
Under review as a conference paper at ICLR 2023

WASSERSTEIN BARYCENTER-BASED MODEL FUSION
AND LINEAR MODE CONNECTIVITY OF NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Based on the concepts of Wasserstein barycenter (WB) and Gromov-Wasserstein
barycenter (GWB), we propose a unified mathematical framework for neural net-
work (NN) model fusion and utilize it to reveal new insights about the linear mode
connectivity of SGD solutions. In our framework, the fusion occurs in a layer-wise
manner and builds on an interpretation of a node in a network as a function of the
layer preceding it. The versatility of our mathematical framework allows us to
talk about model fusion and linear mode connectivity for a broad class of NNs,
including fully connected NN, CNN, ResNet, RNN, and LSTM, in each case ex-
ploiting the specific structure of the network architecture. We present extensive
numerical experiments to: 1) illustrate the strengths of our approach in relation to
other model fusion methodologies and 2) from a certain perspective, provide new
empirical evidence for recent conjectures which say that two local minima found
by gradient-based methods end up lying on the same basin of the loss landscape
after a proper permutation of weights is applied to one of the models.

1 INTRODUCTION

The increasing use of edge devices like mobile phones, tablets, and vehicles, along with the sophisti-
cation in sensors present in them (e.g. cameras, GPS, and accelerometers), has led to the generation
of an enormous amount of data. However, data privacy concerns, communication costs, bandwidth
limits, and time sensitivity prevent the gathering of local data from edge devices into one single
centralized location. These obstacles have motivated the design and development of federated learn-
ing strategies which are aimed at pooling information from locally trained neural networks (NNs)
with the objective of building strong centralized models without relying on the collection of local
data McMahan et al. (2017); Kairouz et al. (2019). Due to these considerations, the problem of
NN fusion–i.e. combining multiple models which were trained differently into a single model–is a
fundamental task in federated learning.

A standard fusion method for aggregating models with the same architecture is FedAvg McMahan
et al. (2017), which involves element-wise averaging of the parameters of local models. This is also
known as vanilla averaging Singh & Jaggi (2019). Although easily implementable, vanilla averaging
performs poorly when fusing models whose weights do not have a one-to-one correspondence. This
happens because even when models are trained on the same dataset it is possible to obtain models
that differ only by a permutation of weights Wang et al. (2020); Yurochkin et al. (2019); this feature
is known as permutation invariance property of neural networks. Moreover, vanilla averaging is
not naturally designed to work when using local models with different architectures (e.g., differ-
ent widths). In order to address these challenges, Singh & Jaggi (2019) proposed to first find the
best alignment between the neurons (weights) of different networks by using optimal transport (OT)
Villani (2008); Santambrogio (2015); Peyré & Cuturi (2018) and then carrying out a vanilla aver-
aging step. Other approaches, like those proposed in Wang et al. (2020); Yurochkin et al. (2019),
interpret nodes of local models as random permutations of latent “global nodes” modeled according
to a Beta-Bernoulli process prior Thibaux & Jordan (2007). By using “global nodes”, nodes from
different input NNs can be embedded into a common space where comparisons and aggregation
are meaningful. Most works in the literature discussing the fusion problem have mainly focused
on the aggregation of fully connected (FC) neural networks and CNNs, but have not, for the most

1

Under review as a conference paper at ICLR 2023

part, explored other kinds of architectures like RNNs and LSTMs. One exception to this general
state of the art is the work Wang et al. (2020), which considers the fusion of RNNs by ignoring
hidden-to-hidden weights during the neurons’ matching, thus discarding some useful information in
the pre-trained RNNs. For more references on the fusion problem see in the Appendix.

A different line of research that has attracted considerable attention in the past few years is the quest
for a comprehensive understanding of the loss landscape of deep neural networks, a fundamental
component in studying the optimization and generalization properties of NNs Li et al. (2018); Mei
et al. (2018); Neyshabur et al. (2017); Nguyen et al. (2018); Izmailov et al. (2018). Due to over-
parameterization, scale, and permutation invariance properties of neural networks, the loss land-
scapes of DNNs have many local minima Keskar et al. (2016); Zhang et al. (2021). Different works
have asked and answered affirmatively the question of whether there exist paths of small-increasing
loss connecting different local minima found by SGD Garipov et al. (2018); Draxler et al. (2018).
This phenomenon is often referred to as mode connectivity Garipov et al. (2018) and the loss in-
crease along paths between two models is often referred to as (energy) barrier Draxler et al. (2018).
It has been observed that low-barrier paths are non-linear, i.e., linear interpolation of two different
models will not usually produce a neural network with small loss. These observations suggest that,
from the perspective of local structure properties of loss landscapes, different SGD solutions belong
to different (well-separated) basins Neyshabur et al. (2020). However, recent work Entezari et al.
(2021) has conjectured that local minima found by SGD do end up lying on the same basin of the
loss landscape after a proper permutation of weights is applied to one of the models. The question
of how to find these desired permutations remains in general elusive.

The purpose of this paper is twofold. On one hand, we present a large family of barycenter-based
fusion algorithms that can be used to aggregate models within the families of fully connected NNs,
CNNs, ResNets, RNNs and LSTMs. The most general family of fusion algorithms that we intro-
duce relies on the concept of Gromov-Wasserstein barycenter (GWB), which allows us to use the
information in hidden-to-hidden layers in RNNs and LSTMs in contrast to previous approaches in
the literature like that proposed in Wang et al. (2020). In order to motivate the GWB based fusion
algorithm for RNNs and LSTMs, we first discuss a Wasserstein barycenter (WB) based fusion algo-
rithm for fully connected, CNN, and ResNet models which follows closely the OT fusion algorithm
from Singh & Jaggi (2019). By creating a link between the NN model fusion problem and the
problem of computing Wasserstein (or Gromov-Wasserstein) barycenters, our aim is to exploit the
many tools that have been developed in the last decade for the computation of WB (or GWB) —see
the Appendix for references— and to leverage the mathematical structure of OT problems. Using
our framework, we are able to fuse models with different architectures and build target models with
arbitrary specified dimensions (at least in terms of width). On the other hand, through several nu-
merical experiments in a variety of settings (architectures and datasets), we provide new evidence
backing certain aspects of the conjecture put forward in Entezari et al. (2021) about the local struc-
ture of NNs’ loss landscapes. Indeed, we find out that there exist sparse couplings between different
models that can map different local minima found by SGD into basins that are only separated by
low energy barriers. These sparse couplings, which can be thought of as approximations to actual
permutations, are obtained using our fusion algorithms, which, surprisingly, only use training data to
set the values of some hyperparameters. We explore this conjecture in imaging and natural language
processing (NLP) tasks and provide visualizations of our findings. Consider, for example, Figure 1
(left), which is the visualization of fusing two FC NNs independently trained on the MNIST dataset.
We can observe that the basins where model 1 and permuted model 2 (i.e. model 2 after multiplying
its weights by the coupling obtained by our fusion algorithm) land are close to each other and are
only separated by low energy barriers.

Our main contributions can then be summarized as follows: (a) we formulate the network model
fusion problem as a series of Wasserstein (Gromov-Wasserstein) barycenter problems, bridging in
this way the NN fusion problem with computational OT; (b) we empirically demonstrate that our
framework is highly effective at fusing different types of networks, including RNNs and LSTMs. (c)
we visualize the result of our fusion algorithm when aggregating two neural networks in a 2D-plane.
By doing this we not only provide some illustrations on how our fusion algorithms perform, but also
present empirical evidence for the conjecture made in Entezari et al. (2021), casting light over the
loss landscape of a variety of neural networks.

At the time of completing this work, we became aware of two very recent preprints which also
explore the conjecture made in Entezari et al. (2021) empirically. In particular, Ainsworth et al.

2

Under review as a conference paper at ICLR 2023

−5 0 5 10 15 20 25 30 35

0

5

10

15

20

25 Base model 1

Base model 2

Permuted model 2

Fused model

1.7

1.9

2.1

2.4

2.9

3.8

5.3

8

> 8

Figure 1: Left: The test error surface of FC NNs trained on MNIST. The permuted model 2 is
model 2 after multiplying its weights by the coupling obtained by our fusion algorithm. Right: The
illustration of our interpretations of FC NNs. Following our definitions, node v := (γ2, w), where
γ2 is a probability measure on layer N2 and w : N2 → R is the weight function corresponding to
node v. For example, the scalar w(z2) is the weight between nodes v and z2, and we use w2 as the
shorthand notation of w(z2).

(2022) demonstrates that there is zero-barrier LMC (after permutation) between two independently
trained NNs (including ResNet) provided the width of layers is large enough. In Benzing et al.
(2022), the conjecture is explored for FC NNs, finding that the average of two randomly initialized
models using the permutation revealed through training gives a non-trivial NN. Compared to our
work, none of these two works explored this conjecture for recurrent NNs; we highlight that our
GWB fusion method is of particular relevance for this aim. To the best of our knowledge, we thus
provide the first-ever exploration of the conjecture posited in Entezari et al. (2021) for NLP tasks.

1.1 NOTATION

We first introduce some basic notation and briefly review a few relevant concepts from OT. A simplex
of histograms with n bins is denoted by Σn := {a ∈ Rn

+ :
∑

i ai = 1}. The set of couplings between
histograms a ∈ Σn1

and b ∈ Σn2
is denoted by Γ(a, b) := {Π ∈ Rn1×n2

+ : Π1n2
= a,ΠT1n1

= b},
where 1n := (1, . . . , 1)T ∈ Rn. For any 4-way tensor L =

[
Lijkl

]
i,j,k,l

and matrix Π =
[
πij

]
i,j

,
we define the tensor-matrix multiplication of L and Π as the matrix L ⊗Π :=

[∑
k,l Lijklπkl

]
i,j

.

1.2 OPTIMAL TRANSPORT AND WASSERSTEIN BARYCENTERS

Let X be an arbitrary topological space and let c : X × X → [0,∞) be a cost function assumed to
satisfy c(x, x) = 0 for every x. We denote byM+

1 (X) the space of (Borel) probability measures
on X . For {xi}n1

i=1, {yj}n2
j=1 ∈ X , define discrete measures µ =

∑n1

i=1 aiδxi
and ν =

∑n2

j=1 bjδyj

in M+
1 (X), where a ∈ Σn1

, b ∈ Σn2
, and δx denotes the Dirac delta measure at x ∈ X . The

Wasserstein “distance” between µ and ν, relative to the cost c, is defined as

W (µ, ν) := inf
Π∈Γ(µ,ν)

⟨C,Π⟩, (1)

where C :=
[
c(xi, yj)

]
i,j

is the “cost” matrix between {xi}i, {yj}j ∈ X , Π :=
[
πij

]
i,j
∈ Γ(µ, ν)

is the coupling matrix between µ and ν, and ⟨A,B⟩ := tr(ATB) is the Frobenius inner product.

Let {γi}ni=1 ∈M+
1 (X) be a collection of discrete probability measures. The Wasserstein barycenter

problem (WBP) Agueh & Carlier (2011) associated with these measures reads

min
γ∈M+

1 (X)

1

n

n∑
i=1

W (γ, γi). (2)

A minimizer of this problem is called a Wasserstein barycenter (WB) of the measures {γi}ni=1 and
can be understood as an average of the input measures. In the sequel we will use the concept of WB
to define fusion algorithms for FC NN, CNN, and ResNet. For RNN and LSTM the fusion reduces
to solving a series of Gromov-Wasserstein barycenter-like problems (see the reviews of GWBP in
the Appendix).

3

Under review as a conference paper at ICLR 2023

2 WASSERSTEIN BARYCENTER BASED FUSION

In this section, we discuss our layer-wise fusion algorithm based on the concept of WB. First we
introduce the necessary interpretations of nodes and layers of NNs in Section 2.1. Next in Section
2.2, we describe how to compare layers and nodes across different NNs so as to make sense of
aggregating models through WB. Finally we present our fusion algorithm in Section 2.3.

2.1 NESTED DEFINITION OF FULLY CONNECTED NN

For a fully connected network N , we use v to index the nodes in its l-th layer Nl. Let γl denote a
probability measure on the l-th layer defined as the weighted sum of Dirac delta measure over the
nodes in that layer, i.e.,

γl :=
1

|Nl|
∑
v∈Nl

δv ∈M+
1 (Nl). (3)

We interpret a node v from the l-th layer as an element in Nl that couples a function on the domain
Nl−1 (previous layer) with a probability measure. In particular, the node v is interpreted as v :=
(γl−1, w), where γl−1 is a measure on the previous layer Nl−1 and w represents the weights between
the node v and the nodes in previous layer Nl−1. These weights can be interpreted as a function w :
Nl−1 → R and we use the notation wq to denote the value of function w evaluated at the q-th node
in the previous layer Nl−1. For the first layer i.e. l = 1, the nodes simply represent placeholders for
the input features. The above interpretation is illustrated in Figure 1 (right). This interpretation of
associating nodes with a function of previous layer allows us to later define “distance” between nodes
in different NNs (see Section 2.2) and is motivated from TLp spaces and distance Garcı́a Trillos &
Slepčev (2015); Thorpe et al. (2017) which is designed for comparing signals with different domains.

2.2 COST FUNCTIONS FOR COMPARING LAYERS AND NODES

Having introduced our interpretations of NNs, we now define the cost functions for comparing layers
and nodes which will be used to aggregate models through WB. Consider the l-th layers Nl and N ′

l
of two NNs N and N ′ respectively. We use Wasserstein distance between the measures γl and γ′

l
over Nl and N ′

l respectively to define distance between the layers:

dµ(γl, γ
′
l) := W (γl, γ

′
l) = inf

Πl∈Γ(γl,γ′
l)
⟨Cl,Πl⟩ (4)

where matrix Πl = [πl,jg]j,g is a coupling between the measures γl and γ′
l; and Cl is the cost matrix

give by Cl :=
[
cl(v, v

′)
]
v,v′ , where cl is a cost function between nodes on the l-th layers.

Following our inductive interpretation of NNs, the cost function cl can also be defined inductively.
Consider nodes v and v′ from l-th layer of NNs N and N ′ respectively. For the first layer l = 1,
we pick a natural candidate for cost function, namely c1(v, v

′) := 1v ̸=v′ , a reasonable choice given
that all networks have the same input layer. For l ≥ 2, recall our interpretation of nodes v =
(γl−1, w), v

′ = (γ′
l−1, w

′), where γl−1 and γ′
l−1 denotes the respective measures associated with

previous layer l− 1 and w,w′ denotes the respective weight functions for nodes v and v′. Since the
domains of the weight functions w and w′ are layers in different NNs, it is not clear how to compare
them directly. However in TLp interpretation, after finding a suitable coupling between the support
measures γl−1 and γ′

l−1, one can couple the functions w and w′ and use a direct L2-comparison.
Motivated by computational and methodological considerations, we use a slight modification of
the TLp distance and decouple the problem for the measures from the weights. Specifically, we
define cl(v, v

′) := dµ(γl−1, γ
′
l−1) + dW (w,w′); where dµ is the Wasserstein distance (as defined

in equation 4) between the measures γl−1 and γ′
l−1 from layers l − 1. And dW is defined using the

optimal coupling of weight functions’ support measures, i.e.,

dW (w,w′) :=
∑
q,s

(
wq − w′

s

)2
(πl−1,qs)

∗ =: ⟨L(w,w′), (Πl−1)
∗⟩, (5)

where L(w,w′) :=
[
(wq−w′

s)
2
]
q,s

and (Πl−1)
∗ =

[
(πl−1,qs)

∗]
q,s

is the optimal coupling between
γl−1 and γ′

l−1. Note that dµ(γl−1, γ
′
l−1) is a fixed constant when comparing any two nodes on the

4

Under review as a conference paper at ICLR 2023

l-th layers Nl and N ′
l . For simplicity, we let cl(v, v′) = dW (W,W ′) in what follows, and the

information of support measures γl−1 and γ′
l−1 is implicitly included in their optimal coupling

(Πl−1)
∗. Here we have omitted bias terms to ease the exposition of our framework, but a natural

implementation that accounts for bias terms can be obtained by simply concatenating them with the
weight matrix.

We set (Π1)
∗ equal to the identity matrix normalized by the size of input layer given that this is

a solution to equation 4 when the cost c1 is defined as c1(v, ṽ) := 1v ̸=ṽ . Other choices of cost
function cl are possible, e.g. the activation-based cost function proposed in Singh & Jaggi (2019).

2.3 FUSION ALGORITHM

In the following we consider n input FC NNs N1, . . . , Nn. We use N i
l to denote the l-th layer of

the i-th network N i and kil to denote the number of nodes in that layer, i.e. kil = |N i
l |. Let γi

l to
be the probability measure on layer N i

l similar to definition in equation 3 with the support points
being nodes in that layer. We denote the target model (i.e. the desired fusion output) by N new and
use k2, . . . , km to denote the sizes of its layers N new

2 , . . . , N new
m , respectively. We assume that all

networks, including the target model, have the same input layer and the same number of layers m.

Based on the discussion in Sections 2.1 and 2.2, we now describe an inductive construction of the
layers of the target network N new by fusing all n input NNs. First, N new

1 is set to be equal to N1
1 : this

is the base case of the inductive construction and simply means that we set the input layer of N new

to be the same as that of the other models; we also set γ1 := γ1
1 . Next, assuming that the fusion has

been completed for the layers 1 to l − 1 (l ≥ 2), we consider the fusion of the l-th layer. For the
simplicity of notations, we drop the index l while referring to nodes and their corresponding weights
in this layer. In particular, we use vig and wi

g to denote the nodes in layer N i
l and their corresponding

weights. To carry out fusion of the l-th layer of the input models, we aggregate their corresponding
measures through finding WB which provides us with a sensible “average” l-th layer for the target
model. Hence, we consider the following WBP over γ1

l , . . . , γ
n
l :

min
γl,{Πi

l}i

1

n

n∑
i=1

W (γl, γ
i
l) :=

1

n

n∑
i=1

⟨Ci
l ,Π

i
l⟩ s.t. γl =

1

kl

kl∑
j=1

δvj , vj = (γl−1, wj). (6)

Here the measure γl is the candidate l-th layer “average” of the input models and is forced to take a
specific form (notice that we have fixed the size of its support and the masses assigned to its support
points). Nodes vj in the support of γl are set to take the form vj = (γl−1, wj), i.e. the measure γl−1

obtained when fusing the (l − 1)-th layers is the first coordinate in all the vj . This plugs the current
layer of the target model with its previous layer. As done for the input models, wj is interpreted
as a function from the (l − 1)-th layer into the reals, and represents the actual weight vector from
the (l − 1)-layer to the j-th node in the l-th layer of the new model. Ci

l :=
[
cl(vj , v

i
g)
]
j,g

are the
cost matrices corresponding to WBP in equation 6, where cl is a cost function between nodes on the
l-th layers (see in Section 2.2). Let Wl and W i

l to be the weight function matrices of the l-th layer
of target models N new and input model N i respectively (e.g. Wl := (w1, . . . , wkl

)T) and define
L(Wl,W

i
l) :=

[(
wjq −wi

gs

)2]
j,g,q,s

, where wjq denotes the function wj evaluated at the q-th node
in layer l − 1 and similarly for wi

gs. The cost matrices Ci
l can now be rewritten as

Ci
l :=

[
cl(vj , v

i
g)
]
j,g

=
[
dW (wj , w

i
g)
]
j,g

= L(Wl,W
i
l)⊗ (Πi

l−1)
∗, (7)

where (Πi
l−1)

∗ is the optimal coupling between measures γl−1 and γi
l−1. Combining equation 7

with equation 6 gives us the following optimization problem which we solve to obtain the fused
layer:

min
Wl,{Πi

l}i

B(Wl; {Πi
l}i) :=

1

n

n∑
i=1

⟨L(Wl,W
i
l)⊗ (Πi

l−1)
∗,Πi

l⟩. (8)

In order to solve the minimization problem 8, we can follow a strategy discussed in Cuturi &
Doucet (2014); Anderes et al. (2016); Claici et al. (2018), i.e., alternatingly update weights Wl

and couplings {Πi
l}i (remember that the (Πi

l−1)
∗ are computed once and for all and are fixed in

equation 8. In particular, after initializing weight matrices, we alternate between two steps until
some stopping criterion is reached:

5

Under review as a conference paper at ICLR 2023

Step 1: For fixed Wl, we update the couplings {Πi
l}i. Note that the minimization of B(Wl; {Πi

l}i)
over the couplings {Πi

l}i splits into n OT problems, each of which can be solved using any of the
algorithms used in computational OT (e.g. Sinkhorn’s algorithm Cuturi (2013)).

Step 2: For fixed couplings {Πi
l}i, we update the weights Wl. Note that for fixed couplings the

objective B(Wl; {Πi
l}i) is quadratic in Wl and hence we obtain the following update formula:

Wl ← klkl−1
1

1kl−1
1T
kl

1

n

n∑
i=1

Πi
lW

i
l (Π

i
l−1)

∗T , (9)

where ·
· is elementwise division. We refer to the above fusion algorithm as Wasserstein barycenter-

based fusion (WB fusion). The pseudo-code for this algorithm and corresponding computational
complexity can be found in the Appendix, where we also provide some details on how to adapt our
fusion method to handle convolutional layers and skip-connections.

3 GROMOV-WASSERSTEIN BARYCENTER-BASED FUSION

In this section we discuss extension of our fusion framework to cover RNNs and LSTMs. Compared
to FC networks, RNNs contain “self-loops” in each layer (hidden-to-hidden recurrent connections)
which allows information to be passed from one step of the neural network to the next. Similar
to our interpretation of neurons in the FC case, a node vig on the l-th layer will be represented
as vig :=

[
(γi

l−1, w
i
g); (γ

i
l , h

i
g)
]
, where wi

g is the weight function between inputs of the preceding
layer and hidden states, and hi

g is the weight function between hidden states; γi
l−1 and γi

l are the
probability measures corresponding to layer l − 1 and layer l respectively. This definition comes
from the observation that hidden-to-hidden weight functions hi

g are supported on the l-th layer itself,
whereas wi

g is supported on the (l − 1)-th layer.

Having carried out the fusion of the first l − 1 layers we consider the following problem to fuse the
l-th layers:

min
Wl,Hl,{Πi

l}i

B(Wl, Hl; {Πi
l}i) :=

1

n

n∑
i=1

⟨L(Wl,W
i
l)⊗ (Πi

l−1)
∗ + αHL(Hl, H

i
l)⊗Πi

l,Π
i
l ⟩, (10)

where αH is a hyperparameter that balances the importance of input-to-hidden weights and hidden-
to-hidden weights during the fusion; we’ll use (Πi

l)
∗ to denote an optimal Πi

l . We use Hl and Hi
l to

denote the hidden-to-hidden weight function matrices of layer N new
l and N i

l respectively, and we let
L(Hl, H

i
l) :=

[(
hjq − hi

gs

)2]
j,g,q,s

. L(Wl,W
i
l) is defined the same as in the fully connected case.

Notice that this is a GW-like barycenter problem.

We provide more detailed explanation on how to derive optimization problem 10 and adapt the
GWB fusion for RNNs discussed in this section to the LSTM case in the Appendix. In Section
4.3 we show that the models obtained when setting αH > 0 in equation 10 greatly outperform the
models obtained when setting αH = 0, justifying in this way the use of GWBs.

4 EXPERIMENTS

Overview: We present an empirical study of our proposed WB and GWB based fusion algorithms
to assess its performance in comparison to other state of the art fusion methodologies and reveal new
insights about the loss landscapes for different types of network architectures and datasets. We first
consider the fusion of models trained on heterogeneous data distributions. Next we present results
for WB fusion of FC NNs and deep CNNs, and draw connections between workings of WB fusion
and LMC of SGD solutions. Finally, we consider GWB fusion and present results on RNNs, LSTMs
and extend the conjecture made in Entezari et al. (2021) for recurrent NNs.

Baselines: For baselines, we consider vanilla averaging and the state-of-the-art fusion methodolo-
gies like OT fusion Singh & Jaggi (2019) and FedMA Wang et al. (2020). For a fair comparison
under the experimental settings of one-shot fusion we consider FedMA without the model retraining
step and restrict its global model to not outgrow the base models. We refer to this as “one-shot

6

Under review as a conference paper at ICLR 2023

FedMA”. For RNNs and LSTMs, our baselines additionally include slightly modified versions of
WB based fusion and OT fusion where we ignore the hidden-to-hidden connections. Other methods
which require extensive training are not applicable in one-shot model aggregation settings.

Base models & General-setup: For our experiments on FC NNs, we use MLPNET introduced
in Singh & Jaggi (2019), which consists of 3 hidden layers of sizes {400, 200, 100}. Addition-
ally, we introduce MLPLARGE and MLPSMALL with hidden layers of size {800, 400, 200} and
{200, 100, 50} respectively. For deep CNNs, we use VGG11 Simonyan & Zisserman (2014) and
RESNET18 He et al. (2016). For recurrent NNs, we work with RNNs and LSTMs with one hidden
layer of size 256 and 4 × 256 respectively. Hyperparameters are chosen using a validation set and
final results are reported on a held out test set. More training details are provided in the Appendix.

Visualization methodology: We visualize the result of fusing two pre-trained models on a two-
dimensional subspace of NNs’ loss landscape by using the method proposed in Garipov et al. (2018).
In particular, each plane is formed by all affine combinations of three weight vectors corresponding
to the parameters of base model 1, base model 2 and permuted model 2 (i.e. base model 2 after
multiplying its weights by the coupling obtained by our fusion algorithm) respectively.

4.1 WB FUSION UNDER HETEROGENEOUS DATA DISTRIBUTIONS

Setup: We first apply WB fusion in aggregating models trained on heterogeneous data distributions
which is a setting often found in federated learning where the clients have local data generated from
different distributions and privacy concerns prevent data sharing among them. Here we follow the
setup described in Singh & Jaggi (2019). To simulate heterogeneous data-split on MNIST digit
classification one of the models (named A) is trained with a special skill to recognize one of the
digits (eg. digit 4) that is not known to the other model, named B. Model B is trained on 90% of the
training data for remaining digits while model A uses the other 10% data. Under this data split, we
consider two settings. For the first setting, the base models are fused into a target model of the same
architecture (MLPNET). For the second setting, we consider the fusion of two small base models
(MLPSMALL) into a large target model (MLPNET). This simulates the setting where clients in
federated learning are constrained by memory resources to train smaller models. In both cases we
use model fusion to aggregate knowledge learned from the base models into a single model, a more
memory-efficient strategy than its ensemble-based counterparts.

Quantitative results: Figure 2 shows the results of single shot fusion when different proportions of
the base models are considered. We find that (a) WB fusion consistently outperforms the baselines,
(b) for certain combinations WB produces fused models with accuracy even better than the base
model and demonstrates successful one shot knowledge aggregation. Note that for each proportion
of model aggregation (x-axis), the results are reported over multiple runs where one of the base
models is randomly chosen to initialize the target model in the fusion algorithm. We find that WB
fusion is more stable against initialization as indicated by the lower variance in Figure 2. For fusion
into different architectures vanilla averaging is not applicable, and we do not include “one-shot
FedMA” for comparison here since it is not clear how to assign different proportions to base models
in FedMA, or to specify a target architecture different from the base models.

Figure 2: Left / Right: Test accuracy % for fused models when base models are trained on het-
erogeneous data distributions and combined with various proportions into a target model of same /
different architecture. Some models obtained by WB fusion outperform even the base models.

7

Under review as a conference paper at ICLR 2023

4.2 WB FUSION UNDER HOMOGENEOUS DATA DISTRIBUTIONS AND CONNECTIONS TO LMC

Setup: In this section we perform WB fusion for various models and architectures, and provide
loss landscape visualizations which reveal workings of the fusion algorithm and shed light on linear
model connectivity (LMC) of SGD solutions after applying appropriate permutations. We first con-
sider fusion of FC NNs on the MNIST dataset Deng (2012) and train MLPNET following Singh &
Jaggi (2019). For this we consider two different settings. In the first setting, the target model has
the same architecture as the base models. For the second one, we fuse the base models into a larger
model MLPLARGE. As noted before, the latter scenario is relevant for federated learning, given the
limitations of memory and computational resources on edge devices. Next, we consider fusion of
deep CNNs like VGG11, RESNET18 trained on CIFAR10 dataset Krizhevsky et al. (2009). For all
these cases, we fuse 2 trained models initialized differently. For the skip-connection and fusion into
different architectures, FedMA is not directly applicable and hence not considered for comparisons.

Quantitative results: Table 1 contains the results of fusion for FC NNs and deep CNNs. We find
that (a) WB fusion produces models at par or outperforms other fusion methods for all considered
model types and datasets, (b) for fusion into different architectures and ResNets, we find that WB
fusion is more effective and robust.

Table 1: Performance comparison (Test accuracy ± standard deviation %) of different fusion algo-
rithms under various network architectures and datasets. “BASE” means initializing target model
with one of the base models. For each case, the target model obtained by WB fusion gets the highest
test accuracy and smallest standard deviation.

MNIST CIFAR10

MLPNET/BASE MLPLARGE VGG11/BASE RESNET18/BASE

BASE MODEL AVG 98.31± 0.02 - 90.14± 0.19 91.56± 0.34

VANILLA AVG 86.50± 4.60 - 30.82± 4.49 20.56± 3.90

ONE-SHOT FEDMA 97.89± 0.10 - 85.42± 1.01 -

OT 97.84± 0.12 91.53± 2.64 85.39± 0.93 71.37± 6.53

WB 97.92± 0.12 94.93± 1.18 85.39± 0.93 73.75± 4.39

Visualizations: Figure 1 (left) contains the visualization of fusing two MLPNET trained on MNIST
dataset under WB framework and Figure 3 (left) contains the fusion result of WB fusion of two
VGG11 models trained on CIFAR10. We find that (a) the couplings obtained in WB fusion (refer
to equation 8) between the layers of target model and base models are sparse, i.e. they are almost
permutations; (b) the basins of the permuted model 2 (obtained by multiplying the weights of base
model 2 by the found couplings) and base model 1 lie close to each other and are separated by
a low energy barrier. These visualizations thus provide new empirical evidence in support of the
conjecture made in Entezari et al. (2021). They also shed light on the workings on WB fusion
algorithm. In particular, equation 9 can be interpreted as coordinate-wise averaging of the permuted
models. Since permuted models land in basins that are separated by low energy barriers, their linear
interpolation gives a good fused model.

4.3 GWB FUSION FOR RECURRENT NEURAL NETWORKS

Setup: In this section, we consider the fusion of NNs like RNNs and LSTMs on sequence based
tasks. We use 4 different datasets for this setting: i) MNIST Deng (2012): Images of 28×28 dimen-
sions are interpreted as 28 length sequences of vectors ∈ R28; ii) SST-2 Socher et al. (2013): Binary
classification task of predicting positive and negative phrases; iii) AGNEWS Zhang et al. (2015):
Corpus of news articles from 4 classes; and iv) DBpedia Zhang et al. (2015): Ontology classifica-
tion dataset containing 14 non-overlapping classes. For the NLP tasks, we use pre-trained GloVe
embeddings Pennington et al. (2014) of dimensions 100 and 50 for RNNs and LSTMs respectively.
The embedding layer is not updated during the model training. We set the target model to have the
same architecture as the base models.

Quantitative results: Table 2 contains the result of fusion for various datasets and model architec-
tures. We find that (a) our GWB framework outperforms other fusion algorithms for each combi-
nation of model type and dataset, which highlights the importance of using hidden-to-hidden con-

8

Under review as a conference paper at ICLR 2023

0 10 20 30 40

−5

0

5

10

15

20

25

30
Base model 1

Base model 2

Permuted model 2

Fused model

9.9

11

12

13

15

17

20

25

> 25

0 20 40 60 80

−10

0

10

20

30

40

50

60
Base model 1

Base model 2

Permuted model 2

Fused model

1

1.3

1.5

1.8

2.5

3.7

6

10

> 10

−10 0 10 20 30 40 50 60

0

10

20

30

40

50 Base model 1

Base model 2

Permuted model 2

Fused model

1.3

2

2.4

3.1

4.2

6.2

9.5

15

> 15

Figure 3: Visualizations of the fusion results on the test error surface, which is a function of network
weights in a two-dimensional subspace, for different models and datasets. Left: Fusion of two
VGG11 models trained on CIFAR10 dataset using WB framework. Middle: Fusion of two LSTM
models trained on MNIST dataset . Right: Fusion of two LSTM models trained on DBpedia dataset.
We can observe that in all these cases the basins of permuted model 2 (obtained by multiplying the
weights of base model 2 by the found coupling) and base model 1 lie close to each other and are
separated by a low energy barrier.

nections for the fusion of recurrent NNs; (b) the accuracy gains for GWB over WB is different for
different tasks, which indicates that relative importance of hidden-to-hidden connections is task de-
pendent; (c) the accuracy of fused model is higher for LSTMs in comparison to RNNs, which we
attribute to the fact that LSTMs have four hidden states and thus four input-to-hidden and hidden-
to-hidden weight matrices. More information for each hidden node allows the algorithm to uncover
better couplings. Our results in (a) and (b) show the usefulness of hyperparameter αH (set between
[1, 20]) from equation 10 in balancing the relative importance of hidden-to-hidden weights.

Table 2: Performance comparison (Test accuracy ± standard deviation %) of different fusion algo-
rithms under various network architectures and datasets. For each case, target model obtained by
GWB fusion reaches the highest test accuracy and small standard deviation.

MNIST AGNEWS DBPEDIA SST-2

RNN LSTM RNN LSTM RNN LSTM RNN LSTM

BASE MODEL AVG 96.68± 0.29 98.99± 0.09 88.68± 0.12 92.38± 0.17 97.12± 0.21 98.62± 0.11 87.32± 1.03 90.31± 0.27

VANILLA AVG 28.54± 10.70 31.92± 4.86 40.77± 4.94 74.01± 3.89 30.95± 4.53 50.93± 2.17 73.91± 2.73 74.25± 1.92

OT 36.78± 14.13 68.33± 7.07 53.05± 4.30 86.19± 2.14 37.91± 4.86 77.95± 3.20 78.92± 2.97 82.13± 0.60

ONE-SHOT FEDMA 34.16± 7.26 66.98± 5.17 55.78± 3.64 86.30± 2.40 42.16± 6.24 81.81± 3.29 79.17± 2.27 82.53± 1.01

WB 29.41± 7.05 67.66± 6.27 55.63± 4.18 86.25± 2.37 42.52± 6.26 82.57± 3.55 79.57± 2.36 82.87± 1.09

GWB 81.39± 2.97 93.27± 1.86 61.01± 3.87 87.96± 0.91 55.15± 5.97 87.50± 2.89 82.60± 1.05 84.04± 0.77

Visualizations: Figure 3 (middle, right) contains visualization of fusing LSTM models under the
GWB framework. As noted for the FC NNs and deep CNNs visualizations, we find that (a) the
couplings found by GWB fusion algorithm are sparse, and (b) these couplings map different local
minima into neighboring basins that are separated by low energy barriers. This empirical evidence
suggests that the original conjecture in Entezari et al. (2021) can be extended to richer network
architectures and tasks (RNNs and LSTMs on NLP datasets).

5 CONCLUSION

In this paper we have proposed neural network fusion algorithms that are based on the concept of
Wasserstein/Gromov-Wasserstein barycenter. Our fusion algorithms allow us to aggregate models
within a variety of NN architectures, including RNN and LSTM. Through extensive experimentation
we: 1) illustrated the strengths of our algorithms 2) provided new empirical evidence backing recent
conjectures about the linear mode connectivity of different neural networks with architectures such
as RNN or LSTM and for different imaging and NLP datasets. Limitations and future work:
NNs with ReLU activation are also scale-invariant across the layers which is currently not handled
in our cost functions. Although the empirical evidence in Entezari et al. (2021); Du et al. (2018)
suggests that the models trained on same datasets using SGD converges to solutions with more
balanced weights, it might be the case that for certain heterogeneous settings the weights across
models become less balanced. For future work we would like to explore fusion using scale-invariant
cost functions and apply WB/GWB fusion algorithms to federated learning.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924, 2011.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Ethan Anderes, Steffen Borgwardt, and Jacob Miller. Discrete wasserstein barycenters: Optimal
transport for discrete data. Mathematical Methods of Operations Research, 84(2):389–409, 2016.

Frederik Benzing, Simon Schug, Robert Meier, Johannes von Oswald, Yassir Akram, Nicolas Zuc-
chet, Laurence Aitchison, and Angelika Steger. Random initialisations performing above chance
and how to find them. arXiv preprint arXiv:2209.07509, 2022.

Sebastian Claici, Edward Chien, and Justin Solomon. Stochastic wasserstein barycenters. arXiv
preprint arXiv:1802.05757, 2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems, pp. 2292–2300, 2013.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. 2014.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International conference on machine learning, pp. 1309–
1318. PMLR, 2018.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in Neural Information Processing Systems,
31, 2018.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296,
2021.

Nicolás Garcı́a Trillos and Dejan Slepčev. Continuum limit of total variation on point clouds.
Archive for Rational Mechanics and Analysis, pp. 1–49, 2015. ISSN 1432-0673. doi: 10.1007/
s00205-015-0929-z. URL http://dx.doi.org/10.1007/s00205-015-0929-z.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

10

http://dx.doi.org/10.1007/s00205-015-0929-z

Under review as a conference paper at ICLR 2023

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? Advances in neural information processing systems, 33:512–523, 2020.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. On the loss landscape of a class
of deep neural networks with no bad local valleys. arXiv preprint arXiv:1809.10749, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. 2018.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. arXiv preprint
arXiv:1910.05653, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Romain Thibaux and Michael I. Jordan. Hierarchical beta processes and the indian buffet process.
2007.

Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K Rohde, and Dejan Slepčev. A transporta-
tion lp distance for signal analysis. Journal of mathematical imaging and vision, 59(2):187–210,
2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang,
and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. arXiv
preprint arXiv:1905.12022, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

11

	Introduction
	Notation
	Optimal transport and Wasserstein barycenters

	Wasserstein barycenter based fusion
	Nested definition of fully connected NN
	 Cost functions for comparing layers and nodes
	Fusion algorithm

	Gromov-Wasserstein barycenter-based fusion
	Experiments
	WB fusion under heterogeneous data distributions
	WB fusion under homogeneous data distributions and connections to LMC
	GWB fusion for recurrent neural networks

	Conclusion

