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Abstract

Accurate predictive models of the visual cortex neural response to natural visual stimuli
remain a challenge in computational neuroscience. In this work, we introduce V1T, a
novel Vision Transformer based architecture that learns a shared visual and behavioral
representation across animals. We evaluate our model on two large datasets recorded from
mouse primary visual cortex and outperform previous convolution-based models by more
than 12.7% in prediction performance. Moreover, we show that the self-attention weights
learned by the Transformer correlate with the population receptive fields. Our model thus
sets a new benchmark for neural response prediction and can be used jointly with behavioral
and neural recordings to reveal meaningful characteristic features of the visual cortex. Code
available at github.com/bryanlimy/V1T.

1 Introduction

Understanding how the visual system processes information is a fundamental challenge in neuroscience.
Predictive models of neural responses to naturally occurring stimuli have shown to be a successful approach
toward this goal, serving the dual purpose of generating new hypotheses about biological vision (Bashivan
et al., 2019; Walker et al., 2019; Ponce et al., 2019) and bridging the gap between biological and computer
vision (Li et al., 2019; Sinz et al., 2019; Safarani et al., 2021). This approach relies on the idea that high
performing predictive models, which explain a large part of the stimulus-driven variability, have to account for
the nonlinear response properties of the neural activity, thus allowing for the identification of the underlying
computations of the visual system (Carandini et al., 2005).

An extensive amount of work on the primary visual cortex (V1) has been dedicated to building quantitative
models that accurately describe neural responses to visual stimuli, starting from simple linear-nonlinear
models (Heeger, 1992; Jones and Palmer, 1987), energy models (Adelson and Bergen, 1985) and multi-layer
models (Lehky et al., 1992; Lau et al., 2002; Prenger et al., 2004). These models, based on neurophysiological
data, provide a powerful framework to test hypotheses about neural functions and investigate the principles
of visual processing. With the increased popularity of deep neural networks (DNNs) in computational
neuroscience in recent years (Kietzmann et al., 2018; Richards et al., 2019; Li et al., 2020; 2021), DNNs have
set new standards of prediction performance (Antolík et al., 2016; Klindt et al., 2017; Ecker et al., 2018;
Zhang et al., 2019), allowing for a more extensive exploration of the underlying computations in sensory
processing (Walker et al., 2019; Bashivan et al., 2019; Burg et al., 2021).
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DNN-based models are characterized by two main approaches. On the one hand, task-driven models rely on
pre-trained networks optimized on standard vision tasks, such as object recognition, in combination with a
readout mechanism to predict neural responses (Yamins et al., 2014; Cadieu et al., 2014; Cadena et al., 2019).
With the goal of explaining the evolutionary and developmental constraints of the visual system, task-driven
models have proven to be successful for predicting visual responses in primates (Yamins and DiCarlo, 2016;
Cadena et al., 2019) and mice (Nayebi et al., 2022) by obtaining a shared generalized representation of
the visual input across animals. On the other hand, data-driven models aim to build a predictive model
on large-scale datasets without any assumption on the functional properties of the network. These models
share a common representation by being trained end-to-end directly on data from thousands of neurons,
and they have been shown to be successful as predictive models for the mouse visual cortex (Lurz et al.,
2021; Franke et al., 2022). This approach allows us to identify core components that can be insightful when
studying nontrivial computational properties of cortical neurons, especially in combination with experimental
verification (Walker et al., 2019).

Data-driven models for prediction of visual responses across multiple animals typically employ the core-readout
framework (Klindt et al., 2017; Cadena et al., 2019; Lurz et al., 2021; Burg et al., 2021; Franke et al., 2022).
Namely, a core module which learns a shared latent representation of the visual stimuli across the animals,
followed by animal-specific linear readout modules to predict neural responses given the latent features. This
architecture enforces the nonlinear computations to be performed by the shared core, which can in principle
capture general characteristic features of the visual cortex (Lurz et al., 2021). The readout models then learn
the animal-specific mapping from the shared representation of the input to the individual neural responses.
With the advent of large-scale neural recordings, datasets that consist of thousands or even hundreds of
thousands of neurons are becoming readily available (Stosiek et al., 2003; Steinmetz et al., 2021). This has led
to an increase in the number of parameters needed in the readout network to account for the large number of
neurons, hence significant effort in neural predictive modeling has been dedicated to develop more efficient
readout networks. On the other hand, due to their effectiveness and computation efficiency (Goodfellow
et al., 2016), convolutional neural networks (CNNs) are usually chosen as the shared representation model.

Recently, Vision Transformer (ViT, Dosovitskiy et al. 2021) has achieved excellent results in a broad range of
computer vision tasks (Han et al., 2022) and Transformer-based (Vaswani et al., 2017) models have become
increasingly popular in computational neuroscience (Tuli et al., 2021; Schneider et al., 2022; Whittington et al.,
2022). For instance, Ye and Pandarinath (2021) proposed a Neural Data Transformer to model spike trains,
which was extended by Le and Shlizerman (2022) using a Spatial Transformer to achieve state-of-the-art
performance in 4 neural datasets. Berrios and Deza (2022) introduced a data augmentation and adversarial
training procedure to train a dual-stream Transformer which showed strong performance in predicting
monkey V4 responses. In modeling the mouse visual cortex, Conwell et al. (2021) experimented with a wide
range of out-of-the-box DNNs, including CNNs and ViTs, to compare their representational similarity when
pre-trained versus randomly initialized. Here, we explore the benefits of the ViT convolution-free approach
and self-attention mechanism as the core representation learner in a data-driven neural predictive model.
Note that, in this text, the term “attention” strictly refers to the self-attention layer in Transformers (Vaswani
et al., 2017), which is distinct from the perceptual process of “attention” in the neuroscience literature.

Since neural variability shows a significant correlation with the internal brain state (Pakan et al., 2016; 2018;
Stringer et al., 2019), information about behavior can greatly improve visual system models in the prediction
of neural responses (Bashiri et al., 2021; Franke et al., 2022). To exploit this relationship, we also investigate
a principled mechanism in the model architecture to integrate behavioral states with visual information.

Altogether, we propose V1T, a novel ViT-based architecture that can capture visual and behavioral repre-
sentations of the mouse visual cortex. This core architecture, in combination with an efficient per-animal
readout (Lurz et al., 2021), outperforms the previous state-of-the-art model by 12.7% and 19.1% on two
large-scale mouse V1 datasets (Willeke et al., 2022; Franke et al., 2022), which consist of neural recordings
of thousands of neurons across over a dozen behaving rodents in response to thousands of natural images.
Moreover, we show that the attention weights learned by the core module correlate with behavioral variables,
such as pupil direction. This link between the model and the visual cortex activity is useful for pinpointing
how behavioral variables affect neural activity.
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2 Neural data

We considered two large-scale neural datasets for this work, Dataset S1 by Willeke et al. (2022) and
Dataset F by Franke et al. (2022). These two datasets consist of V1 recordings from behaving rodents in
response to thousands of natural images, providing an excellent platform to evaluate our proposed method
and compare it against previous visual predictive models.

We first briefly describe the animal experiment in Dataset S. A head-fixed mouse was placed on a cylindrical
treadmill with a 25 inch monitor placed 15 cm away from the animal’s left eye and more than 7,000 neurons
from layer L2/3 in V1 were recorded via two-photon calcium imaging. Note that the position of the monitor
was selected such that the stimuli were shown to the center of the recorded population receptive field.
Gray-scale images ximage ∈ Rc=1×h×w from ImageNet (Deng et al., 2009) were presented to the animal
for 500 ms with a blank screen period of 300 to 500 ms between each presentation. Neural activities were
accumulated between 50 and 500 ms after each stimulus onset. In other words, for a given neuron i in trial
(stimulus presentation) t, the neural response is represented by a single value ri,t. In addition, the anatomical
coordinates of each neuron as well as four behavioral variables xbehaviors were recorded alongside with the
calcium responses. These variables include pupil dilation, the derivative of the pupil dilation, pupil center
(2d-coordinates) and running speed of the animal. Each recording session consists of up to 6,000 image
presentations (i.e. trials), where 5,000 unique images are combined with 10 repetitions of 100 additional
unique images, randomly intermixed. The 1,000 trials with repeated images are used as the test set and the
rest are divided into train and validation sets with a split ratio of 90% and 10% respectively. In total, data
from 5 rodents2 (Mouse A to E) were recorded in this dataset.

Dataset F follows largely the same experimental setup with the following distinction: colored images
(UV-colored and green-colored, i.e. ximage ∈ Rc=2×h×w) from ImageNet were presented on a screen placed
12 cm away from the animal; 4,500 unique colored and 750 monochromatic images were used as the training
set and an additional 100 unique colored and 50 monochromatic images were repeated 10 times throughout
the recording; in total, 10 rodents (Mouse F to O) were used in the experiment with 1, 000 V1 neurons
recorded from each animal. Table A.1 summarizes the experimental information from both datasets.

3 Previous work

A substantial body of work has recently focused on predictive models of cortical activity that learn a shared
representation across neurons (Klindt et al., 2017; Cadena et al., 2019; Lurz et al., 2021; Burg et al., 2021;
Franke et al., 2022), which stems from the idea in systems neuroscience that cortical computations share
common features across animals (Olshausen and Field, 1996). In DNN models, these generalizing features
are learned in a nonlinear core module, then a subsequent neuron-specific readout module linearly combines
the relevant features in this representation to predict the neural responses. Recently, Lurz et al. (2021) and
Franke et al. (2022) introduced a shared CNN core and animal-specific Gaussian readout combination that
achieved excellent performance in mouse V1 neural response prediction, and this is the current state-of-the-art
model on large-scale benchmarks including Dataset S and Dataset F. Here, we provide a brief description
for each of the modules in their proposed architecture, which our work is built upon.

CNN core. Typically, the core module learns the shared visual representation via a series of convolutional
blocks (Cadena et al., 2019; Lurz et al., 2021; Franke et al., 2022). In Lurz et al. (2021), given an input
image ximage ∈ Rc×h×w, the CNN core with filter size k outputs a latent representation vector z ∈ Rd×h′×w′

where h′ = h− k + 1, w′ = w − k + 1 and d is the hidden dimension. The CNN core, after an exhaustive
Bayesian hyperparameter search to optimize for the validation performance, has an output dimension of
z ∈ Rd×h′=28×w′=56. Previous works have shown correlation between behaviors and neural variability, and
that the behavioral variables can significantly improve neural predictivity (Niell and Stryker, 2010; Reimer
et al., 2014; Stringer et al., 2019; Bashiri et al., 2021). To that end, Franke et al. (2022) proposed to integrate
the behavioral variables xbehaviors ∈ Rv with the visual stimulus by duplicating each variable to a h×w matrix
and concatenating them with ximage in the channel dimension, resulting in an input vector of R(c+v)×h×w.

1The Sensorium Challenge held at NeurIPS 2022 Competition Track Program
22 additional mice were used in the Sensorium challenge (Willeke et al., 2022) and their test sets are not publicly available.
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Readout. To compute the neural response of neuron i from mouse m with nm neurons, the readout module
Rm : Rd×h′×w′ → Rnm by Lurz et al. (2021) computes a linear regression of the core representation z with
weights wi ∈ Rw′×h′×c, followed by an ELU activation with an offset of 1 (i.e. o = ELU(Rm(z)) + 1), which
keeps the response positive. The regression is performed by a Gaussian readout, which learns the parameters
of a 2d Gaussian distribution whose mean µi represents the center of the receptive field of the neuron in the
image space and whose variance quantifies the uncertainty of the receptive field position, which decreases
over training. The response is thus obtained as a linear combination of the feature vector of the core at a
single spatial position, which allows the model to greatly reduce the number of parameters per neuron in
the readout. Notably, to learn the position µi, the model also exploits the retinotopic organization of V1 by
coupling the recorded cortical 2d coordinates of each neuron with the estimated center of the receptive field
from the readout. Moreover, a shifter module is introduced to adjust (or shift) the µi receptive field center of
neuron i to account for the trial-to-trial variability due to eye movement (Franke et al., 2022). The shifter
network R2 → R2 consists of 3 dense layers with hidden size of 5 and tanh activation; it takes as input the
2d pupil center coordinates and learns the vertical and horizontal adjustments needed to shift µi.

4 Methods

The aim of this work is to design a neural predictive model F (ximage, xbehaviors) that can effectively incorporate
both visual stimuli and behavioral variables to predict responses o that are faithful to real recordings r from
mouse V1. With that goal, we first detail the core architectures proposed in this work, followed by the
training procedure and evaluation metrics. Code used in this work is attached as supplementary material and
will be made publicly available upon publication.

4.1 V1T core

Figure 1: Illustration of the V1T block architecture.

Vision Transformers (Dosovitskiy et al., 2021), or
ViTs, have achieved competitive performance in
many computer vision tasks, including object detec-
tion and semantic segmentation, to name a few (Chen
et al., 2020; Carion et al., 2020; Strudel et al., 2021).
Here, we propose a data-driven ViT core capable of
learning a shared representation of the visual stimuli
that is relevant for the prediction of neural responses
in the visual cortex. Moreover, we introduce an
alternative approach in V1T to encode behavioral
variables in a more principled way when compared
to previous methods and further improve the neural
predictive performance of the overall model.

The original ViT classifier is comprised of 3 main com-
ponents: (1) a tokenizer first encodes the 3d image
(including channel dimension) into 2d patch embed-
dings, (2) the embeddings are then passed through a
series of Transformer (Vaswani et al., 2017) encoder
blocks, each consisting of a Multi-Head Attention
(MHA) and a Multi-Layer Perceptron (MLP) module
which requires 2d inputs, and finally (3) a classifica-
tion layer outputs the class prediction. The following
sections detail the modifications made to convert the
vanilla ViT to a shared visual representation learner
for the downstream readout modules. We addition-
ally experiment with a number of recently proposed
efficient ViTs that have been emphasized for learning
from small to medium size datasets.
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Tokenizer. The tokenizer, or patch encoder, extracts non-overlapping squared patches of size p× p from
the 2d image and projects each patch to embeddings z0 of size d, i.e. Rc×h×w → Rl×(cp2) → Rl×d, where
l = hw/p2 is the number of patches. Dosovitskiy et al. (2021) proposed two tokenization methods in the
original ViT, where patches can be extracted either (1) via a p× p sliding window over the height and width
dimensions of the image, followed by a linear layer with d hidden units, or (2) via a 2d convolutional layer
with kernel size p and d filters.

Transformer-based models benefit from (or even necessitate) pre-training on large datasets, in the magnitude
of millions or even billions of samples, in order to obtain optimal performance (Han et al., 2022). In contrast,
typical neural recordings in animal experiments are considerably smaller. To stay consistent with previous
work, we instead focus on developing a core architecture that can be effectively trained on limited amount
of data from scratch. To that end, we considered two recently introduced efficient ViT methods that are
highly competitive in scarce data settings. Lee et al. (2021) proposed Shifted Patch Tokenization (SPT) to
combat the low inductive bias in ViTs and enable better learning from limited data. Conceptually, SPT allows
additional (adjacent) pixel values to be included in each patch, thus improving the locality, or receptive field,
of the model. Input image ximage ∈ R1×h×w is shifted spatially by p/2 in one of the four diagonal directions
(top-left, top-right, bottom-left, bottom-right) with zero padding and the four shifted images (i.e. each shifted
in one diagonal direction) are then concatenated with the original image, resulting in a vector R5×h×w, which
can be processed by the two patch extraction approaches mentioned above. With a similar goal in mind, the
Compact Convolutional Transformer (CCT, Hassani et al. 2021) was proposed as a convolutional tokenizer to
learn the patch embeddings that can take advantage of the translation equivariance and locality inherent in
CNNs. The proposed mini-CNN is fairly simple: it consists of a 2d convolution layer with a p× p kernel and
filter size d, followed by ReLU activation and a max pool layer. In this work, we experimented with and
compared all four tokenization methods: sliding window, a single 2d convolutional layer, SPT and CCT.

As ViTs are agnostic to the spatial structure of the data, a positional embedding is added to each patch to
encode the relative position of the patches with respect to each other (Dosovitskiy et al., 2021; Han et al.,
2022) and this positional embedding can either be learned or sinusoidal. Finally, a learnable BERT (Devlin
et al., 2019) [cls] token is typically added to the patch embeddings (i.e. z0 ∈ R(l+1)×d) to represent the
class of the image.

Transformer encoder. The encoder consists of a series of ViT blocks, where each block comprises two
sub-modules: Multi-Head Attention (MHA) and Multi-Layer Perceptron (MLP). In each MHA module, we applied
the standard self-attention formulation (Vaswani et al., 2017): Attention(Q, K, V ) = softmax(QKT /

√
d)V ,

where query Q, key K and value V are linear projections of the input zb at block b. Conceptually, the
self-attention layer assigns a pairwise attention value among all the patches (or tokens). In addition to the
standard formulation, we also experimented with the Locality Self Attention (LSA, Lee et al. 2021), where a
diagonal mask is applied to QKT to prevent strong connections in self-tokens (i.e. diagonal values in QKT ),
thus improving the locality inductive bias. Each sub-module is preceded by Layer Normalization (LayerNorm,
Ba et al. 2016), and followed by a residual connection to the next module.

Reshape representation. To make the dimensions compatible with the Gaussian readout module (see
Section 3 for an overview), we reshape the 2d core output z ∈ Rl×d to Rd×h′×w′ , where l = h′ × w′ and
h′ ≤ w′. Note that if the number of patches l is not sufficiently large, it is possible for the same position
in z to be mapped to multiple neurons, which could lead to adverse effects. For instance, in the extreme
case of l = 1, all neurons would be mapped to a single p× p region in the visual stimulus (i.e. they would
have the same visual receptive field), which is not biologically plausible given the size of the recorded cortical
area (Garrett et al., 2014). We therefore set the stride size of the patch encoder as a hyperparameter and
allow for overlapping patches, thus letting the hyperparameter optimization algorithm select the optimal
number of patches. Given ximage ∈ Rc×h=36×w=64, the V1T core has an output dimension of Rd×h′=29×w′=57.

4.1.1 Incorporating behaviors

Previous studies have shown that visual responses can be influenced by behavioral variables and brain states;
for example, changes in arousal, which can be monitored by tracking pupil dilation, lead to stronger (or
weaker) neural responses (Reimer et al., 2016; Larsen and Waters, 2018). As a consequence, the visual
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representation learned by the core module should also be adjusted according to the brain state. Here, instead of
inputting a vector that is a concatenation of the visual stimulus ximage ∈ Rc×h×w and behavioral information
xbehaviors ∈ Rv in the channel dimension (i.e. R(c+v)×h×w, see Section 3), we propose an alternative method to
integrate behavioral variables with the visual stimulus using a novel ViT-based architecture – V1T, illustrated
in Figure 1.

We introduced a behavior MLP module (B-MLP : Rv → Rd) at the beginning of the encoder block which learns
to adjust the visual latent vector z based on the observed behavioral states xbehaviors. Each B-MLP module
comprises two fully-connected layers with d hidden units and a dropout layer in between; tanh activation
is used so that the adjustments to z can be both positive and negative. Importantly, as layers in DNNs
learn different features of the input, usually increasingly abstract and complex with deeper layers (Zeiler and
Fergus, 2014; Raghu et al., 2021), we hypothesize that the influence of the internal brain state should therefore
change from layer to layer. To that end, we learned a separate B-MLPb at each block b in the V1T core, thus
allowing level-wise adjustments to the visual latent variable. Formally, B-MLPb projects xbehaviors to the same
dimension of the embeddings zb−1, followed by an element-wise summation between latent behavioral and
visual representations, and then the rest of the operations in the encoder block:

zb ← zb−1 + B-MLPb(xbehaviors) (1)
zb ← MHAb(LayerNorm(zb)) + zb (2)
zb ← MLPb(LayerNorm(zb)) + zb (3)

where z0 denotes the original patch embeddings. To compare the prediction performance difference due to
our proposed behavior module, we also trained an equivalent Vision Transformer (denoted as ViT) with the
same architecture as V1T except that it integrates behavioral information in the same manner as the CNN
model (i.e. ViT inputs R(c+v)×h×w).

4.2 Training and evaluation

In order to isolate the change in prediction performance that is solely due to the proposed core architectures,
we employed the same readout architectures by Lurz et al. (2021), as well as a similar data preprocessing and
model training procedure. We used the same train, validation and test split provided by the two datasets
(see Section 2). Natural images, recorded responses, and behavioral variables (i.e. pupil dilation, dilation
derivative, pupil center, running speed) were standardized using the mean and standard deviation measured
from the training set and the images were then resized to 36×64 pixels from 144×256 pixels. The shared core
and per-animal readout modules were trained jointly using the AdamW optimizer (Loshchilov and Hutter,
2019) to minimize the Poisson loss

LPoisson
m (r, o) =

nt∑
t=1

nm∑
i=1

(
oi,t − ri,t log(oi,t)

)
(4)

between the recorded responses r and predicted responses o, where nt is the number of trials in one batch
and nm the number of neurons for mouse m. A small value ε = 1e− 8 was added to both r and o prior to the
loss calculation to improve numeric stability. Gradients from each mouse were accumulated before a single
gradient update to all modules. We tried to separate the gradient update for each animal, i.e. one gradient
update per core-readout combination, but this led to a significant drop in performance. We suspect this is
because the core module failed to learn a generalized representation among all animals when each update step
only accounted for gradient signals from one animal. We used a learning rate scheduler in conjunction with
early stopping: if the validation loss did not improve over 10 consecutive epochs, we reduced the learning rate
by a factor of 0.3; if the model still had not improved after 2 learning rate reductions, we then terminated
the training process. Dropout (Srivastava et al., 2014), stochastic depths (Huang et al., 2016), and L1 weight
regularization were added to prevent overfitting. The weights in dense layers were initialized by sampling from
a truncated normal distribution (µ = 0.0, σ = 0.02), where the bias values were set to 0.0; whereas the weight
and bias in LayerNorm were set to 1.0 and 0.0. Each model was trained on a single Nvidia RTX 2080Ti GPU
and all models converged within 200 epochs. Finally, we employed Hyperband Bayesian optimization (Li
et al., 2017) to find the hyperparameters that achieved the best performance in the validation set. This
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included finding the optimal tokenization method and self-attention mechanism. The initial search space
and final hyperparameter settings are detailed in Table A.2. We independently performed a hyperparameter
search on the CNN model, though we failed to find a configuration that achieves better performance than
the settings provided by Lurz et al. (2021) and Franke et al. (2022). While learning rate warm-up and
pre-training on large datasets are considered the standard approach to train Transformers (Xiong et al., 2020;
Han et al., 2022), in order to stay consistent with previous work and to isolate the performance gain solely
due to the architectural change, all models presented in this work are trained from scratch and follow the
same procedure stated above.

The prediction performance of our models was measured by the single trial correlation metric, used by Willeke
et al. (2022) and Franke et al. (2022), which can also account for the trial-to-trial variability in the test set
where the same visual stimuli were shown multiple times. We computed the correlation between recorded r
and predicted o responses:

trial corr.(r, o) =
∑

i,j(ri,j − r̄)(oi,j − ō)√∑
i,j(ri,j − r̄)2 ∑

i,j(oi,j − ō)2
(5)

where r̄ and ō are the average recorded and predicted responses across all trials in the test set.

5 Results

Here, we first discuss the final core architecture chosen after the Bayesian hyperparameter optimization,
followed by a comparison of our proposed core against baseline models on the two large-scale mouse V1
datasets. Moreover, we analyze the trained core module and present the insights that can be gained from it.
We present the cross-animal and cross-dataset generalization in Appendix A.4.

Table 1: The single trial correlation (corr.) between predicted and recorded responses in Dataset S and
Dataset F test set. ∆CNN and ∆ViT show the relative differences against the CNN (Lurz et al., 2021) and
ViT models with behavior variables; we additionally fitted a CNN and ViT core with stimulus-response pairs
(behav: ) to evaluate the prediction performance without behavioral information. sd shows the standard
deviation across animals and detailed per-animal results are available in Appendix A.3.

Dataset S (Willeke et al.) Dataset F (Franke et al.)
behav corr. (sd) ∆CNN ∆ViT corr. (sd) ∆CNN ∆ViT

LN 0.275 (0.019) -27.2% -33.7% 0.223 (0.040) -28.0% -35.4%
CNN 0.300 (0.021) -20.6% -27.6%
CNN 0.378 (0.029) 0.0% -8.7% 0.309 (0.070) 0.0% -10.3%
ViT 0.319 (0.024) -15.6% -22.9%
ViT 0.414 (0.032) +9.5% 0.0% 0.344 (0.041) +11.4% 0.0%
V1T 0.426 (0.027) +12.7% +3.0% 0.368 (0.032) +19.1% +6.9%

Ensemble of 5 models

CNN 0.404 (0.025) +6.9% -2.3% 0.340 (0.050) +10.0% -1.3%
ViT 0.424 (0.026) +12.2% +2.4% 0.365 (0.037) +18.1% +6.0%
V1T 0.439 (0.027) +16.1% +6.1% 0.378 (0.033) +22.3% +3.8%

V1T benefits from smaller and overlapping patches. We first looked at how hyperparameters of ViT
and V1T affect model performance. We observed the predictive performance to be quite sensitive towards
number of patches, patch size and patch stride. The most performant models used a patch size of 8 and a
stride size of 1, thus extracting the maximum number of patches. We note that this allows the readout to
learn a mapping from the shared core representation of the stimulus to the cortical position of each neuron
that spans across the whole image, and not just a part of the image. Since the visual receptive fields of
neurons are distributed across a large area of the monitor given the size of the recorded cortical area, this
leads to more accurate response predictions from the model. Furthermore, we found that the two efficient
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tokenizers, SPT and CCT, whose aim is to reduce the number of patches, both failed to improve the model
performance, reiterating that a finer tiling of the image is crucial for accurate predictions of cortical activity.
Moreover, we found that the LSA attention mechanism, which encourages the model to learn from inter-tokens
by masking out the diagonal self-token, led to worse performance, suggesting information from adjacent
patches in this task is not as influential as it is in image classification. Appendix A.1 details the importance
of each hyperparameter and the test performance trade-off among the various tokenizers and attention
mechanisms. Lastly, we found that V1T with layer-wise B-MLP modules yields the best results, indicating that
the modulation introduced by behavioral information varies as the core learns different visual representations
at deep layers. Further analysis and discussion on the B-MLP module are presented in Appendix A.2.

V1T outperforms CNN. Next, we compared the tuned ViT and V1T cores against a baseline linear-
nonlinear (LN) model and the previous state-of-the-art CNN model (Lurz et al., 2021) on the two large scale
mouse V1 datasets (see Section 2). We also trained a CNN and ViT core on response-stimuli pairs only on
Dataset S, to evaluate the importance of behavioral information in response predictions. Table 1 summarizes
the test performance on the two datasets, results of per-animal performance and an alternative metric are
available in Appendix A.3. By simply replacing the CNN core module with the tuned ViT architecture, we
observed a considerable improvement in response predictions across all animals, with an average increase of
9.5% and 11.3% in single trial correlation over the CNN model in Dataset S and Dataset F respectively.
Thus far, the core module encoded the brain state of the animals by concatenating behavioral variables as
additional channels in the natural image. With that said, our proposed V1T core, which encodes the brain
state via the B-MLP nonlinear transformations, further improved the average prediction performance by 2.9%
and 7.0% in the two datasets, or 12.7% and 19.1% over the CNN model.

As demonstrated in the Sensorium Challenge (Sensorium Workshop, 2022) and Franke et al. (2022), ensemble
learning is a common approach to improve neural predictive models. Following the procedure in Franke
et al. (2022), we trained 10 models with different random seeds and selected the 5 best models based on
their validation performance. The average of the selected models constituted the output of the ensemble
model. The CNN ensemble model achieved an average improvement of 6.9% in Dataset S as compared to
its non-ensemble variant. Nevertheless, the individual V1T model still outperformed the CNN ensemble by
5.4%. A V1T ensemble trained with the same procedure achieved an average single trial correlation of 0.439,
which corresponds to an 8.7% improvement over the CNN ensemble model. Altogether, our proposed core
architecture set a new benchmark in both gray-scale and colored visual response prediction.

Sample efficiency. Most neural datasets are constrained by their limited size, due to technical and/or ethical
limitations, while typical DNNs require a large amount of data to train on, especially Transformer-based
models (Han et al., 2022). Here, we evaluate the sample efficiency of the CNN, ViT and V1T models by
fitting them with 500 (11%), 1500 (33%), 2500 (55%), 3500 (77%) and 4500 (100%) samples per animal in
Dataset S (Willeke et al., 2022). Figure 2 shows the single trial correlation in the test set for the three
models trained on different sample sizes, each with 30 different random seeds. Overall, we found that V1T
outperforms the CNN model even at 1500 training samples per animal. Moreover, the predictive performance
of the CNN model plateaus at around 3500 training samples, while V1T keeps improving, suggesting that the
ViT-based model can continue to improve with more data.

Spatial tuning difference. As expected, models trained without behavioral information led to worse results
(see behavior: in Table 1). Nevertheless, we observed an average 6.3% improvement in stimuli-response
prediction with the tuned ViT core over the CNN model in Dataset S. To further our understanding of
why the ViT might be performing better in visual response prediction, we evaluated the discrepancies in
spatial tuning of the two models by comparing their artificial receptive fields (aRFs). Appendix A.5 details
the procedure. Briefly, we presented the models with thousands of white noise images and then summed
the images weighted by the response prediction to estimate the aRF of each artificial unit. Figure 3a shows
the aRF of the same artificial unit from the CNN and ViT model. Visually, the aRFs of the ViT model
appear to be narrower and qualitatively different from the aRFs of the CNN. In order to quantify the aRF
sizes, we fitted a 2d Gaussian to each aRF and observed a significant difference in the standard deviation
distributions, shown in Figure 3b. Overall, the aRFs of the ViT model have a much narrower spread, with a
mean standard deviation of 3.0± 0.5 and 2.6± 0.4 in the horizontal and vertical directions over all artificial
units, considerably lower than the 5.1± 1.5 and 3.1± 0.9 of the CNN. These results show that the artificial
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Figure 2: Prediction performance when trained with 500, 1500, 2500, 3500 and (all) 4500 samples per animal
in Dataset S. The models were each trained with 30 different random seeds. The error bar shows the
standard deviations of the repeated experiments, and the statistical difference (two-sided t-test) in CNN vs
V1T and ViT vs V1T in each sample group is shown above each pair of bars (****: p ≤ 0.0001).
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Figure 3: (a) Estimated artificial receptive field (aRF) and 2d Gaussian fit (red circle shows 1 standard
deviation ellipse) of the same artificial unit from the CNN and ViT models trained without behaviors.
Visually, the ViT learns narrower aRFs, more examples in Appendix A.5. To quantify the size of the aRFs, we
compared the fitted Gaussian over all units from Mouse A; (b) the distributions of the standard deviations
shows that the ViT learns notably narrower aRFs. V1T attention visualization on Mouse A (c) validation
and (d) test samples. Each attention map was normalized to [0, 1], and the behavioral variables of the
corresponding trial are shown below the image in the format of [pupil dilation, dilation derivative, pupil
center (x, y), speed]. More examples in Appendix A.6.

units in the CNN and ViT learn notably different aRFs. Given that we did not constrain the aRF size, our
results suggest that the narrower fields allow ViT to learn location-dependent features that are beneficial for
visual response prediction.
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Self-attention visualization. In addition to the performance gain in the proposed core architecture, the
self-attention mechanism inherent in Transformers can be used to visualize areas in the input image that
the model learns to focus on. In our case, it allows us to detect the regions in the visual stimulus that drive
the neural responses. To that end, we extracted the per-stimulus attention map learned by the V1T core
module via Attention Rollout (Abnar and Zuidema, 2020; Dosovitskiy et al., 2021). Briefly, we aggregated
the attention weights (i.e. Softmax(QKT /

√
d)) across all heads in MHA, and then multiplied the weights over

all layers (blocks), recursively. Figure 3 shows the normalized average attention weights superimposed to
the input images from Mouse A, with more examples available in Appendix A.6. Given that the position
of the computer monitor was chosen in order to center the population receptive field, V1 responses from
the recorded region should be mostly influenced by the center of the image (Willeke et al., 2022). Here, we
can see a clear trend where the core module is focusing on the central regions of the images to predict the
neural response, which aligns with our expectation from the experiment conditions. Interestingly, when the
core module inputs the same image but with varying behaviors (i.e. Figure 3d), we noticed variations in the
attention patterns. This suggests that the V1T core is able to take behavioral variables into consideration
and adjust its attention solely based on the brain state.

These attention maps can inform us of the area of the image (ir)relevant for triggering visual neuronal
responses which, in turn, allow us to build more sophisticated predictive models. For instance, the core
module consistently assigned higher weights to patches in the center of the image, suggesting information
at the edges of the image are less (or not at all) relevant for the recorded group of neurons. As a practical
example, we eliminated irrelevant information in the stimuli by center cropping the image to α144× α256
pixels where 0 < α ≤ 1, prior to downsampling the input to 36× 64 pixels. We found that a crop factor of
α = 0.8 (i.e. removing 36% of the total number of pixels) further improved the single trial correlation to
0.430, or 13.8% better than the CNN. Note that we also obtained similar improvement with the CNN model.

Self-attention correlates with pupil center. To further explore the relationship between the attention
weights learned by the core module and the behavioral information, we measured the absolute correlation
between the center of mass of the attention maps and the pupil centers in the vertical and horizontal axes. The
correlation coefficient of each animal in Dataset S is summarized in Table 2. Overall, we found a moderate
correlation between the attention maps and the pupil center of the animal, with an average correlation
(standard deviation) of 0.525 (0.079) and 0.409 (0.105) in the horizontal and vertical directions across animals.
This relationship demonstrates that the attention maps can reveal the impact of behavioral variables on the
neural responses. Therefore, this framework can be particularly useful for studies investigating the coding of
visual information across visual cortical areas (V1 and higher visual areas), as the model could determine
what part(s) of the visual stimulus is processed along the “hierarchy” of visual cortical areas. Since higher
visual areas are known to have larger receptive fields (Wang and Burkhalter, 2007; Glickfeld et al., 2014),
we would expect a larger part of the image to be relevant for the core module. Further investigation of the
attention map could also be used to determine which part of a visual scene was relevant when performing
more specific tasks, such as object recognition, decision-making, or spatial navigation.

Table 2: Correlations between the center of mass of the attention maps and pupil centers in the (x-axis)
horizontal and (y-axis) vertical direction in Dataset S test set, all with a p-value ≪ 0.0001.

Mouse x-axis y-axis

A 0.682 (****) 0.568 (****)
B 0.489 (****) 0.493 (****)
C 0.505 (****) 0.370 (****)
D 0.484 (****) 0.310 (****)
E 0.464 (****) 0.302 (****)
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6 Discussion

In this work, we presented a novel core architecture V1T to model the visual and behavioral representations of
mouse V1 activities in response to natural visual stimuli. The model outperformed the previous state-of-the-art
CNN (Lurz et al., 2021) model on two large-scale mouse V1 datasets by a considerable margin (12.7% and
19.1%). In contrast to the winning submissions at the Sensorium Challenge (Sensorium Workshop, 2022),
which focused on data augmentation and building large ensembles based on the CNN model, we instead
introduced a new architecture as the shared core module. Our best model achieved a single trial correlation
of 0.428 and 0.444 (correlation to average: 0.634 and 0.650) in the two held-out test sets, which would place
us 2nd place in the leaderboard, and the best method across all models not taking the neuronal response
trends over time into account. In addition, we also showed that V1T can be competitive in the low data
regime, and that its performance continues to improve with more data to a larger extend than the CNN
model. To the best of our knowledge, our approach is also the first ViT-based model to outperform CNNs in
mouse V1 response prediction.

With a strong neural predictive performance, this model also provides a framework to investigate in silico
the computations in the visual system, and in particular, the modulation of neural responses by behavioral
variables. In this study, we included speed of the animal in the virtual corridor, pupil dilation, dilation
derivative and pupil center as behavioral variables. For each of these variables, there is prior evidence showing
that they do affect responses in V1. For instance, Pakan et al. (2018) showed that 12% of the recorded V1
neurons decreased their activity with lower running speed, suggesting a clear benefit of considering the speed
of the animal for predicting V1 responses. Pupil dilation has been shown to be related to arousal of the
animal, with complex modality dependent effects of arousal on the mouse sensory cortex (Shimaoka et al.,
2018). The pupil center represents the fixation point of the animal and is a proxy for what the animal is
paying attention to. As a proof of principle of how a Vision Transformer can be used to gain insights into
the importance of behavioral variables for V1 responses, we showed that the center of the self-attention
maps learned by our model correlates with the pupil center of the animals, highlighting how features of this
architecture do reflect properties of cortical neurons’ receptive fields, in this case, the retinotopy. Moreover,
our model is able to exploit certain anatomical information, for example the location of neurons within
the primary visual cortex, from which we can roughly infer the location of their receptive field since the
retinotopic map of mouse primary visual cortex is well characterized (Zhuang et al., 2017). However, while
the CNN architecture was inspired by receptive fields of the visual cortex (Fukushima, 1980), the Vision
Transformer architecture was not and has no direct biological counterpart. Therefore, it is challenging to
map the abstract components of a Vision Transformer onto the anatomy or biophysics of the brain.

Nevertheless, the V1T model has a number of limitations. Firstly, only one-dimensional behavioral information
can be incorporated since the model integrates scalars into the latent embedding via the B-MLP module.
Additional architecture engineering is needed if the behavioral variables have varying (and higher) dimensions,
for instance, 3D poses (Mathis et al., 2018). Secondly, in the case of very limited data (e.g. 500 samples, see
Figure 2), CNN-based models are likely to outperform ViTs, which typically require considerable amount of
data to be performant (Han et al., 2022).

In future work, we plan to further investigate the relationship between behavioral variables and neural
responses. The attention visualization technique, for instance, enables ablation studies on the effect of each
behavioral variable, such as pupil dilation or running speed, on the neural activity. Moreover, we plan
to extend the method to recordings of the visual cortex in response to natural videos, to track how this
relationship may evolve over time, as well as experiments in naturalistic settings, to know which part of a
visual scene is relevant for certain behaviors.
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A Appendix

Table A.1: Experimental information of Mouse A to E from Dataset S (Willeke et al., 2022) and Mouse
F to O from Dataset F (Franke et al., 2022). Each mouse has a unique recording ID (column 2) although
we assigned a separate mouse ID (column 1) to use throughout this paper for simplicity.

Mouse rec. ID num. neurons total trials num. test

A 21067-10-18 8372 5994 998
B 22846-10-16 7344 5997 999
C 23343-5-17 7334 5951 989
D 23656-14-22 8107 5966 993
E 23964-4-22 8098 5983 994

F 25311-10-26 867 7358 1475
G 25340-3-19 922 7478 1497
H 25704-2-12 773 7500 1500
I 25830-10-4 1024 7360 1473
J 26085-6-3 910 7464 1495
K 26142-2-11 1121 7500 1500
L 26426-18-13 1125 7500 1500
M 26470-4-5 1160 7473 1495
N 26644-6-2 824 7500 1500
O 26872-21-6 1109 7466 1495
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A.1 Hyperparameters

Table A.2: ViT and V1T cores - Gaussian readout hyperparameter search space and their final settings after
a Hyperband Bayesian optimization (Li et al., 2017).

hyperparameter search space final value

Core
num. blocks uniform, min: 1, max: 8 4
num. heads uniform, min: 1, max: 12 4
patch size uniform, min: 2, max: 16 8
patch stride uniform, min: 1, max: patch size 1
patch method sliding window, 2d conv, SPT, CCT sliding window
patch dropout uniform, min: 0, max: 0.5 0.0229
embedding size uniform, min: 8, max: 1024, interval: 1 155
mha method original, LSA original
mha dropout uniform, min: 0, max: 0.5 0.2544
mlp size uniform, min: 8, max: 1024, interval: 1 488
mlp dropout uniform, min: 0, max: 0.5 0.2544
stochastic depth dropout uniform, min: 0, max: 0.5 0.0
L1 weight regularization uniform, min: 0, max: 1 0.5379
initial learning rate uniform, min: 0.005, max: 0.0001 0.0016

Readout
position network num. layers uniform, min: 1, max: 4, interval: 1 1
position network num. units uniform, min: 2, max: 128, interval: 2 30
bias initialization 0, mean standardized response 0
L1 weight regularization uniform, min: 0, max: 1 0.0076

Table A.3: ViT and V1T hyperparameter importance in Hyberhand Bayesian Optimization (Li et al.,
2017) via Weights & Biases (Biewald, 2020). importance shows the degree to which the hyperparameter
is useful to predict the evaluation metric (e.g. single trial correlation in the validation set) and cor-
relation shows the linear correlation between the hyperparameter and the evaluation metric. Details
on the calculation and interpretation of the hyperparameter importance and correlation are available at
docs.wandb.ai/guides/app/features/panels/parameter-importance.

hyperparameter importance correlation

embedding size 0.393 -0.626
patch stride 0.164 -0.358
patch size 0.111 -0.297
initial learning rate 0.046 0.279
L1 weight regularization 0.030 -0.242
num. blocks 0.030 0.093
num. heads 0.028 -0.070
batch size 0.026 -0.093
mha dropout 0.025 -0.034
patch method 0.024 -0.174
mlp dropout 0.022 0.133
mlp size 0.019 -0.186
stochastic depth dropout 0.019 -0.225
patch dropout 0.017 -0.105
mha method 0.014 0.001
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Table A.4: Best prediction performance in single trial correlation (standard deviation across animals) on
Dataset S with respect to choice of attention formulation and patch/tokenization method. original denotes
the original self-attention formulation by Vaswani et al. 2017 and LSA denotes the Locality Self Attention
mechanism proposed by Lee et al. 2021. SPT denotes Shifted Patch Tokenization (Lee et al., 2021) and CCT
denotes the tokenization method introduced in Compact Convolution Transformer (Hassani et al., 2021).
Section 4.1 details the model architectural differences and Section 5 discusses their prediction results.

MHA
patch method sliding window 2d conv spt cct

original 0.426 (0.027) 0.411 (0.022) 0.406 (0.024) 0.392 (0.026)
lsa 0.413 (0.023) 0.415 (0.024) 0.405 (0.024) 0.385 (0.025)

A.2 B-MLP activation

We investigated different variations of the B-MLP module. The motivation of the proposed behavior module is
to enable the core to learn a shared representation of the visual and behavioral variables across the animals.
Moreover, the level-wise connections allow the self-attention module in each V1T block to encode different
behavioral features with the latent visual representation. We experimented with a per-animal B-MLP module
(while the rest of the core was still shared across animals) which did not perform any better than the shared
counterpart, suggesting that the behavior module can indeed learn a shared internal brain state presentation.
We also tested having the module in the first block only, as well as using the same module across all blocks
(i.e. all B-MLPb shared the same weights). Both cases, however, led to worse results with a 2− 4% reduction in
predictive performance on average. To further examine the proposed formulation, we analyzed the activation
patterns of the shared behavior module at each level in V1T, shown in Figure A.1. We observed a noticeable
distinction in B-MLP outputs in earlier versus deeper layers, with a higher spread in deeper layers, which
corroborates our hypothesis that the influence of the behavioral variables differs at each level of the visual
representation process.

Figure A.1: tanh activation distributions of B-MLP at each level (block) in the V1T core. The spread of
activation distributions indicates varying influence of behavioral variables at the block in the core module.

19



Published in Transactions on Machine Learning Research (08/2023)

A.3 Prediction results

Table A.5: Single trial correlation between predicted and recorded responses in Dataset S test set. All
models were trained with behaviors. To demonstrate that the extracted attention maps can inform us about
the (ir)relevant regions in the visual stimulus, we trained an additional V1T core with images center cropped
to αh× αw pixels (See Section 5).

Mouse
A B C D E avg (sd)

LN 0.262 0.306 0.281 0.263 0.262 0.275 (0.019)
CNN 0.350 0.424 0.385 0.371 0.360 0.378 (0.029)
ViT 0.375 0.455 0.415 0.433 0.392 0.414 (0.032)
V1T 0.401 0.464 0.430 0.436 0.401 0.426 (0.027)
V1T (center crop α = 0.8) 0.403 0.468 0.433 0.442 0.403 0.430 (0.028)

Ensemble of 5 models

CNN 0.379 0.443 0.409 0.406 0.385 0.404 (0.025)
ViT 0.398 0.460 0.421 0.440 0.401 0.424 (0.026)
V1T 0.414 0.475 0.443 0.452 0.413 0.439 (0.027)

Table A.6: Single trial correlation between predicted and recorded responses in Dataset F test set. All
models were trained with behaviors.

Mouse
F G H I J K L M N O avg (sd)

LN 0.194 0.254 0.214 0.279 0.255 0.233 0.148 0.231 0.174 0.243 0.223 (0.040)
CNN 0.253 0.371 0.184 0.377 0.329 0.319 0.207 0.331 0.341 0.376 0.309 (0.070)
ViT 0.310 0.375 0.352 0.379 0.385 0.262 0.294 0.360 0.358 0.368 0.344 (0.041)
V1T 0.326 0.386 0.387 0.394 0.398 0.373 0.298 0.377 0.363 0.379 0.368 (0.032)

Ensemble of 5 models

CNN 0.268 0.383 0.341 0.393 0.347 0.336 0.242 0.345 0.355 0.388 0.340 (0.050)
ViT 0.321 0.384 0.363 0.404 0.406 0.374 0.302 0.385 0.323 0.387 0.365 (0.037)
V1T 0.336 0.397 0.391 0.406 0.408 0.383 0.306 0.388 0.373 0.392 0.378 (0.033)
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A.3.1 Correlation to Average

Correlation to Average (avg. corr.) is another commonly used metric to evaluate neural predictive
models (Willeke et al., 2022). It is the correlation between ri,j recorded and oi,j predicted responses over
repeated j trials of stimulus i :

avg. corr.(r, o) =
∑

i(r̄i − r̄)(oi − ō)√∑
i(r̄i − r̄)2 ∑

i(oi − ō)2
(6)

where r̄i = 1
J

∑J
j=1 ri,j is the average response across J repeats, and r̄ and ō are the average recorded and

predicted responses across all trials.

Table A.7: The Correlation to Average (avg. corr.) between predicted and recorded responses across all
animals (SD shows the standard deviation) in Dataset S and Dataset F test sets. Table 1 shows the
results in single trial correlation.

Dataset S (Willeke et al.) Dataset F (Franke et al.)
behav avg. corr. (SD) ∆CNN ∆ViT avg. corr. (SD) ∆CNN ∆ViT

LN 0.387 (0.023) -33.1% -37.7% 0.312 (0.076) -39.7% -42.5%
CNN 0.551 (0.024) -4.7% -4.6%
CNN 0.578 (0.027) 0.0% -6.9% 0.516 (0.142) 0.0% -4.7%
ViT 0.568 (0.026) -1.7% -8.5%
ViT 0.621 (0.030) +7.4% 0.0% 0.542 (0.054) 4.9% 0.0%
V1T 0.629 (0.029) +8.9% 1.4% 0.551 (0.022) +6.6% +1.6%

Ensemble of 5 models

CNN 0.610 (0.027) +5.5% -1.7% 0.567 (0.050) +9.9% +4.8%
ViT 0.634 (0.027) +9.7% +2.1% 0.566 (0.035) +9.5% +4.4%
V1T 0.644 (0.026) +11.3% +3.7% 0.562 (0.023) +8.9% +3.8%
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A.4 Cross-animal and cross-dataset generalization

DNN-based neural predictive models are often neuron/animal specific and do not generalize well to unseen
neurons/animals. Here, we evaluate generalization performance of CNN and V1T.

We first tested the cross-animal performance of the CNN and V1T models by performing cross-validation
over animals in Dataset S (Willeke et al., 2022). Specifically, we compare the model fitted on one animal
(direct setting) against a model that was pre-trained on N − 1 animals and whose readout was fine-tuned
(with core frozen) on the left-out animal (transfer setting). We repeated this process for all 5 animals, and
their results are summarized in Table A.8. On average, the V1T model outperformed the CNN model by
3.3% and 6.7% in the direct and transfer settings, respectively. Moreover, the V1T model experienced a
larger level of performance gain in the transfer learning setting, with an average prediction improvement of
5.6% over direct training, whereas the CNN had a 2.2% gain. These results suggest that the V1T core can
generalize well to unseen animals, and also benefit from transfer learning to a greater extent.

Next, we evaluated the cross-dataset generalization performance. To that end, we fitted the models on the
gray-scaled version (average channel dimension) of Dataset F (Franke et al., 2022). We then froze the core
module and trained the readouts on Dataset S and compared the loss in performance in this transfer setting.
The results are presented in Table A.9 for the two core architectures. We observed a larger performance
drop with the frozen V1T model compared to the model trained directly, with an average deficit of −19.0%,
versus the −12.9% drop in the frozen CNN model. Similar to the cross-animal generalization, the CNN
model exhibits a higher level of variation in prediction performance over the 5 animals. While the relative
performance drop was greater for the V1T core than for the CNN core, V1T achieved better transfer results
with an average single trial correlation of 0.345, or about 4.9% better than the frozen CNN (0.329).

Table A.8: CNN vs V1T cross-animal generalization in Dataset S. We compare the test performance
between (direct) fitting one model per animal and (transfer) pre-training a model on N − 1 animals
and fine-tuning the readout for the N th animal. We repeat the same leave-one-out process for all animals.
∆direct shows the relatively prediction performance of the transfer models over the direct models.

Mouse
A B C D E avg (sd) ∆direct

CNN
direct 0.332 0.422 0.389 0.400 0.335 0.376 (0.040)
transfer 0.357 0.420 0.386 0.398 0.359 0.384 (0.027) 2.2%

V1T
direct 0.368 0.417 0.394 0.414 0.347 0.388 (0.030)
transfer 0.384 0.450 0.414 0.415 0.385 0.410 (0.027) 5.6%

Table A.9: CNN vs V1T cross-dataset generalization. We first pre-trained the core module on a
gray-scale version of Dataset F, then (transfer) froze the core and fine-tuned the readouts on Dataset
S. ∆original shows the test performance drop in the cross-dataset transfer learning setting as compare
(original) a model directly trained on Dataset S.

Mouse
A B C D E avg (sd) ∆original

CNN
original 0.350 0.424 0.385 0.371 0.360 0.378 (0.029)
transfer 0.314 0.353 0.337 0.316 0.327 0.329 (0.016) -12.9%

V1T
original 0.401 0.464 0.430 0.436 0.401 0.426 (0.027)
transfer 0.327 0.382 0.347 0.343 0.328 0.345 (0.022) -19.0%
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A.5 Artificial receptive fields

Here, we outline the procedure to estimate the artificial receptive fields (aRFs) of the CNN and ViT models
(not V1T, since there is no behavior involved) and the process to compare their spatial positions and sizes. We
first present each trained model with N = 500, 000 images of white noise drawn from a uniform distribution.
The aRF of unit i is then computed as the summation of all noise images, weighted by the respective output:

aRFi =
N∑
n

F(xn)i ∗ xn, xn ∼ U1×36×64 (7)

where model F can be either the CNN or ViT, and F(xn)i denotes the response of unit i given white noise
image xn. Figure A.2 shows the estimated aRFs of 3 randomly selected artificial units (out of 8372 in the
readout for Mouse A) from the two models.

To quantify the location and size of the aRFs, we fitted a 2d Gaussian to each aRF and compared the mean
and covariance of the fitted parameters. We repeated the same process for all 8372 artificial units. Concretely,
we first subtracted the mean from each aRF to center the values on the baseline, then took their absolute
values and fitted a 2d Gaussian using SciPy’s curve_fit() function. Note that not all aRFs have good fit.
We thus dropped the bottom 5% of the fitted results. Figure A.2c shows the KDE plot of the fitted Gaussian
means from the aRFs of the CNN and ViT. The vast majority of the aRFs are centered with respect to the
image, aligning with our expectations from the attention rollout maps (see Section 5). Figure 3b compares
the standard deviations in horizontal and vertical direction of the fitted Gaussian.
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Figure A.2: Estimated artificial receptive fields (aRFs) of (a) CNN and (b) ViT over the same set of randomly
selected artificial units from Mouse A. The red circles (1 standard deviation ellipse) show the 2d Gaussian
fit. (c) KDE of the Gaussian centers of the two models.
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A.6 Attention rollout maps
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Figure A.3: V1T attention visualization on validation and test samples of Mouse A to E from Dataset
S. As the computer monitor was positioned such that the visual stimuli were presented to the center of the
receptive field of the recorded neurons (see Dataset S discussion in Section 2), we expected regions in the
center of the image to correlate the most with the neural responses, indicating that the core module learned
to assign higher attention weights toward those regions. Note that the core module is shared among all
mice. For this reason, we also expected similar patterns across animals. We observed small variations in the
attention maps in the test set, where the image is the same and behavioral variables vary, suggesting the core
module learned to adjust its attention based on the internal brain state. To quantify this result, we further
showed that there are moderate correlations between the center of mass of the attention maps and the pupil
center, see discussion in Section 5. Each attention map was normalized to [0, 1], and the behavioral variables
of the corresponding trial are shown below the image in the format of [pupil dilation, dilation derivative,
pupil center (x, y), speed]. The Figure continues to the next page.
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A.7 Behaviors and predictive performance

Figure A.4: Predictive performance w.r.t. pupil dilation in Dataset S. Previous work has shown that pupil
dilation is an indication of arousal, i.e. stronger (or weaker) neural responses with respect to the visual
stimulus (Reimer et al., 2016; Larsen and Waters, 2018). We thus expected a similar tendency could also
be observed with our model. Here, we divided the test set into 3 subsets based on pupil dilation. We then
compared the predictive performance of the model in the (large) larger third subset against the (small) smaller
third subset. We observed that trials with larger pupil sizes are better predicted, with an average difference
of +17.5% across animals. The dashed lines indicate the quartiles of the distributions and the percentage
above each violin plot shows the relative prediction improvement of the larger set against the smaller set.
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A.8 Readout position and retinotopy
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Figure A.5: The learned readout position with respect to neuron anatomical coordinates in Mouse A. The
position network in the Gaussian readout (see Section 3) learns the mapping between the latent visual
representation (i.e. output of the core, bottom right panel) and the 2d anatomical location of each neuron
(left panel). Lurz et al. (2021) and Willeke et al. (2022) demonstrated that a smooth mapping can be
obtained when color-coding each neuron by its corresponding readout position unit. This aligned with our
expectation that neurons that are close in space should have a similar receptive field (Garrett et al., 2014).
Here, we showed that, despite the substantial architectural change, a similar mapping can also be obtained
with the V1T core. The code to generate this plot was written by Willeke et al. (2022) and is available at
github.com/sinzlab/sensorium.
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