
BREAD: Branched Rollouts from Expert Anchors
Bridge SFT & RL for Reasoning

Xuechen Zhang * 1 Zijian Huang * 1 Yingcong Li 1 Chenshun Ni 1 Jiasi Chen 1 Samet Oymak 1

Abstract

Small language models (SLMs) struggle to learn
complex reasoning behaviors, especially when
high-quality traces are scarce or difficult to learn
from. A typical approach for training such models
combines a supervised fine-tuning (SFT) stage,
often to distill reasoning capabilities from a larger
model, followed by a reinforcement learning (RL)
stage such as Group Relative Policy Optimization
(GRPO). In this paper, we investigate the funda-
mental limitations of this SFT + RL paradigm
and propose methods to overcome them. Using
a toy student-expert model over Markov chains,
we demonstrate that the SFT + RL strategy can
fail completely when (1) the expert’s traces are
too difficult for the small model to express, or (2)
the small model’s initialization achieves exponen-
tially sparse rewards as task complexity grows.
To address these, we introduce BREAD, a GRPO
variant that bridges SFT and RL via partial ex-
pert guidance and branch rollouts. When self-
generated traces fail, BREAD adaptively inserts
short expert prefixes/hints, allowing the small
model to complete the rest of the reasoning path,
and ensuring that each update includes at least one
successful trace. This mechanism both densifies
the reward signal and induces a natural learning
curriculum. BREAD requires fewer than 40% of
ground-truth traces, consistently outperforming
standard GRPO while speeding up the training
by about 3×. Importantly, we find that BREAD
helps the model solve problems that are otherwise
unsolvable by the SFT + RL strategy, highlighting
how branch rollouts and expert guidance can aid
SLM reasoning.

*Equal contribution 1EECS department, University of
Michigan, Ann Arbor, USA. Correspondence to: Firstname1
Lastname1 <first1.last1@xxx.edu>, Firstname2 Lastname2
<first2.last2@www.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Over the past few years, we have witnessed a significant
push toward enhancing language model reasoning, which
has led to highly capable frontier models such as OpenAI
o1 (Jaech et al., 2024), Gemini 2.5 (Kavukcuoglu, 2025),
and DeepSeek R1 (Guo et al., 2025). These models can
generate longer chain-of-thought (CoT) traces and utilize
more test-time compute to tackle challenging tasks (Muen-
nighoff et al., 2025). Despite these innovations, reasoning
with small language models (SLM) remains a challenge.
For instance, DeepSeek-R1 (Guo et al., 2025) has 671B
parameters whereas the distilled model sizes range from
1.5B to 70B, and their performance substantially degrades
at the 1.5B model (see Table 5 in (Guo et al., 2025)).

This work studies optimization strategies to enhance SLMs,
with emphasis on reasoning tasks. Two popular optimiza-
tion strategies for training LLMs are supervised fine-tuning
(SFT) and reinforcement learning (such as GRPO or proxi-
mal policy optimization). Often, an SFT phase is employed,
followed by an RL phase. While this two-stage procedure
has found success, for SLMs, long context reasoning prob-
lems can pose unique challenges due to the misalignment be-
tween the expert and student models and potentially sparse
rewards. For example, consider a scenario in which each
token generated by an expert/teacher model requires the
smaller student model to produce K intermediate tokens
to express it. In other words, the expert thinks and outputs
K steps ahead, from the student’s point of view. In prac-
tice, this situation can arise when the expert model is a ×K
deeper version of the student. Naturally, such expert traces
might be too challenging for the small model to learn from1.
On the other hand, success of the RL phase often relies on a
good initialization during the SFT phase. In Appendix B.1,
we provide a mathematical setting capturing this intuition
and demonstrate that SFT+RL can fail for small models (see
Figure 5), especially on difficult problems.

To address the difficulties of small models in learning from
complex traces during fine-tuning, we propose our algo-
rithm, Branch Rollouts and Expert Anchors for Densified

1In practice, SFT+RL can work well for much of the dataset
but might fail on a subset of a difficult problems. See Section 3.1
for empirical evidence and evaluations.

1

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Supervised

Fine-tuning

SLM

Too difficult to learn

Reinforcement

Learning

Weak base model,
Sparse reward

BREAD

SLM

+Expert trace,
Dense reward

SLM

Fine-tuned
SLM

Figure 1. High-level overview of approaches. In existing training
methods like supervised fine-tuning (left), high-quality reasoning
traces produced by LLMs are often too complex for SLMs to imi-
tate, so they deliver little benefit and can even hurt SLM reasoning
capability. Since the subsequent RL phase starts from this weak
starting point, the two-stage SFT+RL procedure often fails. In
reinforcement learning (center), when the initial policy generates
incorrect traces, the rewards are sparse, causing slow or ineffective
learning. We propose BREAD (right), which uses part of an expert
trace as an anchor, then generates additional rollouts that branch
from its intermediate episodes. These branched trajectories pro-
vide denser, higher-quality feedback, helping SLMs learn robust
reasoning strategies. Each dot represents a single episode, and the
yellow trajectory is the expert trace.

rewards, depicted in Figure 1. BREAD gracefully inte-
grates the SFT and RL phases by anchoring the optimiza-
tion process with the expert traces, while allowing the small
base model to acquire progressively more flexibility as it
becomes a stronger problem solver. Assuming an expert
trace is available (e.g. by querying a large expert model),
BREAD updates the model with a correct trace; however,
its traces are progressively more self-generated.

Contributions: Our specific contributions are as follows:
• Methodology: We introduce BREAD as a GRPO variant

integrating SFT and RL phases, while inducing a learn-
ing curriculum along the reasoning trace. To motivate
BREAD, we introduce a toy student-expert model using
Markov chains. This task demonstrates how the expert’s
trace can be uninformative for the student model and how
the subsequent RL phase can fail due to sparse rewards.
In contrast, BREAD solves this task efficiently.

• Empirical impact: Our experimental results show that
BREAD matches or surpasses SFT + vanilla GRPO while
using ≈ 20% of the correct trace tokens. By reducing
the number of rollouts and the total optimization steps,
BREAD lowers overall training compute by ≈ 75% rela-
tive to vanilla GRPO. Additionally, we construct a slice of
difficult problems and demonstrate that BREAD, when
trained over this set, achieves substantially higher accu-
racy compared to SFT+GRPO. Finally, we provide an
empirical study of how branching rollouts from expert
hints densify the reward signal.

The rest of the paper is organized as follows: Appendix A
discusses the related work on language model reasoning and

Question

❌

❌

❌

Question
✅

❌

Hint[0:cur]Question

Step 3 Policy update

If all ✅ , shorten hint

If all ❌

If all ❌, lengthen hint

Else, terminate the search

Hint[0:cur-]Question

Hint[0:cur+]Question

Step 2
Episode anchor search

(EAS)

Else

❌

Step 1
Regular rollout

Figure 2. Workflow of BREAD. (1) Regular rollout: Given a
question Q, sample a group of rollouts. If the sampled rollouts
contain correct reasoning trace, use this group of rollouts to do the
policy updates. Otherwise, go to step (2) Episode anchor search:
Starting with the whole expert trace (provided by the ground truth
or from the correct responses generated by LLMs) as the search
space for potential suitable hints, construct a hint using the first
half of the expert trace, append it to the question q, and sample a
group of rollouts. If all the rollouts are correct, shorten the hint to
contain fewer episodes and repeat the process; if all rollouts are
wrong, lengthen the hint; otherwise, use the current rollouts to do
the policy update.

traditional RL methods. Section 2 explains our algorithm
BREAD, which also contains the observations inspiring
our algorithm design. Section 3 presents and discusses our
main experiment results to demonstrate the effectiveness of
BREAD. Appendix G concludes the paper and discusses the
limitation and future directions to improve in this domain.

2. Proposed Method: BREAD
In this work, we propose the Branch Rollouts and Expert
Anchors for Densified RL (BREAD) algorithm. We will
first describe the algorithm at a high level, followed by
a mathematical toy model example (Appendix B.1), and
the key observations (Appendix B.2, Appendix B.3) that
support its design.

In BREAD, for each question q paired with the answer a,
the workflow of BREAD is shown in Figure 2 and proceeds
as follows:

1. Regular rollout: Sample a group of G rollouts {oi}Gi=1.
2. Episode anchor search: If the success rate of the initial

group is too low (e.g. lower than a threshold), do a binary
search to find a short hint ρ that contains the “Expert
Anchor” in the expert solution. “Expert Anchor” means
the success rate of a new sampled output group {o′i}Gi=1,
resulting from the question appended with the hint from
the expert trace (q, ρ), is within a pre-defined range.

3. Policy updates: Optimize the policy via the following
objective:

JBREAD(θ) = E(q,ρ,a)∼D,{oi}Gi=1∼πold(·|(q,ρ)) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(min(ri,t(θ)Âi,t, clip(ri,t(θ), 1− ε, 1 + ε)

Âi,t)− βDKL(πθ||πref))
]
,

(1)

2

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

where

ri,t(θ) =
πθ(oi,t|q, ρ, oi<t)

πold(oi,t|q, ρ, oi<t)
, Âi,t =

ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
(2)

The details of the algorithm can be found in Algorithm 1.
Next, we will discuss the key observations that motivate the
design of BREAD.

3. Experiments
Baseline algorithms. We evaluate the effectiveness of our
method BREAD on mathematical tasks, which can be eas-
ily adapted to other reasoning tasks such as coding, com-
monsense reasoning, etc. We compare with the following
baselines:

• GRPO: Standard GRPO.
• SFT: Standard supervised fine-tuning on the full training set. We

denote SFT on various data splits as SFT(X), e.g. SFT(full)
for the whole dataset, SFT(difficult) for the hardest sub-
set, SFT(random) for a size-matched random subset, and
SFT(selected) for the EAS-chosen subset. The precise
discussion is detailed with the experiments results.

• SFT + GRPO: This means SFT is run followed by GRPO. In
other words, GRPO continues from the final checkpoint of the
same SFT run. We denote GRPO fine-tuning initialized from an
SFT model trained on data split X as SFT(X) + GRPO.

• GRPO w/ Expert Trace: During GRPO training, the en-
tire expert trace is injected as an additional rollout for all queries.
This is a strong baseline as it contains the expert. Details in
Appendix E.

Training settings. We adopt the verl framework (Sheng
et al., 2024) for training. We utilize the Adam optimizer
(Kingma, 2014) with a constant learning rate of 1× 10−6.
For rollout, the prompt batch size is 256 and we sample
8 responses for each prompt. For training, the mini-batch
size is 64. To find the appropriate branching point during
the Episode Anchor Search (EAS) step of BREAD (Sec-
tion 2), we first split the expert trace into sentences (on
easier datasets like MATH (Hendrycks et al., 2021), where
the expert traces are generally short) or into paragraphs (on
harder datasets like NuminaMth-CoT (LI et al., 2024) and
OpenR1-Math-220K (Face, 2025)). Then, we aggregate the
split partitions into K = 10 episodes evenly, and proceed
with binary search. See details in Appendix D.3.

3.1. Main Results

BREAD outperforms all baselines in terms of test accu-
racy. Figure 3 plots the training curves of all methods on
the NuminaMath-CoT benchmark, starting from the Qwen-
2.5-3B-Instruct base model. In Figure 3a, we visualize the
test accuracy against training steps for BREAD and the
baseline methods. BREAD outperforms all the baselines.
Let us discuss each baseline in turn. BREAD improves final
accuracy by more than 15% over vanilla GRPO. SFT can
offer a stronger starting point for RL, which we can see by

comparing the SFT and SFT+GRPO curves, but BREAD
is still better. (Note that training SFT for more iterations
does not further improve performance, see Appendix D.1.)
SFT(Difficult) represents SFT trained on the hardest
questions from NuminaMath-CoT, obtained by sorting sam-
ples by solution length. Intuitively, problems that require
longer solutions are typically more complex and involve
more reasoning steps. Comparing the SFT(Difficult)
and SFT(Difficult)+GRPO curves, we can see that
SFT with too complex expert traces can even hurt the per-
formance of SLM, which further hurts the later GRPO stage.
Finally, from the GRPO w/ Expert trace curve, we
see that adding the expert trace as an extra rollout during
GRPO mitigates sparse rewards and shows noticeable per-
formance improvement, but it is still worse than BREAD.
We suspect this is because there is a distribution gap between
small and large model’s reasoning traces, which makes SLM
imitation of large models hard, while BREAD can reduce
the gap during learning by letting the SLM figure out the
reasoning steps by itself more. See further discussion be-
low on “hard questions” for elaboration. We also provide
more results among different base models and datasets in
Table 1 and Appendix D. BREAD reduces training time.
BREAD is also markedly more training-efficient. It can
reach the accuracy of the best baseline, SFT+GRPO, in just
25% of the training steps (Figure 3a), translating to roughly
a 75% reduction in total compute FLOPs (Figure 3b). We
estimated the FLOPs based on the common cost evaluation
method used in recent scaling-law studies (Snell et al., 2024;
Hoffmann et al., 2022; Sardana et al., 2023), by counting a
forward pass as 2ND and a backward pass as 4ND. Here
N is the number of model parameters and D is the total
token count processed in that pass. For calculation details,
see Appendix C.1. Note that we estimate D as the average
length of all expert traces in the training set, but according
our measurements, BREAD’s actual generation length is al-
ways shorter. Therefore for BREAD, its actual token count,
and thus its FLOP cost, is even lower than the estimated
values reported Figure 3b. We also discuss the potential of
reducing the number of rollout needed to reduce training
cost in Appendix D.2.

BREAD succeeds on the hard questions, where other
baselines fail. To understand the gains of BREAD, we
train and evaluate each method exclusively on very difficult
problems. The goal is to investigate whether expert hints in
BREAD can help SLMs learn new information particularly
from these hard questions. We conduct the experiment on
the NuminaMath-CoT dataset and the Qwen2.5-3B-Instruct
as the base model. To build the hard dataset, we first run or-
dinary SFT and from the training dataset, we select the 500
questions for which three independent generations produce
no correct trace (pass@3 = 0). These tasks are unsolved by
the small model, and their expert traces proved too complex

3

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Model Dataset GRPO SFT(full)+GRPO SFT(random)+GRPO SFT(selected)+GRPO BREAD DeepSeek-Distill

Qwen-1.5B-Instruct MATH 0.590 0.774 0.712 0.706 0.788 0.818
Qwen-3B-Instruct MATH 0.681 0.846 0.735 0.794 0.843 /
Qwen-1.5B-Instruct NuminaMath-CoT 0.347 0.242 0.356 0.234 0.361 0.368
Qwen-3B-Instruct NuminaMath-CoT 0.475 0.537 0.519 0.502 0.647 /

Table 1. BREAD outperforms other baselines and nearly reaches the accuracy of DeepSeek-R1-Distill, which has the benefit of vast
training data. There is no DeepSeek-R1-Distill for Qwen-3B provided by (Guo et al., 2025), so its cells are left blank.

0 50 100 150 200 250 300
Training step

0.45

0.50

0.55

0.60

0.65

Te
st

 a
cc

ur
ac

y

(a) Test acc over training steps

0.0 0.5 1.0 1.5 2.0 2.5
Estimate FLOPs (B) 1e9

0.45

0.50

0.55

0.60

0.65

Te
st

 a
cc

ur
ac

y BREAD
GRPO w/ Expert trace
SFT
SFT(Difficult)
SFT+GRPO
SFT(Difficult)+GRPO
GRPO

(b) Test acc vs estimated FLOPs

Figure 3. Test accuracy over training steps (left) / FLOPs (right).
BREAD, which adaptively uses hints from expert traces during
GRPO, significantly improves SLM reasoning ability compared
to all baselines. The gray dashed line (max accuracy of the best
baseline) demonstrates that BREAD can speed up the convergence
speed by about 3×. Both figures share the same legend.

5 10 15 20 25 30 35 40
Training step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Te
st

 a
cc

ur
ac

y

BREAD
SFT
GRPO
GRPO w/ Expert trace
SFT + GRPO

(a) Test acc over training steps

5 10 15 20 25 30 35 40
Training step

0.2

0.4

0.6

0.8

1.0

So
lv

e
no

ne
 r

at
io

GRPO
BREAD (before EAS)
BREAD (after EAS)

(b) Solve none ratio

Figure 4. (a) Test accuracy on very hard questions over training
steps. BREAD outperforms other baselines significantly while
the traditional methods (SFT, GRPO, SFT+GRPO) learn little. (b)
Proportion of test questions for which every rollout fails (solve-
none ratio). In vanilla GRPO, the ratio stays persistently high,
signalling that training stalls under sparse rewards. In BREAD,
the solve-none ratio for regular rollout starts similarly high, but
EAS injects expert traces and densifies the reward. This rate
continuously decreases, confirming that the model is learning.

for SFT to learn. The 500 samples were split into 80/20
train/test subsets. We then again used Qwen2.5-3B-Instruct
as the base model and trained each method on this hard
subset. The results are shown in Figure 4a. All baselines
show little or no improvement on the test set after training
on the hard questions. In contrast, BREAD achieves a clear
upward performance with continued training, demonstrating
that its partial expert guidance and branched rollout strategy
can provide learnable information, even when standard SFT
and vanilla GRPO fail. We argue that BREAD succeeds
because it adaptively reduce problem difficulty and densifies
the rewards. As shown in Figure 4b, BREAD sharply low-
ers the solve-none ratio, getting more informative samples
and richer feedback. This enables BREAD to learn effec-
tively even from very hard questions and complex reasoning
traces.

BREAD improves sample efficiency during training.
SLMs distilled via large-scale SFT can achieve strong rea-
soning capability, such as DeepSeek-R1-Distill (Guo et al.,
2025). However, the distillation pipeline is prohibitively
expensive. For example, this model is trained with 800k
samples from both reasoning and non-reasoning domains cu-
rated with DeepSeek-R1, containing 671 billion parameters.
A single forward pass through such a huge model already
costs more FLOPs than 25 RL training steps with 8 roll-
outs. The pipeline also needs expensive sample filtering and
trace post-processing, like the heavyweight data-collection
procedure in (Muennighoff et al., 2025; Li et al., 2025).
What makes things worse is that, as illustrated in Table 2,
each target model requires training with different samples,
multiplying the cost.

In contrast, BREAD is far more sample-efficient, achiev-
ing comparable gains with a small fraction of the expert
trace and without any heavyweight sample selection stage.
To show this, we created two trace-budget–matched base-
lines, SFT(selected) and SFT(random). For fair
comparison, we first record the expert traces actually re-
quested by BREAD via Episode Anchor Search (EAS).
On NuminaMath-CoT, this corresponded to 36.7% of sam-
ples, and on the easier Math (Hendrycks et al., 2021)
dataset the fraction falls to 19.1% (during 300 training
steps of Qwen-2.5-3B-Instruct). We then supervised fine-
tune base models with the same number of traces To cre-
ate SFT(selected), we select the exact subset cho-
sen by BREAD. To create SFT(random), we use an
equally sized randomly picked subset. Finally, we cre-
ated SFT(full), which uses all the expert traces, take
a high cost. Each of the SFT(x) phases was followed by a
GRPO phase. As the results in Table 1 show, BREAD out-
performs nearly all the SFT(X)+GRPO baselines in terms
of accuracy, and can even approach the performance of
the expensive DeepSeek-R1-Distill model. Notably, while
DeepSeek-R1-Distill gains from vast and diverse training
data, BREAD achieves nearly comparable accuracy without
requiring this data. We also observe that small models do
not necessarily benefit from SFT with expert traces, as evi-
denced by the Qwen-2.5-1.5B-Instruct run on NuminaMath-
CoT, where SFT(full)+GRPO has relatively low accu-
racy. Also, which samples are most useful for SFT is uncer-
tain: on the MATH dataset, SFT(selected)+GRPO has
higher accuracy than SFT(random)+GRPO with Qwen-
3B-Instruct, but it is the opposite for Qwen-1.5B-Instruct.

4

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Acknowledgements
This work is supported by the National Science Foundation
grants CCF-2046816, CCF-2403075, CCF-2212426, the
Office of Naval Research grant N000142412289, and an
Adobe Data Science Research Award. The computational
aspects of the research is generously supported by computa-
tional resources provided by the Amazon Research Award
on Foundation Model Development.

References
Abdin, M., Aneja, J., Behl, H., Bubeck, S., Eldan, R.,

Gunasekar, S., Harrison, M., Hewett, R. J., Javaheripi,
M., Kauffmann, P., et al. Phi-4 technical report. arXiv
preprint arXiv:2412.08905, 2024.

Aggarwal, P. and Welleck, S. L1: Controlling how long
a reasoning model thinks with reinforcement learning.
arXiv preprint arXiv:2503.04697, 2025.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and slow
with deep learning and tree search. Advances in neural
information processing systems, 30, 2017.

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuurmans,
D., Le, Q. V., Levine, S., and Ma, Y. Sft memorizes, rl
generalizes: A comparative study of foundation model
post-training. arXiv preprint arXiv:2501.17161, 2025.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 590(7847):
580–586, 2021.

Face, H. Open r1: A fully open reproduction of deepseek-
r1, January 2025. URL https://github.com/
huggingface/open-r1.

Google. Gemini 2.0 flash thinking mode
(gemini-2.0f lash-thinking-exp-1219), 2024.
https://cloud.google.com/vertex-ai/
generative-ai/docs/thinking.

Google. Gemini 2.0 flash thinking mode
(gemini-2.0-flash-thinking-exp-1219),
December 2024. URL https://cloud.google.
com/vertex-ai/generative-ai/docs/
thinking-mode. Accessed 15 May 2025. “Last
updated 14 May 2025” on the page.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Kavukcuoglu, K. Gemini 2.5: Our most
intelligent ai model. https://blog.
google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/,
March 2025. Accessed 15 May 2025.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

LI, J., Beeching, E., Tunstall, L., Lipkin, B., So-
letskyi, R., Huang, S. C., Rasul, K., Yu, L.,
Jiang, A., Shen, Z., Qin, Z., Dong, B., Zhou, L.,
Fleureau, Y., Lample, G., and Polu, S. Numina-
math. [https://huggingface.co/AI-MO/
NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/
blob/main/report/numina_dataset.pdf),
2024.

Li, Y., Yue, X., Xu, Z., Jiang, F., Niu, L., Lin, B. Y., Ra-
masubramanian, B., and Poovendran, R. Small models
struggle to learn from strong reasoners. arXiv preprint
arXiv:2502.12143, 2025.

Lin, Z., Lin, M., Xie, Y., and Ji, R. Cppo: Accelerating the
training of group relative policy optimization-based rea-
soning models. arXiv preprint arXiv:2503.22342, 2025.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

Qu, Y., Yang, M. Y., Setlur, A., Tunstall, L., Beeching,
E. E., Salakhutdinov, R., and Kumar, A. Optimizing test-
time compute via meta reinforcement fine-tuning. arXiv
preprint arXiv:2503.07572, 2025.

5

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36:
53728–53741, 2023.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635. JMLR Workshop and Conference Proceedings,
2011.

Sardana, N., Portes, J., Doubov, S., and Frankle, J. Beyond
chinchilla-optimal: Accounting for inference in language
model scaling laws. arXiv preprint arXiv:2401.00448,
2023.

Saunshi, N., Dikkala, N., Li, Z., Kumar, S., and Reddi, S. J.
Reasoning with latent thoughts: On the power of looped
transformers. arXiv preprint arXiv:2502.17416, 2025.

Schmitt, S., Hudson, J. J., Zidek, A., Osindero, S., Doersch,
C., Czarnecki, W. M., Leibo, J. Z., Kuttler, H., Zisserman,
A., Simonyan, K., et al. Kickstarting deep reinforcement
learning. arXiv preprint arXiv:1803.03835, 2018.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexi-
ble and efficient rlhf framework. arXiv preprint arXiv:
2409.19256, 2024.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C.,
Li, C., Xiao, C., Du, C., Liao, C., et al. Kimi k1. 5:
Scaling reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O.,
Piot, B., Heess, N., Rothörl, T., Lampe, T., and Riedmiller,
M. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

Wang, Z., Cui, G., Wan, K., and Zhao, W. Dump: Auto-
mated distribution-level curriculum learning for rl-based
llm post-training. arXiv preprint arXiv:2504.09710,
2025.

Xu, Y. E., Savani, Y., Fang, F., and Kolter, Z. Not all rollouts
are useful: Down-sampling rollouts in llm reinforcement
learning. arXiv preprint arXiv:2504.13818, 2025.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., et al. Dapo: An open-source
llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Yue, Y., Chen, Z., Lu, R., Zhao, A., Wang, Z., Song, S., and
Huang, G. Does reinforcement learning really incentivize
reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Zhang, X., Huang, Z., Ni, C., Xiong, Z., Chen, J., and
Oymak, S. Making small language models efficient rea-
soners: Intervention, supervision, reinforcement. arXiv
preprint arXiv:2505.07961, 2025.

6

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

A. Related Work
We provide further discussion of ”’ in Appendix ”’ Supervised fine-tuning (SFT) and Reinforcement Learning (RL).
Recently, there is a debate about whether SFT or RL can truly improve the reasoning ability of language models (LMs).
With the emergence of (Shao et al., 2024; Guo et al., 2025; Team et al., 2025), more and more reinforcement finetuned
reasoning models demonstrate the importance of RL. in reasoning tasks. (Chu et al., 2025) prove that RL can enhance the
reasoning ability of LMs while SFT can only force LMs to memorize knowledge. However, (Yue et al., 2025) argues that
the base model already has the reasoning ability while Reinforcement Learning with Verifiable Rewards (RLVR) barely
increases the probability of correct reasoning trace. Furthermore, distillation works such as (Guo et al., 2025; Muennighoff
et al., 2025) prove that SFT can help SLMs acquire reasoning capability comparable to the expert/teacher models. While the
current popular pipeline to train a reasoning LM is SFT followed by RL, we argue the need for stronger integration of SFT
and RL because, for hard questions, the expert solution might not be suitable for base models to learn while RL can struggle
to discover even a single correct trace.

Efficient RL and Reasoning. While reasoning LMs become more powerful, computation is more demanding during
the training and deployment procedure. Therefore, researchers recently paid more attention to efficient reasoning in both
directions. Pivotal Token Search (PTS) (Abdin et al., 2024) accelerates the Direct Preference Optimization (DPO) (Rafailov
et al., 2023) training by identifying tokens in a language model generation that significantly impact the probability of success
for the reasoning task. Following the memory efficiency but training time inefficiency introduced by GRPO (Shao et al.,
2024; Guo et al., 2025), many follow-up works improve the training convergence speed, including DAPO (Yu et al., 2025),
CPPO (Lin et al., 2025), PODS (Xu et al., 2025) and DUMP (Wang et al., 2025). (Team et al., 2025; Zhang et al., 2025;
Aggarwal & Welleck, 2025) saves the token usage during inference by training with one or multiple levels of length penalty.
Meanwhile, meta reinforcement fine-tuning (MRT) (Qu et al., 2025) makes inference token wasted less in meaningless
reasoning steps by making the success rate steadily increase with the number of reasoning episodes. Compared with all of
these previous works, we not only decrease the supervised signals during training by only introducing an expert solution
when the current model cannot solve the current task with a probability relatively high enough, but guide the model with
the expert hint to increase the RL training efficiency. which can provide a denser reward for speeding up the RL training
procedure.

Related classical RL methods. DAgger (Ross et al., 2011) intermittently injects expert actions to correct agent behavior.
Instead, BREAD adaptively inserts expert hints only when the agent fails and allows the model to complete the remaining
of the reasoning trace, allowing for a natural curriculum. Go-Explore (Ecoffet et al., 2021) trains an agent that can solve
all Atari games by branching from intermediate states, while BREAD branches out from expert traces. Methods like
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) and potential-based reward shaping (PBRS) (Ng et al.,
1999) densifies learning signals under sparse rewards through goal relabeling or external shaping functions, but BREAD
can achieve a similar effect through hint-based rollout initialization. Finally, while prior works like Kickstarting (Schmitt
et al., 2018) and Expert Iteration (Anthony et al., 2017) explore teacher-student transfer via full trajectories or alternating
control, BREAD explicitly focuses on sparse expert intervention with minimal demonstrations.

B. Motivation
B.1. Exploring and Contrasting SFT, RL, and BREAD under a Toy Model

It is known that a T times deeper LLM can internally simulate T chain-of-thought steps of a smaller LLM (Saunshi et al.,
2025). This implies that the expert model can generate a dense reasoning trace which necessitates a T× longer simplified
trace for the student model to digest via SFT. Recent work (Li et al., 2025) makes related empirical observation that SLMs
can struggle to learn from strong reasoners. We propose modeling this phenomena through Markov chains as follows:
Imagine a Markov chain with K ×K transition matrix. The expert/strong model has access to the full transition matrix,
while the student model are forbidden from implementing certain state transitions. Denote the learnable state transitions by
P ⊂ [K]× [K] where [K] = {1, 2, . . . ,K} and consider the following navigation task:

Navigation Task: Start a trace from State 1. Obtain a reward of 1 upon reaching State K.

For simplicity, suppose the expert generates a deterministic path [α0 = 1, α1, α2, . . . , αT−1, αT = K] where αt ∈ [K] for
0 ≤ t ≤ T . During SFT, small model will only benefit from the expert model’s trace when the expert transitions (αt, αt+1)
are learnable, i.e., (αt, αt+1) ∈ P . If no transition lies in P for t = 0, 1, . . . , T − 1, the small model cannot learn from SFT.

Without a good SFT-induced initialization, pure RL is known to suffer from sparse rewards (Vecerik et al., 2017). In the

7

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

context of the Navigation Task, further suppose that the small model can at most jump d steps away from the current
state, i.e., |j − i| ≤ d for all (j, i) ∈ P . This implies that we can only learn from expert trace when it makes small
jumps i.e. |αt − αt+1| ≤ d. Additionally, consider a poor-quality initialization where, at any state i, the small model
has tendency to bounce back and forth the State i and its favorable neighbor n(i) in the sense that all j ̸= n(i) obeys
min{P(i→ j),P(n(i)→ j)} ≤ ϵ for some ϵ > 0. Then, the initial model would achieve an exponentially-sparse reward
proportional to ϵΩ(K/d) under mild conditions on the maximum trace length.

To proceed, we have experimented with the Navigation Task controlled by the parameters number of states K, small model’s
jump capacity d, and initialization quality ϵ. Figure 5 demonstrates how optimization of SFT and GRPO can suffer as a
function of n and ϵ respectively. Importantly, we also display the performance of BREAD which exhibits a much more
favorable performance. The reader is referred to the supplementary material for full experimental details.

The BREAD is able to achieve sample efficiency by restricting the policy search to the unseen expert trace
[αs, αs+1, . . . , αT = K]. In the extreme case of s = T − 1, BREAD only finds a path from αT−1 to αT which has
substantially denser reward with exponent moving from Ω(Kd) to Ω(K

Td) assuming |αt − αt+1| ∝ K/T . When T ∝ K, the
overall training time of BREAD is expected to be polynomial in K rather than exponential. In words, BREAD facilitates
efficiency by learning from expert’s reasoning one step at a time.

In the next section, we discuss how these insights are in line with the SFT and RL performance on real reasoning tasks with
state-of-the-art models.

B.2. Empirical Insights into the Limitations of SFT and Reinforcement Learning for SLMs

RL-only: We begin by assessing how well RL works with SLMs in isolation. Experiments with vanilla GRPO (Shao et al.,
2024), displayed in Figure 6, show that it merely sharpens the capabilities the model already exhibits. GRPO relies on
sampling a mix of good and bad traces. But when a small base model fails to produce any high-quality trace—nearly half of
the queries in our evaluations in Figure 6a—learning stalls due to lack of reward signals (Figure 6b). Related limitations are
noted for RL with Verifiable Rewards of (Yue et al., 2025), which struggles to elicit fundamentally new reasoning patterns.

SFT-only: SFT can introduce new knowledge into the model. However, as discussed earlier, traces generated by much
stronger models can be too complex for SLMs to learn resulting in poor initialization for RL. To demonstrate this, we
start from Qwen2.5-1.5B-Instruct and Qwen2.5-3B-Instruct base models and fine-tune them with 1000 difficult questions,
paired with reasoning traces generated by Gemini Thinking Experimental (Google, 2024) and Deepseek-R1 (Guo et al.,
2025), following (Snell et al., 2024). These reasoning traces were previously shown to improve the reasoning capability of
large models such as Qwen2.5-32B-Instruct and Qwen2.5-14B-Instruct by (Muennighoff et al., 2025). However, in our
experiment results shown in Table 2, when SFT was performed on small models, accuracy actually decreases. For example,
accuracy dropped from 0.257 to 0.177 on the GPQA dataset when the 1.5B parameter model was fine-tuned on S1K traces,
and dropped even further to 0.121 when fine-tuned on the more verbose S1K-1.1 data. This corroborates our central intuition:
when traces used for SFT exceed an SLM’s learning capacity, they can hurt the model performance rather than helping.

0 2000 4000 6000 8000 10000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y BREAD, = 0.05
BREAD, = 0.025
BREAD, = 0.01
SFT, = 0.05
SFT, = 0.025
SFT, = 0.01
GRPO, = 0.05
GRPO, = 0.025
GRPO, = 0.01

(a) Varying ϵ – Initialization difficulty

0 2000 4000 6000 8000 10000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y BREAD, K = 30
BREAD, K = 50
BREAD, K = 100
SFT, K = 30
SFT, K = 50
SFT, K = 100
GRPO, K = 30
GRPO, K = 50
GRPO, K = 100

(b) Varying K – Number of states

Figure 5. We compare SFT, GRPO, and BREAD according to the Navigation Task described in Section B.1. K is number of states in
the Markov chain whereas ϵ is the probability of transition to non-favorable states. Our toy model reveals settings where BREAD can
succeed while SFT or GRPO completely fail.

8

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

(a) Number of samples where all 8 rollouts fail (b) Validation accuracy over training steps

Figure 6. Issues with vanilla GRPO on SLMs. Among 256 samples in a batch, for nearly half of them, the base model’s 8 rollouts produce
no correct trace. The absence of reward inhibits further performance gains and validation accuracy stalls.

These findings—that for small models, RL alone, or SFT + RL, are insufficient—motivate BREAD which uses expert traces
directly in the RL phase instead of relying on SFT to learn them first.

Theoretical Model. Consider a Markov chain with a transition matrix P in a dimension of 2K × 2K (Note that the
assumption of even number of states does not affect the generalization of the final claims), where P is the ground-truth
transition matrix. Pi,j = 1 − δ if and only if i = j + 2 mod 2K. The expert traces start at some odd state 2i + 1 and
terminate once it visits all K odd states for the first time. This represents the correct reasoning traces provided by expert
language models.

Student/Small Model. Student also has a 2K × 2K Markov chain. However, since it is small, its parameters are restricted
to be transitions between odd and even states. That is, we can only have P2i,2j+1 ̸= 0. The success criteria is same: starting
from some state 2i+ 1 initially, we want the student model to generate a trace that visits all K odd states. To make things
tricky, we assume a poor initialization of P2i,2i+1 = P2i+1,2i = 1− ε where ε is a small number. In this way, the chain has
an initial tendency to bounce between 2i and 2i+ 1 back and forth, which simulates the small base models that cannot go
through the hard crucial reasoning steps for a relatively complex question.

Based on the above theoretical model, we can have the following claims:

• Claim 1: SFT with the expert traces cannot help the student model learn anything. This is because the expert traces
only contain transition between odd states while the student’s transition probabilities between odd states are always 0.

• Claim 2: RL will take nearly forever to learn anything because of the bounce back and forth

Dataset Qwen-1.5B-Instruct Qwen-3B-Instruct

Base + SFT (S1K) + SFT (S1K-1.1) Base + SFT (S1K) + SFT (S1K-1.1)
MATH (Hendrycks et al., 2021) 0.494 0.426 0.408 0.624 0.616 0.630
GPQA (Rein et al., 2024) 0.258 0.177 0.121 0.369 0.247 0.288

Table 2. Accuracy of small models can decrease after SFT. The base SLMs are Qwen2.5-1.5B-Instruct and Qwen2.5-3B-Instruct and the
datasets used for SFT are S1K and S1K-1.1 (Muennighoff et al., 2025), with responses generated by Gemini Flash Thinking API (Google,
2024) and DeepSeek-R1 (Guo et al., 2025) respectively.

B.3. Why BREAD: Expert Traces Provide Critical Guidance and Curriculum for RL

While Appendix B.2 shows that an SLM can struggle to imitate traces generated by powerful LLMs, we posit that the SLM
can still understand them well enough to extract useful information, namely by using part of the complex traces as hints
to lower the problem difficulty. To illustrate this, we define the “hint ratio” as the fraction of the expert trace used (in terms
of number of episodes), as illustrated in Figure 7a. A higher hint ratio means more guidance for the model. In Figure 7b, we
plot the model accuracy for different hint ratios, where the hint is appended to the inference query. We can see that our
intuition is correct: even providing part of the hint in a very simple way (by appending to the inference query) helps improve
accuracy. In contrast, Figure 3 shows that SFT only on the same traces gets very limited improvement and can even hurt.
BREAD is motivated by this observation and uses expert hints in a more sophisticated way, by integrating them directly
into the RL create denser rewards.

We can also view BREAD through the lens of curriculum learning. As shown in Figure 7a, as we branch out from the
expert trace earlier, solving the problem becomes more challenging. The Episode Anchor Search (EAS) step in BREAD

9

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Increasing Curriculum Difficulty

GSM8k →MATH → AIME → IMOAlong
data

Along
reasoning

trace

expert
trace

hard

medium
easy

(a) Illustration of hint ratio (how much of the expert trace is
provided) and curriculum learning.

0.0 0.2 0.4 0.6 0.8
Hint Ratio

0.2

0.3

0.4

0.5

0.6

0.7

Co
rr

ec
tn

es
s

Ra
ti

o

Correctness Ratio vs. Hint Ratio
Base
RL(40 % Expert Hint)

(b) Accuracy for different ratio of hints, appended to the infer-
ence query.

Figure 7. (a) Math benchmarks may show difficulty tiers, but ranking individual problems for curriculum training is still challenging.
Instead, BREAD can adaptively adjust the difficulty by automatically choosing the branching point. For easier questions, it would provide
no or shorter hints (smaller hint ratio). (b) Model accuracy increases as longer hint is appended to the query. Dataset is the first 200
questions of NuminaMath-CoT. The blue dots are the base model (Qwen2.5-3B-Instruct), and the orange dots are RL finetuned using
traces containing 40% hints.

automatically adjusts the branching point, producing a self-paced curriculum. In this sense, BREAD serves as a generalized
curriculum-learning framework which (1) allows us to utilize SFT data within RL, (2) adapts the optimization to the problem
difficulty, and (3) generates dense rewards by creating a curriculum along the reasoning trace. By branching along the expert
trace at adaptive cut-points, BREAD automatically surfaces the most informative training samples and tunes their difficulty
on the fly. This relieves us from hand-crafting a data-level schedule and lets the model discover its own curriculum.

A final surprising observation from Figure 7b is that conditioning RL training on questions with partial hints not only
improves performance on hinted queries (e.g., orange dots with hint ratio 0.3 and above), but also improves accuracy on
questions without any hints (i.e., orange dot with hint ratio of 0). This highlights the model’s ability to generalize from
partial short traces to full long traces.

The appendices are organized as follows:

• In Appendix C, we explain the calculation of estimated FLOPs (Appendix C.1) and additional details about the training
and evaluation of BREAD (Appendix C.2).

• In Appendix D, we show that SFT further cannot improve the performance of models (Appendix D.1), BREAD can
reduce the number of rollouts required during the sampling stage in training (Appendix D.2), and the distribution of the
step number of expert solutions (Appendix D.3).

• In Appendix E, we explain the baseline GRPO w/ Expert Trace in detail and compare it to RL with an SFT loss.

C. Experiment details
C.1. FLOPs

We compute the estimate FLOPS following (Snell et al., 2024; Hoffmann et al., 2022; Sardana et al., 2023). The supervised
finetuning, which include one forward and one backward phase, people use a common approximation 6ND (Hoffmann
et al., 2022), and for inference, which include only one forward phase, people always use 2ND (Sardana et al., 2023).
Here N represents model parameters, D is the total token count processed in that pass. So a forward phase takes 2ND
while a backward phase take 4ND. For estimation, we define the average length of a single question in one inference
time as Dsample, so D = Dsample × nrollout for RL and D = Dsample for SFT. For estimation, we define the average length
of a single question in one inference time as Dsample, so D = Dsample × nrollout for RL and D = Dsample for SFT. GRPO
with eight rollouts, nrollout = 8 including eight forward and eight backward phase needs 6× 8×NDrollout. BREAD will
take more forward pass to do the binary search, so we use 6 ∗ 8 ∗NDrollout + 4NDadditional. GRPO w/ Expert trace
includes including eight forward and nine backward phase, so we use 6× 8×NDrollout + 4×NDrollout. We estimate D
with the average length of all expert trace in the training dataset. We truly record the additional number of generation
Dadditional = Drollout × nadditional rollout. Notably, the generation length of BREAD is always shorter than expert trace and
vanilla GRPO. So our BREAD can reduce even more computation resource compare to 75% shown in Figure 3b.

10

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Algorithm 1 BREAD: GRPO with Branch Rollouts and Expert Anchors (full version)

Require: Dataset D, current policy πθ, sampling number G, a list of keywords for splitting episodes [w0, w2, ..., wJ]
1: procedure BREAD(D, πθ, G, [w0, w2, ..., wJ])
2: for step = 1, 2, ..., N do
3: Sample a batch Db from D
4: Update the old policy model πold ← πθ

5: for each question and expert solution pair (Q,S) in Db do
6: [R1, R2, ..., RG], ρ← EAS(Q,S, πθ, G, [w0, w2, ..., wJ]) ▷ Episode Anchor Search (EAS)
7: Add the (Q, ρ), Ri to the buffer.
8: end for
9: For each (Q, ρ), oi in the buffer, compute Âi,t for the t-th token of oi ▷ Equation (2)

10: end for
11: for iteration = 1, 2, ..., T do
12: Update the policy model πθ by maxmizing the BREAD objective ▷ Equation (1)
13: end for
14: return πθ

15: end procedure
16: procedure EAS(Q,S, π,G, [w0, w2, ..., wJ])
17: [R1, R2, ..., RG]← π(Q) ▷ Sample I responses for question Q with current policy π
18: pcorrect ← compute correct probability([R1, R2, ..., RG], S)
19: ▷ compute correct probability based on responses and the gold solution
20: if 0 < pcorrect then
21: return [R1, R2, ..., RG], NA
22: else
23: [e0, e1, ..., eK]← split episodes(S, [w0, w2, ..., wJ])
24: return BINARY SEARCH AND GENERATE(Q,S, π,G, [e1, e2, ..., eK], 0,K)
25: end if
26: end procedure
27: procedure BINARY SEARCH AND GENERATE(Q,S, π,G, [e1, e2, ..., eK], L,R)
28: M = L+R

2
29: [R1, R2, ..., RG]← π([Q, e1, e2, ..., eM])
30: pcorrect ← compute correct probability([R1, R2, ..., RG], S)
31: if 0 < pcorrect < 1 then
32: return [R1, R2, ..., RG], S1:M

33: else if pcorrect = 0 then
34: L = M,R = R,M = L+R

2
35: return binary search and generate(Q,S, π,G, [e1, e2, ..., eK], L,R)
36: else
37: L = L,R = M,M = L+R

2
38: return binary search and generate(Q,S, π,G, [e1, e2, ..., eK], L,R)
39: end if
40: end procedure

11

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

C.2. Experiment Setting Details for BREAD

In addition to Section 3, we list additional details of our experiments here. During training, we set max prompt length =
2048 for MATH experiments and max prompt length = 4096 for NuminaMath-CoT experiments. For both training
and evaluation, we set max response length = 4096 for MATH experiments and max response length = 8192
for NuminaMath-CoT experiments. During training, we set the number of rollouts as 8. We used a low-variance KL
divergence and set the coefficient for KL divergence as 0.001. We set the temperature at 0.6 for both training and evaluation.

For the implementation details of the episode splitting for the expert trace during training, we split the expert trace with
sentences separated by ‘‘. ’’ or ‘‘\n’’ for MATH and paragraphs separated by ‘‘\n\n’’ for NuminaMath-CoT.
Note that the expert traces can be either human provided solutions or correct solutions provided by larger expert models, and
the splitting method here can also be changed to split according to a specific keyword list. After splitting, we aggregate the
traces into 10 episodes evenly for all expert traces. The reason why we implement this way is that we want to make sure that
the number of episodes of the expert traces is not too large, which can guarantee that the EAS step does not take too much
time.

During training, assume we have a question Q and an expert hint ρ (or without ρ during inference), the template of the
prompt is as follows:

{‘content’: ‘<|im start|>system\nYou are a helpful assistant. You first thinks
about the reasoning process in the mind and then provides the user with the
answer.<|im end|>\n<|im start|>user\n{Q, ρ} Show your work in <think> <\think> tags.
And return the final answer within \\boxed{}.<|im end|>\n<|im start|>assistant\nLet
me solve this step by step.\n<think>’, ‘role’: ‘user’}

For the hardware requirements, all of experiments are done with 8 L40S 40GB GPUs except the training starting from
Qwen2.5-3B-Instruct as the base model, which requires 8 80G H100 GPUs.

D. Additional Experiments
D.1. SFT further no help

Supplement to Figure 3a. As shown in Figure 8, training SFT for more iterations does not further improve test accuracy. In
other words, we already use the model that SFT can achieve. For a fair comparison, we therefore use the 300-step checkpoint
as the starting point for SFT+GRPO.

0 50 100 150 200 250 300 350 400
Training step

0.49

0.50

0.51

0.52

0.53

0.54

Te
st

 a
cc

ur
ac

y

SFT

Figure 8. Test accuracy of SFT over training steps. The accuracy doesn’t continuously increase after the number of training step we use.

D.2. BREAD can reduce number of rollout needed

Another straightforward way to reduce training cost is to reduce the number of rollouts, since FLOPs scale linearly with
that count. However, for vanilla GRPO, fewer rollouts lead to lower accuracy, whereas BREAD maintains its performance
even as the number of rollouts decreases. The result is shown in Figure 9. As we have shown in the main body, when the

12

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

task is so difficult that the base policy rarely produces correct traces, vanilla GRPO fails. To study rollout efficiency under
conditions where GRPO can learn, we moved to the MATH dataset with a Qwen-2.5-3B-Instruct base model. With eight
rollouts, GRPO does increase accuracy. However, performance will decrease if the rollout budget is reduced from 8 to 5. In
contrast, BREAD reaches the same accuracy with just five rollouts, cutting training FLOPs while preserving performance.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Estimate FLOPs (B) 1e9

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

Te
st

 a
cc

ur
ac

y

BREAD(5 rollouts)
GRPO(5 rollouts)
GRPO(8 rollouts)

Figure 9. Test accuracy over training steps with different number of rollouts. The gray dashed line shows the final accuracy of vanilla
GRPO with 8 rollouts. The total training step is 500.

D.3. Episode details

As described in Appendix C.2, we plot the distribution of the number of steps for our two datasets before episode aggregation.
As shown in Figure 10, we can see that that most expert traces contain less than 20 steps, while few of them contain much
more steps, which may slow down the training sif there ised if there is no episode aggregation.

0 50 100 150 200
Number of Solution Steps

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

Distribution of Solution Steps

(a) Distribution plot of MATH solution step numbers.

0 20 40 60 80 100
Number of Solution Steps

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

Distribution of Solution Steps

(b) Distribution plot of NuminaMath-CoT solution step numbers.

Figure 10. Distribution plot of MATH and NuminaMath-CoT solution step numbers

13

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

E. GRPO w/ Expert Trace Details and its Connection with RL with SFT Loss
The baseline GRPO w/ Expert Trace (GRPO-ET) generally follows the same procedure as the standard GRPO.
Instead, it enforces one of the G rollouts as the expert trace. Therefore, the objective function is

JGRPO-ET(θ) = E
(q,S,a)∼D,{oi}

G−1
i=1 ∼πold(·|q) 1

G

G−1∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ε, 1 + ε) Âi,t

)
− βDKL(πθ||πref)

)
+

1

G|oS |

|oS |∑
t=1

(
min

(
ri,t(θ)ÂS,t, clip (ri,t(θ), 1− ε, 1 + ε) ÂS,t

)
− βDKL(πθ||πref)

)
(3)

where

ri,t(θ) =
πθ(oi,t|q, oi<t)

πold(oi,t|q, oi<t)
, Âi,t =

Ri −mean({Ri}G−1
i=1 , RS)

std({Ri}G−1
i=1 , RS)

, ÂS,t =
RS −mean({Ri}G−1

i=1 , RS)

std({Ri}G−1
i=1 , RS)

(4)

All notations in Equations (3) and (4) are the same as (Guo et al., 2025), while S represents the expert trace, and all variables
whose subscript contains S represent the corresponding variables.

Here, we can see a clear connection between GRPO w/ Expert Trace and GRPO (rollout number is G − 1) with
an SFT loss. Suppose that we want to deploy GRPO while adding the SFT entropy loss to the standard GRPO loss, the
objective function is

JGRPO SFT = E
(q,S,a)∼D,{oi}

G−1
i=1 ∼πold(·|q) 1

G

G−1∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ε, 1 + ε) Âi,t

)
− βDKL(πθ||πref)

)
+

|oS |∑
t=1

log πθ(St | q, S<t) (5)

where

ri,t(θ) =
πθ(oi,t|q, oi<t)

πold(oi,t|q, oi<t)
, Âi,t =

Ri −mean({Ri}G−1
i=1 , RS)

std({Ri}G−1
i=1 , RS)

(6)

There are 3 main difference between Equation (3) and Equation (5):

1. A coefficient for the expert trace loss 1
G|oS |

2. A KL divergence term −βDKL(πθ||πref)

3. An Advantage term min
(
ri,t(θ)ÂS,t, clip (ri,t(θ), 1− ε, 1 + ε) ÂS,t

)
Suppose that ri,t ≤ 1 + ε, because ÂS,t ≥ 0, min

(
ri,t(θ)ÂS,t, clip (ri,t(θ), 1− ε, 1 + ε) ÂS,t

)
= ri,t(θ)ÂS,t, which is

exactly the entropy loss with a coefficient ÂS,t if we replace πold(oi,t|q, oi<t) in ri,t(θ) with the one hot embedding of the
expert trace tokens. Therefore, GRPO w/ Expert Trace can not only have better training consistency, but can also
assign different credits according to the token probability ratio between the old and the current policy.

F. Additional Details and Analysis of the Markov Model
In this section, we present a detailed and precise formulation of the Markov model introduced in Section B.1.

Recall that we consider a Markov chain with K states (indexed by 1, 2, · · · ,K) and a K ×K transition matrix. We assume
that, for the expert/large model, all (i→ j) transitions are learnable in the transition matrix. However, for a small/student

14

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

Algorithm 2 GRPO w/ Expert Trace (GRPO-ET)
Require: Dataset D, current policy πθ , sampling number G
1: procedure GRPO WITH EXPERT TRACE(D, πθ, G)
2: for step = 1, 2, ..., N do
3: Sample a batch Db from D
4: Update the old policy model πold ← πθ

5: Sample G− 1 outputs {oi}G−1
i=1 ∼ πold(·|Q) for each question Q ∈ Db

6: Combine the expert trace with the sampled outputs to construct
{
{oi}G−1

i=1 , S
}

7: Compute rewards
{
{ri}G−1

i=1 , rS
}

for each sampled output oi and expert trace S
8: ▷ rS is generally 1 because of solution correctness
9: For each oi and expert trace S. compute Âi,t for the t-th token of oi and S. ▷ Equation (4)

10: for iteration = 1, ..., T do
11: Update the policy model πθ by maximizing the GRPO-ET objective ▷ Equation (3)
12: end for
13: end for
14: return πθ

15: end procedure

model, not all (i → j) transitions are learnable and we denote the learnable state transitions by P ⊂ [K] × [K] where
[K] = {1, 2, . . . ,K}.

We first introduce the following definition of pretrained small model utilized in our experiments.

Definition F.1. Pretrained Small Model A pretrained small model is defined as a Markov modelM = (S,P), where
S = {1, 2, . . . ,K} is the state space and P ∈ RK×K is the transition matrix. The model satisfies the following properties:

• Let d ≥ 1 denote the maximum allowed jump between states. The set of learnable state transitions P satisfies:

(i, j) ∈ P if and only if |i− j| ≤ d.

• For some ϵ≪ 1/d, the transition probabilities satisfy:

Pij := P(i→ j) =


1−Θ(dϵ), if i = j,

Θ(ϵ), if (i, j) ∈ P and i ̸= j,

0, if (i, j) ̸∈ P.

Our goal is to finetune a small model defined in Definition F.1 to solve the following task:

Navigation Task: Start a trace from State 1. Obtain a reward of 1 upon reaching State K.

Note that the number of states K, the weak transition probability ϵ, and the maximal allowed jump distance d control the
difficulty of the task.

Theorem F.2. Suppose the maximum trace length satisfies Tmax = Θ(K/d), and consider the navigation task where a
trajectory starts from State 1 and receives a reward of 1 only upon reaching State K. Then, a small model defined in
Definition F.1 achieves an expected reward of ϵΘ(K/d).

The theorem highlights a key limitation of applying standard reinforcement learning algorithms (e.g., GRPO) to the
navigation task: since these methods rely on observing non-zero reward trajectories to propagate gradients and update model
parameters, they are highly inefficient in hard settings. Specifically, in the small model regime, the agent must generate
approximately ϵ−Θ(K/d) trajectories before observing a single successful episode that reaches State K. This exponential
sample complexity causes a significant challenge for learning.

In the following section, we introduce the BREAD algorithm of the Markov model that leverages SFT trajectories to improve
sample efficiency.

Definition F.3. An SFT trajectory is a sequence [α0, α1, · · · , αT] where αi ∈ [K] and α0 = 1 ≤ αi−1 ≤ αi ≤ αT = K
for i ∈ [T]. Define the maximal jump distance of the SFT trajectory by

D := max
i∈[T]

|ai − ai−1|.

15

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

The trajectory is said to be infeasible for a small model defined in Definition F.1 with maximum jump distance d if it contains
at least one transition exceeding the allowed jump size. That is D > d.

Since any infeasible SFT trajectory (cf. Definition F.3) contains at least one transition (αi−1 → αi) ̸∈ P , it is evident that
the small model (cf. Definition F.1) cannot learn directly from such a trajectory, as the corresponding transitions within the
trajectory lie outside its learnable set P .

Algorithm 3 BREAD Markov
Require: An SFT trajectory [α0, · · · , αT], initial small modelM([K],P), reward threshold rthred, maximal trajectory length Tmax
1: for episode t = T, T − 1, . . . , 1 do
2: r ← 0
3: while r < rthred do
4: Sample N trajectories fromM starting from state αt with maximal length Tmax − t
5: Update the current reward: r ← rnew
6: Update the transition matrix: P ← Pnew
7: end while
8: end for

Theorem F.4. Let an SFT trajectory (cf. Definition F.3) has maximal jump distance D = Θ(K/T), and suppose the
maximum trace length satisfies Tmax = T +Θ(K/dT). Then, by finetuning a small model (cf. Definition F.1) using BREAD
algorithm as described in Algorithm 3, the model obtains an expected reward of ϵΘ(K/Td) at each iteration.

Theorem F.4 demonstrates that compared to the pure RL approach in Theorem F.2, the BREAD algorithm achieves
substantially denser rewards. Specifically, the exponent improves from Θ(Kd) to Θ(K

Td), while using a shorter trace length.
Intuitively, BREAD improves sample efficiency by decomposing the expert’s reasoning into smaller steps, allowing the
small model to acquire knowledge one step at a time.

Experimental settings for Figure 5: We conduct experiments by finetuning a Markov model (cf. Definition F.1) using
three different methods: SFT, GRPO, and BREAD. Note that in our experiments, to introduce additional randomness, for
each state i ∈ [K], we randomly select one over its connected states (e.g., among i− d, . . . , i, i+ d states) and assign it the
highest transition probability of 1−Θ(ϵ), instead of always assigning the highest probability to P(i→ i). In both Figs. 5a
and 5b, d = 2, Tmax = 2K and SFT is infeasible (cf. Definition F.3) with length T = K/2. In Fig. 5a, we fix K = 30 and
vary ϵ ∈ {0.01, 0.025, 0.05}. In contrast, in Fig. 5b, the ϵ = 0.05 is remained unchanged and the number of states varies in
K ∈ {30, 50, 100}. Each experiments is trained for 10000 iterations with 1000 trajectories sampled with each iteration.

F.1. Proof of Theorems F.2&F.4

In this section, we provide the following theorem along with its proof. Theorems F.2 and F.4 can be directly derived as its
corollaries.

Theorem F.5. Suppose the maximum trace length satisfies Tmax = Θ(m), and consider the navigation task where a
trajectory starts from State i and receives a reward of 1 only upon reaching State j := (i +md). Then, a small model
defined in Definition F.1 achieves an expected reward of ϵΘ(m).

Proof. Given this navigation task where a reward of 1 is received upon reaching the goal state j := i+md, the expected
can be interpreted as the probability of successfully reaching the final goal with Tmax steps. Define the successfully reaching
probability by P(i→ j;Tmax). In the following, we derive both lower and upper bounds of this probability.

• Lower bound: The lower bound can be easily derived by considering a single successful trajectory, presented as follows

(i)→ (i+ d)→ (i+ 2d)→ · · · → (i+md).

Given that the probability of each step is Θ(ϵ) following Definition F.1 and there are m steps required, the probability
of obtaining such trajectory is Θ(ϵm). It serves as the lower bound of the successfully reaching probability (assuming
m < Tmax) and we have

P(i→ j;Tmax) ≥ Θ(ϵm).

16

BREAD: Enhancing SLM Reasoning by Bridging Supervised and Reinforcement Learning

• Upper bound: To obtain the upper bound, we first consider a moving-forward-only Markov chain. That is, the transition
matrix P̃ ∈ RK×K is defined as follows:

P̃ij := P̃(i→ j) =


1−Θ(dϵ), if i = j,

Θ(dϵ), if j = i+ d,

0, otherwise.

This setup restricts the agent to either stay in the current state or move forward exactly d steps with each transition. Note
that P̃ has strictly higher successfully reaching probability compared to P in Definition F.1. Therefore, we focus on upper
bounding the reaching probability of the simplified forward-only model, denoted by P̃(i→ j;Tmax).

Given the maximal trace length Tmax, at each timestep, the agent can either stay in the current state or move forward to the
state that is d steps away. Then as long as at least m out of the total Tmax are forward transitions, the agent will reach the
final goal state within Tmax steps. Therefore, we have

P̃(i→ j;Tmax) =

Tmax∑
m′=m

Tmax

m′

Θ(dϵ)m
′
(1−Θ(dϵ))Tmax−m′

≤ 2TmaxΘ(dϵ)m.

Given that Tmax = Θ(m), we get

P(i→ j;Tmax) ≤ P̃(i→ j;Tmax) ≤ Θ(dϵm).

Combining lower and upper bound, and considering a constant jump distance d≪ ϵ−1, it completes the proof.

G. Discussion and Limitations
Our work introduces BREAD as a principled algorithm to densify the reward signal using branch rollouts from the expert
trace. BREAD significantly enhances sample complexity, training time, and eventual accuracy over employing GRPO. It
is also theoretically well motivated and allows the model to overcome fundamental bottlenecks of SFT+GRPO. BREAD
has also a few limitations: Firstly, we focus on SLMs and assume that there is a strong expert/teacher model to provide
high-quality traces. Secondly, it is possible that SLM may fail to obtain a reward signal even from partial traces of the
teacher-imagine the student model can’t conclude even if the full proof is presented. We leave these as future directions.

Broader impact: Enhancing the capabilities of small language models can have environmental benefits by improving AI
efficiency. We do not anticipate negative societal impacts.

17

