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A Multimodal Deep Learning Framework for Locating Nomadic Pastoralists to
Strengthen Public Health Outreach
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Abstract
Nomadic pastoralists are systematically underrep-
resented in the planning of health services and fre-
quently missed by health campaigns due to their
mobility. Previous studies have developed novel
geospatial methods to address these challenges
but rely on manual techniques that are too time
and resource-intensive to scale on a national or re-
gional level. To address this gap, we developed a
computer vision-based approach to automatically
locate active nomadic pastoralist settlements from
satellite imagery. We curated labeled datasets of
satellite images capturing approximately 1,000
historically active settlements in the Omo Valley
of Ethiopia to train and evaluate deep learning
models, studying their robustness to low spatial
resolutions and limits in labeled training data. We
deployed our best model on a region spanning
5,400 square kilometers in the Omo Valley, result-
ing in the identification of historical settlements
with a 270-fold reduction in manual review.

1. Introduction
Nomadic pastoralists migrate over large areas of remote ter-
rain to support herds of livestock, which makes them suscep-
tible to systematic underrepresentation in demographic sur-
veys and census-reliant health campaigns (Randall, 2015).
Systematic underrepresentation of mobile populations can
lead to biased national statistics and underfunding of pas-
toral regions. Furthermore, underrepresentation of sub-
groups within pastoral populations, such as those that are
most remote or mobile, can lead to imprecise and ineffec-
tive policy decisions by health officials working in these
regions (Wild et al., 2019). The implications of such bias
are particularly significant considering the impact of climate
change, food insecurity, conflict, and infectious diseases
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among nomadic pastoralist populations in numerous regions
of Sub-Saharan Africa (Barnes et al., 2017). Previous stud-
ies have developed geospatial and remote sensing techniques
to address these difficulties, including an approach capa-
ble of generating representative sampling strategies among
nomadic populations using remote sensing data that was
piloted and validated among the Nyangatom of Ethiopia’s
South Omo Valley (Wild et al., 2019). However, the pilot of
this methodology relied on manual enumeration that limited
scalability. In this study, we addressed these challenges
by leveraging machine learning to automatically detect no-
madic settlements from remotely sensed imagery.

In the last decade, the availability of remote sensing data and
satellite imagery has increased substantially due to advance-
ments in satellite missions and technology. The influx of this
data has significantly expanded the scope and granularity
of earth observation, providing unique opportunities to per-
form comprehensive mapping of local landmarks in a variety
of spatial and temporal contexts (Li et al., 2018). In recent
years, deep learning-based computer vision models have
been applied widely to systematically address population-
level issues by using remotely sensed imagery. Recent ap-
proaches have leveraged the wide breadth of temporal, spec-
tral, and spatial data available to improve mapping efforts
by making them increasingly scalable, robust, and accurate
across diverse geographical settings (Li et al., 2018; 2022;
Leonita et al., 2018; Levin & Duke, 2012).

Here, we developed a novel computer vision model for the
automatic localization of active nomadic pastoralist settle-
ments from satellite imagery and evaluated the scalability
of this method to a level of implementation that is com-
patible with national health campaigns. We showed that
leveraging auxiliary settlement data such as roadway and
waterway proximity can substantially improve model pre-
cision. Furthermore, we demonstrated that these strategies
could augment performance in the face of limited training
data, which is commonly observed in downstream model
applications. To evaluate the robustness of our approach
to regions with diverse geographical characteristics, we de-
ployed our best model on pastoral regions in the South Omo
Valley, Ethiopia. This approach holds potential to improve
inclusion of underrepresented nomadic pastoralist popula-
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Table 1. Composition of datasets used for model training and eval-
uation. “Continental” refers to randomly sampled geographical
locations across continental Africa, excluding the country of inter-
est. “National” refers to randomly sampled geographical locations
in the country of interest. Satellite images containing active settle-
ments were designated with “Positive” labels and all other images
were designated with “Negative” labels.

TYPE LABEL TRAIN VALIDATION TEST

CONTINENTAL NEG 6906 1482 1469
NATIONAL NEG 1371 280 306
INACTIVE NEG 1432 320 310
ACTIVE POS 480 114 101

tions in health data and services.

2. Methods
2.1. Dataset

A comprehensive dataset of active settlements was derived
from the Omo Valley of Ethiopia by using geographic
bounds supplied by the ArcGIS hub and with feedback
from experts at the International Livestock Research Insti-
tute (ILRI). Although satellite images in the Omo Valley of
Ethiopia differ in characteristics such as soil composition,
terrain, occupied footprint, and settlement structure, com-
mon recognizable features can be analyzed to determine
whether an image contains an active settlement. For exam-
ple, active settlements are generally surrounded by darker
circular enclosures, more distinctly defined in appearance,
and feature the appearance of village huts and a lack of veg-
etation growth due to livestock grazing. In contrast, inactive
settlements are characterized by burn marks and vegetation
overgrowth.

2.2. Model Experiments

2.2.1. MODEL ARCHITECTURE

We trained deep convolutional neural networks (CNNs) to
perform a binary classification task as a proxy for our over-
all mapping task. Specifically, we trained models with the
objective of identifying whether a satellite image contains
an active nomadic pastoralist settlement. We tested promi-
nent CNN and Transformer-based architectures including
Vision Transformers (Khan et al., 2022), EfficientNet (Tan
& Le, 2019), DenseNet (Huang et al., 2017), ResNeXt (Xie
et al., 2017), ResNet (He et al., 2016), and HRNet (Wang
et al., 2020) with a focus on understanding the effect of
macroscopic model architecture choices on performance .
In addition, we experimented with a wide array of training
hyperparameters, including learning rate, optimizer choice,
and regularization while keeping our architecture fixed. We

observed that training an EfficientNet-B6 model with an
Adam optimizer, batch size of 16, and a learning rate of
0.001 yielded an optimal performance within 40 epochs.

2.2.2. EVALUATION METRICS

We used multiple metrics in the assessment of our model per-
formance but focused on precision at high recall thresholds
(i.e. 0.95) due to the prioritization of maximizing coverage
of settlements over the sheer correctness of our predictions.
We measured 1) the AUPRC to understand the progression
of precision at various recall thresholds and 2) precision
under high recall thresholds to assess the preciseness of
our predictions while maximizing settlement coverage. We
additionally recorded the top F1 score, which represents the
harmonic mean between precision and recall in our evalua-
tion.

2.2.3. MULTIMODAL ABLATION DESIGN

We leveraged publicly available infrastructure data on road-
ways and waterways to develop a multi-modal learning
approach to improve our model’s precision at high recall
thresholds, particularly when faced with limits in labeled
training data. We specifically leveraged the observation
that active settlements tend to be located closer to roadways
and waterways and furthermore, that the distributions of
infrastructure proximities between active settlements and
other points differ substantially. To capture these differ-
ences, we relied on a Gaussian discriminant analysis (GDA)
procedure (Hastie & Tibshirani, 1996) to construct auxiliary
features encoding information on distances to nearby in-
frastructure, such as roadways and waterways. Specifically,
we sampled subsets of our dataset separated by class to
compute infrastructure proximity metrics and subsequently
fitted multivariate Gaussian distributions to each class. We
then sampled probabilities from these distributions to form
our auxiliary features. We experimented with three different
fusion strategies. Aux(1) refers to adding auxiliary metric
features to class logits ŷ = fϕ(Eψ(x⃗)). Aux(2) refers to
appending auxiliary features to global-average-pooled, low-
dimensional feature map embeddings z⃗ = Eψ(x⃗). Aux(1,2)

refers to simultaneously employing both strategies (Fig. 4).

2.3. Model Deployment

We deployed our best model on satellite images covering
5,400 square kilometers in the South Omo Valley region of
Ethiopia at resolutions of 0.5 and 3.0 m / pixel. Predicted
probabilities were converted into binary predictions by us-
ing a threshold that obtained 0.95 recall of known locations.
Positively predicted, adjacent images were merged by com-
puting the centroid of their spatial union. A full manual
review of predicted active settlements was performed to
assess the overall precision of our model deployment.
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Table 2. Model performances across different spatial resolution
settings that capture the resolution bounds of prevalent satellite
products. Resolution is measured by meters per pixel.

RESOLUTION F1 AUPRC PRECISION@95

10.0 M/PIXEL 0.828 0.901 0.554
8.0 M/PIXEL 0.845 0.912 0.627
5.0 M/PIXEL 0.900 0.952 0.734
3.0 M/PIXEL 0.939 0.972 0.840
2.0 M/PIXEL 0.960 0.976 0.972
1.0 M/PIXEL 0.943 0.973 0.938
0.5 M/PIXEL 0.957 0.984 0.968

3. Results
3.1. Spatial Resolution Ablation

We observed that models trained with images at higher
spatial resolutions outperformed those trained on images
of lower resolutions (Table 2). Specifically, models trained
at lower spatial resolution settings, including 5.0 m/pixel
and 8.0 m/pixel achieved a precision at 95% recall of 0.734
and 0.627, respectively. Models trained with 3.0 m/pixel
resolution imagery performed comparably to those of 0.5
m/pixel resolution imagery, displaying moderate drops in
AUPRC and precision at 95% recall of approximately 0.01
and 0.13, respectively.

3.2. Auxiliary Data Fusion Ablation

We performed experiments to investigate the potential for
publicly available auxiliary data to improve model precision
at high recall thresholds. We observed that top-performing
fusion approaches that separately leveraged waterway and
roadway proximity data led to improvements in the preci-
sion at 95% recall by >0.13 and >0.12, respectively, relative
to a non-fusion baseline. A GDA-based fusion approach
that jointly incorporated waterway and roadway features
outperformed our non-fusion baseline in precision at 95%
recall by >0.03 (Table 3). In evaluating the direct contri-
butions of GDA, we found that modeling distance features
with our GDA approach led to gains in precision at 95%
recall compared to fusing distance features directly.

3.3. Improving Model Robustness in Low Data Regimes

To address challenges posed by limited training data, we
tested models that leveraged a GDA-based fusion approach
with different classes of auxiliary data, including near-
est waterway distance, nearest roadway distance, and a
combination of both distance features. We observed that
models trained with top-performing fusion approaches out-
performed a baseline approach. Specifically, our top-
performing waterway fusion model outperformed our base-
line model across all low data regimes, with improvements

Table 3. Model performance comparisons across GDA-based fu-
sion approaches leveraging different classes of auxiliary data.

DATA STRATEGY F1 AUPRC PRECISION@95

BASELINE 0.925 0.964 0.774
WATER Aux(1) 0.921 0.968 0.799

Aux(2) 0.935 0.968 0.913
Aux(1,2) 0.937 0.965 0.780

ROAD Aux(1) 0.932 0.964 0.900
Aux(2) 0.932 0.965 0.810
Aux(1,2) 0.931 0.967 0.881

BOTH Aux(1) 0.926 0.960 0.809
Aux(2) 0.934 0.968 0.771
Aux(1,2) 0.938 0.966 0.751

of >0.10, >0.28, >0.40, and >0.29 in precision at 95% re-
call relative to training sets containing 25, 50, 75, and 100 ac-
tive settlement examples, respectively. Our top-performing
roadway fusion model outperformed our baseline model by
>0.25 in precision at 95% recall when trained on 100 active
settlement examples and performed comparably in all other
settings. Similarly, the top-performing roadway-waterway
fusion model performed comparably to our baseline model
in all low data regimes (Table 1).

Figure 1. Graphical comparisons of model performance among
top GDA-based fusion models in low data regimes relative to a
non-fusion baseline model. Model performance in this graph is
measured by precision at 95% recall. The GDA-based waterway
fusion model outperformed its fusion counterpart models and its
non-fusion baseline.

3.4. Model Deployment

We deployed our best model on the full Omo Valley target re-
gion spanning 5,400 square kilometers at image resolutions
of 0.5 m/pixel and 3.0 m/pixel (Fig. 3). We subsequently
performed a full manual review of active settlement pre-
dictions. Under image resolutions of 0.5 m/pixel and 3.0
m/pixel, our model achieved a precision at 95% recall of
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Figure 2. Graphical comparisons of model training progressions
under exposure to different numbers of active settlement examples
(no. PE) during training. Overall, training stability improves with
higher numbers of active settlements in the training dataset.

0.71 and 0.61, respectively. Furthermore, we obtained a
270-fold search space reduction, reducing our number of
active settlement candidates from 300,000 to ≈1,100 for
manual review.

Figure 3. Maps of the Omo Valley deployment region in Ethiopia.
Active settlements (detections in red) tend to be located near road-
ways and waterways compared to a random sample of points in
the area of interest (orange).

4. Discussion
Our results demonstrate the potential for computer vision
approaches to perform efficient and accurate localization
of active nomadic pastoralist settlements from satellite im-
agery. Initial model experiments provided critical insights
into the effect of model design choices and satellite image
parameters on performance. We leveraged these insights to
develop methods that use publicly available settlement aux-
iliary information in model training, achieving considerable
performance improvements in low data regimes. We then
deployed our best model over an extensive area of interest
in the Omo Valley of Ethiopia, validating the scalability
of our approach and its practical use in health and census
campaigns. Collectively, our results demonstrate promising
evidence of the potential for our methodology’s applica-

tion in public health evaluations and health campaigns to
increase inclusion and equity for underrepresented nomadic
pastoralist populations.

Our experiments leveraging publicly available infrastruc-
ture proximity data reveal that auxiliary information about
active settlements can be successfully leveraged to improve
model performance, boosting precision at 95% recall by
as much as >0.13. The observation that improvements are
observed after leveraging waterway and roadway proximity
data, separately, indicate that the observed effect is poten-
tially generalizable to other types of auxiliary information
for which the behavior of associated distributions is substan-
tially different among classes of interest. There was no clear
dominance of a single fusion strategy in our experiments,
as some fusion strategies achieved higher performances
relative to our model baseline under different classes of
auxiliary data. The effectiveness of our GDA-based fusion
approaches may offer important insights for other machine
learning mapping studies that seek to leverage differences
in associated auxiliary information to improve the precision
of their vision-based predictions.

The successful deployment of our models over a 5,400
square-kilometer region in Omo Valley, Ethiopia demon-
strated the real-world effectiveness of our approach in per-
forming a timely, automatic mapping of active settlements.
Modest differences in performance between models trained
on images obtained at 1.0 and 3.0 m / pixel resolution sug-
gest that large-scale deployments can be successfully carried
out with satellite images obtained at lower spatial resolu-
tions of 3.0 m / pixel. Overall, we found that deploying our
model resulted in a substantial 270-fold reduction of the
search space for active settlements, reducing our number
of active settlement candidates from 300,000 to 1,100 for
manual review. This search space reduction gives credence
to the expanded flexibility and feasibility that our approach
offers for analyzing large areas of interest that would be
impractical to analyze manually. Crucially, our approach
addresses scalability concerns noted in several related stud-
ies (Weibel et al., 2008; Jean-Richard et al., 2015; Himelein
et al., 2014) and with further development, shows promise
in being implemented at a level consistent with national
health campaigns.

5. Conclusion
In this study, we developed a computer vision-based ap-
proach for the localization of active nomadic pastoralist
settlements from satellite imagery. We highlighted key con-
siderations that are important to the integration and develop-
ment of these models in health campaigns and demographic
surveillance.
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6. Impact Statement
Our approach provides a strong framework for the integra-
tion of computational remote sensing in large-scale, demo-
graphic health campaigns for nomadic pastoralists.
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M. O., Bonfoh, B., Tanner, M., and Zinsstag, J. Towards
integrated and adapted health services for nomadic pas-
toralists and their animals: A north–south partnership.
Handbook of transdisciplinary research, pp. 277–291,
2008.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A Multimodal Deep Learning Framework for Locating Nomadic Pastoralists to Strengthen Public Health Outreach

Sirajea, I. and Bekeleb, A. Assessment of food insecurity
and coping mechanisms among pastoral households of
afar national regional state: The case of chifra district,
ethiopia. Ethiopian Journal of Agricultural Sciences, 23
(1-2):145–156, 2013.

Stavi, I., Roque de Pinho, J., Paschalidou, A. K., Adamo,
S. B., Galvin, K., de Sherbinin, A., Even, T., Heaviside,
C., and van der Geest, K. Food security among dryland
pastoralists and agropastoralists: The climate, land-use
change, and population dynamics nexus. The Anthro-
pocene Review, 9(3):299–323, 2022.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Tugjamba, N., Walkerden, G., and Miller, F. Adapting
nomadic pastoralism to climate change. Climatic Change,
176(4):28, 2023.

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao,
Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. Deep
high-resolution representation learning for visual recogni-
tion. IEEE transactions on pattern analysis and machine
intelligence, 43(10):3349–3364, 2020.

Wario, H. T., Roba, H. G., and Kaufmann, B. Shaping the
herders’“mental maps”: participatory mapping with pas-
toralists’ to understand their grazing area differentiation
and characterization. Environmental Management, 56:
721–737, 2015.

Weibel, D., Schelling, E., Bonfoh, B., Utzinger, J., Hatten-
dorf, J., Abdoulaye, M., Madjiade, T., Zinsstag, J., et al.
Demographic and health surveillance of mobile pastoral-
ists in chad: integration of biometric fingerprint identifica-
tion into a geographical information system. Geospatial
health, 3(1):113–124, 2008.

Wild, H., Glowacki, L., Maples, S., Mejı́a-Guevara, I., Krys-
tosik, A., Bonds, M. H., Hiruy, A., LaBeaud, A. D., and
Barry, M. Making pastoralists count: geospatial methods
for the health surveillance of nomadic populations. The
American journal of tropical medicine and hygiene, 101
(3):661, 2019.

Wild, H., Mendonsa, E., Trautwein, M., Edwards, J., Jowell,
A., GebreGiorgis Kidanu, A., Tschopp, R., and Barry,
M. Health interventions among mobile pastoralists: a
systematic review to guide health service design. Tropi-
cal Medicine & International Health, 25(11):1332–1352,
2020.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.

In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492–1500, 2017.

Zinsstag, J., Schelling, E., Waltner-Toews, D., and Tanner,
M. From “one medicine” to “one health” and systemic ap-
proaches to health and well-being. Preventive veterinary
medicine, 101(3-4):148–156, 2011.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

A Multimodal Deep Learning Framework for Locating Nomadic Pastoralists to Strengthen Public Health Outreach

A. Spatial Resolution Ablation Study
A.1. Methodology

To characterize the feasibility of training our models with different satellite imagery products, we analyzed the impact of
spatial resolution on model performance by mirroring the resolution bounds of widely accessible satellite products. We
initially labeled Google satellite images occupying a 128m x 128m footprint taken at a resolution of 0.5 m/pixel, as these
parameters provided sufficient granularity to distinguish important settlement features. To evaluate different resolution
settings, we started with 256 x 256 pixel images taken at a spatial resolution of 0.5 m / pixel to maintain label consistency. We
then scaled the images down such that the resulting dimensions rendered the images at resolutions of 1.0, 2.0, 3.0, 5.0, 8.0,
and 10.0 m / pixel. These specifications matched the resolution extents of prevalent satellite products including WorldView,
GeoEye-1, QuickBird, Rapideye-5, Planet Scope, Sentinel-1, and Sentinel-2. Finally, we upsampled the modified images
back to 256 x 256 pixels, thus creating a standalone change to spatial resolution while maintaining consistency in all other
image parameters.

A.2. Discussion

Our experiments investigating the impact of spatial resolution on model training showed that overall, model performance
gradually degrades at lower spatial resolution settings, which is consistent with previous studies. Specifically, moderate
drops in precision at 95% recall are observed at spatial resolution settings of 3.0 m/pixel and lower. Despite these moderate
drops in performance, we observed that AUPRC is reasonably maintained above 0.9 over all spatial resolution settings
and that even at the lowest tested spatial resolution setting, a precision at 95% recall above 0.5 is achieved. The results
of these experiments provide important insight into the spatial resolutions of satellite images that are needed to achieve
adequate levels of precision at high levels of recall on our task. Moreover, the nature of performance degradation over lower
spatial resolutions provides valuable information about the level of spatial granularity that is needed to distinguish important
settlement features and hence, make accurate predictions. Public health researchers can leverage this information to make
informed decisions on the spatial scope of their studies, adjusting for available resources and personnel.

Figure 4. Visual summary of GDA-based fusion model architectures. Auxiliary distance features in our study were defined either as the
distance to the nearest waterway or roadway. All displayed satellite images were sourced from the ESRI World Imagery basemap.

B. Data Regime Robustness Ablation Study
We studied the performance of our models relative to the reduction of active settlement examples in our training dataset
to understand and mitigate challenges associated with low data regimes. We initially observed that the performance of
our baseline model with no auxiliary data supplements saw a substantial decrease across all metrics when the number of
active settlement examples in the training dataset was lowered below a count of 200, with an AUPRC and precision at 95%
recall of 0.567 and 0.218, respectively. Precision at 95% recall decreased notably when the number of active settlement
examples in the training dataset was lowered below a count of 350 (Fig 5). These trends were upheld in observing the
training progressions of our models under different data regimes. We observed that model training became increasingly
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unstable with a decrease in the number of active settlement examples included during training.

Figure 5. Graphical comparisons of model performance as a function of the numbers of active settlement examples provided during
training. Model performance degrades substantially when fewer than 200 examples of active settlements are included in the training
dataset.

In follow-up experiments where we tested the ability for GDA-based fusion approaches to alleviate challenges posed
by low data regimes, we observed that augmenting our baseline model with a waterway distance-based fusion approach
led to substantial improvements to precision at 95% recall over all low data settings. These observations offer important
insights for the development of computer vision models for active settlement localization, as it is conventionally difficult to
obtain active settlement labels for model development. Common reasons for this trend include the low density of nomadic
pastoralist settlements, sparse nature of settlement distributions, and limitations on personnel, compute power, and image
acquisition. Furthermore, the success of these approaches in low data regimes suggests that strong priors on image classes
can be effectively leveraged to close performance gaps presented by data limitations. This observation may be useful to
adjacent machine learning mapping studies with constraints in accessible data. Future work should incorporate the domain
expertise of public health officials to investigate other auxiliary priors that can be leveraged and quantify the generalizability
limitations of models trained in these conditions.

C. Limitations and Future Work
In future work, integration of our approach with community engagement and participatory mapping efforts to provide
primers on pastoralist mobility patterns should be explored. Since the early 1990s, diverse methods for participatory
mapping have become commonplace in development practice (Chambers, 2006), specifically for pastoralist communities
(Bauer, 2009; Robinson et al., 2020; Wario et al., 2015). Participatory mapping has the potential to offer more detailed
information on pastoralist mobility patterns compared to analysis of remote sensing data alone. For example, it could assist
in locating individuals, such as hired herders and family members, who are migrating with herds away from household
locations. Combining our approach with participatory mapping methods and traditional ecological knowledge will require
caution and keen awareness of local power dynamics, however. For example, in surveying herding destinations that the
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state or other powerful actors disapprove of, it will be important to carefully manage sensitive information that may lead to
conflict (Bauer, 2009).

There were several limitations to this study. First, active settlement labels were designated based on inspecting high-
resolution satellite imagery. Although physical aerial markers of settlement activity exist, we were not able to obtain visual
evidence on the ground to validate our judgements. In future work, we aim to collaborate with field experts and local
mapping authorities to obtain ground truth and rectify real-world gaps in our labeling criteria. Second, while our model
substantially reduces the volume of active settlement locations that must be screened, it still necessitates a manual review of
location candidates. This requirement may pose a limitation to public health efforts due to a lack of resources and personnel.
Third, due to the relatively small spatial footprints of pastoralist settlements, we relied on high-resolution satellite imagery
in our study, which is expensive and inaccessible on a global scale. Although we demonstrated that our approach can be
feasibly applied with satellite images at spatial resolutions as low as 10.0 m/pixel, we hope to perform further studies to
quantify model performance constraints at more coarse resolution settings, such as those offered by Landsat-9 at 30 m/pixel
(Masek et al., 2020) and Sentinel-2 at 20 m/pixel (Drusch et al., 2012).

D. Global Health Implications
Our study has several important implications for existing global public health efforts focused on nomadic pastoralists
and other mobile populations, particularly in remote regions. By addressing key bottlenecks in demographic surveys and
census methodologies that have previously limited representative sampling of this population, our approach provides a
more systematic and scalable way to capture data on mobile groups including nomadic pastoralists. Traditional survey
techniques often rely heavily on random sampling techniques, which are inherently limited in coverage, or on manual
enumeration methods that are both time and resource-intensive (Himelein et al., 2014; Schelling et al., 2008). Additionally,
existing strategies require expert knowledge to be effectively deployed, further restricting their application in remote and
under-resourced settings (Tugjamba et al., 2023). By leveraging deep learning for settlement identification, our method may
significantly alleviate these constraints. This would not only enable demographic surveys to reach previously inaccessible
locations at scale but also allow for more frequent and timely data collection. We emphasize that such approaches should be
used in a context-appropriate manner and implemented in partnership with local collaborators to ensure sensitivity to local
dynamics, particularly in conflict-affected settings.

Due to the cross-cutting nature of this methodological challenge across diverse global public health studies, our approach
could support both research and service delivery among nomadic pastoralists across several key domains. In the context
of climate change, our method could streamline existing efforts to assess how pastoralists are being affected by shifting
environmental conditions and adapting to these challenges (Tugjamba et al., 2023). Similarly, given the ability to conduct
full censuses of settlement locations at scale, our methodology holds potential to aid in evaluating food security dynamics,
which frequently intersect both with climate stressors and conflict dynamics (Sirajea & Bekeleb, 2013; ?; Stavi et al.,
2022). From a One Health perspective, this framework could augment the study of infectious disease transmission within
and between pastoralist communities, particularly in relation to zoonotic and enteric parasitic diseases, which remain a
significant yet understudied risk factor. This methodology also holds potential for the design of public health campaigns as
well as strategies to assess and the uptake of critical health services, ensuring that vaccinations, maternal health interventions,
and disease surveillance programs more effectively reach mobile populations (Gammino et al., 2020; Wild et al., 2020).
Collectively, these improvements could lead to better-informed health policy decisions for nomadic pastoralists and support
integrated health frameworks such as One Health (Zinsstag et al., 2011; Greter et al., 2014).
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