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Abstract

We study the problem of online interaction in general decision making problems,
where the objective is not only to find optimal strategies, but also to satisfy some
safety guarantees, expressed in terms of costs accrued. We propose a theoretical
framework to address such problems and present BAN-SOLO, a UCB-like algo-
rithm that, in an online interaction with an unknown environment, attains sublinear
regret of order O(

√
T ) and plays safely with high probability at each iteration. At

its core, BAN-SOLO relies on tools from convex duality to manage environment
exploration while satisfying the safety constraints imposed by the problem.

1 Introduction

In the recent years, improvements in the field of Artificial Intelligence, more in particular in the
subjects of Algorithmic Game Theory (AGT) and Reinforcement Learning (RL), made it possible to
achieve outstanding results in various applications. These range from recreative applications, e.g.,
Chess [Silver et al., 2018], Texas hold’em poker [Brown and Sandholm, 2018], Go [Silver et al., 2017],
to security applications such as anti-poaching patrolling [Tambe, 2011]. The increasing number of
successful applications of decision making algorithms to real-world tasks raises fundamental concerns
in terms of safety. Indeed, when considering critical tasks with humans in the loop, it becomes of
upmost importance to avoid the occurrence of undesirable and potentially dangerous behaviour of the
algorithms, especially during the learning process. In this work, we propose a theoretical framework
to address the aforementioned problem. The decision-making model that we adopt is general and
can capture many popular strategic scenarios, (e.g., sequential decision making, multi-armed bandits,
partially observable markov decision processes). The concept of safety is modeled by constraints on
a cost function that can be suitably specified to represent any particular, domain-dependent safety
constraint. The algorithm proposed is called BANdit Safe Online Linear Optimization (BAN-SOLO).
During the online interaction with the environment, BAN-SOLO pursues a twofold objective: (i)
minimize the regret against the best possible safe strategy and (ii) always select safe strategies.
In order to achieve such a goal, BAN-SOLO uses the feedback received from the environment to
estimate an high confidence region for the environment model and exploits the concept of convex
dual set of such an high confidence region to achieve O(

√
T ) regret and high-probability safety at

each iteration.

2 Preliminaries

In this section we will define the model of interaction that is adopted throughout the rest of the paper,
and then we will review some concepts from variational analysis.
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2.1 Decision Making with Bandit Feedback and Costs

We consider a general decision making scenario in which the set of strategies available to the agent is
a bounded and convex set X . After selecting a strategy x ∈ X , the agent receives a utility u(x) and
pays a cost c(x). We focus on the case in which the utility and cost functions are linear functions with
unknown parameters y⋆ and ω⋆, respectively, i.e., such that u(x) = ⟨x,y⋆⟩ and c(x) = ⟨x,ω⋆⟩.
At each time instant t ∈ [T ]2, the agent selects a strategy xt ∈ X and receives a partial feedback ℓt
from the environment. For each t, the objective of the agent is to select strategies that maximize her
utility, while being safe. The concept of safety that we adopt in this work is expressed in terms of
costs. In particular, a strategy x is said to be safe if it guarantees that the expected cost is within an
interval C := [α, β] ⊂ R. Thus, the set of safe strategies is defined as X ⋆ := {x ∈ X | c(x) ∈ C}.

The performances of the agent are evaluated in terms of cumulative regret RT which is defined as
RT = supx∈X⋆

∑T
t=1⟨x,y⋆⟩ −

∑T
t=1⟨xt,y⋆⟩. We demand that the cumulative regret is sub-linear

in T , while ⟨xt,ω⋆⟩ ∈ C, for all t, with high probability. Additionally, we assume that X ⋆ is not
empty, otherwise the problem is trivially impossible to solve, and that we have a starting set X 0 ⊂ X ⋆

for the safe exploration, such that for all x ∈ X 0 it holds ⟨x,ω⋆⟩ ∈ C.

2.2 Variational Analysis

First we are going to recall the definition of Hausdorff distance which defines a metric between
compact sets. We will use extensively this notion throughout the paper.

Definition 1. Let A and B, two non-empty subsets of a metric space (M, d). The Hausdorff distance
between A and B is defined as dH(A,B) = inf

ϵ>0
{A ⊆ Bϵ andB ⊆ Aϵ}, where Aϵ is the ϵ-flattening

of the set A defined as Aϵ :=
⋃
z∈A{z′ ∈ M | d(z, z′) ≤ ϵ}.

We exploit this definition to define the rate of convergence of a sequence of sets.

Definition 2. We write At
K(t)−−−→ B when a sequence of sets {At}t∈N converges to B with rate

K(t) = o(t), i.e., dH(At, B) ≤ K(t), for all t.

We will also use the notion of polar sets of convex polytopes. Namely we will use the fact that any
bounded convex polytope can be defined in two equivalent ways: as a convex hull of a finite set of
points (V-Polytope) and as the intersection of a finite number of closed half-spaces (H-Polytope).
Indeed, starting from the definition a V-Polytope (respectively H-Polytope) it is always possible to ob-
tain the polar set (indicated with the superscript ◦) in terms of H-Polytope (respectively V-Polytope).

Lemma 1 (Polar Set Ziegler [2012]). Given any set of p points, {a1, ..., ap} with ai ∈ Rn ∀i, if A is
the n×p matrix whose ith column is ai, then hull({a1, ..., ap})◦ = {x ∈ Rn|A⊤x ≤ 1}. Conversely
we have that ({x ∈ Rn|A⊤x ≤ 1})◦ = hull({a1, ..., ap}), assuming the left hand side is bounded.

Additional Notation We indicate the convergence of a sequence of real numbers {αt}t≥0 to α⋆

with |αt − α⋆| ≤ K(t) as αt
K(t)−−−→ α⋆. We denote with epi(f) ⊂ Rn+1 the epigraph of a function

f : Rn → R̄.3 Finally, we use δX (x) to denote a function that is 0 if x ∈ X and +∞ if x /∈ X .

2.3 Structure of the paper

This subsection outlines the main idea behind our approach and the structure of the paper. We start
the discussion by imagining to have an oracle returning at each time t a feasibility set X t ⊂ X ⋆ s.t.
for all x ∈ X t we have ⟨x,ω⋆⟩ ∈ C with high probability. As a starting point of our discussion, we
assume the oracle to return better and better feasibility sets X t as the time t progresses, and more

experience is collected. Formally, we use Definition 2 of set-convergence and ask that X t K(t)−−−→ X ⋆.

In Section 3 we will show that when X t K(t)−−−→ X ⋆ and we know y⋆, we obtain a convergence rate

2In this work we let [N ] be the first N natural numbers.
3R̄ is the extended real line that contains ±∞.
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of O(K(t)) to the optimal value supx∈X⋆⟨x⋆,y⋆⟩, by playing xt = arg supx∈X t⟨x,y⋆⟩4. Next, in
Section 4, we will continue the discussion by proposing a procedure that returns safe feasibility sets
X t, by exploiting a suitable high probability region Wt over the vector ω⋆. This construction of
X t exploits the polar set of the high probability region Wt. We will prove that such construction
generates a set X t that satisfies the assumptions made in Section 3. Finally, in Section 5, we will
describe the BAN-SOLO algorithm, based on Lin-UCB, that achieves sub-linear regret in the case in
which y⋆ and ω⋆ are not known.

3 Rate of Convergence for Linear Programs

In this section we prove the following theorem which relates the Hausdorff distance of the approximate
feasibility set X t to X ⋆ and the difference in the objective of the respective optimization problems.5

Theorem 1. Let X t ⊂ X ⋆ and X t K(t)−−−→ X ⋆ for some function K(t) = o(t) and bounded set

X ⋆ ⊂ Rn. Then supx∈X t⟨x,y⋆⟩
K′(t)−−−→ supx∈X⋆⟨x,y⋆⟩, where K ′(t) = 3K(t).

Moreover, for ease of notation, we introduce the following functions: gt(x) = −⟨x,y⋆⟩+ δX t(x),
g⋆(x) = −⟨x,y⋆⟩ + δX⋆(x), and their epigraphs Et = epi(gt), E⋆ = epi(g⋆), while H+ is the
epigraph of the linear function −⟨·,y⋆⟩.6 Figure 1 is a schematic representation of the epigraphs of
the function involved.

3.1 Sketch of the Proof of Theorem 1

H+

xtx⋆

Et

X ⋆X t

Rn

R

E⋆

Figure 1: Schematic represen-
tation of the epigraphs Et and
E⋆ of the functions gt and g⋆.

In this section we report a sketch of the proof that provides the
intuition of the techniques used. The idea of the proof can be divided
in two main points. (i) Relate the Hausdorff distance of X t and
X ⋆ to the Hausdorff distance of the epigraphs of gt and g⋆. (ii)
Relate the Hausdorff distance of the two epigraphs to the difference
in values of their optima. Intuitively we can understand why this
point of view is convenient. The epigraph of gt and g⋆ differ only in
terms of the epigraph of the indicator functions of the feasibility sets
δX t and δX⋆ . Indeed, the epigraph Et and E⋆ can be expressed as
intersection of the half-space H+ and the epigraph of the indicator
functions δX t and δX⋆ , respectively.

This observation suggest to solve point (i) by proving that
dH(Et, E⋆) ≈ dH(X t,X ⋆). On the other hand we can see that the
optimal value of functions gt and g⋆ can be written as the distance
of their epigraphs Et and E⋆ to the optimal value xt ∈ argmin gt

and x⋆ ∈ arg inf g⋆, when xt and x⋆ are tough as embedded in
Rn+1. This helps solving point (ii) of the proof, that informally

states that inf gt − inf g⋆ ≈ dH(Et, E⋆). Finally, by combining (i) and (ii), we can conclude that
inf gt − inf g⋆ ≈ dH(X t,X ⋆).

4 Exploiting Convex Duality to Deal with Uncertainty on ω⋆

In this section we drop the assumption made in the previous section about the existence of an oracle
that provides the feasibility sets and propose an explicit construction of such region. More precisely,
we loosen the assumptions and we assume only to have a high confidence region Wt for the vector
ω⋆ and define the sets X t and X ⋆ as polarization of the sets Wt and W⋆, respectively:

X t =
{
x ∈ X |⟨x,ω⟩ ∈ C ∀ω ∈ Wt

}
, X ⋆ = {x ∈ X |⟨x,ω⋆⟩ ∈ C } . (1)

We use the partial feedback ℓt to estimate ω⋆ by building a region in which such parameter lies with
high probability. In practice this consists in having an high confidence region Wt that converges to

4Note that it is customary in sensitivity analysis to investigate convergence of the inf of an objective function
f . It is possible to trivially obtain our case simply by considering a different objective function g = −f

5Proofs missing from Section 3 Section 4 and Section 5 can be found in Appendix B
6Note that H+ is also an half-space.
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the singleton W⋆ := {ω⋆} with some convergence rate K(t) = o(t), namely Wt K(t)−−−→ W⋆. Under
these assumptions, and by defining C = [α, β] we can state the following result.
Theorem 2. Assume that Wt is a bounded linear set so that, with probability at least 1− δ we have

W⋆ ⊂ Wt, and that Wt K(t)−−−→ W⋆ for some function K(t) = o(t). Define C := [α, β] and X t and

X ⋆ as in Equation 1. Then supx∈X t⟨x,y⋆⟩
K′(t)−−−→ supx∈X⋆⟨x,y⋆⟩, where K ′(t) = 3R2K(t)/ψ

with R = supx,x′∈X⋆×X⋆ ||x− x′||2 and ψ = min{|α|, |β|}.

5 Algorithm

Algorithm 1 BAN-SOLO
1: for t ∈ {1, . . . , T} do
2: Build confidence regions Yt andWt from past feedback
{ℓ1, . . . , ℓt−1}

3: Build linear set X t by exploitingWt ▷ Subsection 4
4: xt ← arg sup

x∈X t

sup
y∈Yt

⟨x,y⟩

5: Play the game according to strategy xt

6: Observe feedback ℓt from the environment

In the previous section we showed
how the assumption of Section 3 of
having a oracle returning the feasi-
bility set X t can be substituted by
a high probability region Wt for ω⋆.
Moreover, while up to now the results
were given for a known y⋆, in this sec-
tion we will present a practical algo-
rithm that by having a high probability
region Yt achieves sub-linear regret,

given that Yt O(1/
√
t)−−−−−→ Y⋆. In order

to guarantee that BAN-SOLO attains sub-linear regret RT = o(T ) after T iterations (with high prob-
ability), we adopt an approach inspired from linear multi-armed bandit problems [Abbasi-Yadkori
et al., 2011]. The pseudo code for the BAN-SOLO algorithm is provided in Algorithm 1. It is
based on the optimism in face of uncertainty principle, and, thus, it selects a strategy xt ∈ X t that
maximizes the expected payoff ⟨x,y⟩ under the assumption that, for every x ∈ X t, strategy y is
an optimistic estimate of y⋆ taken from the confidence region Yt, that is, y ∈ Yt maximizes the
same player i’s expected payoff ⟨x,y⟩ (line 4). The only assumption is that one can build the high
confidence region Yt (line 2). The following theorem provides an high-probability sub-linear regret
guarantee for BAN-SOLO (the complete proof can be found in Appendix D).

Theorem 3. If Wt K(δ)/
√
t−−−−−→ W⋆ and Yt K(δ)/

√
t−−−−−→ Y⋆, and both W⋆ ⊂ Wt and Y⋆ ⊂ Yt holds

with probability at least 1 − δ, then we have that RT ≤
(
3R2/ψ +D

)
K(δ)

√
T , where ψ and R

are defined as in Theorem 2 and D = supX⋆ ||x||.

Note that in Theorem3 the parameter K is written as a function of the parameter δ, because, in
general, to guarantee ω⋆ ∈ Wt with higher probability (smaller δ) one needs a larger Wt (larger
K). Moreover, notice that BAN-SOLO needs to solve a linearly-constrained bilinear optimization
problem at each iteration, which can be done efficiently by cutting-hedge solvers. Theorem 3 shows
that one can achieve sub-linear regret just by having good (e.g., of order 1/

√
t) estimators for

the parameters y⋆ and ω⋆. Due to space constraints, we defer to the appendix the application of
BAN-SOLO to common strategic scenarios, like normal-form and sequential decision making.

6 Conclusions

In this work we study the problem of playing safely decision making problems with bandit feedback
and linear cost and payoff functions. We first derived a general result on the the sensitivity of a linear
optimization problem based on their feasibility set and their Hausdorff distance. Then we showed
how such result can be used in our case, by exploiting the polar set formulation that follows from
the safety constraints. Finally we proposed BAN-SOLO, a Lin-UCB algorithm, which guarantees
sub-linear regret and, at the same time, the satisfaction with high probability of the safety constraints
during the entire learning process.
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A Structure of the Appendix

The appendix is structured as follows:

• Appendix B provides the proof of the main theorem of Section 3.

• Appendix C provides the proofs omitted from Section 4.

• Appendix D provides the proofs omitted from Section 5.

• Appendix E provides applications of our methodology to the context of games.

B Proofs Omitted from Section 3

In this section we are going to formally write the intermediate results needed to complete the informal
discussion on the proof of Theorem 1. The relationship between the distance of the feasibility sets
X t and X ⋆ and the epigraphs of gt and g⋆ is formalized in the following lemma.

Lemma 2. Let A,B and C some empty sets of a metric space (M, d). Then we have the following
dH(A ∩B,A ∩ C) ≤ 3dH(B,C).

Proof. First note that (A ∩ B)ϵ ⊂ (Aϵ ∩ Bϵ). By definition we have that for x ∈ (Aϵ ∩ Bϵ) then
d(x,A) < ϵ and d(x,B) < ϵ. Let’s now consider the following inequalities for x ∈ (Aϵ ∩Bϵ):

d(x, (A ∩B)ϵ) := inf
y∈(A∩B)ϵ

d(x, y)

≤ d(x, PA(x)) + inf
y∈(A∩B)ϵ

d(PA(x), y), (2)

where PA(x) := arg inf
z∈A

d(x, z).

Since x ∈ (Aϵ ∩ Bϵ) the first term of Equation (2) can be bounded by ϵ since d(x, z) < ϵ for all
z ∈ A. For the second term of Equation (2) we can consider the following chain of inequalities.
Consider x̄ ∈ (A ∩B)ϵ and

||x̄− x||2 = ||x̄− PA(x) + PA(x)− x||2 (3)

≥ ||x̄− PA(x)||2 + ||PA(x)− x||2, (4)

which in turn implies that ||x̄−PA(x)||2 ≤ ||x̄−x||2. From this we can conclude that d(PA(x), (A∩
B)ϵ) < ϵ. We can thus conclude that d(x, (A ∩B)ϵ) < 2ϵ and since (A ∩B)ϵ ⊂ (Aϵ ∩Bϵ) we can
infer that:

dH((A ∩B)ϵ, Aϵ ∩Bϵ) < 2ϵ.

Hence we have the following set inclusions:

(A ∩B)ϵ ⊂ Aϵ ∩Bϵ ⊂ ((A ∩B)ϵ)2ϵ ⊂ (A ∩B)3ϵ.

Finally consider the following inequalities:

dH(A ∩B,A ∩ C) := inf
ϵ>0

((A ∩B) ⊂ (A ∩ C)ϵ and (A ∩ C) ⊂ (A ∩B)ϵ) (5)

≤ inf
ϵ>0

((A ∩B) ⊂ Aϵ/3 ∩ Cϵ/3 and (A ∩ C) ⊂ Aϵ/3 ∩Bϵ/3) (6)

= inf
ϵ>0

(B ⊂ Cϵ/3 andC ⊂ Bϵ/3) = 3dH(C,B), (7)

where the inequality comes from the fact that (Aϵ/3 ∩ Cϵ/3) ⊂ (A ∩ C)ϵ and similarly with the set
B instead of the set C.

This result states that factoring out a common set A, does only change the Hausdorff distance up to a
constant multiplicative factor. On the other hand the following lemma relates the distance in epigraph
and the distance in optimal values of the functions.

Lemma 3. Let E(1) and E(2) be the epigraphs of two linear programs described by the functions
f (1) and f (2). Then we have that

∣∣inf f (1) − inf f (2)
∣∣ ≤ dH

(
E(1), E(2)

)
.
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Proof. Define E(1) := epi(f (1)), E(2) := epi(f (2)) and x(1) ∈ arg inf f (1). Moreover one has that
inf f (1) = d(x(1), E(1)) where, with abuse of notation we denoted with x(1) the vector (x(1), 0) ∈
Rn+1. Similarly we have inf f (2) = d(x(2), E(2)). Consider now the following inequalities:

inf f (1) − inf f (2) = d(x(1), E(1))− d(x(2), E(2)) (8)

≤ d(x(2), E(1))− d(x(2), E(2)) (9)

≤ dH(E(1), E(2)). (10)

This concludes the proof of the statement.

This result can be seen as a case of sensitivity analysis of linear programs Higle and Wallace [2003]
in which we exploited the Hausdorff distance between their epigraph. To the best of our knowledge,
such general sensitivity analysis is not found elsewhere in the literature, but due to its simplicity, we
do not claim it to be novel. Finally, by using Lemma 3 and Lemma 2 one can easily prove Theorem 1.

Theorem 1. Let X t ⊂ X ⋆ and X t K(t)−−−→ X ⋆ for some function K(t) = o(t) and bounded set

X ⋆ ⊂ Rn. Then supx∈X t⟨x,y⋆⟩
K′(t)−−−→ supx∈X⋆⟨x,y⋆⟩, where K ′(t) = 3K(t).

Proof. Note that one can express Et = H+ ∩At where At = epi(δX t). Similarly E⋆ = H+ ∩A⋆,
where A⋆ = epi(δX⋆). Consider now the following inequality:

dH(Et, E⋆) = dH(H+ ∩At, H+ ∩A⋆)
≤ 3dH(At, A⋆) = 3dH(X t,X ⋆),

where we used Lemma 2 for the first inequality, while the last equality comes from the fact that
At and A⋆ are epigraphs of indicator functions over X t and X ⋆, respectively. Hence the Hausdorff
distance between At, A⋆ ⊂ Rn+1 is equivalent to the distance on the plane Rn × 0 ⊂ Rn+1, which
is in turn equivalent to the Hausdorff distance between X t,X ⋆ ⊂ Rn. We can then conclude
that dH(Et, E⋆) ≤ 3K(t), since by assumption, we have that dH(X t,X ⋆) ≤ K(t). Then, from
Lemma 3 we have that: ∣∣inf gt(x)− inf g⋆(x)

∣∣ ≤ dH
(
Et, E⋆

)
≤ 3K(t). (11)

The theorem follows from the fact that inf gt = supx∈X t⟨x,y⋆⟩ and inf g⋆ = supx∈X⋆⟨x,y⋆⟩

C Proofs omitted from Section 4

Theorem 2. Assume that Wt is a bounded linear set so that, with probability at least 1− δ we have

W⋆ ⊂ Wt, and that Wt K(t)−−−→ W⋆ for some function K(t) = o(t). Define C := [α, β] and X t and

X ⋆ as in Equation 1. Then supx∈X t⟨x,y⋆⟩
K′(t)−−−→ supx∈X⋆⟨x,y⋆⟩, where K ′(t) = 3R2K(t)/ψ

with R = supx,x′∈X⋆×X⋆ ||x− x′||2 and ψ = min{|α|, |β|}.

Proof. In order to show the convergence of the LP solution we need to prove that X t R2K(t)/ψ−−−−−−→ X ⋆

and then apply Theorem 1 to obtain the statement. Thus we need to study the relation between the
convergence rates of Wt and of X t. Define C = [α, β] with −∞ < α < 0 < β < +∞.7 Since the
set Yt is assumed to be a bounded polytope it can be expressed as the convex hull of the set of vertices
Vt that define the high probability region for y⋆, formally: Yt = hull(Vt), where Vt = {y1, ...,yd}.
We will exploit Lemma 3, in Dümbgen and Walther [1996], which gives bounds on the Hausdorff
distance between sets and their corresponding polar sets. Formally it states that:

dH(X ⋆,X t) ≤ R2dH(X ⋆,◦,X t,◦), (12)

where R is the diameter of X ⋆, defined as the radius of the smallest ball centered in zero that contains
X ⋆. Thus, in order to bound the Hausdorff distance between X t and X ⋆ we have to study the distance

7The proof can be trivially adapted in the case of α and β have the same sign or in the case of α = −∞ or
β = +∞.
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between their polar sets. Given Lemma 1 it is possible to derive an expression for the polar sets X t,◦

and X ⋆,◦:

X ⋆,◦ = hull
(
{x}x∈vert(X◦) ∪

{
y⋆

α
,
y⋆

β

})
,

X t,◦ = hull

(
{x}x∈vert(X◦) ∪

{
yt

α

}
yt∈Vt

∪
{
yt

β

}
yt∈Vt

)
,

where vert(X ◦) is the set of vertices of X ◦.

An equivalent definition of the Hausdorff distance between X ⋆,◦ and X t,◦ is:

dH(X ⋆,◦,X t,◦) = max

{
sup

x∈X⋆,◦
d(x,X t,◦), sup

x∈X t,◦
d(x,X ⋆,◦)

}
.

Let us consider supx∈X⋆,◦ d(x,X t,◦). The sup can be tackled by considering exclusively the vertices
of X ⋆,◦, thus:

sup
x∈X⋆,◦

d(x,X t,◦) = sup
x∈vert(X⋆,◦)

d(x,X t,◦),

where vert (X ⋆,◦) = {x}x∈vert(X◦) ∪
{

y⋆

α ,
y⋆

β

}
is the set of vertices of the convex set X ⋆,◦.

Considering that the two sets X ⋆,◦ and X t,◦ have the vertices of X ◦ in common, we can ignore such
vertices as they are characterized by 0 distance. Hence:

sup
x∈X⋆,◦

d(x,X t,◦) = sup
x∈{y⋆

α ,y
⋆

β }
d(x,X t,◦).

Now let us consider d(y
⋆

α ,X
t,◦) := inf

x∈X t,◦
d(y

⋆

α ,x). Since the set X t,◦ is linear we can upper bound

the distance with the distance computed with respect to the vertices. Hence we have that:

d

(
y⋆

α
,X t,◦

)
≤ min

{
inf

yt∈Vt
d

(
y⋆

α
,
yt

α

)
, inf
yt∈Vt

d

(
y⋆

α
,
yt

β

)}
≤ inf

yt∈Vt
d

(
y⋆

α
,
yt

α

)
.

Where the inequality comes from the fact that min(a, b) ≤ a. Now we can bound the last term as
follows:

d

(
y⋆

α
,
yti
α

)
=

1

|α|
d(y⋆,yti) ≤

K(t)

|α|
,

since by assumption we had that dH(Y⋆,Yt) ≤ K(t) and that Y⋆ is a singleton. With a similar
reasoning we can conclude that:

d

(
y⋆

β
,X t,◦

)
≤ K(t)

|β|
,

and it follows that:

sup
x∈X⋆,◦

d(x,X t,◦) ≤ max

{
K(t)

|α|
,
K(t)

|β|

}
.

Similarly it is possible to derive a bound for supx∈X t,◦ d(x,X ⋆,◦):

sup
x∈X t,◦

d(x,X ⋆,◦) ≤ max

{
K(t)

|α|
,
K(t)

|β|

}
,

and thus:

dH(X ⋆,◦,X t,◦) ≤ K(t)

ψ
, (13)

where ψ = min {|α|, |β|}. Now we can plug Equation (13) into Equation (12) and prove that
dH(X ⋆,X t) ≤ R2K(t)

ψ . By using Theorem 1 we can conclude the proof.
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D Proofs omitted from Section 5

Theorem 3. If Wt K(δ)/
√
t−−−−−→ W⋆ and Yt K(δ)/

√
t−−−−−→ Y⋆, and both W⋆ ⊂ Wt and Y⋆ ⊂ Yt holds

with probability at least 1 − δ, then we have that RT ≤
(
3R2/ψ +D

)
K(δ)

√
T , where ψ and R

are defined as in Theorem 2 and D = supX⋆ ||x||.

Proof. We will use the following instantaneous regret decomposition:

rt = sup
x∈X⋆

⟨x,y⋆⟩ − ⟨xt,y⋆⟩

= sup
x∈X⋆

⟨x,y⋆⟩ − sup
x∈X t

⟨x,y⋆⟩︸ ︷︷ ︸
:=rAt

+ sup
x∈X t

⟨x,y⋆⟩ − ⟨xt,y⋆⟩︸ ︷︷ ︸
:=rBt

,

which decompose the regret in the regret due to the fact that we have to guarantee safety (rAt ) and y⋆

is unknown (rBt ). Now we are going to consider the two terms of the instantaneous regret separately.

Bounding rAt : From Theorem 2 we have that rAt ≤ 3R2K
ϕ
√
t

, where ψ = min{|α|, |β|}.

Bounding rBt : Define (xt,yt) := arg

(
sup
x∈X t

sup
y∈Yt

⟨x,y⟩

)
. Then with probability at least 1− δ

we have that:

rBt := sup
x∈X t

⟨x,y⋆⟩ − ⟨xt,y⋆⟩ (14)

≤ ⟨xt,yt − y⋆⟩ (15)

≤ ||xt||2||yt − y⋆||2 (16)

≤ D
K√
t
, (17)

where the first inequality follows from the fact that (xt,yt) is a pessimistic estimate of the payoff,
the second inequality comes from the Cauchy-Schwartz inequality while the last inequality come

from the fact that Yt K/
√
t−−−−→ Y⋆. D is defined as D := sup

x∈X⋆

||x||2, which upper bounds ||x||2 for

all x ∈ X t as X t ⊂ X ⋆.

Hence to conclude we have that:

rt ≤
(
3R2

ψ
+D

)
K√
t
,

which implies that RT ≤
(

3R2

ψ +D
)
K
√
T , hence concluding the proof.

E Applications

Normal Form Games A normal form game against a stochastic player is the simplest case of
decision making, in which we have a single initial state, N2 terminal states, whereN is the dimension
of the action space. Indeed, we have a stochastic adversary that picks an action yt ∈ {e1, . . . , eN},
with a categorical distribution defined by y⋆ ∈ ∆N , where ∆N is the N − 1 dimensional simplex. In
turn the agent picks an action xt ∈ {e1, . . . , eN} and gets a utility of ⟨xt, Uyt⟩ where U ∈ RN×N

is the payoff matrix and a cost of ⟨xt, Byt⟩ where B ∈ RN×N is the costs matrix. In this setting, the
feedback ℓt correspond to the actions yt played by the adversary. Thus by observing y1, . . . ,yt one
we can build a confidence polytope for y⋆, trough the concentration inequality of [Devroye, 1983],
that states that for any δ ≤ 3e−4N/5 we have that with probability at least 1− δ, y⋆ lies in the set:
Yt :=

{
y
∣∣∣ ||y − U ŷt|| ≤

√
2 log(1/δ)/t

}
, where ŷt is the empirical mean after t turns. Finally

Wt can be defined similarly.
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Sequential Decision Making Not in all application we have that ℓt coincide with yt. An example
of when this does not happen are sequential decision making problems (SDM) Farina et al. [2021].
A SDM against a stochastic adversary, is a special case instance of our model that allows to model
imperfect information game such as Poker Brown and Sandholm [2018], in which the strategy space
X and Y can be described by treeplexes [Hoda et al., 2010], which allows to have a linear structure
for the payoffs, as the case for NFG described above. The main difference between NFG and SDM
is the construction of the confidence set Yt. In the case of SDM, the feedback ỹt, only traverses a
subset of states at each turn, and the set Yt can only be updated at such states. This problem is called
Opponent Modelling and it can be shown [Bernasconi-de-Luca et al., 2021, Bernasconi et al., 2022,
Bernasconi et al., 2022] that both Yt and Wt can be obtained from past feedback {ℓt}t.
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