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Abstract

Recently, significant progress has been made in protein-ligand docking, especially1

in deep learning-based methods, and some benchmarks were proposed, such as2

PoseBench and PLINDER. However, these studies typically focus on the self-3

docking scenario, which is less practical in real-world applications. Moreover,4

some studies involve heavy frameworks requiring extensive training, posing chal-5

lenges for convenient and efficient assessment of docking methods. To address6

these gaps, we introduce PoseX, an open-source benchmark designed to evalu-7

ate both self-docking and cross-docking, enabling a practical and comprehensive8

assessment of algorithmic advances. Specifically, we curated a novel dataset com-9

prising 718 entries for self-docking and 1,312 entries for cross-docking; secondly,10

we incorporated 23 docking methods in three methodological categories, includ-11

ing physics-based methods (e.g., Schrödinger Glide), AI docking methods (e.g.,12

DiffDock) and AI co-folding methods (e.g., AlphaFold3); thirdly, we developed13

a relaxation method for post-processing to minimize conformational energy and14

refine binding poses; fourthly, we established a leaderboard to rank submitted15

models in real-time. We derived some key insights and conclusions from extensive16

experiments: (1) AI-based approaches have consistently outperformed physics-17

based methods in overall docking success rate. (2) Most intra- and intermolecular18

clashes of AI-based approaches can be greatly alleviated with relaxation, which19

means combining AI modeling with physics-based post-processing could achieve20

excellent performance. (3) AI co-folding methods commonly exhibit ligand chiral-21

ity issues, except for Boltz-1x, which introduced physics-inspired potentials to fix22

hallucinations, suggesting the modeling on stereochemistry improves the structural23

plausibility markedly. (4) Specifying binding pockets significantly promotes dock-24

ing performance, indicating that pocket information can be leveraged adequately,25

particularly for AI co-folding methods, in future modeling efforts. The code, dataset,26

and leaderboard are released at https://github.com/CataAI/PoseX.27

1 Introduction28

Protein-ligand docking is crucial to drug discovery since it predicts how a ligand interacts with29

a protein, helping to identify potential drug candidates and accelerate the development of new30

therapeutics. Learning from known protein-ligand complexes through machine learning, especially31

deep learning (DL) techniques, the AI-based approaches have the potential to revolutionize protein-32

ligand docking by significantly enhancing the speed and accuracy of prediction, and substantial33
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progress has been made recently. In response to the large number of new approaches, recent work34

has introduced several benchmarks, such as PoseBench [1] and PLINDER [2], with corresponding35

datasets and metrics focusing on the evaluation of protein-ligand interaction. Despite the rapid36

progress, existing studies still encounter several challenges, summarized as follows.37

1. Impractical evaluation scenarios. Most existing benchmarks, such as PoseBuster [3] and38

PoseBench, focus on the self-docking scenario, which is less practical in real-world applications.39

For instance, pharmaceutical chemists usually design new drug molecules and dock them with40

the targets, of which the conformations are extracted from existing complex structures that are41

co-crystallized with other published compounds.42

2. Heavy framework and low accessibility. Some benchmarks (e.g., PLINDER) suffer from heavy43

evaluation frameworks that involve data splitting and training, which are hard to use. While44

studies such as PoseBuster that only concentrate on evaluation rather than together with training45

are worthy of reference, which are lightweight and user-friendly.46

3. Limited model selection for benchmarking. Existing studies often restrict their comparative47

scope to a narrow set of models. For instance, PoseBuster evaluated only 5 AI-based approaches48

and 2 physics-based methods, while PLINDER exclusively benchmarked against DiffDock [4],49

neglecting other notable algorithms.50

Therefore, we propose several solutions to address these issues:51

1. Practical evaluation setup. To better evaluate the capacity of various docking methods in a more52

practical scenario, we incorporate cross-docking, which involves docking various small molecules53

extracted from distinct complexes of the same protein with all the conformations except the native54

co-crystalized one.55

2. Construction of new dataset. We curated a new dataset named PoseX that collects newly found56

crystal structures of protein-ligand complexes in RCSB PDB, which contains 718 entries for57

self-docking and 1,312 entries for cross-docking.58

3. A wide variety of models. We evaluated 23 docking methods encompassing nearly all relevant59

models published in peer-reviewed journals and conferences alongside established commercial60

docking software across three different research lines, including 5 physics-based methods such as61

Schrödinger Glide [5], 11 AI docking methods such as DiffDock, and 7 AI co-folding methods62

such as AlphaFold3 [6].63

In addition, we developed a novel relaxation module (also known as energy minimization), which64

serves as a post-processing method to refine AI-generated binding poses. It is especially helpful to65

promote structural plausibility. We also established an online leaderboard, which enables researchers66

to benchmark their models against a standardized dataset, fostering transparency and facilitating easy67

and fair comparisons for the broader community. The key differences between the existing docking68

benchmarks and ours are summarized in Table 1.69

Table 1: Comparison of existing docking benchmark studies.
Benchmarks PoseBuster PoseBench PLINDER PoseX (Ours)

Code of dataset pipeline ✗ ✗ ✓ ✓
Relaxation ✗ coarse ✗ well-designed
Self-docking evaluation ✓ ✓ ✓ ✓
Cross-docking evaluation ✗ ✗ ✗ ✓
# Open-source docking software 2 1 0 2
# Commercial docking software 0 0 0 3
# Physics-based methods 2 1 0 5
# AI docking methods 5 2 1 11
# AI co-folding methods 0 4 0 7
# Total methods 7 7 1 23
Real-time leaderboard ✗ ✗ ✗ ✓
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2 Methods70

We categorize all the docking approaches into three distinct classes: (1) physics-based methods71

utilize physics-based scoring functions and sampling algorithms to estimate protein-ligand interac-72

tions, including Discovery Studio [7], Schrödinger Glide [5], MOE [8], AutoDock Vina [9, 10], and73

GNINA [11]; (2) AI docking methods produce ligand binding poses based on the three-dimensional74

structure of proteins, including DeepDock [12], EquiBind [13], TankBind [14], DiffDock [4], Uni-75

Mol [15], FABind [16], DiffDock-L [17], DiffDock-Pocket [18], DynamicBind [19], Interformer [20],76

SurfDock [21]; (3) AI co-folding methods predict both the ligand’s binding conformation and the77

protein’s conformational changes induced by ligand binding, which account for simultaneous struc-78

tural adaptations of the protein and ligand, enabling more accurate modeling of their interactions; we79

involve 7 AI co-folding methods, including NeuralPLexer [22], RoseTTAFold-All-Atom (RFAA) [23],80

AlphaFold3 [6], Chai-1 [24], Boltz-1 [25], Boltz-1x [25], Protenix [26]. For comparative analysis,81

we summarize all the compared methods in Table 2, and the detailed settings of these methods are82

shown in Appendix B.83

Table 2: Comparison of various methods.

Method Pub. Year License Pocket
Required

Pocket
Changed

Avg. Runtime
Per Sample 1

Physics-based methods
Discovery Studio late 1990s Commercial ✓ ✗ 14.4 min
Schrödinger Glide 2004 Commercial ✓ ✗ 7.2 min
MOE 2008 Commercial ✓ ✗ 50 sec
AutoDock Vina 2010, 2021 Apache-2.0 ✓ ✗ 18 sec
GNINA 2021 Apache-2.0 ✓ ✗ 12 sec

AI docking methods
DeepDock 2021 MIT ✓ ✗ 2.7 min
EquiBind 2022 MIT ✗ ✗ 1.4 sec
TankBind 2022 MIT ✗ ✗ 7.8 sec
DiffDock 2022 MIT ✗ ✗ 1.2 min
Uni-Mol 2024 MIT ✓ ✗ 24 sec
FABind 2023 MIT ✗ ✗ 8.8 sec
DiffDock-L 2024 MIT ✗ ✗ 1.5 min
DiffDock-Pocket 2024 MIT ✓ ✓ 1.7min
DynamicBind 2024 MIT ✗ ✓ 2.4 min
Interformer 2024 Apache-2.0 ✓ ✗ 0.6 min
SurfDock 2024 MIT ✓ ✗ 10.8 sec

AI co-folding methods
NeuralPLexer 2024 BSD ✗ ✓ 1.5 min
RoseTTAFold-All-Atom 2023 BSD ✗ ✓ 9 min
AlphaFold3 2024 CC-BY-NC-SA 4.0 ✗ ✓ 16.5 min
Chai-1 2024 Apache-2.0 ✗ ✓ 3 min
Boltz-1 2024 MIT ✗ ✓ 3 min
Boltz-1x 2025 MIT ✗ ✓ 3 min
Protenix 2025 Apache-2.0 ✗ ✓ 3.6 min
1 Regarding computational runtime performance, different methods operate on varied computational

environments. Details for each method are provided in Appendix B.

Relaxation as Post-processing Relaxation in molecular docking, also known as energy min-84

imization, is a post-processing method used to refine and optimize docked protein-ligand com-85

plexes [27, 28]. It involves energy minimization and sometimes short molecular dynamics simulations86

to resolve steric clashes, improve atomic interactions, and ensure the system reaches a stable, low-87

energy conformation. This step enhances the physical realism and the accuracy of the docking results,88

making the predicted binding poses more reliable for further analysis or experimental validation.89

In this paper, we introduce a novel relaxation module, the novelty of which is summarized as: (1)90

Implemented an automated relaxation process for complexes based on OpenMM [29]. (2) Established91

a comprehensive automatic data processing pipeline for proteins and small molecules, including92

fixing missing chains, capping the N- and C-terminals, adding formal charges to proteins and small93

molecules, and applying restraints to backbone atoms (CA, C, N, O). (3) Supports small molecule94

force field parameters from GAFF and OpenFF [30]. (4) Supports partial charge calculation methods95

for small molecules, including Gasteiger and MMFF94. (5) Effectively alleviates unreasonable96
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predicted conformations, improving the pass rate of PB-Valid. The technical details of the relaxation97

process are provided in Appendix C.98

3 Dataset99

3.1 Self-docking Versus Cross-docking100

Self-docking. Self-docking involves docking a ligand back into its native co-crystallized conforma-101

tion [31]. This is typically used to check if the docking software can accurately reproduce the known102

binding pose, helping validate the method. Most existing benchmarks only consider the self-docking103

setup.104

Cross-docking. Cross-docking refers to dock molecules extracted from distinct complexes of the105

same protein with all conformations except the native co-crystalized one. This approach is considered106

a more versatile evaluation, as it takes into account the fact that the receptor protein may undergo107

conformational changes and might not be fully optimized for docking with the ligand. The difference108

between self-docking and cross-docking is illustrated in Figure 1.109

protein X

complex X-A: protein X bind with ligand A

self-docking

complex X-B: protein X bind with ligand B

cross-docking

Figure 1: Self-docking vs. Cross-docking.

3.2 Astex110

The Astex Diverse set [32], published in 2007, is a set of hand-picked, relevant, diverse, and high-111

quality protein–ligand complexes from the RCSB PDB. It comprises 85 unique and significant112

protein-ligand complexes. These complexes have been appropriately formatted for docking purposes113

and will be made freely accessible to the entire research community via the website (http://www.114

ccdc.cam.ac.uk). It only supports self-docking evaluation.115

3.3 PoseX: Our Curated Dataset116

In this paper, we curated a high-quality protein-ligand complex structure dataset designed to evaluate117

molecular docking methods named PoseX. It consists of carefully selected crystal structures from118

the RCSB Protein Data Bank (RCSB PDB) [33] with two subsets for evaluating self-docking and119

cross-docking tasks. The dataset only includes complex structures published from 2022 January120

1st to 2025 January 1st, ensuring that there is no overlap with the training data of all AI-based121

approaches that are being evaluated (as shown in Table S3). The construction steps of the two subsets122

PoseX Self-Docking (PoseX-SD) and PoseX Cross-Docking (PoseX-CD) are shown in Table S1 and123

Table S2. Ultimately, there are 718 entries for PoseX-SD and 1,312 entries for PoseX-CD, comprising124

109 protein targets (a total of 371 structures) and 362 small molecules. The distribution of the number125

of conformation structures per target is shown in Figure S1a, and the distribution of pocket similarity126

is shown in Figure S1b.127
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4 Experiments128

4.1 Evaluation Metrics129

Performance evaluation of protein-ligand docking involves metrics that assess both the quality of130

the predicted binding pose and the chemical validity as well as the structural plausibility, which are131

described in detail as follows.132

RMSD. In accordance with most benchmarking studies, we evaluate the quality of the binding poses133

with Root Mean Square Deviation (RMSD), which measures the distance between the predicted and134

the ground-truth complex structures. Lower RMSD scores indicate better binding poses.135

PB-Valid. The physicochemical validity and structural plausibility of the generated binding poses136

are measured with the PoseBuster test suite (i.e., PB-Valid). This suite evaluates whether predicted137

ligand poses are consistent with known chemical and structural constraints. See Appendix D for more138

details.139

Success rate. The docking success rate is defined as the percentage of the top-1 ranked predictions140

satisfying either of the following criteria: (1) RMSD < 2Å, or (2) RMSD < 2Å & PB-Valid. For141

PoseX-CD, we report the averaged success rate at the target level in view of the uneven distribution of142

docking sizes per target (as shown in Figure S1a). Higher success rates indicate better performance.143

4.2 Results144

4.2.1 Overall Performance Analysis145

Figure 2 and Figure S2 present a comprehensive evaluation of various docking approaches on three146

benchmarks — Astex, PoseX-SD, and PoseX-CD — under RMSD < 2Å and PB-Valid criteria. From147

these results, we highlight several main observations and provide a more granular analysis of these148

results.149

1. AI-based approaches lead in success rate. The latest AI-based approaches, both AI docking meth-150

ods (e.g., SurfDock) and AI co-folding methods (e.g., AlphaFold3) have consistently outperformed151

physics-based methods in overall docking pose and validity.152

2. Relaxation mitigates clashing significantly. The intra- and intermolecular clashes of AI-based153

approaches can be greatly alleviated with relaxation, which means that the force field-based energy154

minimization step is very crucial to achieve excellent performance in real-world applications,155

particularly for AI modeling.156

3. Chirality warrants further improvement. Most of the AI co-folding methods exhibit ligand157

chirality issues, such as AlphaFold3 and Chai-1, except for Boltz-1x, which introduces an inference158

time steering technique employing physics-inspired potential to fix hallucinations and enhance159

structural plausibility.160

4. Pocket information is crucial to docking. Explicit modeling of binding pocket substantially161

improves docking performance, as seen by the consistent performance gains of DiffDock-Pocket162

over its counterpart DiffDock across both self-docking and cross-docking, indicating that pocket163

information can be leveraged adequately, especially for AI co-folding methods, in future modeling164

efforts.165

Astex Benchmark. The Astex benchmark represents an idealized docking scenario with high-quality166

co-crystal structures. In this setting, AI docking methods outperform all other categories overall.167

Uni-Mol and SurfDock achieve the highest docking success rates (94.1%) when integrated with our168

structural relaxation protocol, surpassing physics-based methods, such as Glide and Discovery Studio,169

by over 25%. DiffDock-Pocket, Interformer, and DiffDock-L also perform strongly, achieving success170

rates above 83.5%. While AI co-folding methods such as AlphaFold3, Protenix, and Chai-1 deliver171

competitive results (over 80% success), they are marginally outperformed by docking-specialized172

architectures. Physics-based methods like AutoDock Vina and MOE plateau around 56.5%–67.1%,173

even with induced-fit docking (e.g., Glide IFD). These results illustrate the substantial performance174

gains offered by AI modeling tailored specifically for pose prediction.175

PoseX-SD Benchmark. For PoseX-SD evaluation, SurfDock (78.4%) achieves the overall state-of-176

the-art performance, and Uni-Mol takes the second place. DiffDock-Pocket shows clear advantages177
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over its pocket-agnostic counterpart, with a success rate of 52.2%. Among AI co-folding methods,178

AlphaFold3 and Protenix perform well (60.3% and 56.0%, respectively), demonstrating their capacity179

to model close-range binding interactions. In contrast, earlier AI docking methods such as EquiBind180

and TankBind perform poorly (below 20%), meanwhile, they exhibit significant issues with structural181

plausibility. Physics-based methods such as Glide and Discovery Studio remain clustered in the182

48–55% range. Most AI-based approaches benefit from the relaxation method we developed, and183

their intra- and intermolecular validity are significantly improved.184
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(a) PoseX-SD
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Figure 2: Performance on PoseX-SD and PoseX-CD.

PoseX-CD Benchmark. For PoseX-CD evaluation, SurfDock (77.0%) and Uni-Mol (69.2%) are185

still the top performers in all three categories of docking methods, as well as AlphaFold3, which186

achieves competitive performance (68.7%) against Uni-Mol. We observed that AI docking methods187

have developed rapidly in recent years, of which the latest models (such as SurfDock, Uni-Mol,188

Interformer, and DiffDock-Pocket) demonstrably surpass the earlier models (such as EquiBind,189

TankBind, and DeepDock). For AI co-folding methods, AlphaFold3 defeats other models (such as190
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Chai-1, Boltz-1, Boltz-1x and Proteinx) by a narrow margin (2.3% - 7.3%). Notably, physics-based191

methods struggle significantly in this scenario. For example, in the PoseX-SD task, only 3 AI192

docking methods outperform the leading physics-based method, GNINA, in terms of the percentage193

of RMSD < 2Å with relaxation. However, in the PoseX-CD task, 9 AI-based approaches (including194

4 AI docking methods and 5 AI co-folding methods) surpass GNINA (56.0%). This underscores195

a significant advantage of AI-based approaches over physics-based methods in the cross-docking196

scenario. Figure S10 and Figure S11 depict an illustrative example of the superior performance of197

AI-based methods. Relaxation yields consistent improvements across most approaches, emphasizing198

its role in resolving steric or geometric inconsistencies.199

4.2.2 Pocket Similarity based Generalizability Analysis200

To further understand the generalization capacity of various docking approaches, we analyze the201

relationship between pocket similarity and ligand RMSD across different scenarios. In view of the202

cut-off time of the training data for each method (as shown in Table S3), the pocket similarity is203

calculated as the maximum TM-score compared to pockets extracted from crystal structures released204

before 2022 on RCSB PDB, where the pocket is defined as the residues within 10.0Å of the ligand.205

Figure S3 and Figure S4 present per-sample scatter plots of pocket similarity versus docking RMSD206

for self-docking and cross-docking, respectively. Each plot reports Pearson’s correlation coefficient207

to quantify the strength and direction of the relationship. Figure 3 complements these results by208

summarizing the average ligand RMSD separately for test cases with similar and dissimilar pockets.209

Figure S5 and Figure S6 illustrate the relationship between the ligand RMSD and the decreasing210

binding pocket similarity of AI-based approaches.211

Self-Docking Observations. In the self-docking scenario, most AI-based approaches exhibit a212

moderate negative correlation between pocket similarity and ligand RMSD, indicating that the213

leakage of pocket information is associated with improved ligand pose accuracy. For example,214

Protenix and Chai-1 show stronger correlations (r = −0.390 and r = −0.389, respectively), while215

other models such as AlphaFold3 (r = −0.313) and Boltz-1 (r = −0.276) exhibit similar trends.216

DiffDock and DiffDock-L display similar correlations (r = −0.283 and r = −0.278, respectively),217

suggesting that docking-specific models also benefit from the pocket leakage.218

In contrast, physics-based methods show weaker or near-zero correlations. Glide (r = 0.010),219

AutoDock Vina (r = −0.009), and Discovery Studio (r = −0.001) exhibit negligible correlations,220

suggesting consistent docking performance across varying pocket similarities.221

Notably, SurfDock (r = −0.091) and Uni-Mol (r = −0.134), which achieve top performance overall,222

show only weak correlation between pocket similarity and ligand RMSD. These findings suggest223

that their success likely stems from robust pose prediction mechanisms that have less sensitivity224

for pocket information leakage. These results highlight the importance of robust pose prediction225

in achieving high docking performance, even when pocket similarity is limited, in the self-docking226

scenario.227

Cross-Docking Observations. The cross-docking setting reveals an overall stronger correlation228

between pocket similarity and ligand RMSD, particularly for AI co-folding methods and AI docking229

methods. Chai-1 (r = −0.526), Boltz-1 (r = −0.521), and Protenix (r = −0.553) exhibit strong230

negative correlations, suggesting that successful docking in cross-docking is highly contingent upon231

correctly modeling the target pocket’s conformation. DiffDock and its variants continue to reflect232

this trend (e.g., DiffDock r = −0.505; DiffDock-L r = −0.498), further confirming the influence of233

pocket leakage under receptor shift scenarios.234

Models such as DynamicBind (r = −0.576) and DiffDock-Pocket (r = −0.425) also show a strong235

correlation between pocket similarity and ligand RMSD, reinforcing that flexible or dynamic AI236

docking methods also have constrained generalization. In contrast, physics-based methods such as237

Glide (r = 0.015) and Discovery Studio (r = 0.053) again exhibit negligible correlation.238

Even high-performing models like SurfDock (r = −0.376) and Uni-Mol (r = −0.280) show239

stronger correlations in this setting than in self-docking, indicating that pocket modeling becomes240

more critical in the presence of conformational variance. This further highlights the need for improved241

pocket-conditioned pose generation in cross-docking scenarios.242

Performance Stratified by Pocket Similarity. Figure 3 further stratifies the average ligand RMSD243

for each method, where the evaluation set is split into two groups, a similar group (Pocket Similarity244
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Figure 3: Cross-docking performance difference on “similar” and “dissimilar” binding pockets.

≥ 0.70) and a dissimilar group (Pocket Similarity < 0.70). Across all the AI-based approaches,245

both AI docking methods and AI co-folding methods, docking into similar pockets consistently246

achieve lower RMSD. However, the degradation of different models in dissimilar pockets evaluation247

varies significantly. Physics-based methods such as Glide, MOE, and Discovery Studio consistently248

demonstrate a very small gap between similar and dissimilar evaluations, which shows excellent249

generalizability that outperforms most of the AI-based approaches in the dissimilar pocket scenario.250

Earlier AI docking methods (e.g., TankBind) and most AI co-folding methods (e.g., Chai-1, Protenix,251

AlphaFold3) suffer steep performance drops—TankBind degrades from 4.71Å to 7.69Å, Chai-1252

degrades from 2.37Å to 5.69Å, and Protenix degrades from 2.29Å to 6.45Å—highlighting their253

overreliance on pocket leakage and lack of adaptability. The latest AI docking methods, particularly254

SurfDock (1.54Å to 2.36Å) and Uni-Mol (2.08Å to 3.04Å), demonstrate much smaller gaps and255

showcase robust generalization.256

Overall Implications. These analyses collectively suggest that pocket similarity is a key determinant257

of successful docking, particularly for the cross-docking scenario. AI co-folding method and AI258

docking methods reveal a stronger dependence on pocket information, while physics-based methods259

show little sensitivity. Notably, even the state-of-the-art models such as SurfDock and Uni-Mol260

exhibit varying levels of dependence on pocket fidelity, indicating that future improvements in261

docking may arise from synergistically enhancing both pocket modeling and pose prediction.262

4.2.3 Impact of Relaxation from a Physically-based Validation Perspective263

We systematically evaluated the docking performance of various methods using the PoseBuster test264

suite, comprising 20 physicochemical validation metrics that assess stereochemistry and intra- and265

intermolecular validity. Figures S7 and S8 illustrate the failure rates of the PB-Valid metric before266

and after relaxation in self-docking and cross-docking settings, respectively.267

Without Relaxation. In the absence of relaxation, most AI docking methods generate ligand poses268

that violate physicochemical constraints. Notably, models such as EquiBind, FABind, and DeepDock269

exhibit a high failure rate in intermolecular validity, especially in the minimum distance-to-protein270

metric, with only approximately 10% of the predictions passing the test. Even SurfDock, which271

achieves the lowest RMSD, fails in nearly half of its predictions for this metric. Among the AI272

docking methods, Uni-Mol demonstrates the best performance on PB-Valid, but still exhibits chirality273

prediction errors. Among AI co-folding methods, NeuralPLexer and RFAA perform poorly in274

intermolecular validity. AlphaFold3 and similar models show relatively stable performance, but are275

not immune to chirality errors. In comparison, the recently introduced Boltz-1x model effectively276

addresses these issues, achieving the highest PB-Valid pass rate among all AI methods. Physics-based277

methods consistently perform well in structural plausibility, achieving high pass rates.278

With Relaxation. Most AI-based approaches benefit significantly from our relaxation protocol, which279

effectively mitigates intra- and intermolecular clashes. SurfDock emerges as the top-performing280

method in the benchmark post-relaxation. However, relaxation does not resolve chirality errors,281

and Uni-Mol shows no performance improvement in this process. Similarly, AI co-folding methods,282

including AlphaFold3, Chai-1, Boltz-1, and Protenix, exhibit limited improvement due to persistent283

chirality errors. Figure S9 illustrates two representative cases of chirality errors in docking predictions.284

Chiral errors still exist in the prediction results of AlphaFold3, Chai-1, and Boltz-1, but are resolved285

in Boltz-1x.286
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Summary. Integrating relaxation with AI docking methods yields the state-of-the-art performance.287

Concurrently, advancements in AI for biology are driving progress in docking methodologies. Boltz-288

1x incorporates physical mechanisms to produce docking results that satisfy physical constraints289

without relying on relaxation. These findings highlight the critical role of combining physically290

informed generation with refinement procedures in docking pipelines, particularly when applied to291

drug design scenarios requiring atomic-level accuracy.292

5 Conclusion293

This paper proposed PoseX, a comprehensive benchmark for protein-ligand docking. Specifically,294

we curated a new dataset with newly released protein-ligand complex crystal structures focusing295

on both self-docking and cross-docking, and incorporated 23 docking methods across three main296

research lines (physics-based methods, AI docking methods, and AI co-folding methods) to make an297

exhaustive comparison. We also designed a novel relaxation module to refine the AI-generated binding298

pose through energy minimization. Furthermore, we developed an online leaderboard that fosters299

transparency and facilitates easy and fair comparisons for protein-ligand docking. By conducting300

thorough empirical studies, we drew several key conclusions: (1) Both AI docking methods and AI301

co-folding methods have outperformed physics-based methods in overall docking success rate. (2)302

Most structural plausibility (except chirality) of AI-based approaches can be enhanced with relaxation,303

which means combining AI modeling with physics-based post-processing may achieve excellent304

performance. (3) Almost all the AI co-folding methods are plagued by ligand chirality, except for305

Boltz-1x, which introduced a new inference time steering technique to fix hallucinations, pointing306

out the direction of incorporation of advantages of AI and physics. (4) Pocket information can be307

leveraged adequately, especially for AI co-folding methods, to further promote the performance in308

real-world applications.309

6 Limitation and Future Work310

Here, we briefly summarize the limitations of this work and present some directions for future311

research.312

1. Evaluation on downstream tasks with binding affinities. While we focus on pose prediction and313

structural plausibility, binding affinity prediction remains an underexplored but complementary314

objective. Joint evaluation of structure and affinity on downstream tasks such as drug-target315

interaction and enzyme-substrate interaction would enable a more holistic assessment of docking316

algorithms and also remain an exciting direction for future research.317

2. Benchmarking on multi-ligand systems. So far, most existing benchmarks focus on the evalu-318

ation of single-ligand docking, while multi-ligand docking is also practical in real-world appli-319

cations such as enzyme engineering, where enzymes usually catalyze substrates together with320

co-factors. Thus, it is worth being assessed exhaustively in the future.321

3. Taking protein dynamics into account. To date, existing studies always evaluate docking with322

rigid protein conformations, while integrating protein dynamics will better reflect the kinetic323

nature of biomolecular interactions in vivo. Future benchmarks could incorporate conformational324

ensembles of receptor structures to evaluate various models in a comprehensive way.325
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to reproduce that algorithm.538
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either be a way to access this model for reproducing the results or a way to reproduce542
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authors are welcome to describe the particular way they provide for reproducibility.546

In the case of closed-source models, it may be that access to the model is limited in547
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to have some path to reproducing or verifying the results.549

5. Open access to data and code550

Question: Does the paper provide open access to the data and code, with sufficient instruc-551

tions to faithfully reproduce the main experimental results, as described in supplemental552

material?553
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• At submission time, to preserve anonymity, the authors should release anonymized573

versions (if applicable).574

• Providing as much information as possible in supplemental material (appended to the575
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6. Experimental setting/details577

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-578

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the579

results?580

Answer: [Yes]581
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work has nothing to do with training, but only testing or evaluation. The setup details of583

evaluation can be found in Appendix B, C and the github repository mentioned in Abstract.584
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• The answer NA means that the paper does not include experiments.586
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that is necessary to appreciate the results and make sense of them.588
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material.590

7. Experiment statistical significance591
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• The answer NA means that the paper does not include experiments.598
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• The method for calculating the error bars should be explained (closed form formula,605
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puter resources (type of compute workers, memory, time of execution) needed to reproduce620

the experiments?621

Answer: [Yes]622
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• The answer NA means that the paper does not include experiments.625
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Answer: [Yes]636
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deviation from the Code of Ethics.641

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-642

eration due to laws or regulations in their jurisdiction).643
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societal impacts of the work performed?646

Answer: [Yes]647

Justification: The description can be found in Introduction.648
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• The answer NA means that there is no societal impact of the work performed.650
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• The conference expects that many papers will be foundational research and not tied657

to particular applications, let alone deployments. However, if there is a direct path to658

any negative applications, the authors should point it out. For example, it is legitimate659

to point out that an improvement in the quality of generative models could be used to660

generate deepfakes for disinformation. On the other hand, it is not needed to point out661

that a generic algorithm for optimizing neural networks could enable people to train662

models that generate Deepfakes faster.663

• The authors should consider possible harms that could arise when the technology is664

being used as intended and functioning correctly, harms that could arise when the665

technology is being used as intended but gives incorrect results, and harms following666

from (intentional or unintentional) misuse of the technology.667

• If there are negative societal impacts, the authors could also discuss possible mitigation668

strategies (e.g., gated release of models, providing defenses in addition to attacks,669

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from670

feedback over time, improving the efficiency and accessibility of ML).671

11. Safeguards672

Question: Does the paper describe safeguards that have been put in place for responsible673

release of data or models that have a high risk for misuse (e.g., pretrained language models,674

image generators, or scraped datasets)?675

Answer: [NA]676

Justification: This paper poses no such risks.677

Guidelines:678

• The answer NA means that the paper poses no such risks.679

• Released models that have a high risk for misuse or dual-use should be released with680

necessary safeguards to allow for controlled use of the model, for example by requiring681

that users adhere to usage guidelines or restrictions to access the model or implementing682

safety filters.683

• Datasets that have been scraped from the Internet could pose safety risks. The authors684

should describe how they avoided releasing unsafe images.685

• We recognize that providing effective safeguards is challenging, and many papers do686

not require this, but we encourage authors to take this into account and make a best687

faith effort.688

12. Licenses for existing assets689

Question: Are the creators or original owners of assets (e.g., code, data, models), used in690

the paper, properly credited and are the license and terms of use explicitly mentioned and691

properly respected?692

Answer: [Yes]693

Justification: The related information can be found in Table 2.694

Guidelines:695

• The answer NA means that the paper does not use existing assets.696

• The authors should cite the original paper that produced the code package or dataset.697

• The authors should state which version of the asset is used and, if possible, include a698

URL.699

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.700

• For scraped data from a particular source (e.g., website), the copyright and terms of701

service of that source should be provided.702

• If assets are released, the license, copyright information, and terms of use in the703

package should be provided. For popular datasets, paperswithcode.com/datasets704

has curated licenses for some datasets. Their licensing guide can help determine the705

license of a dataset.706

• For existing datasets that are re-packaged, both the original license and the license of707

the derived asset (if it has changed) should be provided.708
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• If this information is not available online, the authors are encouraged to reach out to709

the asset’s creators.710

13. New assets711

Question: Are new assets introduced in the paper well documented and is the documentation712

provided alongside the assets?713

Answer: [Yes]714

Justification: We have released the dataset and code through github repository that can be715

found in Abstract alongside the instructions.716

Guidelines:717

• The answer NA means that the paper does not release new assets.718

• Researchers should communicate the details of the dataset/code/model as part of their719

submissions via structured templates. This includes details about training, license,720

limitations, etc.721

• The paper should discuss whether and how consent was obtained from people whose722

asset is used.723

• At submission time, remember to anonymize your assets (if applicable). You can either724

create an anonymized URL or include an anonymized zip file.725

14. Crowdsourcing and research with human subjects726

Question: For crowdsourcing experiments and research with human subjects, does the paper727

include the full text of instructions given to participants and screenshots, if applicable, as728

well as details about compensation (if any)?729

Answer: [NA]730

Justification: This paper does not involve crowdsourcing nor research with human subjects.731

Guidelines:732

• The answer NA means that the paper does not involve crowdsourcing nor research with733

human subjects.734

• Including this information in the supplemental material is fine, but if the main contribu-735

tion of the paper involves human subjects, then as much detail as possible should be736

included in the main paper.737

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,738

or other labor should be paid at least the minimum wage in the country of the data739

collector.740

15. Institutional review board (IRB) approvals or equivalent for research with human741

subjects742

Question: Does the paper describe potential risks incurred by study participants, whether743

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)744

approvals (or an equivalent approval/review based on the requirements of your country or745

institution) were obtained?746

Answer: [NA]747

Justification: This paper does not involve crowdsourcing nor research with human subjects.748

Guidelines:749

• The answer NA means that the paper does not involve crowdsourcing nor research with750

human subjects.751

• Depending on the country in which research is conducted, IRB approval (or equivalent)752

may be required for any human subjects research. If you obtained IRB approval, you753

should clearly state this in the paper.754

• We recognize that the procedures for this may vary significantly between institutions755

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the756

guidelines for their institution.757

• For initial submissions, do not include any information that would break anonymity (if758

applicable), such as the institution conducting the review.759
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16. Declaration of LLM usage760

Question: Does the paper describe the usage of LLMs if it is an important, original, or761

non-standard component of the core methods in this research? Note that if the LLM is used762

only for writing, editing, or formatting purposes and does not impact the core methodology,763

scientific rigorousness, or originality of the research, declaration is not required.764

Answer: [NA]765

Justification: We did not use LLMs for studies in this paper.766

Guidelines:767

• The answer NA means that the core method development in this research does not768

involve LLMs as any important, original, or non-standard components.769

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)770

for what should or should not be described.771
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A Dataset Construction and Statistical Analysis772

A.1 Dataset Construction Process773

Table S1: Selection process of the PDB entries and ligands for the PoseX Self-Docking (PoseX-SD).

Selection Step # proteins
(unique PDB IDs)

# ligands
(unique CCD IDs)

PDB entries released from January 1st, 2022 to January 1st, 2025
feature a refinement resolution of 2 Å or better and include at least one
protein and one ligand

13207 6877

Remove unknown ligands (e.g., UNX, UNL) 13202 6875
Remove proteins with a sequence length greater than 2000 11771 6442
Ligands weighing from 100 Da to 900 Da 9768 6196
Ligands with at least 3 heavy atoms 9706 6163
Ligands containing only H, C, O, N, P, S, F, Cl atoms 9030 5741
Ligands that are not covalently bound to protein 8383 5185
Structures with no unknown atoms (e.g., element X) 8349 5166
Ligand real space R-factor is at most 0.2 7521 4476
Ligand real space correlation coefficient is at least 0.95 5734 3426
Ligand model completeness is 100% 5645 3358
Ligand starting conformation could be generated with ETKDGv3 5638 3351
All ligand SDF files can be loaded with RDKit and pass its sanitization 5634 3345
PDB ligand report does not list stereochemical errors 5600 3317
PDB ligand report does not list any atomic clashes 3971 2541
Select single protein-ligand conformation 1 3971 2541
Intermolecular distance between the ligand(s) and the protein is at least
0.2 Å

3945 2527

Intermolecular distance between ligand(s) and other small organic
molecules is at least 0.2 Å

3889 2477

Intermolecular distance between ligand(s) and ion metals in complex
is at least 0.2 Å

3889 2477

Remove ligands which are within 5.0 Å of any protein symmetry mate 2451 1598
Get a set with unique pdbs and unique ccds by Hopcroft–Karp matching
algorithm

1587 1587

Select representative PDB entries by clustering protein sequences 718 718
1 The first conformation is chosen when multiple conformations are available in the PDB entry.
2 Clustering with MMseqs2 is done with a sequence identity threshold of 0% and a minimum coverage of 100%.
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Table S2: Selection process of the PDB entries and ligands for the PoseX Cross-Docking (PoseX-CD).

Selection Step # proteins
(unique PDB IDs)

# ligands
(unique CCD IDs)

PDB entries released from January 1st, 2022 to January 1st, 2025
feature a refinement resolution of 2 Å or better and include at least one
protein and one ligand

13207 6877

Remove unknown ligands (e.g., UNX, UNL) 13202 6875
Remove proteins with a sequence length greater than 2000 11771 6442
Ligands weighing from 100 Da to 900 Da 9768 6196
Ligands with at least 3 heavy atoms 9706 6163
Ligands containing only H, C, O, N, P, S, F, Cl atoms 9030 5741
Ligands that are not covalently bound to protein 8383 5185
Structures with no unknown atoms (e.g., element X) 8349 5166
Ligand real space R-factor is at most 0.2 7521 4476
Ligand real space correlation coefficient is at least 0.95 5734 3426
Ligand model completeness is 100% 5645 3358
Ligand starting conformation could be generated with ETKDGv3 5638 3351
All ligand SDF files can be loaded with RDKit and pass its sanitization 5634 3345
PDB ligand report does not list stereochemical errors 5600 3317
PDB ligand report does not list any atomic clashes 3971 2541
Select single protein-ligand conformation 1 3971 2541
Intermolecular distance between the ligand(s) and the protein is at least
0.2 Å

3945 2527

Intermolecular distance between the ligand(s) and the other ligands is
at least 5.0 Å

2232 1536

Remove ligands which are within 5.0 Å of any protein symmetry mate 1240 908
Cluster proteins that have at least 90% sequence identity 2 890 708
Structures can be successfully aligned to the reference structure in each
cluster 3

371 362

1 The first conformation is chosen when multiple conformations are available in the PDB entry.
2 Clustering with MMseqs2 is done with a sequence identity threshold of 90% and a minimum coverage of 80%.
3 Each candidate protein is structurally aligned to the reference protein via the superposition of Cα atom of amino

acid residues using PyMOL. A candidate PDB entry is removed if the RMSD of the protein alignment is greater
than 2.0 Å and a candidate ligand is removed if it is 4.0 Å away from the reference ligand.

A.2 Statistical Characteristics774
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Figure S1: (a) The distribution of structures per target shows that every protein adopts at least two
distinct conformations, and about half of the targets are represented by just two. (b) The distribution
of pocket similarities.
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B Docking Methods and Evaluation Settings775

This section presents the docking methods employed in our evaluation and illustrates the correspond-776

ing setups.777

B.1 Physics-based Methods778

Physics-based methods employ physical forces and geometric complementarity to model molecular779

interactions, predicting ligand binding to the target protein. Usually, the atomic coordinates of the780

protein’s binding site remain fixed, while the ligand undergoes flexible conformational changes. This781

schema reduces the computational complexity of docking simulations by neglecting the dynamic782

flexibility of the protein structure. However, although computationally efficient, this method may783

fail to fully account for the inherent flexibility of proteins, as biological systems often exhibit784

protein conformational changes upon ligand binding. We include 5 physics-based methods in this785

paper, including Discovery Studio [7], Schrödinger Glide [5], MOE [8], AutoDock Vina [9, 10] and786

GNINA [11].787

B.1.1 Schrödinger Glide788

Schrödinger Glide is a leading provider of biomolecular simulation software, and Glide is one of its789

flagship products, focusing on precise molecular docking simulations [5, 34]. Glide adopts a unique790

hierarchical docking approach, starting with coarse screening and then performing fine optimization791

on high-scoring results to improve prediction accuracy.792

Software Version: Schrödinger Suite 2022-1, Build 141793

Docking Workflow794

1. Use PrepWizard to preprocess the protein files by adding hydrogens and optimizing with795

the OPLS3 force field at pH 7.4.796

2. Use LigPrep to preprocess small molecules, preserving the chirality of the input ligand. Use797

Epik to predict the pKa and protonation states of small molecules at pH 7.0. Optimize the798

small-molecule conformations using the S-OPLS force field, and output one small-molecule799

conformation as the input for docking.800

3. Define the INNERBOX dimensions as 10× 10× 10 Å, and the OUTERBOX dimensions
as: (Sizex

Sizey
Sizez

)
=

(
xmax − xmin + 20
ymax − ymin + 20
zmax − zmin + 20

)
The force field is set to OPLS3, and all other parameters are set by default. Generate a grid801

file.802

4. Perform molecular docking using Glide SP (Standard Precision), and output one small803

molecule pose as the docking result.804

Runtime Environment: Run on an Intel i9-10920X CPU using 16 cores.805

B.1.2 Discovery Studio806

Discovery Studio [7], developed by Dassault Systèmes BIOVIA, is a comprehensive life sciences807

research platform that covers molecular modeling, virtual screening, and more. For protein-ligand808

binding, Discovery Studio performs conformational sampling around a given binding site and ranks809

potential poses using physics-based scoring functions like CDOCKER (which combines grid-based810

molecular dynamics and CHARMM force fields).811

Software Version: v2021.1.0.20298.812

Docking Workflow:813

1. Use the Proteins Preparation components in Discovery Studio to process the protein files.814

The protein was protonated at pH 7.4 with a solvent ionic strength of 0.145 M. Minimization815
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was performed using the CHARMm force field to optimize the protein structure, and all816

other parameters are set by default.817

2. Use the Ligands Preparation components in Discovery Studio to process the ligand files.818

Enumerate ionization states for each ligand within a pH range of 6.5-8.5. Enumerate819

automeric forms for each ligand with a maximum of 10 tautomers per ligand. Fix the bad820

valencies by adjusting formal charges, and all other parameters are set by default.821

3. Dock the prepared proteins and the corresponding prepared ligands using the CDOCKER
components in Discovery Studio. The docking site was centered at:(

xc

yc
zc

)
=

xmax+xmin

2
ymax+ymin

2
zmax+zmin

2


Define the binding sphere radius as:

R = max{(xmax − xmin), (ymax − ymin)− (zmax − zmin)}+ 20

The docking simulations were performed using the CHARMm force field. Assign the822

partial charges to the ligands via the Momany-Rone method, and all other parameters are823

set by default. 10 top docking poses output each docking run, and the best-scored pose was824

selected as the final docking result.825

Runtime Environment: Run on an Intel Ultra 5 125H CPU using 14 cores.826

B.1.3 Molecular Operating Environment (MOE)827

Molecular Operating Environment (MOE) [8], developed by the Canadian company Chemical828

Computing Group, is a commercial drug discovery software platform that combines visualization,829

modeling, simulations, and methodology development into a single, unified package.830

Software Version: MOE 2024.06.831

Docking Workflow832

1. An SVL script automates the docking pipeline.833

2. The StructurePreparation function is employed to preprocess protein structures.834

3. The binding site is defined by reference ligands.835

4. The Triangle Matcher algorithm is utilized to generate initial ligand poses.836

5. The scoring function is configured as London dG, with a maximum of 30 poses generated.837

6. Poses are refined using a fixed receptor, optimizing only the ligand’s position and conforma-838

tion, with the re-scoring function configured as GBVI/WSA dG and a maximum of 5 poses839

retained.840

Runtime Environment: Run on an AMD EPYC 9554 CPU.841

B.1.4 AutoDock Vina842

AutoDock Vina [10] is one of the fastest and most widely used open-source molecule docking843

programs. It combines global search (to identify potential binding modes) with local optimization (to844

refine these modes).845

Software Versions846

• AutoDock-Vina: 1.2.6847

• MGLTools: 1.5.7848

• Reduce: 4.14.230914849

• OpenBabel: 3.1.0850

• Meeko: 0.6.1851

Docking Workflow852
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1. Use Reduce to add polar hydrogens to the protein structure.853

2. Use OpenBabel to add non-polar hydrogens and normalize atom names, exporting the854

protein in a format recognizable by MGLTools.855

3. Use the receptor_prepare4.py script from MGLTools to convert the hydrogen-added protein856

PDB file into a PDBQT file.857

4. Use OpenBabel to add hydrogens to the ligand molecule at pH 7.4.858

5. Use the mk_prepare_ligand.py script from Meeko to convert the hydrogen-added ligand859

SDF file into a PDBQT file.860

6. Define the docking box center and size as follows:(
xc

yc
zc

)
=

xmax+xmin

2
ymax+ymin

2
zmax+zmin

2


(Sizex

Sizey
Sizez

)
=

(
xmax − xmin + 20
ymax − ymin + 20
zmax − zmin + 20

)
7. Perform molecular docking using the prepared protein and ligand PDBQT files.861

8. Use vina_split to split the output file, extract the best-scored pose for each ligand, and862

convert the resulting PDBQT file into an SDF file using Meeko for the final output.863

Runtime Environment: Run on an AMD EPYC 9554 CPU, with no specified core limit and up to864

256 cores available.865

B.1.5 GNINA866

GNINA [11, 35] is a relatively new project that introduces DL techniques into the field of molecular867

docking, particularly leveraging convolutional neural networks (CNNs) as scoring functions to868

improve docking scoring. It is an open-source software.869

Docker Image: https://hub.docker.com/layers/gnina/gnina/latest/images870

Running Parameters: The command used is:
gnina -r rec.pdb -l lig.sdf –autobox_ref.sdf -o out.sdf,

where lig.sdf is PDB_CCD_ligand_start_conf.sdf and ref.sdf is PDB_CCD_ligand.sdf.871

Runtime Environment: Run on Nvidia A6000 GPU.872

B.2 AI Docking Methods873

AI docking methods utilize SMILES strings of ligands and three-dimensional structures of protein874

targets as input to predict energetically favorable ligand conformations bound to target proteins.875

These methods systematically explore the conformational space of small molecules to identify876

low-energy configurations that optimize the binding affinity to proteins. By sampling diverse877

ligand conformations, AI docking methods enhance the optimization of spatial arrangements to878

maximize interactions with protein active sites, including hydrogen bonds, hydrophobic interactions,879

and electrostatic complementarity. We involve 11 AI docking methods in this paper, including880

DeepDock [12], EquiBind [13], TankBind [14], DiffDock [4], Uni-Mol [15], FABind [16], DiffDock-881

L [17], DiffDock-Pocket [18], DynamicBind [19], Interformer [20] and SurfDock [21].882

B.2.1 DeepDock883

DeepDock [12] is a geometric DL model that learns a statistical potential based on the distance884

likelihood.885

GitHub Repository: https://github.com/OptiMaL-PSE-Lab/DeepDock886

GitHub Commit Hash: ab1e45044c5e0a69105b48d09ea984c6a5ebc26c887

Running Parameters: Default parameters are used in evaluation.888

Runtime Environment: Run on Intel(R) Xeon(R) CPU E5-2620 v4.889
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B.2.2 EquiBind890

EquiBind [13] is an SE(3)-equivariant geometric DL model designed for direct-shot prediction of891

both i) the receptor binding site (blind docking) and ii) the ligand’s bound pose and orientation.892

GitHub Repository: https://github.com/HannesStark/EquiBind893

GitHub Commit Hash: 41bd00fd6801b95d2cf6c4d300cd76ae5e6dab5e894

Running Parameters: Default parameters are used in evaluation.895

Runtime Environment: Run on Nvidia A6000 GPU.896

B.2.3 TankBind897

TankBind [14] incorporates trigonometric constraints as a robust inductive bias into the model, and898

explicitly examines all potential binding sites for each protein by dividing the entire protein into899

functional blocks. establishes an efficient diffusion process within this space.900

GitHub Repository: https://github.com/luwei0917/TankBind901

GitHub Commit Hash: ff85f511db11d7a3e648d2e01cd6fdb4f9823483902

Running Parameters: Use the structure of the entire protein as input for prediction, rather than903

chains within 10Å of the ligand in the default setting.904

Runtime Environment: Run on an AMD EPYC 9554 CPU.905

B.2.4 DiffDock906

DiffDock [4] is a diffusion-based generative model defined on the non-Euclidean manifold of ligand907

poses. It maps this manifold to the product space of the degrees of freedom (translational, rotational,908

and torsional) relevant to docking and establishes an efficient diffusion process within this space.909

GitHub Repository: https://github.com/gcorso/DiffDock910

GitHub Commit Hash: bc6b5151457ea5304ee69779d92de0fded599a2c911

Running Parameters: Default parameters are used in evaluation.912

Runtime Environment: Run on Nvidia A800 GPU.913

B.2.5 DiffDock-L914

DiffDock-L [17] is a variant of DiffDock that scales up data and model size by integrating synthetic915

data strategies.916

GitHub Repository: https://github.com/gcorso/DiffDock917

GitHub Commit Hash: b4704d94de74d8cb2acbe7ec84ad234c09e78009918

Running Parameters: samples_per_complex is changed from the default value of 10 to 40.919

Runtime Environment: Run on Nvidia A800 GPU.920

B.2.6 DiffDock-Pocket921

DiffDock-Pocket [18] is a variant of DiffDock with additional binding pocket specification.922

GitHub Repository: https://github.com/plainerman/DiffDock-Pocket923

GitHub Commit Hash: 3902bdd4d42ee5254d37aa694d005a992c92ad93924

Running Parameters: Default parameters are used in evaluation.925

Runtime Environment: Run on Nvidia A6000 GPU.926
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B.2.7 DynamicBind927

DynamicBind [19] utilizes equivariant geometric diffusion networks to generate a smooth energy928

landscape, facilitating efficient transitions between various equilibrium states. DynamicBind accu-929

rately identifies ligand-specific conformations from unbound protein structures, eliminating the need930

for holo-structures or extensive sampling.931

GitHub Repository: https://github.com/luwei0917/DynamicBind932

GitHub Commit Hash: abdcd83f313cd20d50c3917e04615e989a8f63e5933

Running Parameters: Default parameters are used in evaluation.934

Runtime Environment: Run on Nvidia A800 GPU.935

B.2.8 FABind936

FABind [16] is an end-to-end model that integrates pocket prediction and docking to achieve precise937

and efficient protein-ligand binding predictions. It involves a ligand-informed pocket prediction938

module, which is also utilized to enhance the accuracy of docking pose estimation.939

GitHub Repository: https://github.com/gcorso/DiffDock940

GitHub Commit Hash: bc6b5151457ea5304ee69779d92de0fded599a2c941

Running Parameters: Default parameters are used in evaluation.942

Runtime Environment: Run on Nvidia A800 GPU.943

B.2.9 Uni-Mol944

Uni-Mol [15] represents Uni-Mol Docking v2. It combines the pretrained molecular and pocket945

models to learn the distance matrix, and then uses a coordinate model to predict the final coordinates946

of the molecule.947

GitHub Repository: https://github.com/deepmodeling/Uni-Mol/tree/main/unimol_948

docking_v2949

GitHub Commit Hash: c0365df6535b90197246399417a9b21250268352950

Running Parameters: Default parameters are used in prediction. About one-fifth of the molecules in951

the model output will encounter RDKit’s sanitization check errors. This issue is resolved by reading952

in the correct molecular topology and then assigning the coordinates predicted by Uni-Mol to the953

molecules with the new topology954

Runtime Environment: Run on Nvidia A6000 GPU.955

B.2.10 Interformer956

Interformer [20], a unified model based on the Graph-Transformer architecture, is specifically957

designed to capture non-covalent interactions using an interaction-aware mixture density network.958

Furthermore, it implements a negative sampling strategy to effectively adjust the interaction distribu-959

tion, enhancing affinity prediction accuracy.960

GitHub Repository: https://github.com/tencent-ailab/Interformer961

GitHub Commit Hash: 8cced9b8a5d8c887787a8c8731d9f087563d4c7e962

Running Parameters: Use PDB_CCD_ligand.sdf to obtain the pocket, perform UFF opti-963

mization on PDB_CCD_ligand_start_conf.sdf and replace it in the uff folder, and use the964

–uff_as_ligand option during prediction.965

Runtime Environment: Run on Nvidia A6000 GPU.966

B.2.11 SurfDock967

SurfDock [21] combines protein sequences, three-dimensional structural graphs, and surface-level968

features within an equivariant architecture. It leverages a generative diffusion model on a non-969
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Euclidean manifold to optimize molecular translations, rotations, and torsions, producing accurate970

and reliable binding poses.971

GitHub Repository: https://github.com/CAODH/SurfDock972

GitHub Commit Hash: 2f0422f6ddcfdfefc3fa61ef12a1d6406a589bce973

Running Parameters: Default parameters are used in evaluation.974

Runtime Environment: Run on Nvidia A6000 GPU.975

B.3 AI Co-folding Methods976

AI co-folding methods represent a significant advance in computational biology by simultaneously977

predicting the conformation of both the protein and its associated ligand, which sets them apart from978

physics-based methods and AI docking methods. In contrast to physics-based methods, which typically979

assume a fixed protein structure and focus on optimizing ligand placement, or AI docking methods980

that may still rely on predefined protein conformations, AI co-folding methods adopt a more holistic981

strategy–taking only the protein’s amino acid sequence and ligand’s SMILES strings as input.982

These methods aim to capture the dynamic interaction between proteins and ligands by predicting983

their structures in tandem, enabling a more accurate representation of how these molecules interact in984

biological systems. In this paper, we involve 7 AI co-folding methods, including NeuralPLexer [22],985

RoseTTAFold-All-Atom (RFAA) [23], AlphaFold3 [6], Chai-1 [24], Boltz-1 [25], Boltz-1x [25] and986

Protenix [26]. It should be noted that in our evaluation of AI co-folding methods, we did not consider987

post-translational modifications and used unmodified protein sequences as input.988

B.3.1 NeuralPLexer989

NeuralPLexer [22] is a physics-inspired flow-based generative model for biomolecular complex990

structure prediction based on sequences only. NeuralPLexer combines a protein language model to991

learn sequence information and graph encoding to represent 3D molecular structure and bioactivity992

information.993

GitHub Repository:https://github.com/zrqiao/NeuralPLexer994

GitHub Commit Hash: 2c52b10d3094e836661dfecfa3be76f47dcdea7e995

Running Parameters: Default parameters are used in evaluation.996

Runtime Environment: Run on Nvidia A6000 GPU.997

B.3.2 RoseTTAFold-All-Atom998

RoseTTAFold-All-Atom (RFAA) [23] is a generalized foundation model for all-atom biomolec-999

ular structure prediction and design, including protein, nucleic acid, and other small molecules.1000

RoseTTAFold-All-Atom is a 3-track based architecture incorporating equivariant neural networks for1001

all atomic structure prediction. Meanwhile, it integrates with RFDiffusion for molecular design.1002

GitHub Repository: https://github.com/baker-laboratory/RoseTTAFold-All-Atom1003

GitHub Commit Hash: 6c8514053acf76da0f9edde2aa51b40abff68fa11004

Running Parameters: Default parameters are used in evaluation.1005

Runtime Environment: Run on Nvidia A800 GPU.1006

B.3.3 AlphaFold31007

AlphaFold3 [6], developed by DeepMind, represents the latest advancement in protein structure1008

prediction technology. Building on the successes of its predecessor AlphaFold 2 [36]), AlphaFold31009

adopts a diffusion model instead of a structure module in AlphaFold2, not only improving the1010

accuracy of protein folding but also supporting the structure prediction of complexes (e.g., protein-1011

RNA, protein-ligand), which enables its usage in protein-ligand docking.1012

Software Version: 3.0.01013
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Running Parameters: Except for the number of seeds being set to 1, the rest of the predictions are1014

made using the default parameters. We finally select the top 1 result for evaluation.1015

Runtime Environment: Run on Nvidia A800 GPU.1016

B.3.4 Chai-11017

Chai-1 [37] is a multimodal molecular foundation model that can also predict structures with a single1018

sequence. By leveraging the decoder-only Transformer framework, which is widely used in Large1019

Language Models (LLM) like GPT, Chai-1 encodes sequential information without database search.1020

Moreover, Chai-1 accepts various chemical or biological constraint features as input to predict more1021

accurate molecular structures.1022

Software Version: 0.5.21023

Running Parameters: Use the online MSA server to obtain MSA information, keep the rest as1024

default settings, and select the top 1 result for evaluation.1025

Runtime Environment: Run on Nvidia A800 GPU.1026

B.3.5 Boltz-11027

Boltz-1 [25] aims at reproducing AlphaFold3 and releasing all the codes (model architecture, train-1028

ing, inference), which achieves competitive performance. Additionally, Boltz-1 introduces several1029

architectural innovations, including a novel reverse diffusion process and a revamped confidence1030

model, enhancing its predictive accuracy and robustness.1031

Software Version: 0.4.01032

Running Parameters: Use the MSA online server to obtain MSA information, set diffusion samples1033

to 5, and select the top 1 result for evaluation.1034

Runtime Environment: Run on Nvidia A800 GPU.1035

B.3.6 Boltz-1x1036

Boltz-1x [25] is an advanced version of the Boltz-1 model. It introduces a novel inference-time1037

steering technique, which enhances the physical quality of predicted poses by reducing hallucinations1038

and non-physical predictions. This ensures more reliable and biologically plausible structures.1039

Software Version: 1.0.01040

Running Parameters: Use the MSA online server to obtain MSA information, set diffusion samples1041

to 5, and select the top 1 result for evaluation.1042

Runtime Environment: Run on Nvidia A800 GPU.1043

B.3.7 Protenix1044

Protenix [26] is a comprehensive and open-source reproduction of AlphaFold3, developed by1045

ByteDance. It introduces several architectural innovations, including a modular PyTorch framework1046

that facilitates full training and inference, and optimizations such as custom CUDA kernels and BF161047

training to enhance computational efficiency.1048

Software Version: 0.4.21049

Running Parameters: Use the MSA online server to obtain MSA information, and the seed is set to1050

101.1051

Runtime Environment: Run on Nvidia A6000 GPU.1052

28



B.4 Training Data Cutoff Times1053

Table S3: Training Data Cutoff Times for Different Methods
Method Training Data Cutoff Time

Traditional physics-based methods
Discovery Studio [7] N/A
Schrödinger Glide [5] N/A
MOE [8] N/A
AutoDock Vina [9, 10] N/A
GNINA [11] 2018-12

AI docking methods
DeepDock [12] 2018-12
EquiBind [13] 2019-12
TankBind [14] 2018-12
DiffDock [4] 2018-12
Uni-Mol [15] 2019-12
FABind [16] 2018-12
DiffDock-L [17] 2018-12
DiffDock-Pocket [18] 2019-12
DynamicBind [19] 2018-12
Interformer [20] 2019-12
SurfDock [21] 2019-12

AI co-folding methods
NeuralPLexer [22] 2018-12
RoseTTAFold-All-Atom [23] 2021-11
AlphaFold3 [6] 2021-10
Chai-1 [24] 2021-02
Boltz-1 [25] 2021-10
Boltz-1x [25] 2021-10
Protenix [26] 2021-10
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C Technical Details of Relaxation Process1054

Our relaxation is based on the following software: OpenMM 7.7 [29], PDBFixer 1.8 [38], RDKit1055

2023.09 [39], AmberTools 23, and OpenFF 2.1.0 [30]. It contains the following essential steps:1056

• Structure preprocessing and integrity restoration. Use PDBFixer (v1.8) to handle the initial structure1057

files:1058

– Parse complete protein sequence information from CIF files, retaining water molecules and1059

metal ions within a 5 Å range of the ligand in AI-predicted models.1060

– Standardize non-canonical amino acids to canonical forms (e.g., SEP to SER), simultaneously1061

correcting the protein sequence database.1062

– Detect structural deficiencies using the findMissingResidues/findMissingAtoms algorithms,1063

and apply the AddMissingAtoms module to complete atoms (including N-terminal ACE and1064

C-terminal NME capping).1065

• Molecular topology construction and validation. To address the lack of bond order information in1066

PDBFixer:1067

– Integrate Amber ff14SB force field atom types and topology bond parameters to establish1068

bond order matching rules.1069

– Build a molecular graph model with RDKit (v2023.09) and perform SanitizeMol standardiza-1070

tion checks (including charge correction and stereochemistry validation).1071

– Apply the RDKit AddHs module for protonation, optimizing the spatial arrangement of1072

hydrogen atoms.1073

• Force field parameterization. Employ a multi-scale force field combination strategy:1074

– For protein systems: Generate Amber ff14SB force field parameters using OpenMM 7.7.1075

– For ligand systems: Perform GAFF-2.11 [40] parameterization using the OpenFF 2.1.0 toolkit,1076

including mmff94s charge calculations and XML topology generation.1077

• Constrained molecular dynamics optimization. Implement energy minimization on the OpenMM1078

7.7 platform [29]:1079

– Constraints: Apply additional forces (0.5 ∗ k ∗ ((x− x0)
2 + (y − y0)

2 + (z − z0)
2) (where1080

k = 10, x0, y0, z0 are original 3D coordinate) to constrain backbone atomic positions in the1081

protein structure, keeping newly added atoms free.1082

– Integration parameters: Langevin thermostat (300 K, friction coefficient 1 ps−1), time step1083

0.004 ps.1084

– Convergence criteria: Energy gradient convergence threshold ≤ 10 kJ/mol/nm.1085
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D Description of Validity1086

The validity checks for the structures analyzed in this study were conducted using PoseBuster [3],1087

a tool to ensure the reliability and accuracy of the molecular poses. The validation process encom-1088

passes chemical validity and consistency, intramolecular validity, and intermolecular validity, each1089

assessed with specific criteria as detailed below. In this study, we define structural plausibility as1090

stereochemical correctness and intra- and intermolecular validity.1091

D.1 Chemical Validity and Consistency1092

• File loads: The input molecule can be successfully loaded into a molecule object by RDKit.1093

• Sanitisation: The input molecule passes RDKit’s chemical sanitisation checks, ensuring it1094

adheres to basic chemical rules.1095

• Molecular formula: The molecular formula of the input molecule is identical to that of the1096

true molecule.1097

• Bonds: The bonds in the input molecule are the same as in the true molecule.1098

• Tetrahedral chirality: The specified tetrahedral chirality in the input molecule is the same1099

as in the true molecule.1100

• Double bond stereochemistry: The specified double bond stereochemistry in the input1101

molecule is the same as in the true molecule.1102

D.2 Intramolecular Validity1103

• Bond lengths: The bond lengths in the input molecule are within 0.75 of the lower and 1.251104

of the upper bounds determined by distance geometry.1105

• Bond angles: The angles in the input molecule are within 0.75 of the lower and 1.25 of the1106

upper bounds determined by distance geometry.1107

• Planar aromatic rings: All atoms in aromatic rings with 5 or 6 members are within 0.25 Å1108

of the closest shared plane.1109

• Planar double bonds: The two carbons of aromatic carbon-carbon double bonds and their1110

ring neighbours are within 0.25 Å of the closest shared plane.1111

• Internal steric clash: The interatomic distance between pairs of non-covalently bound1112

atoms is above 0.7 of the lower bound determined by distance geometry.1113

• Energy ratio: The calculated energy of the input molecule is no more than 100 times the1114

average energy of an ensemble of 50 conformations generated for the input molecule. The1115

energy is calculated using the UFF in RDKit and the conformations are generated with1116

ETKDGv3 followed by force field relaxation using the UFF with up to 200 iterations.1117

D.3 Intermolecular Validity1118

• Minimum protein-ligand distance: The distance between protein-ligand atom pairs is1119

larger than 0.75 times the sum of the pairs van der Waals radii.1120

• Minimum distance to organic cofactors: The distance between ligand and organic cofactor1121

atoms is larger than 0.75 times the sum of the pairs van der Waals radii.1122

• Minimum distance to inorganic cofactors: The distance between ligand and inorganic1123

cofactor atoms is larger than 0.75 times the sum of the pairs covalent radii.1124

• Volume overlap with protein: The share of ligand volume that intersects with the protein is1125

less than 7.5%. The volumes are defined by the van der Waals radii around the heavy atoms1126

scaled by 0.8.1127

• Volume overlap with organic cofactors: The share of ligand volume that intersects with1128

organic cofactors is less than 7.5%. The volumes are defined by the van der Waals radii1129

around the heavy atoms scaled by 0.8.1130

• Volume overlap with inorganic cofactors: The share of ligand volume that intersects with1131

inorganic cofactors is less than 7.5%. The volumes are defined by the van der Waals radii1132

around the heavy atoms scaled by 0.5.1133
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E Additional Figures for Model Evaluation1134
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Figure S2: Performance on Astex.
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Figure S3: The performance of most AI-based approaches is significantly influenced by pocket
similarity under self-docking setup. Among them, Protenix [26] exhibits the strongest negative
correlation (r = -0.390), whereas SurfDock [21], an AI-based model, demonstrates minimal statistical
association. In contrast, physics-based methods, such as AutoDock Vina and Glide, are relatively
unaffected by protein similarity.
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Figure S4: The performance of most AI-based approaches is significantly influenced by the pocket
similarity in cross-docking scenario, where similar conclusions as the self-docking scenario can be
derived.
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Figure S5: Performance on the PoseX-SD dataset. Samples are sorted by pocket similarity in
descending order, and the RMSD results are processed with a moving average (window size: 100). It
can be seen that most AI-based approaches degrade as pocket similarity decreases, while physics-
based methods perform relatively stably.
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Figure S6: Performance on the PoseX-CD dataset. The results are similar to those on PoseX-SD
(window size: 20).
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Figure S7: The proportion of models filtered out based on various filtering criteria in PB-Valid
(PoseX-SD).
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Figure S8: The proportion of models filtered out based on various filtering criteria in PB-Valid
(PoseX-CD).
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Figure S9: Case study of AI co-folding methods in chirality validation. We compared AlphaFold3,
Chai-1, Boltz-1, and Boltz-1x models on the 8OGX_VGO and 8FLV_ZB9 complexes. The figure
illustrates the docking results, with chiral centers marked by red circles, revealing that all co-folding
models except Boltz-1x exhibit chirality errors.
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Figure S10: Analysis of 8V71_YI8 in PoseX-CD. When transferring the ligand from its co-crystal
structure to the protein structure used for docking through structural alignment, steric clashes arise
between the ligand and the protein, underscoring the challenges associated with cross-docking. In
this case, all physics-based methods failed (RMSD ≥ 2Å), while the top-performing AI docking
method and AI co-folding method (SurfDock and AlphaFold3, respectively) accurately predicted the
pose. The rightmost column illustrates the conformational variations in residues that overlap with the
ligand across the two protein structures.
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Figure S11: Analysis of docking results for 8V71_YI8. The physics-based methods GNINA and
Glide(IFD) generate ligand conformations that substantially deviate from the ground-truth structure.
In contrast, SurfDock and AlphaFold3 generate docking poses that closely align with the ground-truth
structure. SurfDock’s docking poses exhibit steric clashes, which are resolved through relaxation,
whereas AlphaFold3’s poses are sterically compatible. The rightmost column demonstrates that,
for both SurfDock and AlphaFold3, key residues shift toward their corresponding positions in the
ground-truth structure after relaxation.
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