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ABSTRACT

We develop a novel method to remove injected backdoors in Deep Learning models.
It works by cloning the benign behaviors of a trojaned model to a new model of
the same structure. It trains the clone model from scratch on a very small subset of
samples and aims to minimize a cloning loss that denotes the differences between
the activations of important neurons across the two models. The set of important
neurons varies for each input, depending on their magnitude of activations and their
impact on the classification result. Our experiments show that our technique can
effectively remove nine different types of backdoors with minor benign accuracy
degradation, outperforming the state-of-the-art backdoor removal techniques that
are based on fine-tuning, knowledge distillation, and neuron pruning.

1 INTRODUCTION

Backdoor attack is a prominent threat to applications of Deep Learning models. Misbehaviors, e.g.,
model misclassification, can be induced by an input stamped with a backdoor trigger, such as a
patch with a solid color or a pattern (Gu et al., 2019b; Liu et al., 2018b). A large number of various
backdoor attacks have been proposed, targeting different modalities and featuring different attack
methods (Zhang et al., 2021; Kurita et al., 2020; Rezaei & Liu, 2020; Wang et al., 2018; Tolpegin
et al., 2020; Bagdasaryan et al., 2020). An important defense method is hence to remove backdoors
from pre-trained models. For instance, Fine-prune proposed to remove backdoor by fine-tuning a
pre-trained model on clean inputs Liu et al. (2018a). Distillation (Li et al., 2021) removes neurons
that are not critical for benign functionalities. Model connectivity repair (MCR) (Zhao et al., 2020a)
interpolates weight parameters of a poisoned model and its finetuned version. ANP (Wu & Wang,
2021) adversarially perturbs neuron weights of a poisoned model and prunes those neurons that
are sensitive to perturbations (and hence considered compromised). While these techniques are
very effective in their targeted scenarios, they may fall short in some other attacks. For example,
if a trojaned model is substantially overfit on a trigger, fine-tuning may not be able to remove the
backdoor without lengthy retraining. Distillation may become less effective if a neuron is important
for both normal functionalities and backdoor behaviors. And pruning neurons may degrade model
benign accuracy. More discussions of related work can be found in Section 2.

In this paper, we propose a novel backdoor removal technique MEDIC 1 as illustrated in Figure 1
(A). It works by cloning the benign functionalities of a pre-trained model to a new sanitized model
of the same structure. Given a trojaned model and a small set of clean samples , MEDIC trains the
clone model from scratch. The training is not only driven by the cross-entropy loss as in normal
model training, but also by forcing the clone model to generate the same internal activation values
as the original model at the corresponding internal neurons, i.e., steps 1⃝, 2⃝, and 4⃝ in Figure 1
(A). Intuitively, one can consider it essentially derives the weight parameters in the clone model by
resolving the activation equivalence constraints. There are a large number of such constraints even
with just a small set of clean samples. However, such faithful cloning likely copies the backdoor
behaviors as well as it tends to generate the same set of weight values. Therefore, our cloning is
further guided by importance (step 3⃝). Specifically, for each sample x, we only force the important
neurons to have the same activation values. A neuron is considered important if (1) it tends to
be substantially activated by the sample, when compared to its activation statistics over the entire
population (the activation criterion in red in Figure 1 (A)), and (2) the large activation value has

1MEDIC stands for “ModEl Backdoor Removal by Importance DrIven Cloning".
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Figure 1: Workflow of MEDIC and comparison with knowledge distillation (Hinton et al., 2015)
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Figure 2: Example, with (a) and (b) the clean and trojaned inputs, (c)-(f) the internal activations of
the trojaned input and the clean input, their differences, and the importance values in eq.(4) for the
clean input, respectively. We resize and rescale the internal activation for better visualization.

substantial impact on the classification result (the impact criterion) . The latter can be determined by
analyzing the output gradient regarding the neuron activation. By constraining only the important
neurons and relaxing the others, the model focuses on cloning the behaviors related to the clean inputs
and precludes the backdoor. The set of weight values derived by such cloning are largely different
from those in the original model. Intuitively, it is like solving the same set of variables with only a
subset of equivalence constraints. The solution tends to differ substantially from that by solving the
full set of constraints.

Example. Figure 2 shows an example by visualizing the internal activations and importance values
for a trojaned model on a public benchmark (NIST, 2019). Image (a) shows a right-turn traffic
sign stamped with a polygon trigger in yellow, which induces the classification result of stop sign.
Image (c) visualizes the activation values for the trojaned image whereas (d) shows those for its clean
version. The differences between the two, visualized in (e), show that the neurons fall into the red
box are critical to the backdoor behaviors. A faithful cloning method would copy the behaviors for
these neurons (and hence the backdoor). In contrast, our method modulates the cloning process using
importance values and hence precludes the backdoor. The last image shows the importance values
with the bright points denoting important neurons and the dark ones unimportant. Observe that it
prevents copying the behaviors of the compromised neurons for this example as they are unimportant.
One may notice that the unimportant compromised neurons for this example may become important
for another example. Our method naturally handles this using per-sample importance values. □

Our technique is different from fine-tuning as it trains from scratch. It is also different from
knowledge distillation (Li & Hoiem, 2016) shown in Figure 1 (B), which aims to copy behaviors
across different model structures and constrains logits equivalence (and sometimes internal activation
equivalence (Zagoruyko & Komodakis, 2016a) as well). In contrast, by using the same model
structure, we have a one-to-one mapping for individual neurons in the two models such that we can
enforce strong constraints on internal equivalence. This allows us to copy behaviors with only a small
set of clean samples.

We evaluate our technique on nine different kinds of backdoor attacks. We compare with five latest
backdoor removal methods (details in related work). The results show our method can reduce the
attack success rate to 8.5% on average with only 2% benign accuracy degradation. It consistently
outperforms the other baselines by 25%. It usually takes 15 mins to sanitize a model. We have also
conducted an adaptive attack in which the trigger is composed of existing benign features in clean
samples. It denotes the most adversary context for MEDIC . Our ablation study shows all the design
choices are critical. For example, without using importance values, it can only reduce ASR to 36%
on average.
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In summary, our main contributions include the following.

• We propose a novel importance driven cloning method to remove backdoors. It only requires
a small set of clean samples.

• We theoretically analyze the advantages of the cloning method.

• We empirically show that MEDIC outperforms the state-of-the-art methods.

2 RELATED WORK

There are a large body backdoor attacks (Gu et al., 2019a; Chen et al., 2017; Shafahi et al., 2018;
Zhu et al., 2019; Zhao et al., 2020b; Saha et al., 2020; Salem et al., 2020; Nguyen & Tran, 2020;
Bagdasaryan & Shmatikov, 2020; Cheng et al., 2021; Nguyen & Tran, 2021a). We focus on a number
of representative ones with different natures and used in our experiments. Readers interested in
other attacks are referred to a survey (Li et al., 2020; Gao et al., 2020). Badnet (Gu et al., 2019b)
proposes to inject backdoors with a fixed polygon. Clean Label attack (Turner et al., 2018) first adds
adversarial perturbations to target-class samples and makes them misclassified. It then adds a square
patch on those inputs without changing their ground-truth label. During inference, the square patch
can induce misclassification on non-target class samples. SIG (Barni et al., 2019) uses a wave-like
pattern as trigger. Reflection attack (Liu et al., 2020) adds the reflection of some external image on
the input. Polygon attack (NIST, 2019) injects a polygon-like trigger on the input at specific locations.
Filter attack (Liu et al., 2019) utilizes Instagram filters to transform inputs and labels the transformed
inputs to the target class. Warp (Nguyen & Tran, 2021b) uses image warping as a trigger pattern. The
trigger perturbations hence vary for different inputs. We also consider an adaptive attack which uses
benign features from two existing classes as the trigger (Lin et al., 2020).

Researchers have proposed various defense techniques, including backdoor inputs detection that
aims to detect and reject input samples with triggers (Gao et al., 2019; Chou et al., 2020; Tran et al.,
2018; Veldanda et al.); backdoor scanning that determines whether a given model has backdoor using
a small set of clean inputs (Wang et al., 2019; Liu et al., 2019; Kolouri et al., 2020; Tang et al.,
2021); backdoor certification that certifies the predictions of individual samples with trigger (McCoyd
et al., 2020; Xiang et al., 2021a;b; Jia et al., 2020); model hardening that adversarially trains models
using triggers inverted from the subject (clean) model (Tao et al., 2022); backdoor removal that
erases injected backdoors using a small set of clean samples (Li et al., 2021; Wu & Wang, 2021; Liu
et al., 2018a). Our work falls in the last category. Fineprune (Liu et al., 2018a) iteratively prunes
neurons with small activation values on clean samples and then finetunes the pruned model. Note
that the pruned model has different structure from the original one. In our experience, having the
same structure is critical as it provides the optimal neuron alignment. Model connectivity repair
(MCR) (Zhao et al., 2020a) interpolates parameters of a poisoned model and its finetuned version.
NAD (Li et al., 2021) first finetunes a poisoned model and then performs transfer learning, treating the
finetuned model as the teacher and the poisoned model as the student. Its effectiveness hinges on the
quality of the first finetuning step. ANP (Wu & Wang, 2021) adversarially perturbs neuron weights
of the poisoned model and prunes neurons sensitive to perturbations. We compare MEDIC with the
aforementioned approaches in Section 5 and demonstrate that ours outperforms.

3 METHOD

Problem Statement. Given a multi-class backdoor classifier f∗ : X → Y , where X ⊂ Rd and
Y ⊂ RC , d the input dimension and C the number of classes. Samples (X,Y ) are drawn from the
joint distribution S = (X ,Y). The classifier f∗ is originally trained on a large dataset D ∼ (X ,Y)n

and additional backdoor samples Da ∼ (Xa,Ya). We aim to remove the backdoor behaviors in f∗
and retain the benign behaviors. To do so, we leverage a small additional dataset Ds ∼ (X ,Y)q

where |Ds| ≪ |D|. It is used to facilitate the cloning process. Function f c denotes the cloned and
sanitized model using our method.

Our first goal is to clone the (benign) functionalities of the model instead of its parameters. Specifi-
cally, f c is supposed to produce similar outputs as the original model (with backdoor) on clean inputs.
This is stated as the functionality goal as follows.
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Ex∼X
(
∥f c(x)− f∗(x)∥2

)
≈ 0 (Functionality)

In addition, f c shall not have the backdoor behavior on samples from the backdoor distribution
(Xa,Ya), with a high probability 1− δ. It is stated as the sanity goal.

E(x,y)∼(Xa,Ya)1
[
f c(x) ̸= y] ≥ 1− δ (Sanity)

It is worth noting that similar functionalities do not imply a similar set of parameters. In fact, our
importance driven cloning derives a set of parameters different from those in the original model to
meet the two stated goals.

Cloning. To achieve the first goal of copying normal functionalities using only a small set of benign
samples, we propose to train a clone model from scratch that has the same structure, by forcing the
clone model to have the same activation values for all the corresponding neurons and also the output
logits as the original model. Such cloning is different from transfer learning, in which teacher and
student models may be of different structures as it is not that meaningful to copy functionalities to a
model with the same structure in transfer learning’s application scenarios.

While inputs often have a fixed bound, internal activation values have dynamic ranges. If we
directly use activation value differences in the clone training loss, such range variations cause
difficulties in convergence. Therefore, we normalize activation values before using them in the loss
function. Formally speaking, given m internal neurons of a backdoored model, denoted by functions
f∗i : Rd → R with i ∈ [1,m]2 and the corresponding ones in the clone model f ci , we aim to enforce
the corresponding neuron functions to produce the same values. Let µi and σi be the mean and
standard deviation of the random variable f∗i (X ) and wi(x) an importance weight. We use

−−→
f(x),

−−→
w(x) , σ⃗ and µ⃗ to represent their concatenated vectors over the m neurons, respectively. We can
derive the following loss function.

Lclone = Ex∼X

[∑
i

wi(x)

(
f∗i (x)− f ci (x)

σi

)2
]

where wi(x) ≥ 0 (1)

Intuitively, we minimize the differences between the outputs of the corresponding neurons. For the
moment, one can assume wi(x) = 1/m, meaning that we enforce such constraints equally on all
neurons. We will explain how we change wi(x) to preclude backdoor behaviors later in the section.

Our results in Figure 3 show that we can faithfully clone the normal functionalities with only 2%
samples. We also formally analyze the essence of cloning in Section 4.

Pruning Backdoor by Importance Driven Cloning. To preclude backdoor while cloning, we
leverage the importance value wi(x) computed for each sample and each neuron. A neuron is
important for an sample, if and only if the neuron is substantially activated (compared to its activation
statistics over the entire population) and has a large impact on the final output.

To determine if a neuron is substantially activated, we calculate the absolute difference between its
activation and the expected activation as the indicator in Eq.(2). While ideally we would just select
the neuron with the largest magnitude, to ensure the loss function is differentiable, we use softmax as
an alternative to the max operation. Here τ is the temperature used in the softmax function, which
can be used to control the strictness of the operation, namely, a high temperature resembles the strict
max operation (that has a one-hot output), whereas a lower temperature suggests smoother results.

wactivate(x) = SoftMax(
τ |
−−→
f(x)− µ⃗|

σ⃗
) (2)

It is worth noting that this formula essentially corresponds to the intrinsic normalization in many
models (e.g., those with batch normalization Ioffe & Szegedy (2015)), where the statistics are readily
accessible. When the subject model does not have any normalization layer, one can collect the
statistics from the available samples. Details can be found in Appendix D.1.

To evaluate the impact of activations on classification results, we use the magnitude of gradients as an
indicator. However, the gradients are not directly comparable at many layers, especially those that

2We consider each element in a CNN feature map a separate neuron.
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do not have normalization, because the varying magnitude of the activation values at those layers
affects the gradients and makes direct comparison inaccurate. To tackle the problem, we introduce
variables to denote normalized activations at all layers, called proxy variables, and derive gradients
regarding those variables. The resulted gradients are hence comparable. Consider a proxy variable
h∗i (x), where the neuron f∗i (x) = h∗i (x) · σi. Let l be the loss function for classification based on
f∗i (x), we can thus calculate the gradient of proxy variable as follows.

g∗i (x) =
∂l(f∗i (x), ...)

∂h∗i (x)
= σi

∂l(f∗i (x), ...)

∂f∗i (x)
.

We then select the neuron with the largest gradient, leveraging the aforementioned soft version of
max operation. Let

−−→
g(x) be the concatenated vector of g∗i (x).

wimpact(x) = SoftMax(τ
−−→
g(x)) (3)

The next step is to identify the neurons satisfying both Eq.(2) and (3). In a discrete world, we
could perform a set intersection. However, our softmax operations do not select the largest weight
values. Instead, they produce vectors denoting the importance of all neurons. Hence, we perform
a soft version of set intersection, which is differentiable and hence usable during training. Assume
wactivate

i (x), wimpact
i (x) ∈ [0, 1] denote the importance values for a neuron i, computed by the two

respective softmax operations in Eq.(2) and (3), with 1 indicating “Important" and 0 “Unimportant".
We can derive the neuron’s overall importance as follows.

wi(x) = wactivate
i (x) ∧ wimpact

i (x) =

√
wactivate

i (x) · wimpact
i (x) (4)

The operation ∧ is essentially a soft version of “boolean conjunction”. For example, when a = 1 and
b = 1, a ∧ b = 1. The square root ensures the output is in the same magnitude as the inputs.

Given the cloning loss, we combine it with the classification loss and train the model. The two losses
are balanced through an additional parameter λ. Details and an ablation study on λ can be found in
Appendix E.2. A step-by-step algorithm can be found in Appendix D.1.

Difference from Neuron Pruning based Methods. There are existing works (Liu et al., 2018a; Wu
& Wang, 2021) that determine a subset of neurons compromised by poisoning and simply remove
those neurons. However, they usually lead to non-trivial benign accuracy degradation (see Section 5).
The reason is that a neuron in a compromised model may be important for the classifications of
both benign and poisoned inputs. In contrast, our method does not statically decide if a neuron is
compromised. If a neuron is important for both benign and poisoned samples, we (only) copy its
behaviors for benign inputs.

4 FORMAL INTERPRETATION OF CLONING

The effectiveness of MEDIC hinges on cloning. In this section, we study a critical property of cloning,
which states that cloning can copy the functionalities of original model using only a small set of
clean samples. We also formally show that cloning is superior to training from scratch using the
small set, and to knowledge distillation. That is, cloning tends to have a smaller loss value. Backdoor
removal using importance values is merely an application of the property as we essentially leverage
importance analysis to select a subset of functionalities only relevant to clean sample classifications
for cloning. Figure 3 shows empirical evidence using an example. Observe that knowledge distillation
has a larger improvement over training from scratch given more samples. Also observe that training
from scratch and knowledge distillation cause non-trivial benign accuracy degradation. In contrast,
cloning causes negligible degradation of original backdoor model using even just 2% of data.

We mainly utilize the decomposition, Rademacher complexity (Bartlett & Mendelson, 2002) and
Covering number to derive an upper bound for the testing loss of a classifier with a high probability.
We hence show that cloning has a smaller upper bound (of loss) compared to distillation and training
from scratch using a small set of samples.

Based on the aforementioned analysis, we additionally prove the computation complexity of cloning
in Appendix B. We show cloning can be orders of magnitude faster in recovering benign accuracy.
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Furthermore, in Appendix C, we theoretically show cloning can be more effective than fine-tuning in
removing backdoors. This is done by analyzing a general backdoor scenario. We hence prove that
cloning can guarantee the backdoor removal for this type of backdoor while fine-tuning can not. And
we show the importance weight correctly identify the compromised neurons.

In the following, we first introduce the notations, terms, and a set of lemmas. We then formally show
that cloning is better than training from scratch on a small set and distillation.

4.1 NOTATIONS AND BACKGROUNDS

Figure 3: Benign accuracy of models after back-
door removal versus the data used (for a CIFAR-
10 model poisoned with CleanLabel backdoor).

We consider the original model f∗, model fs
trained from scratch using Ds (i.e., the small
dataset), clone model f c by our method and model
fk by knowledge distillation (Hinton et al., 2015).
They belong to the function families F∗, Fs, Fc,
and Fk, respectively. These families are deter-
mined by the specific optimization and learning
algorithms. Since each algorithm has its learning
bias and will likely generate a different set of pa-
rameters.

Neural Net. To facilitate the formal analysis, we
leverage a simple network. Let ψ be the ReLU
activation function, lγ the loss function with the
Lipschitz constant 2γ. Without loss of generality,
we assume a two-layer network, where the two
layers are abstracted to two respective matrices,
G ∈ G ⊂ Rd×p and H ∈ H ⊂ Rp×C , with p
the number of hidden units. Let s be the softmax
function. The network is represented as f(x) = s◦ o(x), o(x) = Hg(x) and g(x) = ψ(Gx). Putting
them together, f(x) = s(Hψ(Gx)). Intuitively, f(x) outputs the probability, o(x) is the logits value
and g(x) is the hidden layer. It is worth noting that our analysis can naturally extend to complex
network since the proof structure stays the same.

Loss. As a common practice in multi-class analysis, we use the margin loss (Bartlett et al., 2017) as
lγ(f(x), y). Its definition is in eq.( 9). A smaller loss value indicates better performance.

Radamacher Complexity. Let F be a family of functions , D a set of samples, and σ uniformly
sampled from {−1,+1}|D|. The empirical Rademacher complexity is defined as follows. R̂(F|D) =
Eσ[supf∈F

1
|D|

∑
xi∈D σif(xi)]. Observe that if F contains only a fixed function, the value is 0

suggesting no complexity (and hence trivial to learn).

Covering Number Bound. It is difficult to directly compute Rademacher complexity in our context.
We hence derive its upper-bound using covering number. Let ∥ · ∥p,D be a pseudo-norm on function
family F with respect to a vector norm ∥ · ∥p and data D (definition in eq. (20)), we define the
covering number N (F , ∥ · ∥p,D, ϵ) as the size of minimal-ϵ cover of F under this pseudo-norm.
Intuitively, this number means how many functions are representative such that they can cover all
the learning outcomes with the ϵ bound. The covering number of a function family is dependent on
the learning method. For example, when we include the loss to minimize the difference between
f c ∈ Fc and f∗ ∈ F∗ (during cloning), we essentially reduce the covering number of the function
difference family N ({f c − f∗}, ∥ · ∥p,D, ϵ).
Lemmas. In the following, we introduce three lemmas that are needed in later analysis. Their proofs
can be found in the Appendix. In Lemma 1, we derive the Lipschitz constant of the loss function.
In Lemma 2, we bound the Lipschitz of softmax function. In Lemma 3, we bound the Rademacher
complexity by a function over the covering number.

Lemma 1. For any logits o1, o2 ∈ Rc and y ∈ Y , we have |lγ(o1, y)− lγ(o2, y)| ≤ 2γ||o1 − o2||∞.

Lemma 2. For any logits o1, o2 ∈ Rc, we have ||s(o1)− s(o2)||∞ ≤ 1
2 ||o1 − o2||∞.
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Lemma 3 (Rebeschini (2020)). Given function family F , data D and number of samples n = |D|,
we define the function:

B(F|D) = inf
ϵ∈[0,ϵc/2]

{
ϵ+

√
2ϵc√
n

√
logN (F , ∥ · ∥1,D, ϵ)

}
,where ϵc = sup

f∈F
∥f∥2,D .We then have

R̂(F|D) ≤ B(F|D)

4.2 ANALYSIS

To formally compare cloning, distillation, and training from scratch on a small set, we first study the
advantage of cloning and distillation compared with training from scratch. The advantage comprises
two parts, i.e., a gap and a regret. The gap is the training loss difference between training on
the whole dataset and on a small part of the same dataset. The regret is the difference of (test)
classification loss between the current model and the optimal model (f∗). Since the gap is not specific
to our algorithm, we hence study the upper bound of the regret. A smaller regret indicates better
classification performance. We finally show the upper bound of our regret is smaller than baselines.

Here we use distillation as an example. The analysis applies similarly to cloning as well. The
advantage of distillation (fk) over training from scratch on a small set (fs) is denoted by their
expected loss difference as follows.

E(x,y)∼S [lγ(f
s(x), y)− lγ(f

k(x), y)] = ∆︸︷︷︸
Loss Gap

−ES [(lγ(f
k(x), y)− lγ(f

∗(x), y))]︸ ︷︷ ︸
Regret of the Distilled Model

(5)

where ∆ = E(x,y)∼S [lγ(f
s(x), y)− lγ(f∗(x), y)]. Note that as |Ds| ≪ |D|, the loss gap ∆ between

f∗ (training on a large dataset D) and fs (training on the small dataset Ds) tends to be large. A large
gap will make distillation and cloning favorable.

Next we analyze the upper-bound of the regret, since the loss gap is only dependent on the sample
size difference. According to Equation 5 and the standard Rademacher complexity bound argu-
ment (Bartlett & Mendelson, 2002), we have the following regret upper bound between the distilled
model and the original model with a high probability 1− δ.

E(x,y)∼S [lγ(f
k(x), y)− lγ(f

∗(x), y)]

≤ 1

|Ds|
∑

(x,y)∈Ds

[lγ(f
k(x), y)− lγ(f

∗(x), y)]

︸ ︷︷ ︸
Training Error

+ 2R̂(Lk|Ds)︸ ︷︷ ︸
Function Complexity

+3

√
log(2/δ)

2|Ds|︸ ︷︷ ︸
Uncertainty

(6)

Here, Lk is the function family of the regret between the distilled model and the original model, with
Lk = {h : X × Y → R | h(x, y) = lγ(f

k(x), y)− lγ(f
∗(x), y)}. The regret upper bound between

the clone model and the original model can be similarly derived. Observe that the bound consists of
three terms: training error, function complexity and uncertainty. The first and the third terms have
a similar effect for both the distilled model fk and the clone model f c. Specifically, the training
error is computed on training data. Since we only have limited samples and the model is prone to
overfit on the training data. This term is close to zero empirically for both models. The uncertainty
only depends on the data size |Ds| and the probability δ. Therefore, the difference between the two
models mainly lies in their function family complexities. In the following, we will analyze the the
upper-bounds of the two function families. We use Ok

i = {h : Rd → R | h(x) = ok(x)i − o∗(x)i}
to denote the family of differences regarding the i-th logits. The proof can be found in Appendix A.

Theorem 1. For distilled model fk and class number C, we have

R̂(Lk|Ds) ≤ Õ(γ
√
C)max

i
B(Ok

i |Ds) (7)

Let ∥H∥1,∞ = maxi
∑

j |Hi,j | be the entry-wise matrix norm, Ic
i = {h : Rd → R | h(x) =

gc(x)i − g∗(x)i} the family of differences on an intermediate neuron i (between the clone and
original models), and J ∗

i = {h : Rd → R | h(x) = g∗(x)i} the function family of intermediate
neuron i of the original model. We have the following theorem.

7



Under review as a conference paper at ICLR 2023

Figure 4: Effectiveness of importance. The shaded area represents standard deviation.

Theorem 2. For cloned model f c, let ωc = supHc∈Hc ∥Hc∥1,∞, βc = supHc∈Hc,H∗∈H∗ ∥Hc −
H∗∥1,∞ and class number C. We have

R̂(Lc|Ds) ≤ Õ(γ
√
C)min

[
max

i
B(Oc

i |Ds)︸ ︷︷ ︸
Constrained on Logits

,max
j
ωcB(Ic

j |Ds) + βcB(J ∗
j |Ds)︸ ︷︷ ︸

Constrained on Intermediate Layers

]
(8)

From the theorem 1, decreasing covering numbers on logits difference family Ok
i can reduce the

regret and improve the performance. Since knowledge distillation directly controls the covering
number by applying L2 constraints on logits, these constraints improve the performance according to
the theorem. From the theorem 2, we can further understand the benefits of Cloning. By comparing
two theorems, we find that the upper-bound for cloned model is always smaller than that of the
distilled model given Ok

i = Oc
i (i.e., both models have their logits similar to the original model’s).

Intuitively, the advantage of cloning originates from the additional intermediate constraints, which
reduce the covering number of Ic

i , i.e. N (Ic
i , ∥ · ∥1,D, ϵ) in B(Ic

i |Ds) and the upper-bound on the
regret. Also note that the other family J ∗

i is unrelated to cloning.

5 EXPERIMENT

Setting. We conduct experiments on nine representative backdoor attacks. Specifically, we use
Wide ResNet (Zagoruyko & Komodakis, 2016b) and CIFAR-10 (Krizhevsky, 2009) for the common
benchmark attacks and the adaptive attacks including Badnet (Gu et al., 2019b), Clean Label (Turner
et al., 2018), SIG (Barni et al., 2019), Reflection (Liu et al., 2020), Warp (Nguyen & Tran, 2021b)
and two Adaptive Attacks (Lin et al., 2020). 5% data is used for removing backdoor behaviors
on CIFAR-10. We further experiment on large-scale datasets Kitti-City (Fritsch et al., 2013) and
Kitti-Road (Fritsch et al., 2013), and public backdoor benchmarks Polygon and Filter, based on
ResNet (Zagoruyko & Komodakis, 2016b). We compare with five latest backdoor removal methods
including Finetune, Fineprune (Liu et al., 2018a), NAD (Li et al., 2021), MCR (Zhao et al., 2020a),
and ANP (Wu & Wang, 2021). More details of these attacks and removal methods can be found in
Section 2 and Appendix D.

Comparison with Baselines. In Table 1, we show the results in comparison with other backdoor
removal methods. The fourth column shows the accuracy and attack success rate (ASR) of the
original (trojaned) model. The following columns show the results after applying various backdoor
removal methods. All the methods use the same set of data augmentations. We also adjust the
temperature of MEDIC so that the test accuracies of our repaired models are comparable to others.
From the results, we find the advantage of our algorithm outperforming other baselines lies in the
cases of hard-to-remove backdoors. We retrain the model whereas others do not. This different
design ensures some deep-rooted backdoors can be removed. Observe that other baselines are less
effective in removing Clean Label, SIG, Polygon, and Filter backdoors as the ASRs are still high after
the removal. In contrast, MEDIC can substantially reduce the ASRs of these attacks. On the other
hand, when the backdoor attack is not robust (e.g. simpler attacks like Badnet and Reflection where
Finetune can already remove them), the optimal results will favor methods which cause fewer changes
to the model, since few changes suffice to remove the backdoor. From the security perspective, a
resilient backdoor will be used by attackers more often, which suggests those hard-case backdoor
attacks are more important. Note that even in those easier cases, MEDIC is still competitive. In the
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Table 1: Comparing with other methods. ± represents the standard deviation over 5 repeated runs.

Scenario Attack Metric Original (%) Method (in percentage %)

Finetune Fineprune NAD MCR ANP MEDIC

Common
Benchmark

Attacks

Clean Label ASR 100.0 89.2± 20.2 99.6± 0.2 95.9± 7.2 90.3± 19.4 69.9± 17.6 16.8± 4.6
Acc. 88.5 85.2± 0.5 85.5± 0.3 85.3± 0.5 85.2± 0.4 80.6± 1.4 85.3± 0.2

SIG ASR 94.5 68.3± 8.3 41.9± 23.9 55.8± 12.2 56.3± 9.0 73.9± 8.9 1.5± 0.7
Acc. 86.9 85.0± 0.2 85.0± 0.5 85.2± 0.2 84.6± 0.2 82.5± 0.8 84.4± 0.3

Badnet ASR 100.0 3.2± 0.4 5.1± 1.6 3.0± 1.2 2.7± 0.4 2.3± 1.4 3.6± 0.6
Acc. 88.9 83.1± 0.3 84.3± 1.2 83.5± 0.7 83.6± 0.4 83.0± 1.5 84.2± 0.2

Reflection ASR 34.2 7.6± 1.9 5.7± 0.9 8.7± 2.2 4.6± 0.4 5.0± 4.2 6.2± 0.5
Acc. 84.3 84.5± 0.3 84.4± 0.2 84.1± 0.6 84.4± 0.3 80.3± 0.9 83.5± 0.2

Warp ASR 96.5 13.2±4.4 4.7±0.6 6.1±1.8 4.4±0.4 5.6±1.2 3.7±0.5
ACC 86.2 84.5±0.2 84.6±0.2 84.7±0.1 84.2±0.2 83.3±0.9 85.2±0.1

Public
Benchmarks

on Large
Datasets

Polygon ASR 99.9 60.4± 14.6 47.9± 19.0 19.4± 10.3 39.4± 21.0 47.3± 8.1 13.2± 2.3
Acc. 99.7 99.0± 0.2 98.7± 0.6 95.7± 1.6 98.5± 0.5 98.2± 0.8 98.9± 0.1

Filter ASR 100.0 62.0± 14.9 56.6± 9.8 47.9± 10.3 72.2± 5.5 19.5± 4.0 17.8± 3.0
Acc. 99.7 99.3± 0.3 99.1± 0.2 99.0± 0.3 99.4± 0.2 98.3± 0.4 98.6± 0.2

Adaptive
Attacks

Variant 1 ASR 79.3 37.1± 2.6 36.4± 0.8 38.0± 3.1 9.4± 1.1 33.4± 11.3 7.1± 1.7
Acc. 83.0 80.2± 0.2 79.5± 0.5 79.8± 0.3 79.4± 0.2 76.7± 0.7 79.7± 0.1

Variant 2 ASR 98.5 94.9±2.7 77.7±5.2 58.5±22.0 86.7±7.6 24.4±6.3 4.3±0.5
Acc 85.9 82.9±0.7 83.2±0.3 83.1±0.2 82.4±0.3 81.4±0.6 84.2±0.1

Avg. Drop ASR - 35.5% 41.9% 47.4% 43.1% 53.8% 79.5%
Acc. - 2.2% 2.1% 2.6% 2.4% 4.5% 2.3%

last row of Table 1, we show the average ASR reduction and accuracy degradation. Observe that
MEDIC achieves 25% more ASR reduction compared to others with minor accuracy degradation.

Figure 5: Removal methods on backdoor
models trained with and without data aug-
mentation during attack. The black lines
denote the standard deviations.

Adaptive Attacks. We evaluate two adaptive attacks.
In adaptive attack 1, the trigger pattern can exist on
benign samples (Lin et al., 2020). It utilizes multiple
natural objects from different classes as the backdoor.
In adaptive attack 2, we adversarially optimize the trig-
ger to maximize the clone loss. The trigger will have
a high activation value on the important neurons and
may survive after cloning. Note that these represent the
most adversarial contexts against MEDIC as the back-
door is essentially benign features or benign neurons
that cloning would likely copy. Observe that MEDIC is
still quite effective against Adaptive1 and Adaptive2
attacks as shown in Table 1. For the variant 1, while
benign features are used to compose the backdoor, these
features are not important for the target class. As such,
their behaviors are hence not copied for the target class.
For the variant 2, despite the substantial backdoor acti-
vations on important neurons, the cloning will only connect the benign functions to the output due to
the absence of the trigger pattern in the clean data.

Effectiveness of Using Importance Values. In Figure 4, we show the effects of cloning using
different temperatures. A temperature τ = 0 means we do not use the importance and treat all
neurons as equal. Observe that a larger temperature prunes more backdoor-related behaviors. The
ASR is reduced by at most 70% with at most 4% accuracy drop (with a temperature of 5).This shows
our importance values capture the characteristics of benign functionalities.

Stronger Backdoor Baselines. Different from the results reported in recent works (Li et al., 2021;
Zhao et al., 2020a; Wu & Wang, 2021), our results are evaluated on stronger backdoor baselines. We
found training backdoor models with data augmentation can make it much harder to remove. Figure 5
shows the effectiveness of different removal methods on backdoor attacks trained with and without
data augmentations. The model is trojaned by a clean label attack on CIFAR-10. The red bars denote
the ASRs after removal when augmentations are used during attack and the blue bars the ASRs when
augmentations are not used. Observe that with augmentations, the baselines can hardly remove the
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backdoor. In contrast, MEDIC can effectively remove the backdoor with and without augmentations.
Note that the same data augmentation is also used when applying defense methods.

Other Experiments. In Appendix E.1, we conduct the ablation study given the distribution shift
of training data. The results show our method can perform well under the distribution shift. In
Appendix E.3, we conduct an ablation study on the amount of available data. We show that the trigger
removal performance is positively correlated with the data amount. In Appendix E.5, we conduct
the ablation study on the necessity of importance criterions and show that our design is crucial. In
Appendix E.6, we conduct the ablation study on the backdoor model architectures and show that
our method can generalize to different types of models. We also compare empirical computational
complexity of different methods and show that MEDIC is comparable.

6 CONCLUSION

We propose a novel backdoor removal method by importance driven cloning. We empirically and
theoretically show that our method is superior to state-of-the-art baselines on a large set of evaluated
attacks.
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A PROOF

Here we define the margin loss.

lγ(f(x), y) = ϕγ(f(x)y −max
i ̸=y

f(x)i), whereϕγ(t) =


1, t < 0

1− γt, 0 ≤ t ≤ 1/γ

0, t > 1/γ

(9)

Lemma 1. Let lγ(x, y) : Rc × Y → R and ϕγ(x) : R → R where

lγ(x, y) = ϕγ [f(x)y −max
i ̸=y

f(x)i],

whereϕγ(x) =


1, x < 0

1− γx, 0 ≤ x ≤ 1/γ

0, x > 1/γ

.
(10)

For any x1, x2 ∈ Rc and y ∈ Y , we have

|lγ(x1, y)− lγ(x2, y)| ≤ 2γ||x1 − x2||∞ (11)

Proof. It is apparent that ϕγ(x) : R → R is γ Lipschitz. And we have

|lγ(x1, y)− lγ(x2, y)|

=

∣∣∣∣ϕγ[(f(x1)y − f(x2)y)− (max
i̸=y

f(x1)i −max
j ̸=y

f(x2)j)
]∣∣∣∣

≤γ
∣∣(f(x1)y − f(x2)y)− (max

i ̸=y
f(x1)i −max

j ̸=y
f(x2)j)

∣∣
≤γ

∣∣(f(x1)y − f(x2)y)
∣∣+ γ

∣∣max
i̸=y

f(x1)i −max
j ̸=y

f(x2)j
∣∣

≤2γ||f(x1)− f(x2)||∞

(12)

Lemma 2. Assume the softmax function s : Rc → Rc is defined as follows.

s(x)i =
exp(xi)∑
i exp(xi)

(13)

Then we have
||s(x)− s(y)||∞ ≤ 1

2
||x− y||∞ . (14)

Moreover we have ∥∥(s(x)− s(y))− (s(x′)− s(y′))
∥∥
∞ ≤

1

2
(∥x− x′∥∞ + ∥y − y′∥∞)

(15)

In other words, s(x) and its residual form s(x) − s(y) are both 1/2-Lipschitz with respect to
L∞-norm.

Proof. From the definition of Lipschitz continualty, we have |s(x) − s(y)|∞ ≤ L|x − y|∞. Note
that |s(x)− s(y)|∞ ≤ supi |s(x)i − s(y)i|.
The gradient is hence the following.

ds(x)i
dxj

=

{
s(x)i(1− s(x)i), i = j
−s(x)is(x)j , i ̸= j

(16)

Note that ||∇is(x)||1 = 2s(x))i(1− s(x))i) ≤ 1/2. Let ⪯ represents the generalized inequality of
the nonnegative orthant. By the mean value theorem, for some δ, s.t. x ⪯ δ ⪯ y, we have

s(x)i − s(y)i ≤ ∇is(δ)
T (x− y) . (17)

14
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By Holder’s inequality,

∇is(δ)
T (x− y) ≤ ||∇is(δ)||1||x− y||∞ ≤ 1

2
||x− y||∞ (18)

To prove the second goal, we can find that

||(s(x)− s(y))− (s(x′)− s(y′))||∞
=||(s(x)− s(x′))− (s(y)− s(y′))||∞
≤||(s(x)− s(x′))||∞ + (s(y)− s(y′)||∞

≤1

2
(||x− x′|∞ + ||y − y′||∞)

(19)

Lemma 3 (Rebeschini (2020)). We add the proof of this lemma here for completeness. Let f : R →
R ∈ F be a class of real-value functions, D be a set of samples. We define a pseudo-metric ∥ · ∥p,D
on functions F with respect to vector norm ∥ · ∥p and n samples |D| = n, where

∥f∥p,D =
[ 1
n

∑
x∈D

|f(x)|p
] 1

p

. (20)

We define the Covering number N (F , ∥ · ∥p,D, ϵ) as the size of the minimal ϵ-cover of F with respect
to pseudo-norm ∥ · ∥p,D.

Given
sup
f∈F

∥f∥2,D ≤ sD , (21)

we have

R̂(F|D) ≤ inf
ϵ∈[0,sD/2]

{
ϵ+

√
2sD√
n

√
logN (F , ∥ · ∥1,D, ϵ)

}
(22)

Proof. For any ϵ and D, let C be the minimal-ϵ cover of F , which means for each function f , there
exists fϵ ∈ C such that ∥f − fϵ∥1,D ≤ ϵ

R̂(F|D)

=Eσ

[
1

n
sup
f∈F

∑
i

σif(xi)

]

≤Eσ

[
1

n
sup
f∈F

∑
i

σi (f(xi)− fϵ(xi))

]
+

Eσ

[
1

n
sup
fϵ∈C

∑
i

σifϵ(xi)

]

≤ϵ+ Eσ

[
1

n
sup
fϵ∈C

∑
i

σifϵ(xi)

]

≤ϵ+ sup
f∈F

√ ∑
xi∈D

f(xi)2

√
2 log |C|
n

(Massart’s Lemma)

≤ϵ+
√
2sD√
n

√
logN (F , ∥ · ∥1,D, ϵ)

Since this bound stands for any ϵ, Thus we have

R̂(F|D) ≤ inf
ϵ∈[0,sD/2]

{
ϵ+

√
2sD√
n

√
logN (F , ∥ · ∥1,D, ϵ)

}
(23)
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Theorem 1. For distilled model fk and class number C, we have

R̂(Lk|Ds)

≤Õ(γ
√
C)max

i
R̂(Ok

i |Ds) (24)

≤Õ(γ
√
C)max

i
B(Ok

i |Ds) (25)

Proof. From Lemma 1 and Lemma 2, we know the Lipschitz constant of lγ ◦ s is γ. Using the
L∞-contraction property of Rademacher complexity (Foster & Rakhlin, 2019), we can expand
the complexity of loss function to the complexity of logits values in Eq. (24). Eq. (25) is from
Lemma 3.

Theorem 2. For cloned model f c, let ωc = supHc∈Hc ∥Hc∥1,∞, βc = supHc∈Hc,H∗∈H∗ ∥Hc −
H∗∥1,∞ and class number C. We have

R̂(Lc|Ds) ≤ Õ(γ
√
C)min

[
max

i
B(Oc

i |Ds),max
j
ωcB(Ic

j |Ds) + βcB(J ∗
j |Ds)

]
Proof.

R̂(Lc|Ds)

≤Õ(γ
√
C)max

i
R̂(Oc

i |Ds) (26)

≤Õ(γ
√
C)max

i
R̂
({

[Hc(gc(x)− g∗(x))

+ (Hc −H∗)g∗(x)]i
})

(27)

≤Õ(γ
√
C){sup

Hc

∥Hc∥1,∞ max
i
R̂(Ic

i |Ds

)
+ sup

Hc,H∗
∥Hc −H∗∥1,∞ max

i
R̂(J ∗

i |Ds)} (28)

≤Õ(γ
√
C)

[
ωc max

i
B(Ic

i |Ds) + βc max
i
B(J ∗

i |Ds)
]

(29)

Eq. (26) is similar to that in Eq. (24). Eq. 27 is by expanding the functions in Oc
i . Eq. (28) is the

property of Rademacher complexity under linear transformation. Eq. (29) is from Lemma 3. Similar
to Theorem 1, we have R̂(Lc|Ds) ≤ Õ(γ

√
C)maxiB(Oc

i |Ds). Together with Eq. (29), we finish
the proof.

B ANALYSIS OVER COMPUTATIONAL EFFICIENCY

In this section, we further prove that MEDIC is more efficient compared with training from scratch
and distillation from logits under certain assumptions. The key idea is that our algorithm has a smaller
sample complexity. Thus MEDIC requires optimization over a smaller set of examples. And this
smaller set of training samples can guarantee faster convergence speed and less computation power.

We first prove our method has a smaller sample complexity.

For simplicity, we assume the optimal hypothesis exists in our hypothesis family. From equation 6,
we further derive the upper bound of sample complexity of our method. The sample complexity
represents how many samples are required to learn a model with a good performance. Note that
because we assume the optimal hypothesis existes in our hypothesis family, the training regret in
equation 1 will be zero for the best hypothesis.

Lemma 4. Specifically, with probability 1− δ, we only need as many as |Ds| samples to achieve a
loss regret β, where

|Ds| ≤
9 log(2/δ)

(β − 2R̂(L|Ds))2
(30)
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and
β = E(x,y)∼S [lγ(f

c(x), y)− lγ(f
∗(x), y)] (31)

.

Proof. The proof of this lemma is fairly straightforward, which only requires some transformations
from equation 6.

From theorem 2, we also know cloned model has a smaller Rademacher Complexity R̂(L|Ds).
Combined with Lemma 4, this indicates cloned model has a smaller sample complexity.

Next, we show a small sample complexity indicates faster convergence. Formally, consider
Gradient Descent algorithm (GD) Boyd et al. (2004), assume a convex loss function ℓ(w) =
1

|Ds|
∑

(x,y)∈Ds
lγ(f

c(x;w), y) and the gradient ∇wℓ(w) from different baselines are Lipschitz
continuous with constant L. We choose a learning rate s such that s ≤ 1/L.

Given the optimal weight w∗ on the training data, the error bound at optimization step k can be
written as Boyd et al. (2004)

ℓ(wk)− ℓ(w∗) ≤
||w∗ − w0||22

ks
(32)

and requires a computation power dependent on the sample complexity

O(|Ds|k) ≤ O(
klog(δ)

(β − 2R̂(L|Ds))2
) (33)

Note that error bound has the same convergence rate 1
ks for different methods. However, the

computation cost is different for different baselines due to different R̂(L|Ds). The result shows
MEDIC will cost less computation power as R̂(L|Ds) is smaller.

In practice, we can observe from Figure 3 that the sample complexity of MEDIC is at most 1/10
compared with training from scratch on CIFAR-10. This suggests MEDIC can be 10 times faster
than training from scratch.

C ANALYSIS OF WHY MEDIC WORKS

In this section, we further analyze why cloning can be more effective against backdoor attacks
compared with fine-tuning based approach. To do so, we first define a binary classification problem.
We later consider a family of backdoors for this binary classification problem. Through analyzing the
classification problem and backdoors, we show that cloning can guarantee the removal of backdoor
while fine-tuning may not. Furthermore, we show our importance can better pinpoint the compromised
neurons. In the following, we first mathematically define the scenario.

Consider a neural network with two neurons in the penultimate layer. Specifically, the activations
of the penultimate layer of neuron networks are written as z ∈ ℜ2. The last layer consists of the
fully-connected layer. The binary classification problem is thus represented as y = sgn(w · z) where
w ∈ ℜ2 is a part of learn-able parameters.

Let us consider a learning scenario where the internal activations z = (z1, z2) follows distribution
conditioned on the labels. Specifically, feature z1 contains a strong feature that determines the results.
While the other feature z2 is a weaker signal but can decide the label as well. We further assume z1 is
independent of the second feature z2.

Formally, in order to simulate this aforementioned case, we define

z1 ∼
{
U(0.1, 1), y = 1

U(−1,−0.1), y = −1
, z2 ∼

{
U(0, 0.1), y = 1

U(−0.1, 0), y = −1
. (34)

The U represents the uniform distribution. This definition aligns with our description. Note that z1 is
a stronger deciding feature because the margin of z1 between the positive and negative classes are
larger than z2. Meanwhile z1 has a larger magnitude than z2 and thus model are easier to pick up the
signal coming from the feature z1.
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Based on this learning scenario, we next introduce a family of backdoor attacks where positive
samples are classified into the negative label. Specifically, the backdoor attack can set either feature
z1 or z2 of the penultimate layer to a constant k > 0. The reason we choose a positive constant k is
because of the underlying assumption of backdoors. We assume backdoor patterns are sufficiently
different to normal samples. Otherwise, the backdoor attack is nothing but a intended behavior of
the neural networks. In this case, The feature of negative samples should be sufficiently different
from the feature of the backdoor that results in the negative label. This implies that we instead need a
positive k for the backdoor attack.

In the following, we show that the backdoor attack has to modify the less important feature z2 to
launch the backdoor attack. From the fact that the model will correctly predict the benign data, we
have

(w1z1 + w2z2)y ≥ 0 (35)

By including constraints of w1 ≥ 0.1, w2 ≥ 0 and y = 1, we can infer w1 ≥ 0. And thus the
backdoor attack must change z2 = k to launch backdoor attack. Otherwise, w1z1 > 0 can not change
the label into the negative one.

Since backdoor attack is successful and will predict the backdoor samples as the negative label, we
also have

(w1z1 + w2k)y ≤ 0 . (36)

By including the constraints again, similarly, we will have

w2 ≤ −w1z1
k

≤ −0.1w1

k
(37)

From this result, we can see that w2 should have a large negative number for a successful backdoor
attack.

Based on this result, we show that cloning can instead guarantee the removal of the backdoor. And
we further show that fine-tuning might not remove the backdoor.

Theorem 3. Now consider the hinge loss function l(w) = (1− ywT z)+ as the classification loss,
and the cloning loss lclone(w) = λ(w′T z − wT z)2, where w′ is the weight from backdoor model. For

any cloning λ that satisfy λ ≤ E
[
1[1−ywT z>0]yz

(zT z)w′
2

]
, we guarantee the removal of backdoors.

Proof. The gradient of the classification loss on w is thus negative ∇wl(w) ≤ −yz. Meanwhile the
gradient of cloning loss is therefore ∇wlclone(w) = −2λ(w′ − w)z2. Combined the cloning loss and
classification loss, we know that when λ ≤ E

[
1[1−ywT z>0]yz
(zT z)(w′

2−w2)

]
, we will have a negative gradient on

w. Through mathematical induction, we can further relax the nominator as stated in the theorem, for
w2 will be positive. Next we show the negative gradient will guarantee the removal of backdoors.
For simplicity, let us assume that we initialize w = 0 during cloning. Now we show that during
optimization, the cloned model will not have backdoor behaviors. This newly initialized model
won’t contain backdoor behaviors in this scenario. During cloning, gradient based optimization on
this classification loss will always make a positive w1 and w2. This means we can guarantee the
removal of the backdoor through the unique recipe of training from scratch. However, in the case of
fine-tuning, the initialized value of w1 from backdoor will be a large negative number. In this case,
the effectiveness of fine-tuning based methods will unfortunately hinge on how much change is made
to w2 and therefore backdoor removal is not guaranteed.

Furthermore, let us consider the importance weight from cloning. We calculate the equation as
defined in equation 4. We find that activation importance weight is similar for both w1 and w2

because of the normalization. Meanwhile, the impact importance weight of w1 is larger than w2. By
combining these two importance weight together, the importance of w1 is thus larger than w2. Given
a large enough temperature, the importance for w1 will be close to 1 while importance of w2 will be
close to 0. This shows that our importance weight correctly identifies compromised neuron w2 but
instead simulates the correct neuron w1. , cloning will only leverage the activation from important
feature w1.
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D EXPERIMENT DETAILS

In this section, we describe the details of our experiments. We use the original code from Badnet (Gu
et al., 2019b), Clean Label attack (Turner et al., 2018), SIG (Barni et al., 2019), Reflection attack (Liu
et al., 2020), Polygon attack (NIST, 2019), Filter attack (Liu et al., 2019), and Adaptive attack (Lin
et al., 2020) to construct backdoored models. For backdoor removal methods, we leverage the code
from Model Connectivity Repair (MCR) (Zhao et al., 2020a), NAD (Li et al., 2021), ANP (Wu &
Wang, 2021), and Fineprune (Liu et al., 2018a). During the model training and testing, we use the
exact same data augmentations, including resizing and cropping. Wide ResNet16 (Zagoruyko &
Komodakis, 2016b) structure and CIFAR-10 (Krizhevsky, 2009) dataset are used for Clean Label,
SIG, Badnet, Composite, and Reflection attacks. For polygon attack, we use ResNet34 (He et al.,
2015) and Kitti-City (Fritsch et al., 2013) dataset. For filter attack, we use ResNet34 and Kitti-
Road (Fritsch et al., 2013) dataset. We utilize 5% of CIFAR-10 training data and 0.5% of Kitti-City
and Kitti-Road training data for the experiments. Note that we use a smaller number of data for
large-scale datasets, because there are much more training samples in the large-scale datasets.

During cloning, we clone the outputs from all the convolution, normalization, and fully-connected
layers in the network structure. These layers have learnable parameters where we aim to copy the
functionalities from. We estimate the mean and standard deviation of internal activations using
benign data. We use parameter λ to balance the cloning loss Lclone in Eq.(1) and the classification
loss Lclassification (i.e., cross-entropy loss) as follows. We set λ = 10 in this paper. We also conduct an
ablation study on λ in Appendix E.2.

L(x, y) = Lclassification(x, y) + λLclone(x, y)

In the experiment, we train the model for 60 epochs over the small set of clean data. We use Adam
optimizer with a initial learning rate 1e−2 and apply weight decay of 1e−4. We align the temperature
τ in our method so that the clean accuracy of our model is comparable to others. We conduct the
experiments on four GTX 2080 GPUs.

During backdoor removal, we assume we have no knowledge of the type of backdoors injected in the
model. We directly report the performance of the model at the last optimization step. Our reported
results are slightly worse than those reporting the best model during training.

D.1 ALGORITHM

In Algorithm 1, we show the complete procedures. Specifically, we first select the neurons of interest,
which comprises of the output from convolution, normalization, and dense layers. We then use the
available samples to estimate the mean and variance of corresponding neurons. As the available
samples come from the same distribution as the original training data, the estimation of mean and
variance converges exponentially. The fast convergence means the number of samples can be quite
small for an accurate estimation. We compute the weight based on the equations in line 5. In line 6,
we incorporate the weight to cloning loss function. In lines 7-9, we use standard optimization with
the loss function.

Algorithm 1 MEDIC Cloning Procedure
Input :Dataset with a small number of clean samples Ds, training epochs T , number of batches at each epoch

L, neurons from the teacher model for cloning f∗
i and the corresponding student neurons fc

i .
Output :Sanitized Model fc

1 fc ← RandomInit()
2 Estimate σi, µi of activation f∗

i (x) on input data x ∈ Ds

3 for b← 1 to T · L do
4 Draw a batch of data from B ∈ Ds

5 Calculate w based on Equations 2, 3 and 4

6 Lclone =
∑

(x,y)∈B

[∑
i wi(x, y)

(
f∗
i (x)−fc

i (x)

σi

)2
]

7 Ltotal = Lclassification + λLclone
8 Update fc with∇fcLtotal
9 Adjust the learning rate based on the scheduler
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E ADDITIONAL EXPERIMENTS

E.1 EVALUATION ON BACKDOOR ATTACKS UNDER DISTRIBUTION SHIFT

In this section, we further stress test our method by evaluating in a more challenging scenario. In
this setting, data augmentations are not used during backdoor attacks. They however are applied
during backdoor removal. As data augmentations shift the distribution of training data, it violates
the assumption of MEDIC that available training data during backdoor removal are sampled from
the same distribution. We use the same setup as in Appendix D and conduct the experiments on
CIFAR-10 and Wide ResNet. We evaluate on backdoor attacks SIG, BadNet, and CleanLabel. We do
not include Reflection and Warp attacks as data augmentations are essential for the success of these
attacks.

The results are shown in Table 2. Observe that the ASRs are much lower than those in Table 1. This
is because these attacks are less robust if no data augmentation is leveraged during the attack. We
can see MEDIC has the best performance on hard-to-remove backdoors (e.g, CleanLabel attack that
uses adversarial training), which is consistent with the results of using data augmentations during the
attack. For other attacks, the results of MEDIC are comparable to those of baselines. Compared to
the results obtained under the same distribution (during attack and removal), we find MEDIC has
slightly worse performance under different distributions. The attack success rates of SIG and BadNet
are higher. MEDIC has a better result on CleanLabel attack compared to Table 1 as the attack is less
robust.

Table 2: Comparison with baselines without data augmentation. ± represents the standard deviation
over 5 repeated runs.

Attack Metric Original (%) Method (in percentage %)

Finetune Fineprune NAD MCR ANP MEDIC

CleanLabel ASR 100 11.6±1.7 11.2±1.5 8.2±1.6 5.9±0.2 7.8±4.4 5.1±0.7
ACC 83.2 81.1±0.1 81.3±0.3 80.9±0.3 80.6±0.1 75.2±1.9 80.7±0.2

SIG ASR 97.8 3.5±1.6 4.0±1.7 4.7±1.1 0.5±0.2 3.9±2.6 5.1±1.0
ACC 83.5 81.8±0.2 82.1±0.1 82.0±0.1 80.9±0.3 77.7±0.9 79.5±0.1

BadNet ASR 99.8 3.2±0.3 3.6±0.5 4.1±0.4 2.9±0.1 6.2±2.6 3.6±0.5
ACC 81.9 77.5±0.1 79.6±0.4 75.3±1.1 78.3±0.2 73.4±0.7 79.9±0.2

E.2 ABLATION STUDY ON λ

In algorithm 1, we introduce a variable named λ to combine the cross entropy loss and the cloning
loss. Specifically, we have

Ltotal = Lclassification + λLclone

In this section, we conduct an ablation study of how λ will impact the performance of cloning. We
use the CleanLabel attack on CIFAR10. In figure 6, we show the result of cloning with different
choices of λ. The x-axis indicates the temperature. The y-axis indicates the ASR (in the left figure)
and the clean accuracy (in the right figure).

A large λ means more focus on the cloning loss and less focus on the classification loss. According
to our study, enlarging λ can increase the clean accuracy of the cloned model as shown in the right
figure. At the same time, the attack success rate also increases (see the left figure). To reduce the
ASR, we need to simultaneously increase the temperature. By increasing both λ and the temperature,
we can achieve better clean accuracy as well as ASR.

E.3 ABLATION STUDY ON AMOUNT OF AVAILABLE DATA

In table 3, we conduct an ablation study on the amount of available data during our backdoor removal.
We adopt CIFAR-10 for the experiments and test on 5% and 10% available data. The results show
that the performance of trigger removal is positively correlated with the amount of available data.
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Figure 6: Effect of λ. The experiment is conducted on CIFAR-10 and CleanLabel attack.

Clean Label SIG BadNet Adaptive Reflection

5% Data ASR 16.8±4.6 1.5±0.7 3.6±0.6 7.1±1.7 6.2±0.5
5% Data Acc. 85.3±0.2 84.4±0.3 84.2±0.2 79.7±0.1 83.5±0.2

10% Data ASR 6.9±1.2 0.5±0.5 3.2±0.5 5.6±0.8 4.0±0.4
10% Data Acc. 85.4±0.3 84.6±0.2 86.8±0.1 80.9±0.2 84.0±0.3

Table 3: an Ablation Study on the Amount of Data

E.4 EMPIRICAL COMPLEXITY

The computation cost is approximately proportional to the training epochs. We compare the training
epochs of different methods on CIFAR-10. The results show that MEDIC is within the same order of
magnitude as the baselines.

Finetune Fine-prune NAD MCR ANP MEDIC

Training (Epochs) 30 31 40 240 100 60

E.5 ABLATION STUDY ON IMPORTANCE CRITERION

In this section, we conduct the ablation study on different importance criteria. We show the combina-
tion of both impact (in eq.(3) and activation (in eq.(2) criteria is beneficial to the backdoor removal.
We conduct the study on CIFAR-10 and Clean Label attack. We repeat the experiments under different
criteria and different τ from 1 to 7. For each criterion or their combination, we draw the trade-off
curve between attack success rate and clean accuracy. We repeat 5 times for each point and use the
average value for the report. Figure 7 shows the results. X-axis represents the clean accuracy and
y axis represents the attack success rate. A curve close to the lower-right corner indicates a better
performance.

From Figure 7, we can observe the orange curve concentrates on the upper-right corner. It means
that with only impact criterion, the clean label attack can not be completely removed. The reason is
that clean label attack involves adversarial training which makes the backdoor attack quite robust.
Therefore benign features and backdoor features are somewhat activated simultaneously. They won’t
be separated by this single criterion. However by adding additional impact criterion, those backdoor
features will be excluded during cloning. Observe that the green curve has much better attack success
rate than the orange one. Furthermore, we can observe that by including both criteria , we have the
blue curve. It has the best trade-off between accuracy and success rate.
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Figure 7: Effect of Combinations of criteria. The experiment is conducted on CIFAR-10 and
CleanLabel attack.

Figure 8: Effect of Model Architecture. The experiment is conducted on CIFAR-10 and BadNet
attack.

E.6 ABLATION STUDY ON MODEL ARCHITECTURE

In this section, we further study the impact of model architecture. We train the same backdoor attack
on three different types of model architectures, including VGG-11, MobileNet-V1 and ResNet-16.
The experiment is conducted on CIFAR-10 and BadNet. Specifically, model VGG contains dropout
layers. We found including dropout layers during cloning will make optimization harder to converge.
We therefore remove the additional dropout layers since in theory the expected output will be similar.
we use a learning rate 1e-3 for this experiment to make sure optimization convergence on different
models architectures. .

Figure 8 shows the results. The y-axis represents attack success rate and clean accuracy respectively.
The x-axis represents different temperatures. Observe that cloning is effective in both three very
different model architectures. Specifically, we can reduce the attack success rate of all three models
below 5%. Moreover, we find the temperature actually has different impact over different architectures.
Specifically, the MobileNet has the faster reduction in clean accuracy as τ grows.

22


	Introduction
	Related Work
	Method
	Formal Interpretation of Cloning
	Notations and Backgrounds
	Analysis

	Experiment
	Conclusion
	Proof
	Analysis over Computational Efficiency
	Analysis of Why Medic Works
	Experiment Details
	Algorithm

	Additional Experiments
	Evaluation on Backdoor Attacks under Distribution Shift
	Ablation Study on 
	Ablation Study on Amount of Available Data
	Empirical Complexity
	Ablation Study on Importance Criterion
	Ablation Study on Model Architecture


