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Abstract

Current benchmarks evaluate the performance001
of RAG methods from various perspectives,002
they share a common assumption that user003
queries used for retrieval are error-free. How-004
ever, in real-world interactions between users005
and LLMs, query entry errors are frequent.006
The impact of these errors on current RAG007
methods against such errors remains largely008
unexplored. To bridge this gap, we propose009
QE-RAG, the first robust RAG benchmark010
designed specifically to evaluate performance011
against query entry errors. We analyze the im-012
pact of these errors on LLM outputs and find013
that corrupted queries degrade model perfor-014
mance, which can be mitigated through query015
correction and training a robust retriever for re-016
trieving relevant documents. Based on these017
insights, we propose a contrastive learning-018
based robust retriever training method and a019
retrieval-augmented query correction method.020
Extensive in-domain and cross-domain exper-021
iments reveal that: (1) state-of-the-art RAG022
methods including sequential, branching, and023
iterative methods, exhibit poor robustness to024
query entry errors; (2) our method signifi-025
cantly enhances the robustness of RAG when026
handling query entry errors and it’s compatible027
with existing RAG methods, further improving028
their robustness.029

1 Introduction030

Retriever-augmented generation (RAG), which031

integrates retrieval mechanisms to incorporate032

external knowledge into large language mod-033

els (LLMs), has become a widely adopted ap-034

proach (Borgeaud et al., 2022; Lewis et al., 2020;035

Chen et al., 2024). By retrieving knowledge036

from external sources, RAG addresses issues such037

as insufficient knowledge and hallucinations in038

LLMs (Tonmoy et al., 2024; Gao et al., 2023b),039

thereby improving the accuracy and fidelity of040

their responses.041

Who is the kother of the diredtor of dilm
Polish-Russiaj War (Film)?

Who is the mother of the director of film
Polish-Russian War (Film)?

Which film has the director who was born 
later, El Extraño Viaje or Love In Pawn?

Wich filme hav the director who vas born 
later, El Extraño Viaje or Love int Pawn?

Which film came out first, Blind Shaft or 
The Mask Of Fu Manchu?

Which film came 0ot first, Blind Shaft or 
The Mask 0f Fo Manchu?
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Figure 1: Examples of three types of query entry errors
including keyboard proximity errors, visual similarity
errors, and spelling errors.

Existing RAG benchmarks evaluate the perfor- 042

mance of RAG methods from various perspec- 043

tives. For example, Es et al. (2024) assess fidelity 044

in LLM-generated content, Chen et al. (2024) 045

evaluate the model’s ability to refuse to answer in- 046

appropriate or unanswerable queries, and Liu et al. 047

(2023) examine the capacity of models to han- 048

dle counterfactual information. Although these 049

studies provide valuable insights into model ef- 050

fectiveness across different scenarios, they univer- 051

sally assume that user queries are error-free. In 052

real-world settings, as illustrated in Figure 1, user 053

queries often contain entry errors such as key- 054

board proximity errors, visual similarity errors, 055

and spelling mistakes. The impact of these errors 056

on LLM outputs remains largely unexplored. 057

To fill this gap, we introduce QE-RAG, the first 058

RAG benchmark specifically designed to eval- 059

uate model performance under query entry er- 060

rors. We inject three common types of query 061

errors—spelling errors, keyboard proximity er- 062

rors, and visual similarity errors—into four di- 063

rect QA datasets (TriviaQA (Joshi et al., 2017), 064
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Natural Questions (Kwiatkowski et al., 2019),065

PopQA (Mallen et al., 2022), and WebQues-066

tions (Berant et al., 2013)) and two multi-hop QA067

datasets (HotpotQA (Yang et al., 2018) and 2Wiki-068

MultiHopQA (Ho et al., 2020)). Specifically, we069

use the nlpaug (Ma, 2019) tool to systematically070

inject these errors, applying them in a 3:1:1 ra-071

tio to reflect real-world error distribution patterns.072

For each query, there is a 30% probability of se-073

lecting a word, and for each selected word, a 30%074

probability of corrupting a character. This setup075

realistically simulates typical user query behav-076

iors, providing a practical evaluation environment077

for RAG models. Since these errors do not alter078

the user’s underlying information need, we retain079

the original RAG labels for the corrupted queries.080

To simulate varying levels of noise, we generate081

two versions of the QE-RAG by corrupting 20%082

and 40% of the queries, representing moderate and083

high-error scenarios.084

Based on the proposed QE-RAG dataset, we085

conducted preliminary experiments (§ 4.1) on the086

corrupted HotpotQA and Natural Questions (NQ)087

datasets to explore the impact of query entry er-088

rors on LLM outputs. We find that: (1) Retriev-089

ing correct documents for corrupted queries can090

enhance the RAG model’s robustness to query en-091

try errors. (2) Correcting corrupted queries also092

improves the RAG model’s robustness. There-093

fore, (1) To retrieve correct documents, we train094

a robust retriever using contrastive learning based095

on a retrieval dataset with a 20% error query096

rate, enabling it to retrieve the correct document097

corresponding to the correct query even when098

faced with corrupted queries. (2) To correct cor-099

rupted queries, we adopt the current state-of-the-100

art LLM-based correction methods. However,101

considering the significant issue of overcorrec-102

tion (Li et al., 2023a; Fang et al., 2023) in LLMs103

during correction and LLMs may have limitations104

in recognizing certain uncommon knowledge dur-105

ing query correction (Zhang et al., 2024a), we pro-106

pose a query correction approach that combines107

RAG (based on the robust retriever we introduced108

earlier) with fine-tuning to mitigate overcorrection109

while enhancing robustness.110

We selected the state-of-the-art retriever BGE111

(Xiao et al., 2023) from the MTEB leaderboard112

(Muennighoff et al., 2022) and two large lan-113

guage models, Qwen2 (Yang et al., 2024) and114

LLama3 (AI@Meta, 2024), to evaluate their ro-115

bustness to query entry errors. We tested the in-116

domain and cross-domain performance of various 117

existing RAG methods (e.g., trained on HotpotQA 118

and tested on the same or other datasets) to assess 119

their robustness against query entry errors. These 120

RAG methods include standard RAG (Gao et al., 121

2023b), query reformulation (Gao et al., 2023a), 122

document refinement (Jiang et al., 2023b), branch- 123

ing (Shi et al., 2024; Kim et al.) and iterative (Shao 124

et al., 2023) methods. 125

Extensive experimental results show that while 126

these state-of-the-art RAG methods demonstrate 127

some effectiveness compared to standard RAG, 128

their robustness to query entry errors remains lim- 129

ited. In contrast, the two methods we propose sig- 130

nificantly enhance the robustness of RAG systems 131

and can be combined with existing RAG methods 132

to further improve their performance. 133

To summarize, our contributions are as follows: 134

• To the best of our knowledge, we are the first 135

to investigate robustness against query entry 136

errors in RAG research, focusing on three 137

representative error types: keyboard proxim- 138

ity, visual similarity, and spelling. 139

• We construct a benchmark dataset, QE-RAG, 140

based on six widely-used RAG datasets, in- 141

corporating two levels of noise through the 142

explicit injection of three types of errors. Ex- 143

tensive experiments conducted on QE-RAG 144

demonstrate that state-of-the-art RAG meth- 145

ods, including query reformulation, docu- 146

ment refinement, branching, and iterative 147

methods, exhibit poor robustness to query en- 148

try errors. 149

• We propose two solutions to improve ro- 150

bustness against query entry errors: (1) a 151

contrastive learning-based trained robust re- 152

triever, which enhances RAG robustness; 153

(2) a retrieval-augmented query correction 154

method, resulting in further improvements in 155

robustness. 156

2 Related Work 157

2.1 RAG benchmark 158

Existing RAG benchmarks primarily assess the 159

quality of content generated by LLMs or the 160

LLM’s ability to process external information. 161

RAGAS (Es et al., 2024) and ARES (Saad-Falcon 162

et al., 2024) evaluate the contextual relevance and 163

fidelity of LLM-generated content. RGB (Chen 164
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Table 1: The statistics of six datasets used in QE-RAG. “Source” refers to the knowledge source of each dataset.
“#Query” denotes the number of queries. “0% Prob”, “20% Prob”, “40% Prob” represent the proportions of
corrupted queries in the dataset at 0%, 20%, and 40%, respectively. “Avg. #Char/Query” indicates the average
number of characters per query. “Avg. #Words/Query” refers to the average number of words per query.

Type Dataset Source #Query
Avg. #Chars/Query Avg. #Words/Query

0% Prob 20% Prob 40% Prob 0% Prob 20% Prob 40% Prob

QA

NQ Wiki 3610 48.4 48.6 48.7 9.4 9.4 9.4
PopQA Wiki 14267 37.1 37.4 37.7 6.7 6.8 6.9
TrivalQA Wiki & Web 11313 69.1 69.4 69.6 12.6 12.6 12.7
WebQA Google Freebase 2032 38.0 38.0 38.1 6.8 6.9 6.9

Multi-Hop QA
HotpotQA Wiki 7405 94.5 94.8 95.1 16.4 16.4 16.5
2wiki Wiki 12576 68.1 68.5 68.8 12.4 12.5 12.5

et al., 2024) tests the robustness of LLM against165

noisy documents and the ability to refuse to an-166

swer, while RECALL (Liu et al., 2023) analyzes167

the LLM’s processing capability regarding coun-168

terfactual information. However, they all assume169

that the queries used for retrieval are correct, with-170

out considering the actual scenarios where users171

may enter corrupted queries. In the increasingly172

popular era of LLM, this cannot well evaluate the173

real capabilities of RAG technology. Therefore,174

this paper focuses on establishing an RAG evalu-175

ation framework that includes corrupted queries,176

which can help evaluate the robustness of RAG177

models and promote the further development of178

RAG technology in the era of LLM.179

2.2 Retriever Augmented Generation180

Standard RAG methods (Gao et al., 2023b) sup-181

plement user queries with retrieved documents,182

which are then fed into the LLM to generate re-183

sponses. Over time, numerous approaches have184

been proposed to further enhance the perfor-185

mance of RAG systems. Following (Jin et al.,186

2024), these methods can be categorized into se-187

quential pipeline (Gao et al., 2023a), branching188

pipeline (Shi et al., 2024; Kim et al.), iterative189

pipeline (Shao et al., 2023), and so on. We provide190

a detailed description of them in Appendix A. In191

this paper, we will evaluate the robustness of these192

state-of-the-art RAG methods in scenarios where193

queries contain errors.194

3 QE-RAG Dataset Construction195

We focus on RAG in this study, which is formu-196

lated as follows: given a query q ∈ Q (where Q197

is the set of all possible queries) and an external198

knowledge base K = {d1, d2, . . . , dN} consisting199

of N documents, the goal of RAG is to generate200

a response a ∈ A (where A is the set of pos-201

sible answers) by leveraging both retrieval from 202

the knowledge base and generation from a LLM. 203

Unlike previous datasets, which assume that q is 204

error-free, we consider a more practical scenario in 205

which q may be corrupted by three types of query 206

entry errors. As shown in Figure 2, our QE-RAG 207

dataset is constructed through the following steps. 208

Step1: Selection of RAG Dataset. Following 209

FlashRAG (Jin et al., 2024), we collect and ex- 210

tend six widely-used RAG datasets to form our 211

QE-RAG, which includes four direct QA datasets 212

(TriviaQA (Joshi et al., 2017), Natural Ques- 213

tions (Kwiatkowski et al., 2019), PopQA (Mallen 214

et al., 2022), WebQuestions (Berant et al., 2013)) 215

and two multi-hop QA datasets (HotpotQA (Yang 216

et al., 2018), 2WikiMultiHopQA (Ho et al., 217

2020)). Each dataset follows the format “question, 218

gold answer”, representing the user query q and 219

the gold answer a, respectively. The corpus K 220

used for retrieval, also referred to as the external 221

knowledge base, is set to the Wikipedia corpus. 222

Please note that to comprehensively evaluate the 223

robustness of existing methods against query en- 224

try errors, we conduct both in-domain and cross- 225

domain robustness assessments. Following (Xu 226

et al., 2024), we use HotpotQA as the source 227

dataset, meaning we fine-tune the retrieval model 228

exclusively on HotpotQA. Testing on HotpotQA 229

constitutes in-domain evaluation while testing on 230

other datasets represents cross-domain evaluation. 231

Step 2: Query Corruption. We utilize the nl- 232

paug tool (Ma, 2019) to inject three types of query 233

entry errors into the six collected datasets, forming 234

the corrupted queries: (1) Keyboard Proximity 235

Errors. When users interact with LLMs via a key- 236

board, mistyping may occur as a result of pressing 237

adjacent keys. To simulate this, we replace correct 238

letters with nearby letters on the keyboard. (2) Vi- 239

sual Similarity Errors. When users input words 240
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(a) Selection of RAG Dataset (b) Query Corruption (c) Label Matching

Figure 2: The construction process of QE-RAG datasets. (a) Selection of RAG Dataset. (b) Query corruption
through three scenarios: keyboard proximity errors, visual similarity errors and spelling errors. (c) Label matching.

through handwriting, recognition tools may misin-241

terpret characters due to irregular handwriting or242

inaccurate OCR algorithms, resulting in morpho-243

logical errors. To simulate these handwriting in-244

put errors, we replace correct letters with visually245

similar ones. (3) Spelling Errors. Users may oc-246

casionally forget the correct spelling of a word and247

input an approximation, leading to spelling errors248

in the query. We simulate these errors by replacing249

words using a spelling error dictionary. Specifi-250

cally, we apply a 30% probability of selecting a251

word in each query, and for each selected word, a252

30% probability of corrupting a character. These253

probabilities reflect typical user behavior, creating254

a realistic test environment for RAG models.255

Step 3: Label Matching. Since we set rela-256

tively low probabilities for both selecting a word257

and corrupting a character, we assume the corrup-258

tion does not affect the underlying user informa-259

tion need and realistically simulates typical user260

query behavior. Therefore, we retain the original261

RAG labels for the corrupted queries. In other262

words, for an original data sample (q, a), we re-263

place it with (q′, a) where q′ is the corrupted ver-264

sion of q containing one of the three entry errors,265

while a remains unchanged. Additionally, to eval-266

uate model robustness under different levels of267

noise, we generate two versions of the QE-RAG268

dataset by corrupting 20% and 40% of the queries,269

representing moderate and high-error scenarios.270

Dataset Statistics and Analysis. Table 1271

presents the statistical analysis of the six datasets272

we constructed. It can be observed that the dif-273

ference in the average number of words per query274

between corrupted queries (with error ratios of275

20% and 40%) and original queries is not signifi-276

cant. This similarity indicates that our corruption277

strategy effectively mirrors real-world scenarios of278

user query entry errors. Additionally, our corrup-279

tion strategy does not alter the syntactic structure 280

of the sentences, as shown by the minimal differ- 281

ence in the average query length between original 282

and corrupted queries in Table 1, further ensuring 283

the quality of our QE-RAG dataset. 284

Evaluation. Following (Jin et al., 2024), QE- 285

RAG support EM (Exact Match), F1 (token-level 286

F1 score), and Acc (Accuracy) to evaluate the ef- 287

fectiveness and robustness against query entry er- 288

rors of RAG methods. In this paper, we use F1 289

for evaluation, as it better reflects the accuracy of 290

the fine-grained information in the model’s gen- 291

erated content. Additionally, we have developed 292

a Python framework that facilitates the easy re- 293

production of experiments and the integration of 294

new datasets and additional RAG methods. Fur- 295

ther details on the datasets and evaluation code can 296

be found at https://anonymous.4open. 297

science/r/QE-RAG-DEA5. 298

4 Preliminary Experiments and 299

Methodology 300

In this section, we first explore how query en- 301

try errors impact the performance of the RAG 302

system. Then, we introduce two approaches: a 303

contrastive learning-based robust retriever training 304

method and a retrieval-augmented query correc- 305

tion method, both designed to enhance robustness 306

against query entry errors. 307

4.1 Preliminary experiments 308

We conducted preliminary experiments on the 309

HotpotQA and NQ datasets to investigate the im- 310

pact of 40% and 20% ratio query entry errors 311

on LLM-generated outputs when the LLMs are 312

Llama3 and Qwen2. For this analysis, we kept 313

the handling of correct queries unchanged and 314

focused solely on scenarios involving corrupted 315

queries. To evaluate the effect of various strategies 316
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(a) Results on HotpotQA dataset.
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(b) Results on Natural Questions dataset.

Figure 3: Preliminary experiments to explore the im-
pact of query entry errors on RAG performance, where
the retriever is BGE, with error ratios of 40% and 20%.

for mitigating the impact of errors, we tested the317

following approaches: 1) QE-DE: Query with Er-318

rors - Document Retrieved via Errors. 2) QE-DC:319

Query with Errors - Document Retrieved via Cor-320

rect Query. 3) QC-DE: Corrected Query - Docu-321

ment Retrieved via Errors. 4) QC-DC: Corrected322

Query - Document Retrieved via Correct Query.323

More details are in Appendix B.324

As shown in Figure 3, whether multi-hop QA325

(Figure 3 (a)) or direct QA (Figure 3 (b)), em-326

ploying corrupted queries and their retrieved doc-327

uments (QE-DE) gets poor model performance. In328

contrast, utilizing documents retrieved with cor-329

rect queries (QE-DC) or using correct queries330

themselves (QC-DE) improved model perfor-331

mance. The combination of correct queries and332

the documents retrieved with those queries (QC-333

DC) achieved the best results.334

Based on the above conclusions, we can in-335

fer that retrieving correct documents for cor-336

rupted queries and query correction can help337

address the issue of query entry errors and im-338

prove the model’s robustness. Therefore, we de-339

sign a contrastive learning-based robust retriever340

training method and a retrieval-augmented query341

correction method, which are in § 4.2 and § 4.3.342

4.2 Contrastive Learning-Based Robust343

Retriever344

In order to enable the retriever to retrieve correct345

documents using the corrupted query, we intro-346

duce a contrastive learning-based robust retriever 347

training method in this section. Contrastive learn- 348

ing (CL) is a self-supervised learning technique 349

designed to learn robust representations by con- 350

trasting positive and negative examples. We lever- 351

age CL to train the model to recognize and re- 352

trieve relevant documents even when queries are 353

corrupted. 354

Specifically, we use the HotpotQA dataset, in- 355

troducing a 20% corrupted query ratio to construct 356

contrastive pairs in the format (q, a) and (q′, a), 357

where q and q′ respectively denotes the original 358

and corrupted query, and a denotes the golden 359

LLM response. We then fine-tuned BGE (Xiao 360

et al., 2023) models using contrastive learning 361

on this dataset, with positive examples being the 362

relevant documents corresponding to the original 363

queries in HotpotQA. For negative example sam- 364

pling, we included a hard negative example for 365

each corrupted query, randomly chosen from the 366

original HotpotQA corpus, along with randomly 367

selected in-batch soft negative examples. The 368

training objective is: 369

L = −log
esim(q′

i,d
+
i )/τ

esim(q′
i,d

+
i )/τ +

∑N
j=1e

sim(q′
i,d

−
j )/τ

,

(1) 370

where q′
i, d

+
i , and d−

i denote the embeddings of 371

the i-th corrupted query, the positive example, and 372

the negative example, respectively. The function 373

sim(·) represents the cosine similarity function, N 374

is the batch size, and τ is the temperature. 375

4.3 Retrieval-Augmented Query Correction 376

To better adapt to the RAG scenario, in this sec- 377

tion, we will explore query correction using LLMs 378

in the RAG setting. Incorporating RAG can 379

assist LLMs in answering questions by retriev- 380

ing relevant documents. However, in the pres- 381

ence of query errors, providing LLMs with re- 382

lated documents can further complicate query cor- 383

rection. The LLM may prioritize answering the 384

query based on the retrieved documents rather 385

than focusing on the correction task. This occurs 386

because the retrieval results may overwhelm the 387

LLM, leading it to shift its focus from correct- 388

ing the query to generating a response. To ad- 389

dress these challenges, we propose using retrieval- 390

augmented fine-tuning (Zhang et al., 2024b) to ef- 391

ficiently fine tuning LLMs to leverage retrieved 392

documents specifically for query correction. This 393

approach ensures the model remains focused on 394
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correcting the query without deviating from an-395

swering it. That is:396

LFT = − 1

|DI |
∑
DI

log(Pθ1+θL(yt|x, p, y<t)), (2)397

where θ1 and θL are the parameters of LLM and398

LoRA (Hu et al., 2021). yt and y<t respectively399

denote the t-th token and tokens before yt. x de-400

notes the original query with the retrieved docu-401

ments. p is a prompt that allows the LLM to cor-402

rect the query based on the retrieved documents.403

DI represents the fine-tuning dataset composed of404

inputs x, p and the output, the correct query y.405

5 Experiments406

5.1 Experimental Settings407

5.1.1 Datasets and Metrics408

In the main experiment, we selected our modi-409

fied RAG dataset to conduct experiments on RAG410

tasks. Specifically, we chose four QA datasets:411

TriviaQA (Joshi et al., 2017), Natural Questions412

(NQ) (Kwiatkowski et al., 2019), PopQA (Mallen413

et al., 2022), WebQuestions (WebQA) (Berant414

et al., 2013), and two Multi-Hop QA datasets:415

HotpotQA (Yang et al., 2018) and 2WikiMulti-416

hopQA(2wiki) (Ho et al., 2020) for our experi-417

ments. Following (Jin et al., 2024), we used the418

Wikipedia data from December 2018 as the re-419

trieval corpus. For the evaluation metrics, follow-420

ing (Jin et al., 2024), we selected the widely used421

token-level F1 score as our evaluation metric. We422

also support the use of other evaluation metrics.423

5.1.2 Retrieval and Generation Models424

In our main experiment, we selected bge-base-425

en-v1.5 (Xiao et al., 2023) as the retrieval mod-426

els. As § 4.2 described, We trained them on the427

original HotpotQA dataset as well as the Hot-428

potQA dataset we constructed with 20% corrupted429

queries, obtaining retrievers R1 and R2 respec-430

tively. For the baseline, we used R1 as the re-431

triever. For our method, we used R2 as the re-432

triever. For the generation models, we chose the433

latest Llama3-8B-Instruct (AI@Meta, 2024) and434

Qwen2-7B-Instruct (Yang et al., 2024) as the main435

experimental generation models.436

5.1.3 RAG Methods437

We test the following RAG methods. Stan-438

dard RAG, CoT-RAG, Direct-Correct, HyDE, Iter-439

Retgen, LongLingua, REPLUG, SuRe. Details in440

Appendix C. For our proposed methods: QER- 441

RAG: To enhance the robustness of retrieval, we 442

replace the retriever R1 with our trained retriever 443

R2 while keeping other components of the stan- 444

dard RAG method unchanged. RA-QCG: This 445

method integrates our query correction approach 446

into standard RAG. The original query is cor- 447

rected using retrieved documents, and the cor- 448

rected query is then used for RAG. 449

5.1.4 Implementation Details 450

We set the generation parameter do_sample to 451

false to improve the reproducibility of the results. 452

Except for the experiment in § 5.5 on the impact of 453

the number of retrievals on robustness, in all RAG 454

tasks, three documents are retrieved for each query 455

given the computational costs. For the training of 456

contrastive learning models in § 4.2, we set the 457

learning rate to 2e-5, batch size to 64, and epoch 458

to 1. We set the maximum input length to 4096 459

for the generation models. Following (Jin et al., 460

2024), we test 1000 queries for each RAG dataset. 461

All experiments are conducted on Nvidia A6000 462

GPUs. More details can be found at the link pro- 463

vided in the Evaluation part of § 3. More details 464

in Appendix D. 465

5.2 Main Results 466

Table 2 shows the main experimental results of dif- 467

ferent methods in six QE-RAG datasets with two 468

different corrupted query proportions (20%, 40%) 469

when the retrieval model is BGE. From the table, 470

we can draw the following observations: 471

The Poor Robustness of Existing SOTA RAG 472

Methods. It can be observed that when the dataset 473

contains corrupted queries (with error ratios of 474

20% or 40%), the performance of existing SOTA 475

RAG methods in performing is suboptimal. As 476

the proportion of corrupted queries increases, the 477

model’s performance deteriorates progressively, 478

indicating its lack of robustness when handling 479

query entry errors. This phenomenon underscores 480

the critical importance of handling query entry er- 481

rors for the success of RAG tasks. 482

The Effectiveness of QER-RAG. Our pro- 483

posed QER-RAG method builds upon the standard 484

RAG with improvements. Specifically, QER-RAG 485

differs from standard RAG in that it uses a re- 486

triever trained on a dataset containing corrupted 487

queries. Experimental results show that QER- 488

RAG achieves significant improvements at both 489

error ratios (20% and 40%). This result demon- 490
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Table 2: The overall performance of the RAG task under six datasets and two different error proportions of query
scenarios when the retrieval model is BGE, and the generator models are Llama3 and Qwen2. The “overall”
column represents the average result of that row, which is the average result of the method across all datasets and
the two LLMs. The optimal “overall” results are presented in bold.

Dataset HotpotQA NQ PopQA TrivalQA WebQA 2wiki HotpotQA NQ PopQA TrivalQA WebQA 2wiki Overall

Method Llama3 Qwen2
40% Corrupted Queries

Standard RAG 29.92 32.30 33.22 52.27 28.65 16.94 35.02 34.16 35.90 52.85 31.16 30.26 34.39
CoT-RAG 29.58 32.24 33.04 52.31 28.94 16.97 36.49 36.07 37.54 54.07 32.42 32.00 35.14
Direct-Correct 22.26 30.29 32.33 36.30 24.92 16.15 34.78 33.92 35.95 52.94 31.33 30.07 31.77
HyDE 7.16 17.82 2.36 19.58 12.79 4.35 25.10 23.33 29.68 33.21 22.14 25.07 18.55
Iter-Retgen 29.29 32.24 32.99 52.02 28.99 27.19 9.72 14.99 8.13 24.96 14.19 5.66 23.36
REPLUG 26.39 29.93 28.08 49.40 29.12 17.63 31.14 26.49 27.80 47.65 25.50 27.24 30.53
LongLingua 28.02 29.24 30.66 50.38 29.84 20.55 25.75 21.85 19.96 42.92 24.06 24.87 29.01
SuRe 24.50 32.96 38.42 47.84 31.35 14.81 31.48 27.91 31.02 51.44 30.48 28.40 32.55
QER-RAG 30.10 35.12 35.17 55.01 29.22 17.53 33.59 36.56 38.36 51.45 33.64 25.19 35.08
RA-QCG 31.23 38.44 35.86 57.87 30.30 17.80 38.19 39.04 38.17 57.00 33.44 32.98 37.52

20% Corrupted Queries
Standard RAG 34.76 36.09 36.89 57.76 30.65 18.06 39.88 37.95 39.83 58.33 33.40 32.83 38.04
CoT-RAG 34.01 36.09 36.50 57.62 30.84 18.07 39.65 37.70 39.96 58.34 33.51 32.98 37.94
Direct-Correct 23.59 31.57 31.31 34.60 24.85 15.84 25.12 23.64 30.84 32.95 22.84 25.51 26.89
HyDE 7.28 18.76 2.20 20.32 11.47 4.27 9.85 15.79 7.66 26.61 15.87 5.80 12.16
Iter-Retgen 34.35 35.80 36.79 57.34 30.98 17.16 35.65 28.40 31.06 53.16 26.96 29.60 34.77
REPLUG 30.24 33.55 31.55 54.27 31.26 20.27 28.89 25.43 22.25 47.05 26.46 26.93 31.51
LongLingua 33.30 33.43 32.96 56.94 31.42 23.21 34.74 31.58 34.26 55.59 33.14 31.23 35.98
SuRe 27.91 36.97 42.17 53.17 34.81 16.19 38.23 40.31 43.78 56.29 35.54 27.78 37.76
QER-RAG 33.31 38.24 38.71 58.85 31.83 18.95 39.84 39.21 41.43 58.66 34.83 35.24 39.09
RA-QCG 35.08 39.64 39.02 60.55 32.26 19.62 41.65 40.71 41.84 59.77 35.74 36.03 40.16

Table 3: The compatibility with existing RAG methods
when the error rate is 20% and the LLM is Llama3.

Method HotpotQA NQ PopQA TrivalQA WebQA 2wiki
Iter-Retgen 34.35 35.80 36.79 57.34 30.98 17.16
+RA-QCG 35.45 38.94 38.94 60.84 32.71 19.27
REPLUG 30.24 33.55 31.55 54.27 31.26 20.27
+RA-QCG 31.19 36.25 34.53 58.78 32.86 22.01
LongLingua 33.30 33.43 32.96 56.94 31.42 23.21
+RA-QCG 32.76 35.56 34.22 58.15 32.92 23.50
SuRe 27.91 36.97 42.17 53.17 34.81 16.19
+RA-QCG 29.41 39.12 44.28 55.21 35.91 18.33

strates the effectiveness of the contrastive learn-491

ing approach we introduced in training the re-492

triever with a dataset containing corrupted queries.493

By incorporating a certain proportion (specifically,494

20%) of corrupted queries into the retriever’s train-495

ing data, we can significantly improve the re-496

triever’s robustness, allowing it to still retrieve rel-497

evant documents in the face of corrupted inputs498

and helping the LLM generate more accurate re-499

sponses.500

The Effectiveness of RA-QCG. Building on501

QER-RAG, we further propose the RA-QCG502

method, which introduces a query correction503

mechanism based on RAG. Experimental results504

show that RA-QCG achieves optimal overall per-505

formance at both error ratios (20% and 40%), and506

in the case of a 40% error ratio, RA-QCG’s per-507

formance even approaches the best baseline per-508

formance observed at the 20% error ratio. This509

result fully validates the effectiveness of our RAG-510

assisted query correction approach. 511

In Appendix E, we present a comparison of the 512

model’s performance on queries that are entirely 513

correct and also demonstrate the robustness of our 514

approach. Additionally, Appendix G qualitatively 515

demonstrates the robustness of our approach. 516

5.3 Compatibility with SOTA RAG 517

From the main experiments in § 5.2, we observe 518

that state-of-the-art RAG methods offer notable 519

improvements over standard RAG methods. This 520

inspired us to explore whether our proposed ap- 521

proach is compatible with these methods, poten- 522

tially further enhancing RAG system performance 523

and robustness. In this section, we investigate the 524

effectiveness of combining our method with four 525

advanced RAG methods—IterGen, LongLingua, 526

RePlug, and Sure—under the setting where the 527

LLM is LLama3 and the query error rate is 20%. 528

The results are shown in Table 3. The per- 529

formance gains are observed across all tested 530

RAG methods, demonstrating its generalizability 531

and flexibility in complementing diverse retrieval 532

and reasoning strategies. By incorporating our 533

query correction mechanism and robust retrieval 534

approach, these methods show enhanced robust- 535

ness when handling queries with entry errors. 536
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Figure 4: The robustness comparison of correct and
corrupted queries to the average F1 score when the
retrieval model is Standard RAG and RA-QCG, the
generative model is Llama3 and the error rate is 20%.
Above and below the X-axis represent the average to-
ken level F1 value of the correct and corrupted query,
respectively.

5.4 Robustness Comparison of Correct and537

Corrupted Query538

Table 2 in the main experiment shows the over-539

all RAG performance for all queries (correct and540

corrupted queries), but we are unaware of how541

the RAG model performs on correct versus cor-542

rupted queries individually. RA-QGC improves543

upon standard RAG. Therefore, in this section, we544

explore the average F1 scores of RA-QGC and545

standard RAG across six datasets with a 20% cor-546

rupted query ratio when the LLM is Llama3. We547

have a total of 1000 queries, of which 200 are cor-548

rupted and 800 are correct.549

The results are shown in Figure 4. It can be seen550

that the average performance on correct queries551

is similar across all six datasets, while for cor-552

rupted queries, RA-QGC demonstrates a signifi-553

cant advantage, with its average score outperform-554

ing standard RAG across all datasets. This exper-555

iment illustrates that RA-QGC can effectively im-556

prove the robustness of the RAG method in both557

in-domain and cross-domain datasets when faced558

with query entry errors, thus enhancing the overall559

performance of the RAG method.560

5.5 Robustness on the Number of Documents561

Retrieved562

In this section, we explore the impact of retrieving563

different numbers of documents on the robustness564

of RAG methods. We test standard RAG, Direct-565

Correct, and RA-QGC with Llama3 as the LLM,566

using retrievals of 1, 3, 5, and 15 documents to567

supplement the LLM’s knowledge. The results are568

shown in Figure 5. The following conclusions can569

be drawn: (a) RA-QGC consistently achieves im-570
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Figure 5: The results of Standard RAG (RAG), Direct-
Correct (DC) and RA-QCG retrieving varying numbers
of documents on six datasets when the LLM is Llama3
and the error rate is 20%. The x-axis represents the
number of retrieved documents, specifically 1, 3, 5, and
15, while the y-axis indicates the token-level F1 score.

provements. (b) Selecting an appropriate number 571

of documents for retrieval is crucial. (c) The ne- 572

cessity of query correction based on RAG. Details 573

in Appendix F. 574

6 Conclusion 575

In this paper, we present the first comprehen- 576

sive investigation into the robustness of retrieval- 577

augmented generation against query entry errors. 578

We build the QE-RAG by simulating three types of 579

query errors: "keyboard proximity, visual similar- 580

ity, and spelling" based on six RAG datasets with 581

varying error ratios. We find that corrupted queries 582

lead to a performance drop in the RAG methods, 583

but this can be alleviated through query correction 584

and retrieval model adjustments. Based on QE- 585

RAG, we test standard RAG, existing SOTA RAG 586

methods (including query reformulation, docu- 587

ment compression, branching, and iterative meth- 588

ods), as well as our proposed robust retrieval 589

method, which is trained using contrastive learn- 590

ing on corrupted queries and retrieval-augmented 591

query correction method. The results show that 592

existing RAG methods exhibit poor robustness to 593

query entry errors, while our two proposed meth- 594

ods effectively enhance the robustness of the RAG 595

methods. 596
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7 Limitations597

We believe that QE-RAG can promote the devel-598

opment of the LLM and RAG fields, yet it still599

has the following limitations: First, QE-RAG cur-600

rently includes only six datasets for QA and Multi-601

Hop QA. In the future, we plan to expand the602

benchmark to encompass a wider range of RAG-603

related datasets, such as fact-checking (Petroni604

et al., 2021; Thorne et al., 2018), multiple-605

choice (Hendrycks et al.; Lin et al., 2022) tasks,606

and others for the community to test. Second,607

our work primarily focuses on query entry errors.608

However, in RAG scenarios, retrieved documents609

may also be incorrect. How to jointly address er-610

rors in both queries and retrieved documents is a611

direction for future research.612
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A More related work840

In the sequential pipeline, query reformulation841

methods focus on improving the input query to842

optimize the retrieval process. These techniques843

operate under the assumption that user queries844

may not always be optimal for retrieval tasks:845

HyDE (Gao et al., 2023a): The LLM gener-846

ates a hypothetical document based on the query,847

which is then used as the query for retrieval.848

This approach assumes that the generated docu-849

ment aligns better with the retrieved documents.850

Query2doc (Wang et al., 2023) concatenates the851

LLM-generated pseudo-document with the orig-852

inal query to form a new query for retrieval.853

Rewrite-Retrieve-Read (Ma et al., 2023) proposes854

fine-tuning a query rewriter to optimize query re-855

formulation. BEQUE (Ye et al., 2023) employs856

a combination of fine-tuning and reinforcement857

learning to rewrite queries, particularly improving858

retrieval performance for long-tail queries. The859

above query reformulation methods do not con-860

sider that the query itself is corrupted, thus ig-861

noring that query reformulation may accumulate862

and amplify errors, which will seriously affect the863

final RAG performance. Another line of work864

involves processing the retrieved documents to865

make them more useful for the LLM: Selective-866

Content (Li et al., 2023b) compresses the provided867

context by removing redundant information us- 868

ing self-information metrics. LLMLingua (Jiang 869

et al., 2023a) uses smaller models to detect and 870

remove unnecessary tokens in the prompt, mak- 871

ing the remaining content more interpretable for 872

the LLM (even if humans may find it less compre- 873

hensible). LongLLMLingua (Jiang et al., 2023b) 874

extends LLMLingua by incorporating question- 875

aware techniques to extract key information from 876

retrieved documents, improving their alignment 877

with the LLM’s processing capabilities. 878

Branching pipelines process multiple paths in 879

parallel to enhance performance: REPLUG (Shi 880

et al., 2024) integrates document relevance into the 881

LLM’s response generation, improving the accu- 882

racy and contextual alignment of generated out- 883

puts. SuRe (Kim et al.) utilizes summarization 884

techniques to select the most suitable answer from 885

multiple candidate responses. Iterative pipelines 886

aim to refine the retrieval process dynamically 887

Iter-RetGen (Shao et al., 2023) enhances the re- 888

trieval query by iteratively incorporating LLM re- 889

sponses into the query, leveraging the generated 890

feedback to refine retrieval results. 891

B Preliminary Experiments 892

The following is a detailed introduction to the pre- 893

liminary experiments. 894

• QE-DE (Query with Errors - Document Re- 895

trieved via Errors): The corrupted query is used 896

to retrieve three documents (the same as below), 897

which are then fed to the LLM for generation. 898

This represents the baseline performance when 899

corrupted queries are directly used without any 900

correction. 901

• QE-DC (Query with Errors - Document Re- 902

trieved via Correct Query): The corrupted query 903

is paired with the documents retrieved using the 904

corresponding correct query. Both are provided 905

to the LLM for generation. This method eval- 906

uates whether providing documents retrieved 907

with the correct query can mitigate the negative 908

impact of query errors. 909

• QC-DE (Corrected Query - Document Retrieved 910

via Errors): The corrected query (correspond- 911

ing to the corrupted query) is used alongside the 912

documents retrieved using the corrupted query. 913

This tests the effectiveness of query correction 914

in improving LLM outputs despite inaccurate re- 915

trieval. 916
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• QC-DC (Corrected Query - Document Retrieved917

via Correct Query): The corrected query is918

paired with documents retrieved using the cor-919

responding correct query. This represents the920

optimal scenario, where both the query and re-921

trieval documents are corrected, and serves as an922

upper bound for the performance improvements923

achievable by correcting queries and retrieval re-924

sults.925

C Details of RAG methods926

We begin by evaluating the Standard RAG927

method, where the LLM generates responses di-928

rectly based on the retrieved documents. We929

extend this baseline by introducing CoT-RAG,930

which prompts the LLM to consider whether the931

original query contains errors while generating a932

response. For query reformulation baselines, we933

focus on cost-effective, training-free approaches934

for evaluation: Direct-Correct: The LLM cor-935

rects the input query directly, and the corrected936

query is used for retrieval. HyDE (Gao et al.,937

2023a): The LLM generates a pseudo-document938

answering the query, which is then used as the939

new query for retrieval. Iter-Retgen (Shao et al.,940

2023): This method iteratively refines retrieval by941

leveraging the LLM’s responses combined with942

the original query as new retrieval queries. To943

evaluate methods that refine retrieved documents,944

we consider LongLingua (Jiang et al., 2023b),945

which uses the LLM to modify the retrieved946

documents based on the query perplexity, mak-947

ing them more interpretable and better aligned948

with the LLM’s contextual understanding. For949

branching methods, we evaluate: REPLUG (Shi950

et al., 2024): Enhances response generation by951

integrating document relevance into the output.952

SuRe (Kim et al.): Summarizes multiple candi-953

date answers to determine the most appropriate re-954

sponse. All the above methods use R1 as the re-955

triever.956

D Implementation Details957

We employed the HuggingFace Transform-958

ers (Wolf et al., 2020) in PyTorch for the959

experiments. We use LoRA (Hu et al., 2021) for960

efficient fine-tuning of LLMs, using the Adam961

optimizer (Kingma and Ba, 2014), setting the962

initial learning rate to 5e-5, batch size to 16,963

and employing a cosine learning rate schedule.964

We train for 3 epochs with 1,000 pieces of data965

from the training dataset of HotpotQA with a 966

20% error rate. For Iter-Retgen, we iterate one 967

round. For LongLingua, we use LLM itself as the 968

compressor, with the compression rate set to 0.5 969

and the rest consistent with the original paper. For 970

REPLUG, we keep its original settings. For SuRe, 971

we use the prompt provided in the original paper 972

to summarize and select candidate answers. 973

E Robustness on Correct Queries 974

In this section, we investigate the robustness of our 975

proposed method when the query error rate is 0%. 976

Specifically, we aim to assess whether focusing on 977

handling corrupted queries negatively impacts per- 978

formance on correct queries. For this evaluation, 979

we use the same models and RAG methods as in 980

the main experiments, but the dataset consists en- 981

tirely of correct queries. 982

The results, presented in Table 4, demonstrate 983

that our method achieves the best overall per- 984

formance when all queries are correct. This 985

highlights the robustness of our approach, which 986

does not compromise its ability to handle correct 987

queries despite its emphasis on addressing cor- 988

rupted queries. Additionally, comparing Table 2 989

with Table 4 reveals that the performance of all 990

methods improves when the queries are error-free. 991

This observation further validates the findings 992

from our preliminary experiments in § 4.1: cor- 993

recting query entry errors such as keyboard prox- 994

imity errors, visual similarity errors, and spelling 995

mistakes can enhance the overall performance of 996

RAG systems. By improving the accuracy and rel- 997

evance of retrieved documents, such corrections 998

contribute to a better user experience. Overall, 999

these results confirm that our method effectively 1000

balances robustness across both corrupted and cor- 1001

rect queries, ensuring high performance in real- 1002

world scenarios where query quality varies. 1003

F More Details of Robustness on the 1004

Number of Documents Retrieved 1005

The details of the Figure 5 are: (a) Regardless of 1006

the number of documents retrieved, RA-QGC con- 1007

sistently achieves improvements. This indicates 1008

that RA-QGC is more robust and is not limited 1009

by the number of retrieved documents, meaning 1010

it works effectively across various resource con- 1011

figurations (retrieving different numbers of docu- 1012

ments). (b) The performance of RAG increases 1013

and then decreases as the number of retrieved doc- 1014
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Table 4: The overall performance of the RAG task under six datasets and 0% error proportions of query scenarios
when the retrieval model is BGE, and the generator models are Llama3 and Qwen2. The “overall” column repre-
sents the average result of that row, which is the average result of the method across all datasets and the two LLMs.
The optimal “overall” results are presented in bold.

Dataset HotpotQA NQ PopQA TrivalQA WebQA 2wiki HotpotQA NQ PopQA TrivalQA WebQA 2wiki Overall

Method Llama3 Qwen2
0% Corrupted Queries

Standard RAG 37.40 40.10 40.83 63.32 33.56 20.72 42.87 41.97 43.66 64.44 36.74 36.49 41.84
CoT-RAG 36.84 40.03 40.44 63.07 33.95 20.68 42.52 41.94 43.84 64.46 36.98 36.31 41.76
Direct-Correct 23.14 33.22 37.53 33.99 27.22 16.80 26.02 23.39 32.64 31.74 22.64 26.81 27.93
HyDE 8.06 19.92 2.27 22.08 12.12 4.93 9.99 16.51 7.43 28.11 17.12 5.48 12.83
Iter-Retgen 36.81 39.82 40.49 63.08 33.78 19.37 38.84 31.76 34.42 58.69 26.03 32.84 37.99
REPLUG 33.83 37.53 34.39 59.99 34.98 21.83 32.42 28.60 24.45 52.71 28.78 29.52 34.92
LongLingua 35.47 37.31 36.14 61.88 34.77 25.92 38.18 35.69 37.90 61.15 35.33 34.51 39.52
SuRe 30.20 41.54 46.12 59.12 39.17 19.10 42.09 44.43 48.70 62.74 39.92 31.60 42.06
QER-RAG 36.32 41.55 41.59 63.67 34.45 20.69 42.92 42.73 44.57 63.70 37.70 38.09 42.33
RA-QCG 36.22 41.50 41.59 63.70 34.51 20.68 42.90 42.73 44.57 63.71 37.77 38.09 42.33

when is season 2 of Jessica 
Jones being released?

Doc 1: Jessica Jones (season 2)“… The second 
season of ""Jessica Jones"" was released on 
March 8, 2018, to coincide with International…

(b) RA-QCG

Query for Retrieval Retrieved Documents

Doc 2: …, Netflix renewed ""Jessica Jones"" for 
a second season; filming … The second season 
was released on March 8, 2018, and …
…

when is season z of jeseica 
jones being re1eased?

when is season z of jeseica 
jones being re1eased?

Doc 1: … season as of … Star Jones is the first 
African American person to preside over a court 
show (""Jones and Jury"" 1994-95). With all of 
its seasons having aired consecutively, solely’}
…

(a) Standard RAG

Response

There is no 
season z of 
jeseica jones.

March 8, 
2018

Figure 6: The case study of Standard RAG and RA-
QCG.

uments changes, similar to the pattern observed in1015

correct query scenarios (Jin et al., 2024). This sug-1016

gests that selecting an appropriate number of doc-1017

uments for retrieval is crucial, balancing resources1018

and RAG performance while accounting for the1019

potential noise introduced by more documents. (c)1020

It can be seen that using LLM-based direct cor-1021

rection significantly worsens RAG performance,1022

and increasing the number of retrieved documents1023

does little to alleviate the over-correction issue in1024

LLMs. This highlights the necessity of query cor-1025

rection based on RAG, which leads to more accu-1026

rate corrections and, as a result, improved RAG1027

performance.1028

G Qualitative Analysis on Robustness1029

To investigate how our proposed method enhances1030

model robustness, we conduct a qualitative analy-1031

sis. Given that our method builds on the standard1032

RAG, we compare the performance of RA-QCG1033

with the standard RAG using a randomly selected1034

example from the NQ dataset, with Llama3 as the1035

LLM. This analysis examines three key compo-1036

nents: the query used for retrieval, the documents1037

retrieved, and the final responses generated by the1038

LLM. 1039

The results are illustrated in Figure 6. Query 1040

for Retrieval. In standard RAG, the corrupted 1041

query provided by the user is directly used for re- 1042

trieval. In contrast, RA-QCG identifies and cor- 1043

rects the errors in the query before the retrieval 1044

stage, effectively mitigating the impact of input in- 1045

accuracies. This step ensures that the subsequent 1046

retrieval process operates on a more accurate rep- 1047

resentation of the user’s intent. Retrieved Doc- 1048

uments. Due to the use of the corrupted query, 1049

the standard RAG retrieves documents that are 1050

misaligned with the user’s intended question. As 1051

a result, the retrieved documents lack the neces- 1052

sary information to answer the query correctly. 1053

Conversely, RA-QCG, by utilizing the corrected 1054

query, retrieves documents that are well-aligned 1055

with the user’s intent, containing the relevant in- 1056

formation needed to address the query effectively. 1057

Response. The shortcomings of the standard RAG 1058

are evident in the response generation stage. The 1059

misaligned documents retrieved by it lead to an 1060

incoherent or incorrect response that fails to an- 1061

swer the user’s question. On the other hand, RA- 1062

QCG benefits from the corrected query and the re- 1063

trieval of relevant documents, enabling the LLM 1064

to generate a response that is accurate and contex- 1065

tually appropriate. This analysis highlights how 1066

RA-QCG successfully corrects the query, retrieves 1067

documents that provide the necessary context and 1068

produces accurate answers. RA-QCG improves 1069

the robustness and reliability of the RAG system. 1070
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