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Abstract
Root cause analysis (RCA) for microservice systems has gained sig-
nificant attention in recent years. However, there is still no standard
benchmark that includes large-scale datasets and supports com-
prehensive evaluation environments. In this paper, we introduce
RCAEval, an open-source benchmark that provides datasets and
an evaluation environment for RCA in microservice systems. First,
we introduce three comprehensive datasets comprising 735 failure
cases collected from three microservice systems, covering various
fault types observed in real-world failures. Second, we present a
comprehensive evaluation framework that includes fifteen repro-
ducible baselines covering a wide range of RCA approaches, with
the ability to evaluate both coarse-grained and fine-grained RCA.
We hope that this ready-to-use benchmark will enable researchers
and practitioners to conduct extensive analysis and pave the way
for robust new solutions for RCA of microservice systems.

CCS Concepts
• Software and its engineering → Software reliability.
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1 Introduction
Root cause analysis (RCA) for microservice systems is an important
problem that has been studied recently, as failures are inevitable,
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and ensuring the reliability of microservice systems is critical. RCA
aims to analyse the available telemetry data (i.e., metrics, logs, and
traces) of the system during failure periods to identify the root
cause service and root cause indicators (e.g., specific metrics or logs
pointing to the root cause). This field has gained significant atten-
tion recently [6, 9, 15, 16, 18]. However, there is still no standard
benchmark that includes large-scale datasets and a comprehen-
sive evaluation framework [4]. This limitation leads to inconsistent
evaluations in RCA studies, hindering understanding and impeding
progress in the field [4]. For example, existing studies [8, 10, 13]
typically evaluate their methods on only 1-2 systems with 2-3 fault
types. Eadro [9] uses a dataset with an unrealistic load (2-3 requests
per second). Existing open-source RCA resources also suffer from
several limitations. For example, PyRCA [14] offers only a limited
set of metric-based RCA methods and relies on synthetic datasets.
The AIOps 2020 dataset [12] contains failures with metrics and
traces but omits valuable log information. Pham et. al. [6] evaluates
only on metric-based RCA methods. As a result, existing resources
are often inadequate for benchmarking purposes, hampering the
development of new RCA approaches, see Table 1.

Table 1: Comparison of studies.

Study Fault Types Metric Log Trace
PyRCA [14] Synthetic ✓ - -
AIOps 2020 [12] Resource, Network ✓ - ✓
Pham et al. [6] Resource, Network ✓ - -
RCAEval (ours) Resource, Network, Code-level ✓ ✓ ✓

In this work, we introduce RCAEval, a benchmark including
three datasets and a comprehensive evaluation environment. First,
our datasets include 735 failure cases collected from three systems,
covering 11 fault types observed in real-world failures. We collected
multi-source telemetry data (i.e., metrics, logs, and traces), support-
ing a variety of RCA approaches (e.g., metric-based, multi-source
RCA). Second, we open-source our evaluation framework, which
includes several reproducible baselines. The prior version of this
framework was used to evaluate metric-based RCA [6]. In this work,
we have upgraded it to support trace-based and multi-source RCA.
We also provide preliminary experiments, highlighting the need
for further investigation on a robust RCA approach. We have open-
sourced our benchmark, including the datasets and the evaluation
framework at https://github.com/phamquiluan/RCAEval.
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Figure 1: Overview of the RCAEval benchmark.

2 Background & Related Work
In microservice systems, failures refer to a service’s inability to
perform its intended functions, while faults represent the underly-
ing causes of such failures (e.g., memory leaks). Root cause analysis
(RCA) seeks to pinpoint the root causes of failures by analyzing
multi-source telemetry data (i.e.,metrics, logs, and traces) [6, 15, 16].

A major limitation in this field is the absence of a reproducible
and open-source public benchmark for evaluating RCA in practical
scenarios. Most RCA studies evaluate their methods using limited
faults on limited systems [4, 6]. For example, some works [8, 9, 18]
inject 2-3 faults into 1-2 systems, resulting in limited datasets. Oth-
ers assess their solutions using private data, such as AWS [8] or
Oracle [10]. This lack of transparent and reproducible resources hin-
ders progress and prevents fair evaluation of new RCA approaches.

There have been some related works that introduce datasets or
evaluation frameworks, but all of them suffer from several limita-
tions, see Table 1. PyRCA [14] from Salesforce supports only metric-
based RCA and relies on synthetic datasets. Our prior work [6]
demonstrates that performance on synthetic datasets often fails to
reflect RCA performance on real systems. Li et al.[12] introduced
datasets with metrics and traces on private systems but omitting
logs and did not provide a benchmarking framework. To address
these limitations, in this study, we provide a benchmark consisting
of three RCA datasets and an open-source evaluation environment.

3 Datasets
RCAEval benchmark includes three datasets: RE1, RE2, and RE3,
designed to comprehensively support benchmarking RCA in mi-
croservice systems. Together, our three datasets feature 735 failure
cases collected from three microservice systems (described in Sec-
tion 3.1) and including 11 fault types (described in Section 3.2).
Each failure case also includes annotated root cause service and
root cause indicator (e.g., specific metric or log indicating the root
cause). The statistics of the datasets are presented in Table 2.
RE1 Dataset. The RE1 dataset, introduced in our prior work on
metric-based RCA [6], contains 375 failure cases collected from
three microservice systems (125 cases per system). These cases
combine five fault types across five services, and five repetitions
per fault-service pair. The RE1 dataset exclusively contains metrics
data, supporting the development of metric-based RCA methods.
The fault types in RE1 include CPU, MEM, DISK, DELAY, LOSS
(see Section 3.2). The number of metrics ranges from 49 to 212,
depending on the system size, with smaller systems (e.g., Online
Boutique, Sock Shop) having fewer metrics compared to larger
system (Train Ticket). This dataset does not include logs or traces.

RE2 Dataset. The RE2 dataset, newly collected for this study, sup-
ports the development of multi-source RCA methods. It includes
270 failure cases (90 cases per system), combining six fault types
across five services, and three repetitions per fault-service pair. RE2
provides multi-source telemetry data, including metrics, logs, and
traces. The number of metrics ranges from 77 to 327 per failure
case. Each system generates a substantial volume of logs from (8.6
to 26.9 million lines), and traces (39.6 to 76.7 million traces). The
fault types include those in RE1 and an additional SOCKET fault.
RE3 Dataset. The RE3 dataset, also newly collected, focuses on
supporting multi-source RCA methods with the ability to diagnose
code-level faults. It has 90 failure cases (30 per system), involving
code-level faults. The fault types in RE3 are F1, F2, F3, F4, F5 (see
Section 3.2). Like RE2, RE3 includes multi-source telemetry data
(metrics, logs, and traces). This dataset emphasizes diagnosing code-
level faults through telemetry data, e.g., leveraging stack traces in
logs or response code in traces to pinpoint root causes, making it
invaluable for advancing multi-source RCA methods.

Table 2: Statistics of the RCAEval datasets.
Dataset Systems Fault Types Cases Metrics Logs (millions) Traces (millions)
RE1 [6] 3 3 Resource, 2 Network 375 49–212 N/A N/A
RE2 3 4 Resource, 2 Network 270 77–376 8.6–26.9 39.6–76.7
RE3 3 5 Code-level 90 68–322 1.7–2.7 4.5–4.7

3.1 Microservice Systems
We collect our three datasets from three microservice systems,
ranging from 12 to 64 services. These systems are used in our
previous works for evaluating RCA methods [6, 16].
1) Online Boutique. The Online Boutique system [2], developed by
Google, consists of 12 services forming an e-commerce application
where users can browse, add, and purchase items. The services
communicate with each other using the gRPC protocol.
2) Sock Shop. The Sock Shop system [3], developed by Weave-
works, is a sock-selling e-commerce application comprising 15
services that communicate via HTTP requests.
3) Train Ticket. Train Ticket [1] is a ticket booking system with 64
services, featuring both synchronous and asynchronous communi-
cation. Compared to Sock Shop and Online Boutique, Train Ticket
has more complex call chains. To the best of our knowledge, it is
the largest benchmark microservice systems.

While no single system can fully capture the diversity of real-
world environments, the developers of these systems have inten-
tionally included diverse features, such as multiple programming
languages (e.g., Java, Go, Python, C#) and communication protocols
(e.g., HTTP, gRPC), to emulate real-world complexity.
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Figure 2: Illustration of our data collection setup.

3.2 Fault Types
Our three datasets consist of 11 fault types (4 resource faults, 2 net-
work faults, and 5 code-level faults). In this section, we describe
these faults and the way we introduce them into the microservice
systems. The RE1 dataset, which includes 3 resource faults and 2 net-
work faults, was used in our previous metric-based RCA works[6].
In this study, we introduce two additional datasets, RE2 and RE3,
which include one additional resource fault and 5 new code-level
faults, covering a broader range of faults commonly found in open-
source projects [5]. To the best of our knowledge, our datasets are
the first to cover code-level faults for RCA in microservice systems.
1) Resource Faults.We introduce four resource faults into the run-
ning container (i.e., service instance) using stress-ng: CPU hog (CPU),
Memory leak (MEM), Disk stress (DISK), and Socket stress (SOCK).
Symptoms of resource faults may include observable changes in
resource usage of co-located containers, increased latency, and time-
out requests. The system may crash when resources are severely
constrained. The root cause indicator for these faults is the met-
ric specifying resource usage (e.g., for a CPU hog, the root cause
indicator is the container’s CPU usage metric).
2) Network Faults. We use traffic control (tc) to intercept the
network packets of the running container, introducing delay varia-
tions (DELAY) or randomly dropping packets (DROP). Symptoms
of network faults may include increased latency metrics and error
response codes in traces/metrics of the affected service. The root
cause indicator for a DELAY fault is the latency metric, while for
a LOSS fault, it is the metric showing failed requests and/or error
response codes in the traces of the corresponding container.
3) Code-Level Faults. We modify the source code of random
services to introduce five bugs commonly found in open-source
projects [5]: Incorrect parameter values (F1), Missing parameters (F2),
Missing Function Call (F3), Incorrect Return Values (F4), and Miss-
ing Exception Handlers (F5). Symptoms of code-level faults may
include increased failed requests, error response codes in traces,
higher latency, and stack traces emitted in logs. The root cause
of code-level faults is determined using the stack traces in logs of
the corresponding service, which indicate the faulty line of code. If
stack traces are unavailable, the root cause indicator may be derived
from error logs or response codes of the affected service.

3.3 Telemetry Data Collection Process
We deploy three microservice systems to Kubernetes clusters and
generate a random load of 10–200 requests per second across all ser-
vices. We use standard, well-known open-source tools to monitor
and collect telemetry data. To gather metrics, we use Prometheus,
cAdvisor, and Istio to monitor and collect both application-level
and resource-level metrics. For logs, we use Vector and Loki to
gather logs from all service instances and store them in Elastic-
search. Traces are collected using Jaeger and sent to Elasticsearch

Table 3: Metrics.
time cart_cpu cart_mem
17336 0.216 0.352
17337 0.115 0.401
17338 0.116 0.386
17339 0.118 0.398

Table 4: Logs.
time service message
17336 cart GetCart called...
17337 currency Getting values...
17338 frontend request complete.
17339 frontend request started.

Table 5: Traces.
time id service operation duration
17336 cf8b.. frontend GetCurrencies 497
17337 60cf.. currency Convert 102
17338 4a93.. frontend GetProduct 1310
17338 fe23.. product.. ListProducts 56

for storage, see Fig. 2. We allow the microservice systems to run
normally to collect normal telemetry data. Then, we inject a fault
into a randomly selected running service and collect the abnormal
telemetry data. To ensure data quality, we engaged a DevOps engi-
neer with five years of experience in microservices to assist with
system deployment, data collection, and data verification.

3.4 Data Format
The raw telemetry data collected is stored as CSV files. The key
structures are presented in Tables 3, 4, and 5. A complete dataset
with full structure can be downloaded from our GitHub repository.
Metrics are stored as time series data, with each row corresponding
to a timestamp at which themetrics were collected. Logs for a failure
case are stored in a single CSV file, with each row containing the
timestamp, the service name, and the corresponding log message.
Similarly, traces for a failure case are stored in a CSV file, where
each row includes the timestamp, trace_id, span_id, service name,
operation, duration, and response code if available.

4 Evaluation Framework
To ensure the comprehensiveness of RCAEval, we also provide
an evaluation framework as an open-source library alongside our
datasets. Our evaluation framework includes fifteen baselines cov-
ering a wide range of state-of-the-art RCA approaches and offers
functionalities for data processing and benchmark evaluation at
both coarse-grained and fine-grained levels. The RCAEval evalu-
ation framework is an extension of our previous work [6], which
focused onmetric-based RCA and coarse-grained RCA. In this work,
we expand it by incorporating trace-based and multi-source RCA
baselines. RCAEval is released as an open-source library and can
be installed via PyPI. Comprehensive documentation on installing
and using the framework with our datasets, as well as guidance on
extending it with new methods and datasets, is available on our
GitHub repository. The documentation also includes basic usage
examples and detailed instructions for ensuring reproducibility.

4.1 Evaluation Baselines
Our evaluation framework features 15 baselines covering a variety
of state-of-the-art RCA methods.Metric-based RCA baselines
include causal inference-based methods such as RUN, CausalRCA,
CIRCA, RCD, MicroCause, EasyRCA, MSCRED, as well as non-
causal methods such as BARO, and 𝜖-Diagnosis [6, 8, 10, 14]. Trace-
based RCA baselines include TraceRCA and MicroRank [11, 17].
Multi-source RCA baselines include PDiagnose, multi-source
BARO, multi-source RCD, multi-source CIRCA [8, 10, 16]. For base-
lines like RUN, CausalRCA, CIRCA, RCD, MicroCause, EasyRCA,
MSCRED, BARO, 𝜖-Diagnosis, MicroRank, and TraceRCA, we adapt
their available implementations and use the default hyperparameter
settings recommended in their respective papers. We verified their
correctness by reproducing the results presented in the original
and related studies. For multi-source BARO, multi-source RCD, and
multi-source CIRCA, we updated their source code to handle time
series data from logs and traces. For PDiagnose, we follow previous
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Table 6: RCA performance of eight baselines on the Train Ticket system of the RE2 dataset, across six fault types.
Data
Source Method CPU MEM DISK SOCKET DELAY LOSS AVERAGE

AC@1 AC@3 Avg@5 AC@1 AC@3 Avg@5 AC@1 AC@3 Avg@5 AC@1 AC@3 Avg@5 AC@1 AC@3 Avg@5 AC@1 AC@3 Ag@5 AC@1 AC@3 Avg@5

Metric

BARO 0.47 0.8 0.72 0.93 1 0.99 1 1 1 0.6 0.87 0.83 0.47 0.67 0.63 0.53 0.6 0.64 0.67 0.82 0.8
CausalRCA 0.4 0.63 0.59 0.1 0.27 0.24 0.43 0.83 0.75 0.23 0.5 0.45 0.13 0.23 0.21 0.03 0.37 0.33 0.22 0.47 0.43
CIRCA 0.27 0.27 0.28 0.47 0.73 0.68 0.53 0.67 0.64 0.27 0.53 0.52 0.2 0.27 0.28 0.2 0.33 0.35 0.32 0.47 0.46
MicroCause 0.19 0.44 0.4 0 0.09 0.07 0.4 0.4 0.4 0 0.17 0.15 0 0.22 0.13 0 0 0.07 0.1 0.22 0.2
RCD 0.13 0.13 0.16 0.07 0.07 0.07 0 0.07 0.05 0.13 0.33 0.29 0.13 0.13 0.15 0.07 0.07 0.07 0.09 0.13 0.13

Trace MicroRank 0.21 0.43 0.34 0.25 0.38 0.33 0 0.36 0.27 0.3 0.4 0.36 0.08 0.31 0.23 0.14 0.36 0.3 0.16 0.37 0.31
TraceRCA 0.64 0.79 0.74 0.63 0.88 0.83 0.64 0.71 0.74 0.6 0.8 0.76 0.85 0.85 0.88 0.57 0.71 0.67 0.66 0.79 0.77

Multi-
Source

BARO 0.47 0.8 0.75 0.93 1 0.99 1 1 1 0.6 0.8 0.79 0.47 0.67 0.61 0.67 0.67 0.71 0.69 0.82 0.81
CIRCA 0 0.07 0.09 0.07 0.13 0.21 0 0.07 0.09 0.07 0.13 0.16 0.07 0.07 0.07 0.13 0.2 0.17 0.06 0.11 0.13
PDiagnose 0.6 0.87 0.81 0.4 0.47 0.48 0.33 0.73 0.69 0.33 0.67 0.6 0.87 0.87 0.87 0.33 0.6 0.57 0.48 0.7 0.67
RCD 0.17 0.84 0.72 0 0.44 0.39 0.07 0.76 0.62 0.21 0.77 0.66 0.05 0.28 0.25 0.07 0.75 0.6 0.1 0.64 0.54

works [7, 18, 19] to implement it since its source code is unavailable.
Previous works such as PyRCA [14] and Pham et al. [15] offer only
a limited set of metric-based RCA methods, while our framework
provides a more comprehensive set of baselines by also including
trace-based and multi-source RCA methods.

4.2 Evaluation Metrics
We support evaluation at both the coarse-grained level (i.e., root
cause service) and the fine-grained level (i.e., root cause indica-
tor). The evaluation script executes the analysis and stores the
results in a report file. We currently support two standard met-
rics [6, 16]: 𝐴𝐶@𝑘 and 𝐴𝑣𝑔@𝑘 to measure the RCA performance.
Given a set of failure cases A, 𝐴𝐶@𝑘 is calculated as 𝐴𝐶@𝑘 =
1
|𝐴 |

∑
𝑎∈𝐴

∑
𝑖<𝑘 𝑅𝑎 [𝑖 ]∈𝑉 𝑎

𝑟𝑐

𝑚𝑖𝑛 (𝑘, |𝑉 𝑎
𝑟𝑐 | ) , where 𝑅𝑎 [𝑖] is the 𝑖th ranking result for

the failure case 𝑎 by an RCA method, and 𝑉𝑎
𝑟𝑐 is the true root

cause set of case 𝑎. 𝐴𝐶@𝑘 represents the probability the top 𝑘 re-
sults of the given method include the true root causes. Its values
range from 0 to 1, with higher values indicating better performance.
𝐴𝑣𝑔@𝑘 , which shows the overall RCA performance, is measured
as 𝐴𝑣𝑔@𝑘 = 1

𝑘

∑𝑘
𝑗=1𝐴𝐶@ 𝑗 .

5 Preliminary Experiments
We conduct preliminary experiments on our benchmark to evaluate
the performance of existing baselines on the collected datasets,
highlighting both the potential and challenges in the field. Due
to space constraints, we select 11 baselines: 5 metric-based RCA
methods (BARO, CausalRCA, CIRCA, MicroCause), 2 trace-based
RCA methods (MicroRank, TraceRCA), and 4 multi-source RCA
methods (PDiagnose, multi-source CIRCA,multi-source RCD,multi-
source BARO). These methods are used to diagnose 4 resource
faults (CPU, MEM, DISK, SOCK) and 2 network faults (DELAY,
LOSS) using data collected from the Train Ticket system in the
RE2 dataset. The RCA performance is evaluated using the AC@1,
AC@3, and Avg@5 metrics, with coarse-grained results presented
in Table 6. A demonstration of diagnosing root causes for code-level
faults (e.g., F1 to F5) is available on our GitHub repository.

Our preliminary results show that there is still ample room for
further improvement. Existing methods mostly obtain moderate re-
sults. For example, CIRCA and RCD obtain the best average Avg@5
score of 0.46 and 0.54, respectively. Notably, BARO shows encour-
aging results when obtaining high accuracy in diagnosing the re-
source fault (e.g. DISK), however, it shows limitations when dealing
with network faults (e.g. DELAY, LOSS). Hence, we believe further
research is needed to develop a holistic RCA solution.

6 Conclusion
This paper presents RCAEval, which includes three datasets col-
lected from three microservice systems covering 735 failure cases
and 11 fault types, along with a comprehensive evaluation frame-
work with a wide range of reproducible RCA baselines. To the best
of our knowledge, this is the first comprehensive benchmark for
RCA of microservices. We hope that this benchmark will be useful
for industry practitioners and academic researchers in the field.
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