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ABSTRACT

Time series data are essential in domains such as finance, healthcare, energy management, climate
prediction, and AIOps, yet the scarcity of large-scale, high-quality training datasets often restricts
the performance of machine learning solutions. Synthetic data generation, particularly through
diffusion models, has become a promising strategy to address these limitations. Diffusion-based
models have showcased impressive results, but face challenges in capturing diverse frequency com-
ponents and retaining high-frequency details during noise accumulation. To address these issues,
we propose a multi-stage diffusion framework named Frequency Decomposed and Enhanced Dif-
fusion (FDEDiff), which explicitly decomposes time series into low- and high-frequency signals
and emphasizes preserving fine-grained temporal patterns. Our method first trains an unconditional
generator on coarse, periodic low-frequency signals, then incorporates an enhancement mechanism
to synthesize precise high-frequency details. This two-stage approach systematically handles com-
plex temporal variations, allowing FDEDiffto produce more accurate, realistic, and diverse time
series. We conduct extensive experiments on publicly available real-world datasets, demonstrating
that FDEDiffnot only outperforms state-of-the-art generative methods in various evolution metrics
but also exhibits superior adaptability across different time series domains. An ablation study con-
firms the effectiveness of frequency decomposition and high-frequency enhancement, underscoring
the advantage of exploiting multi-resolution insights. Our findings expand the application scope
of diffusion models for time series generation tasks, offering a flexible solution for data augmen-
tation under privacy and sensitivity constraints. We have made our code anonymously available at
https://github.com/FDEDiffCode/FDEDiff.

1 INTRODUCTION

Time series data is critical in many applications across various domains such as finance, healthcare, energy manage-
ment, climate prediction, and AIOps (Yan et al. (2024); Zheng et al. (2024)). With the rapid advancement of artificial
intelligence, machine learning methods have become increasingly prevalent for analyzing and interpreting time series
(Wang et al. (2024); Zhang et al. (2024)). However, developing robust machine learning solutions becomes challeng-
ing when large-scale, high-quality training datasets are unavailable due to privacy constraints or data sensitivity. To
address this limitation, synthetic time series generation emerges as a viable approach and draws significant attention
in recent research (Ang et al. (2023)). Most works are built on top of classical generative frameworks such as VAE
and GAN.

Besides VAE and GAN, the diffusion model has recently emerged as a powerful and increasingly popular class of
generative methods. The diffusion model has demonstrated remarkable performance across a wide range of domains,
including image (Dhariwal & Nichol (2021)) and video (Harvey et al. (2022)) generation. Motivated by their success,
recent studies have explored the application of the diffusion model to time series generation tasks. Diffusion-based
approaches can outperform other generative models, offering higher generation quality. For example, Diffusion-TS
(Yuan & Qiao (2024)) replaces the standard predictor in the diffusion model with a multi-layer architecture consisting
of seasonal and trend component predictors; it generates the final time series by summing the components from each
layer. Diff-MTS (Ren et al. (2024)) introduces a conditional diffusion framework to synthesize time series based on
the health state sequence of each device. MR-Diff (Shen et al. (2024)) employs a multi-resolution diffusion strategy,
progressively generating target segments from coarse to fine scale to capture smooth trends and detailed features.

While existing diffusion-based models incorporate architectures such as Transformers, convolutional networks, and
RNNs to better capture temporal patterns, two key challenges still hinder their ability to generate high-quality time se-
ries. First, it remains difficult for diffusion models to unconditionally generate time series that exhibit diverse seasonal
and trend components, along with irregular residual variations. Second, due to the progressive noise accumulation in
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the diffusion process, high-frequency components in time series often vanish early during forward diffusion (Galib
et al. (2024)). This results in overly smoothed outputs that lack local detail and compromise the diversity of the gener-
ated data. Addressing these limitations is essential for advancing the fidelity and utility of diffusion-based time series
generation.

To solve the challenges mentioned above, in this paper, we propose a two-stage diffusion model framework named
Frequency Decomposed and Enhanced Diffusion model (FDEDiff). FDEDiffexplicitly decomposes time series into
low-frequency and high-frequency parts and employs a high-frequency enhancement mechanism to preserve fine-
grained temporal details. These two components are modeled separately through a two-stage structure. Acknowl-
edging the tendency of the diffusion process to generate overly smooth outputs, FDEDifffirst trains an unconditional
generator on coarse, periodic low-frequency signals. In the second stage, high-frequency-enhanced sequences are syn-
thesized with guidance from the previously generated low-frequency components. This coarse-to-fine strategy enables
the model to generate more accurate and realistic time series.

Our contributions are summarized as follows: (i) We propose FDEDiff, the first framework to integrate frequency-
domain decomposition with a multi-stage diffusion model pipeline for time series generation. (ii) By sequentially
generating data with different numbers of frequency components, FDEDiffcan synthesize time series with diverse
seasonal and trend characteristics. (iii) Extensive experiments on public real-world datasets demonstrate that FDED-
iffoutperforms state-of-the-art time series generative models. Furthermore, our ablation study shows the effectiveness
of the frequency decomposition and enhancement strategy.

2 RELATED WORK

2.1 TIME-SERIES GENERATION

Time series data are ubiquitous across various domains in the real world. However, many time series tasks face
the challenge of data scarcity due to issues such as data privacy and high acquisition costs(Alaa et al., 2021). To
address these limitations and enable robust machine learning solutions when large-scale, high-quality training datasets
are unavailable, synthetic time series generation has emerged as a vital research area Ang et al. (2023).To capture
the highly complex features and dependencies inherent in input time series, existing works commonly employ self-
supervised or unsupervised deep learning models for data generation.

Among these, Generative Adversarial Networks (GANs) have been widely applied to both image and time-series
generation tasks Wu et al. (2018); Brock et al. (2018); Esteban et al. (2017). Early contributions, such as that by
Morgren et al. Mogren (2016), combined Recurrent Neural Networks (RNNs) with GANs to synthesize sequential
data like music. Specifically for time series, TimeGAN Yoon et al. (2019) utilizes GANs to effectively capture the
unique temporal correlations present in time-series data through an adversarial training framework.

Meanwhile, Variational Autoencoders (VAEs) also constitute a significant class of generative models extensively used
in various generative tasks Li et al. (2023); Desai et al. (2021); Lee et al. (2023). For instance, TimeVAE Desai
et al. (2021) achieved notable generation results by designing an interpretable time-series structure, demonstrating the
efficacy of VAE-based approaches in modeling complex temporal dynamics. These classical generative frameworks
have laid the foundation for synthetic time series data creation.

2.2 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) have gained significant traction following their success in image
generation, prompting their adaptation to time-series tasks (Lin et al., 2024; Ren et al., 2024; Shen et al., 2024). The
diffusion mechanism excels at modeling intricate dependencies, making it well-suited for generating high-fidelity time
series.

For example, DiffSTG (Wen et al., 2023) applies diffusion models to spatio-temporal forecasting, capturing both
spatial and temporal dynamics. Similarly, CSDI (Tashiro et al., 2021) leverages diffusion for time-series imputation,
enhancing the robustness of missing value predictions. In the realm of time-series generation, DiffusionTS (Yuan
& Qiao, 2024) proposes a non-autoregressive Transformer-based diffusion model, incorporating a Fourier-based loss
function to refine the reconstruction of temporal patterns during the denoising process. Diff-MTS Ren et al. (2024)
proposed a conditional diffusion framework tailored based on specific health state sequences of devices, showcasing
the model’s ability to generate data conditioned on external factors. Furthermore, (Galib et al., 2024) tackled the issue
of high-frequency component dissipation in time-series generation by introducing a frequency-enhanced diffusion
strategy to preserve fine-grained details. These advancements highlight the versatility of diffusion models in addressing
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diverse challenges in time-series synthesis, offering superior generation quality compared to traditional generative
frameworks.

3 PRELIMINARY

3.1 PROBLEM STATEMENT

Let X = [x0,x1, . . . ,xW−1] ∈ RW×M denote a multivariate time series instance with length W and dimension M ,
where xj represents the M -dimensional data points at time step j. Given a training dataset containing n instances,
D = {Xi}ni=1, our target is to train a diffusion-based generator that maps Gaussian noise vectors to the instances
similar to those in D.

3.2 DIFFUSION FRAMEWORK

Denoising Diffusion Probabilistic Models. The classical diffusion model, known as the Denoising Diffusion Prob-
abilistic Model (DDPM, Ho et al. (2020)), is a latent-variable model consisting of forward diffusion and backward
denoising processes. In the forward process, DDPM progressively transforms an input sample x0 into a Gaussian
noise vector xT through T steps of sampling:

q(xt|xt−1) = N (xt;
√

1− βt x
t−1, βt I), t = 1, 2, · · · , T. (1)

βt is a predefined variance schedule. The forward process equation can be rewritten as q(xt|x0) = N (xt;
√
ᾱt x

0, (1−
ᾱt) I), where ᾱt =

∏t
s=1(1− βs). We can therefore simply obtain xt by applying the re-parameterization trick:

xt =
√
ᾱt x

0 +
√
1− ᾱt ϵ, ϵ ∼ N (0, I). (2)

The backward process starts from a Gaussian noise vector xT and generates the data sample x0 by T denoising steps.
xt−1 is sampled from the following normal distribution:

pθ(x
t−1|xt) = N (xt−1;µθ(x

t, t), σ2
t I), t = 1, 2, · · · , T. (3)

Here, the neural network µθ(x
t, t) is the mean of the normal distribution, and the variance is fixed as σ2

t I, where
σ2
t = 1−ᾱt−1

1−ᾱt
βt. Time series generation models usually use a x0 predictor (Benny & Wolf (2022); Shen et al. (2024);

Yuan & Qiao (2024)) to compute the mean value. Specifically, a neural network xθ(x
t, t) is trained to estimate the

input sample x0, and then the mean of the normal distribution for sampling is obtained:

µθ(x
t, t) =

√
1− βt (1− ᾱt−1)

1− ᾱt
xt +

βt
√
ᾱt−1

1− ᾱt
xθ(x

t, t). (4)

The parameter θ is learned by minimizing the following loss:

L = Et,x0,ϵ

[
∥x0 − xθ(x

t, t)||2
]
. (5)

Conditional Diffusion Models. Conditional diffusion models generate new time series based on existing observa-
tions as conditions, e.g., imputation (Tashiro et al. (2021)), forecasting (Shen et al. (2024)), and indicator-conditional
generation (Ren et al. (2024)). In conditional diffusion models, the backward process where the condition c serves as
the posterior is as given:

pθ(x
t−1|xt, c) = N (xt−1;µθ(x

t, t|c), σ2
t I). (6)

A straightforward implementation of the conditional predictor involves fusing the embedding of c into the predictor of
the unconditional diffusion model, which jointly encodes the predicted value.

4 FDEDIFF: FREQUENCY DECOMPOSED AND ENHANCED DIFFUSION MODEL

In this section, we introduce FDEDiff, a novel data generation framework that integrates diffusion models with
frequency-domain processing for time series. To enhance the generation quality of diffusion models for time series,
FDEDiffdecomposes each sample X into the low-frequency part XL and the augmented high-frequency amplified
part Xa, and these two components are modeled using two cascaded diffusion models, as illustrated in Figure 1. The
low-frequency model (upper part of Figure 1) is an unconditional diffusion model that captures the smooth and sea-
sonal characteristics of the time series sample, while the high-frequency model (lower part of Figure 1) is a conditional
diffusion model focusing on fine-grained details.
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Figure 1: Proposed FDEDiffpipeline for generating time series

4.1 FREQUENCY DOMAIN DECOMPOSITION AND ENHANCEMENT

For the given time series sample X ∈ RW×M , where W is the length and M is the feature dimension. We first apply
the Fourier transform to convert the time-domain signal into the frequency domain for each dimension m:

Fm = FFT(Xm) (7)

where Fm ∈ CW is the frequency-domain representation of the m-th feature. It reveals the amplitude and phase of
periodic patterns at M frequencies.

We next define the low-frequency part as the first k frequency components of the spectrum, where k = ⌊αW ⌋ (the
low-frequency ratio α is a hyperparameter). The remaining W − k components constitute the high-frequency part. By
setting all high-frequency components to 0, we can obtain the low-frequency representation FL and the low-frequenct
part of the sample XL can be computed by the inverse Fourier transform:

FL,m =
[
F̂d[0 : k], 0

]
(8)

XL,m = IFFT(FL,m) (9)

The high-frequency component XH can be obtained using a similar procedure as for XL. Inspired by FIDE (Galib
et al. (2024)), FDEDiffamplifies the high-frequency part in a time series segment to preserve more fine-grained infor-
mation during the diffusion process. Specifically, XH is scaled by a coefficient λ (λ is a hyperparameter greater than
1) and then added to XL to obtain the high-frequency-amplified signal Xa:

Xa = λXH +XL (10)

FDEDifffirst trains a diffusion model on the low-frequency dataset DL = {Xi
L}ni=1 (§ 4.2). Then, guided by the

low-frequency signals, FDEDifftrains a conditional diffusion model on the high-frequency-amplified dataset Da =
{Xi

a}ni=1 to generate the final time series segments (§ 4.3, § 4.4).
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4.2 LOW-FREQUENCY TIME SERIES YL GENERATION

As shown in the upper part of Figure 1, this module aims to generate the low-frequency component of the time series
data. First, for the extracted low-frequency time series XL, we draw inspiration from the diffusion process described in
Section 3.2. Specifically, we progressively add Gaussian noise ϵ ∼ N (0, I) to XL, obtaining the noisy low-frequency
sequence XL,t after t steps of the forward diffusion process.

To effectively model the dependencies between different variables in the multivariate time series and the dynamic
evolution within the time series, we design a Transformer-based network structure as the x0 predictor. This network
takes XL,t and the current diffusion step t as input. Initially, we employ a Residual Block (ResBlock) to fuse and
encode XL,t and the time step t, resulting in an embedding representation that simultaneously contains sequence
information and temporal information.

Subsequently, the encoded embedding information is fed into a stacked structure containing N Transformer encoder
layers. Each encoder layer includes a Self-Attention module(Vaswani et al. (2017)) to capture the interactions between
different time steps and different variables within the low-frequency component. Following the Self-Attention module,
we apply the Add & Norm operation for residual connection and layer normalization to capture time information.
Inspired by AdaLayer(von Platen et al. (2022)), we utilize AdaLayerNorm for more refined feature normalization and
adjustment. Finally, after a feed-forward network, we obtain the output of each encoder layer.

After processing through N encoder layers, we obtain the final output YL, which is used as the predicted original low-
frequency component XL during the low-frequency training phase. It is important to emphasize that we independently
train the low-frequency component generation module during the model training phase. Taking the real low-frequency
component XL as input, the training objective is to make the model’s prediction YL as close as possible to XL, thereby
learning the distribution of the low-frequency time series. Formally, this process can be expressed as a conditional
denoising diffusion probabilistic model (DDPM) applied to the low-frequency component:

YL = DDPMLF(XL) (11)

where DDPMLF denotes the low-frequency diffusion model responsible for capturing the underlying distribution and
temporal dependencies of the low-frequency signal.

4.3 HIGH-FREQUENCY-AMPLIFIED TIME SERIES YH GENERATION

The lower part of Figure 1 depicts the generation process of high-frequency components in temporal data. This high-
frequency generation module is designed to capture fine-grained details and rapid fluctuations within the time series.
Analogous to the low-frequency generation module, it adopts a diffusion model-based generative framework. How-
ever, to effectively integrate the macro-level patterns encoded in the low-frequency components during the generation
of high-frequency details, we incorporate a cross-attention mechanism.

Specifically, the diffusion model for the high-frequency component also utilizes a Transformer architecture as the x0

predictor. Distinct from the low-frequency module, each Transformer decoder layer in the high-frequency module
embeds a cross-attention mechanism. During training, this module takes the ground-truth low-frequency component
XL, and during inference, it conditions on the generated low-frequency component YL, serving as Key and Value
in the cross-attention operation. The intermediate representations within the high-frequency diffusion process act as
the Query, thus enabling explicit conditioning on low-frequency information. This cross-attention integration allows
the model to synthesize high-frequency details coherent with the overall trends represented by the low-frequency
components, ensuring the generated time series maintains consistency across macro and micro temporal scales.

During training, the ground truth of low-frequency component XL is used to guide the generation of high-frequency
components, enabling the model to learn the distribution of high-frequency details conditioned on varying low-
frequency trends. During inference, the generated low-frequency component XLF from the low-frequency module
serves as the condition to achieve end-to-end temporal data generation.

Ya =

{
DDPMHF(Xa,XL), Train

DDPMHF(Xa,YL), Infer
(12)

Here, DDPMHF represents the high-frequency denoising diffusion model, and XLF is the low-frequency component
that serves as a condition to guide the generation of the high-frequency component. During this process, the generated
high-frequency component incorporates both the original high-frequency information and the influence of the low-
frequency component, ensuring overall consistency in the generated sequence. At each step, the model updates the
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high-frequency component based on the current values of both the high-frequency and low-frequency components,
ensuring the accurate generation of fine details.

4.4 FINAL TIME SERIES Y GENERATION

After model training, FDEDiffperforms data generation during inference in two sequential stages. First, the low-
frequency diffusion model generates the low-frequency component YL. Since the ground-truth low-frequency compo-
nent XL is unavailable, the cross-attention module within the high-frequency model uses the generated low-frequency
data YL from the low-frequency model as a conditioning signal to generate the final enhanced high-frequency com-
ponent Ya.

It is important to note that the high-frequency model produces an enhanced high-frequency component Ya. The final
reconstructed time series Y is recovered using the parameter λ, formulated as follows:

Y =
Ya −YL

λ
+YL (13)

4.5 LIMITATIONS

FDEDiffhas several notable limitations: First, it can only generate fixed-length segments matching the training data
and does not support arbitrary-length generation. Second, due to the lack of explicit modeling for dependencies among
multiple variables, FDEDiffperforms poorly on high-dimensional generation tasks. Finally, FDEDiffdoes not support
conditional generation, making it difficult to control the type or characteristics of the generated time series.

5 EXPERIMENTAL EVALUATION

In this section, to evaluate the quality of the time series data generated from FDEDiff, we conduct comprehensive
experiments on four public real-world datasets. First, we compare the generation quality of FDEDiffwith the state-
of-the-art time series generation models in three categories (§ 5.2). Second, we study how the core designs and key
parameters in FDEDiffcontribute to its overall performance (§ 5.3).

5.1 EXPERIMENT SETUP

Datasets. We evaluate all time series generation methods on four real-world datasets collected from diverse domains
(Yuan & Qiao (2024); Zhou et al. (2021); Wu et al. (2021)): ETTh1 contains 2 years of hourly readings from electricity
transformers, including 6 external load features and oil temperature, for a total of 7 dimensions. Stocks2 consists of
daily Google stock-price records from 2004 to 2019, providing 6 feature dimensions per record. fMRI3 is a standard
causal-discovery benchmark; we select a simulated blood-oxygen-level-dependent scenario from the original dataset
that has 50 dimensions. Electricity4 records the hourly power consumption of 321 customers (dimensions) for 3 years.

We apply PCA to the Electricity dataset and extract the 30 most informative components as a reduced feature set that
keeps model training within a reasonable computational budget.

Baselines. In the experiments, we select three representative state-of-the-art baselines in different categories. All of
them are unconditional time series generation models: Diffusion-TS (Yuan & Qiao (2024)) employs a Transformer as
the x0 predictor in the diffusion process. It improves the decoder to produce seasonal and trend components for the
generated time series data. TimeVAE (Desai et al. (2021)) implements multiple decoders in VAE to transform a latent
variable into seasonal, trend, and residual components of the time series sequence. TimeGAN (Yoon et al. (2019))
jointly trains an AE and a GAN. The AE learns a mapping from the original time series data to a temporal latent space,
while the GAN is trained to generate latent variable samples.

Performance Metrics. To evaluate the quality of the generated data, we use the following three metrics to measure
the discrepancy between the synthetic and the original dataset: Context-Fréchet Inception Distance (C-FID, Jeha et al.
(2022)) score computes the statistical difference between embeddings of time series that fit into the local context. Auto
Correlation Difference (ACD, Lai et al. (2018)) computes autocorrelation matrices for the generated and the original

1https://github.com/zhouhaoyi/ETDataset/blob/main/ETT-small/ETTh1.csv
2https://finance.yahoo.com/quote/GOOG/history/?p=GOOG
3https://www.fmrib.ox.ac.uk/datasets/netsim/
4https://github.com/thuml/Autoformer
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time series over multiple lags, and then aggregates their differences to quantify per-dimension periodic similarity.
Cross Correlation Difference (CCD, Yuan & Qiao (2024)) measures how well the generated time series maintain
inter-dimensional dependencies by computing the difference between the cross correlation matrices of two datasets.

Configurations. We train all models on a single NVIDIA A800 GPU (80GB). We adopt the parameter settings
recommended in public repositories for all baselines for each dataset. Because both FDEDiffand Diffusion-TS employ
the Transformer structure as the x0 predictor in the diffusion process, we align their model sizes for fairness (Table 1).
In FDEDiff, the number of low-frequency components is set to α = 2% of the window length, and the high-frequency
enhancement factor is fixed to λ = 2. We employ Adam as the optimizer in FDEDiff. The learning rate is scheduled
using a combination of linear warmup and the ReduceLROnPlateau strategy.

Table 1: Model Parameters in FDEDiffand Diffusion-TS.

Model Hidden Size Attention Heads Layers Diffusion Steps

FDEDiff 128 8 4 500
Diffusion-TS 96 4 4 + 3 1000

5.2 UNCONDITIONAL TIME SERIES GENERATION EVALUATION

This part evaluates the data generation quality of FDEDiffagainst the baseline methods. Specifically, each dataset is
first segmented by sliding windows of different lengths (24, 64, 96, 192, and 336). We then report the performance
(C-FID, ACD, and CCD) for each method under these varied window lengths. Because computing C-FID involves
training a representation-learning model (Jeha et al. (2022)), we calculate it five times for each experimental setting
and report the average score. The results with 95% confidence intervals as the error bars are shown in the § A.1
(Table 3).

table 2 presents the evaluation results of all methods across different datasets and window lengths. Compared to the
other two metrics (ACD and CCD), C-FID better reflects the overall quality of generated data; thus, we primarily
use C-FID as the primary evaluation criterion. FDEDiffgenerates higher-quality data than baseline methods across
almost all experiment settings. This superior performance can be attributed to two key factors: First, the Transformer-
based predictor in FDEDiffeffectively models long sequences using self-attention and cross-attention mechanisms.
This is confirmed by the results showing that Diffusion-TS, which also employs a Transformer predictor, generally
outperforms VAE-based and GAN-based methods. Second, the frequency-domain decomposition and enhancement
mechanism in FDEDiffeffectively guides generation by leveraging low-frequency information while preserving more
high-frequency details. § 5.3 further investigates the contribution of this mechanism to overall model performance.
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(a) 192-length Stocks
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(b) 24-length Electricity
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Figure 2: Samples in the Stocks and the Electricity Datasets.

When the window length is 24, the performance of FDEDiffis only comparable to, or even worse than, the baselines,
as seen on the Stocks and the Electricity datasets. Figure 2b shows that such a short window exhibits no apparent
periodicity and provides few frequency-domain components. As a result, the low-frequency part cannot represent the
smooth structure of the window, and the frequency-domain-based optimizations in FDEDiffare ineffective in these
cases.
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Table 2: Results on Multiple Datasets and Window Lengths (Lower metric indicates better performance).

Dataset Length FDEDiff Diffusion-TS TimeVAEa TimeGAN

C-FID ACD CCD C-FID ACD CCD C-FID ACD CCD C-FID ACD CCD

ETTh

24 0.085 0.015 0.030 0.138 0.015 0.050 1.697 0.132 0.119 0.799 0.033 0.290
64 0.131 0.010 0.032 0.248 0.014 0.058 1.124 0.122 0.049 5.068 0.138 0.732
96 0.173 0.008 0.021 0.885 0.019 0.076 1.401 0.118 0.053 8.971 0.120 0.495
192 0.295 0.008 0.026 2.440 0.196 0.111 2.509 0.116 0.071 10.70 0.713 0.907
336 0.352 0.008 0.040 3.444 0.019 0.107 4.945 0.113 0.049 13.30 0.135 1.413

Stocksb

24 0.378 0.029 0.082 0.313 0.012 0.072 0.341 0.034 0.119 0.314 0.012 0.071
64 0.213 0.006 0.017 0.555 0.006 0.021 0.663 0.034 0.089 0.566 0.013 0.040
96 0.222 0.002 0.010 0.723 0.005 0.025 1.056 0.034 0.082 0.731 0.008 0.016
192 0.285 0.003 0.007 0.899 0.004 0.024 1.282 0.033 0.065 5.057 0.026 0.150
336 0.630 0.006 0.011 0.850 0.006 0.019 0.885 0.033 0.063 5.186 0.036 0.394

fMRI

24 0.472 0.022 5.122 0.496 0.036 2.613 5.851 0.152 23.38 0.547 0.117 31.72
64 0.674 0.074 5.300 0.796 0.043 3.722 5.671 0.068 14.04 1.650 0.152 52.81
96 1.027 0.075 4.936 1.098 0.043 3.675 5.327 0.065 11.54 2.213 0.214 49.58
192 2.919 0.077 5.262 3.649 0.044 3.670 5.120 0.088 7.761 8.363 0.379 73.81
336 6.648 0.148 3.230 9.670 0.039 3.860 / / / 21.42 0.773 116.6

Electricity

24 0.046 0.030 0.505 0.035 0.015 0.640 0.176 0.031 1.745 5.103 0.112 5.936
64 0.170 0.029 0.636 0.188 0.019 1.079 0.212 0.018 1.117 7.625 0.422 11.31
96 0.129 0.030 0.627 0.268 0.029 1.021 0.318 0.020 0.984 18.20 0.241 34.36
192 0.064 0.022 0.461 0.426 0.051 1.241 0.972 0.027 1.359 15.92 0.120 11.22
336 0.065 0.020 0.449 1.914 0.152 2.694 / / / 36.91 0.171 15.51

a TimeVAE fails to train on the 336-length fMRI and Electricity datasets because of the prohibitive model size required.
b For the Stocks dataset, FDEDiffselects only the 0-frequency component as the low-frequency part.

Figure 2a and Figure 2c show longer windows from the Stocks and the Electricity datasets, respectively. The Stocks
data show no periodicity but have significant trends. To handle this, FDEDiffselects only the 0-frequency compo-
nent as the low-frequency part for a window, i.e., the mean of the time series. The low-frequency model inherently
generates the mean values, guiding the high-frequency model to learn the trend information within the Stocks win-
dows. Experiments confirm that such parameter settings effectively handle non-periodic yet highly trending time
series, demonstrating the versatility of the FDEDiffframework. Diffusion-TS and TimeVAE also produce high-quality
data on the Stocks dataset because they explicitly model polynomial trend components in time series. The 192-length
Electricity window in Figure 2c has strong periodicity, enabling FDEDifffirst to generate periodic low-frequency data.
Subsequently, under the guidance of the low-frequency part and the enhancement of high-frequency components,
FDEDiffgenerates significantly higher-quality data than baseline methods. On the fMRI dataset, all methods struggle
to achieve ideal performance (low metric values), primarily due to the high dimensionality that complicates capturing
multi-dimensional temporal dependencies.

TimeGAN uses RNNs to encode time series windows and their corresponding temporal latent sequences. However,
RNNs suffer from gradient vanishing and long hidden-state propagation paths, making capturing long-term dependen-
cies in longer sequences difficult. Thus, the generation quality of TimeGAN decreases substantially as the window
length increases.

5.3 ABLATION STUDY

We conduct ablation studies on the ETTh dataset (with window lengths of 96 and 192) to evaluate how the frequency-
domain decomposition and enhancement mechanism contributes to the data-generation quality of FDEDiff. There are
two critical parameters within this mechanism. The first is the low-frequency ratio, α, indicating that the first ⌊αW ⌋
frequency components are selected as the low-frequency part for a time series of length W . The second parameter is
the high-frequency enhancement factor, λ, specifying the degree to which high-frequency components are amplified.

When α = 1, all frequency components are treated as low-frequency, meaning the high-frequency model is disabled and
the whole frequency-domain mechanism is not applied. λ = 1 implies no amplification of high-frequency components,
indicating that FDEDiffonly applies frequency-domain decomposition without enhancement. When evaluating the
impact of varying α, we fix λ = 2; likewise, when examining the effect of different λ, we fix α = 0.02.
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Figure 3: Results of ablation study.

Figure 3 reports C-FID scores for FDEDiffunder different parameter settings. Results show that under both window
lengths, the model applying frequency-domain decomposition and enhancement with properly selected parameters,
e.g., α = 0.02 and λ = 2, outperforms instances where the mechanism is disabled (α = 1) or partially effective (λ =
1). Notably, excessively small or large values for these parameters hinder optimal performance. For example, when λ
reaches 4, there is a significant increase in C-FID scores, indicating that overly amplifying high-frequency components
can suppress learning of low-frequency characteristics, thus deteriorating generation quality.

6 CONCLUSION

Time series data serves as a fundamental resource across diverse domains. However, in many real-world scenarios,
the acquisition of adequate, large-scale datasets is obstructed by privacy requirements or inherent data scarcity. This
paper presents a novel framework that leverages diffusion-based techniques for generating high-fidelity synthetic time
series data. Our core innovation lies in explicitly decomposing each sequence into low-frequency and high-frequency
domains. By first modeling slow-varying, coarse trends, the model ensures that fundamental seasonal or periodic be-
haviors are accurately reproduced. We then inject a customized enhancement stage for the high-frequency components,
allowing the model to preserve local, fine-grained variations that might otherwise be smoothed away in diffusion-based
processes. This two-stage approach counters the typical pitfalls of conventional VAE-based or GAN-based time series
generators, namely the challenge of retaining crucial temporal details over extended horizons.

Our extensive experiments on four public datasets corroborate the efficacy and robustness of our approach. Not only
does our approach achieve lower C-FID, ACD, and CCD values compared to baseline methods, but it also maintains
competitive performance across varying segment lengths and dimensionalities. These qualities are vital in applications
featuring complex temporal dependencies, including long-range correlations and abrupt trend shifts. Furthermore,
ablation studies validate that both the frequency-domain decomposition and the high-frequency enhancement factor
jointly drive performance gains. Striking the right balance in parameter configurations is essential; while the dual-stage
design is critical, excessively large or small parameter values introduce their own set of trade-offs.

By offering a more comprehensive solution to time series generation and emphasizing both local and global structures,
our approach expands the capabilities of diffusion-based models. We anticipate that this method will be particularly
beneficial for scenarios requiring realistic, privacy-conscious data, creating new opportunities for data-driven research
and development across multiple sectors.
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Table 3: C-FID on Multiple Datasets and Window Lengths.

Dataset Length C-FID ↓
FDEDiff Diffusion-TS TimeVAE TimeGAN

ETTh

24 0.085±.002 0.138±.006 1.697±.162 0.799±.066
64 0.131±.008 0.248±.013 1.124±.101 5.068±.636
96 0.173±.013 0.885±.082 1.401±.123 8.971±.859
192 0.295±.013 2.440±.157 2.509±.168 10.70±.710
336 0.352±.028 3.444±.246 4.945±.311 13.30±1.09

Stocks

24 0.378±.126 0.313±.028 0.341±.069 0.314±.051
64 0.213±.047 0.555±.077 0.663±.135 0.566±.117
96 0.222±.033 0.723±.094 1.056±.203 0.731±.089
192 0.285±.096 0.899±.157 1.282±.273 5.057±.568
336 0.630±.104 0.850±.101 0.885±.112 5.186±.588

fMRI

24 0.472±.050 0.496±.006 5.851±.412 0.547±.029
64 0.674±.026 0.796±.006 5.671±.109 1.650±.813
96 1.027±.028 1.098±.048 5.327±.455 2.213±.454
192 2.919±.133 3.649±.188 5.120±.713 8.363±1.53
336 6.648±.452 9.670±.356 / 21.42±2.41

Electricity

24 0.046±.008 0.035±.007 0.176±.022 5.103±.211
64 0.170±.009 0.188±.047 0.212±.016 7.625±.313
96 0.129±.011 0.268±.046 0.318±.017 18.20±1.13
192 0.064±.012 0.426±.048 0.972±.170 15.92±1.36
336 0.065±.018 1.914±.559 / 36.91±2.81
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