considers the non-episodic setting for intrinsic rewards — facilitating exploration as the agent is less risk-averse. Therefore, our setting could be considered even more challenging. Our agent explores more than 20 rooms on average versus 17 with best published RND results. As expected in the episodic setting, our RND re-implementation visits even fewer rooms. However, we can reproduce the published RND results in the episodic setting when using recurrent policies.

Further results. More fine-grained results are reported in App D.1. We report, in Fig 11 and in Fig 12, the agent scores learning curves for each game. Tab 1 and Tab 2 have agent score at the end of training. Finally, Tab 3 and Tab 4 show the mean CHNS and different statistics (mean and percentiles) of the HNS across the selected games. An interesting finding from examining the HNS is that clipping and longer-horizon predictions are critical for very high scores on some games such as Montezuma’s Revenge or Hero. BYOL-Explore has a median HNS of 331.98 compared to the No-clipping ablation and the Horizon=1 which have a median HNS of only 181.39 and 199.80 respectively. Therefore, while clipping is not necessary to get to human-level performance, it is still crucial to achieve top performance. We also provide further results regarding the pure exploration setting on all 10 games in App. D.2.
4.3 Atari’s results in the Presence of Stochastic Distractors

Stochastic distractors or noise are well known to break intrinsic curiosity methods based on prediction error of future frames. This is because the prediction squared-error loss of a future frame has an irreducible component which corresponds to the variance of the future frame distribution [51, 52]. However, because BYOL-Explore is not a prediction error method at the frame-level but at the latent level, we can hope that some noise present in the frame can be removed from the latent embedding. More specifically, we hypothesize that BYOL-Explore removes noisy features of the frame that are not useful to minimize the BYOL-Explore loss in order to better minimize this loss. Those are features that are not useful for future predictions. On the other hand, since RND uses a random network to build it targets, RND by construction cannot actively remove noisy features from its targets. To better show this, we slightly changed the Atari environment to generate noisy frames. More precisely, the new observation is made of two parts of the same size (84 × 84), on the right side we have noise and on the left we have the original Atari image. Each time the no-op action is chosen by the agent, a new noise is sampled. The noise is composed of 14 × 14 blocks of 6 × 6 pixels. Each block of pixel is assigned a uniform random value between 0 and 255 if a new noise is sampled. We provide a frame of this modified Atari environment in Fig. 5 (left).

Figure 5: Experiments on noisy Atari. **Left**: Noisy Atari environment. **Right**: Learning curves in terms of agent score for BYOL-Explore and RND for noisy and normal Atari on Montezuma’s Revenge, averaged over 10 episodes and 3 seeds.

We train BYOL-Explore and RND on this noisy and normal version of Atari on the game Montezuma’s revenge (we do not include a comparison with ICM because it was already not performing well in the normal version). To get better results for BYOL-Explore, we increase the predictor to have 3 hidden layers of 512 instead of 1 hidden layer of 256. The results are reported in Fig. 5 (right). We observe that BYOL-Explore is perfectly able to deal with that type of controllable-noise whereas RND is not and completely flat-lined in the noisy environment because the agent is attracted to the noise and keeps repeating the no-op action.

4.4 DM-HARD-8 Results

In these experiments, we set the target EMA rate $\alpha = 0.99$ and open-loop horizon $K = 10$. We use $\lambda = 0.01$ to combine the intrinsic and extrinsic rewards. In contrast to prior work [22], we perform experiments in the more challenging multi-task regime, training a single agent to solve all eight tasks. At the beginning of each episode, a task is drawn uniformly at random from the suite.

In Fig. 6 (left) we report the mean CHNS(t) across the tasks, averaged over 3 seeds. We see that BYOL-Explore outperforms the baselines of RND, ICM, and pure RL by a large margin. Fig. 6 (right) compares the performance of BYOL-Explore to its various ablations. Note that the No-clipping ablation performs similarly to BYOL-Explore in terms of CHNS. However, unlike the fully-observable Atari tasks, the Horizon=1 ablation learns considerably slower and achieves lower final performance (see also our extended ablations on the horizon length in Fig. 15 in App. D.3). We note once again that
the BYOL-Explore bootstrapping mechanism for learning representations is essential, as confirmed by the poor performance of the Fixed-targets ablation. Due to computational limitations, we did not run the No Sharing ablation, as using separate networks requires twice the memory.

![Figure 6: Mean CHIS(t) score across the tasks in the DM-HARD-8 suite. Left: BYOL-Explore against baselines: ICM, RND and Pure RL. Right: BYOL-Explore against various ablations.](image)

We now analyze our method more closely by examining per-task performance. The full learning curves for each task can be found in Fig. 7 for BYOL-Explore and the main baselines and in Appendix D.3 (see Fig. 14) for the various ablations. First, we take note that other curiosity-driven methods (ICM and RND) cannot get any positive score on the majority of the DM-HARD-8 tasks, even with additional hyperparameter tuning and reward prioritizing (see Fig. 17 and Fig. 18 in App. D.3).

In contrast, we see that BYOL-Explore achieves strong performance on five out of the eight hard exploration tasks. Importantly, BYOL-Explore achieves this without human demonstrations, which was not the case in prior work [22]. BYOL-Explore even surpasses humans on 4 tasks, namely Navigate cubes, Throw-across, Baseball, and Wall Sensors (see Tab. 9 in App. D.3 for details). Most impressively, BYOL-Explore can solve Throw-across, which is a challenging task even for a skillful human player and was not solvable in prior work without collecting additional successful human demonstrations [22].

Interestingly, note that on the Navigate Cubes task, both RND and the Fixed-targets ablation achieve maximum performance alongside BYOL-Explore. We argue that this is because the prediction of random projections (either at the same step as done by RND or multi-step as done by BYOL-Explore) leads to the policy learned performing spatial, navigational exploration — this is the kind of behavior required to explore well on the Navigate Cubes task. In contrast, the other tasks require exploratory behavior involving interaction with objects and the use of tools, where both RND and the Fixed-targets ablation fail. Finally, we observe that two games, namely Remember Sensor and Push Blocks, are particularly challenging, where all of our considered methods perform poorly. We hypothesize that this is due to the larger variety of procedurally generated objects spawned in these levels, and the need to remember previous cues in the environment leading to a hard credit assignment problem.

Purely intrinsic exploration. Each of the DM-HARD-8 tasks has complex dynamics and object interactions, making it difficult to assess qualitatively the behavior of purely intrinsically motivated exploration. Nevertheless, for completeness, we provide results of BYOL-Explore trained only with intrinsic rewards in App. D.3, showing that it does achieve some positive signal on the Drawbridge and Wall Sensor tasks (see Fig. 19).

5 Conclusion

We showed that BYOL-Explore is a simple curiosity-driven exploration method that achieves excellent performance on hard exploration tasks with fairly deterministic dynamics. BYOL-Explore is a multi-step prediction error method at the latent level that relies on recent advances in self-supervised learning to train its representation as well as its world-model without any additional loss. In Atari, BYOL-Explore achieves superhuman performance on the 10-hardest exploration games while being
of much simpler design than other superhuman agents. Moreover, BYOL-Explore substantially outperforms previous exploration methods on DM-HARD-8 navigation and manipulation tasks in a 3-D, multi-task, partially-observable and procedurally-generated environment. This shows the generality of our algorithm to handle either 2-D or 3-D, single or multi-task, fully or partially-observable environments. While one main limitation of our algorithm is that it is not designed to fully handle stochasticity in environments (e.g. sticky actions), we show that BYOL-Explore is robust to some simple kinds of controllable noise (‘TV-noise’) since operating in latent space allows the latent representation to filter it out.

In the future, we would like to improve performance in DM-HARD-8 and to demonstrate the generality of our method by extending it to other domains. In DM-HARD-8, we believe we can improve performance by scaling up the world model and finding better ways to trade off exploration and exploitation. Beyond DM-HARD-8, there are opportunities to tackle further challenges, most notably highly-stochastic and procedurally-generated environment dynamics such as NetHack [40]. To do so, we are investigating different mechanisms to adapt prediction-based methods to stochastic environments in order to only use the epistemic uncertainty as an intrinsic reward and discard the aleatoric uncertainty.

Acknowledgments and Disclosure of Funding

We would like to thank Abbas Abdolmaleki, Arunkumar Byravan, Adrià Puidomenech Badia, Tim Harley, Steven Kapturowski, Thomas Keck, Jean-Baptiste Lespiau, Kat McKinney, Kyriacos Nikiforou, Georg Ostrovski, Razvan Pascanu, Doina Precup, Satinder Singh, Hubert Soyer, Pablo Sprechmann, and Karl Tuyls for their support and advice in developing and publishing this work.
References

Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [No]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A] We are not including theoretical results.
 (b) Did you include complete proofs of all theoretical results? [N/A] We are not including theoretical results.

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [No] The code is proprietary
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] We specify the main training details in the paper and we include a full list of hyperparameters description in the appendix.
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] We report error bars in learning curves of the agent score for every agent we run.
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] We include all the information regarding the compute in the appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes] We use the ALE and DM–HARD–8 and we cite the creators.
 (b) Did you mention the license of the assets? [N/A]
 (c) Did you include any new assets either in the supplemental material or as a URL? [No]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] We did not use crowdsourcing.
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] We did not use crowdsourcing.
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A] We did not use crowdsourcing.