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ABSTRACT

Open-vocabulary detectors achieve impressive performance on COCO, but of-
ten fail to generalize to real-world datasets with out-of-distribution classes not
typically found in their pre-training. Rather than simply fine-tuning a heavy-
weight vision-language model (VLM) for new domains, we introduce RF-DETR,
a light-weight specialist detection transformer that discovers accuracy-latency
Pareto curves for any target dataset with weight-sharing neural architecture search
(NAS). Our approach fine-tunes a pre-trained base network on a target dataset
and evaluates thousands of network configurations with different accuracy-latency
tradeoffs without re-training. Further, we revisit the “tunable knobs” for NAS
to improve the transferability of DETRs to diverse target domains. Notably,
RF-DETR significantly improves over prior state-of-the-art real-time methods on
COCO and Roboflow100-VL. RF-DETR (nano) achieves 48.0 AP on COCO,
beating D-FINE (nano) by 5.3 AP at similar latency, and RF-DETR (2x-large)
outperforms GroundingDINO (tiny) by 1.2 AP on Roboflow100-VL while run-
ning 20× as fast. To the best of our knowledge, RF-DETR (2x-large) is the first
real-time detector to surpass 60 AP on COCO. Our code is available on GitHub.

1 INTRODUCTION

Object detection is a fundamental problem in computer vision that has matured in recent
years (Felzenszwalb et al., 2009; Lin et al., 2014; Ren et al., 2015). Open-vocabulary detectors
like GroundingDINO (Liu et al., 2023) and YOLO-World (Cheng et al., 2024) achieve remarkable
zero-shot performance on common categories like car, truck, and pedestrian. However,
state-of-the-art vision-language models (VLMs) still struggle to generalize to out-of-distribution
classes, tasks and imaging modalities not typically found in their pre-training (Robicheaux et al.,
2025). Fine-tuning VLMs on a target dataset significantly improves in-domain performance at the
cost of runtime efficiency (due to heavy-weight text encoders) and open-vocabulary generalization.
In contrast, specialist (i.e., closed-vocabulary) object detectors like D-FINE (Peng et al., 2024) and
RT-DETR (Zhao et al., 2024) achieve real-time inference, but underperform fined-tuned VLMs like
GroundingDINO. In this paper, we modernize specialist detectors by combining internet-scale pre-
training with real-time architectures to achieve state-of-the-art performance and fast inference.

Are Specialist Detectors Over-Optimized for COCO? Sustained progress in object detection can
be largely attributed to standardized benchmarks like PASCAL VOC (Everingham et al., 2015)
and COCO (Lin et al., 2014). However, we find that recent specialist detectors implicitly overfit
to COCO at the cost of real-world performance using bespoke model architectures, learning rate
schedulers, and augmentation schedulers. Notably, state-of-the-art object detectors like YOLOv8
(Jocher et al., 2023) generalize poorly to real-world datasets with significantly different data distri-
butions from COCO (e.g., number of objects per image, number of classes, and dataset size). To
address these limitations, we present RF-DETR, a scheduler-free approach that leverages internet-
scale pre-training to generalize to real-world data distributions. To better specialize our model for
diverse hardware platforms and dataset characteristics, we revisit neural architecture search (NAS)
in the context of end-to-end object detection and segmentation.

Rethinking Neural Architecture Search (NAS) for DETRs. NAS discovers accuracy-latency
tradeoffs by exploring architectural variants within a pre-defined search space. NAS has been previ-
ously studied in the context of image classification (Tan & Le, 2019; Cai et al., 2019) and for model
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sub-components like detector backbones Tan et al. (2020) and FPNs Ghiasi et al. (2019). Unlike
prior work, we explore end-to-end weight-sharing NAS for object detection and segmentation. Our
key insight, inspired by OFA (Cai et al., 2019), is that we can vary model inputs like image reso-
lution, and architectural components like patch size during training. Further, weight-sharing NAS
allows us to modify inference configurations like the number of decoder layers and query tokens to
specialize our strong base model without fine-tuning. We evaluate all model configurations with grid
search on a validation set. Importantly, our approach does not evaluate the search space until the
base model has been fully-trained on the target dataset. As a result, all possible sub-nets (i.e., model
configurations within the search space) achieve strong performance without further fine-tuning, sig-
nificantly reducing the computational cost of optimizing for new hardware. Interestingly, we find
that sub-nets not explicitly seen during training still achieve high performance (Appendix ??), sug-
gesting that RF-DETR can generalize to unseen architectures. Extending RF-DETR for segmenta-
tion is also relatively straightforward and only requires adding a lightweight instance segmentation
head. We denote this model as RF-DETR-Seg. Notably, this allows us to also leverage end-to-end
weight-sharing NAS to discover Pareto optimal architectures for real-time instance segmentation.

Standardizing Latency Evaluation. We evaluate our approach on COCO (Lin et al., 2014) and
Roboflow100-VL (RF100-VL) (Robicheaux et al., 2025) and achieve state-of-the-art performance
among real-time detectors. RF-DETR (nano) outperforms D-FINE (nano) by 5% AP on COCO
at comparable run-times, and RF-DETR (2x-large) beats GroundingDINO (tiny) on RF100-VL at a
fraction of the runtime. RF-DETR-Seg (nano) outperforms YOLOv11-Seg (x-large) on COCO while
running 4 × as fast. However, comparing RF-DETR’s latency with prior work remains challenging
because reported latency evaluation varies significantly between papers. Notably, each new model
re-benchmarks the latency of prior work for fair comparison on their hardware. For example, D-
FINE’s reported latency evaluation of LW-DETR (Chen et al., 2024a) is 25% faster than originally
reported. We identify that this lack of reproducibility can be primarily attributed to GPU power
throttling during inference. We find that buffering between forward passes limits power over-draw
and standardizes latency evaluation (Table 1).

Contributions. We present three major contributions. First, we introduce RF-DETR, a family of
scheduler-free NAS-based detection and segmentation models that outperform prior state-of-the-art
on RF100-VL (Robicheaux et al., 2025) and real-time methods with latencies ≤ 40 ms on COCO
(Lin et al., 2014) (Figure 1). To the best of our knowledge, RF-DETR is the first real-time detector
to exceed 60 mAP on COCO. Next, we explore the “tunable-knobs” for weight-sharing NAS to
improve accuracy-latency tradeoffs for end-to-end object detection (Figure 3). Notably, our use of a
weight-sharing NAS allows us to leverage large-scale pre-training and effectively transfer to small
datasets (Table 4). Lastly, we revisit current benchmarking protocols for measuring latency and
propose a simple standardized procedure to improve reproducibility.

2 RELATED WORKS

Neural Architecture Search (NAS) automatically identifies families of model architectures with
different accuracy-latency tradeoffs (Zoph & Le, 2016; Zoph et al., 2018; Real et al., 2019; Cai et al.,
2018a). Early NAS approaches (Zoph & Le, 2016; Real et al., 2019) focused primarily on maxi-
mizing accuracy, with little consideration for efficiency. As a result, discovered architectures (e.g.,
NASNet and AmoebaNet) were often computationally expensive. More recent hardware-aware NAS
methods (Cai et al., 2018b; Tan et al., 2019; Wu et al., 2019) address this limitation by incorporating
hardware feedback directly into the search process. However, these methods must repeat the search
and training process for each new hardware platform. In contrast, OFA (Cai et al., 2019) proposes a
weight-sharing NAS that decouples training and search by simultaneously optimizing thousands of
sub-nets with different accuracy-latency tradeoffs. Contemporary methods typically evaluate NAS
for object detection by simply replacing standard backbones with NAS backbones in existing detec-
tion frameworks. Unlike prior work, we directly optimize end-to-end object detection accuracy to
find Pareto optimal accuracy-latency tradeoffs for any target dataset.

Real-Time Object Detectors are of significant interest for safety-critical and interactive applica-
tions. Historically, two-stage detectors like Mask-RCNN (He et al., 2017) and Hybrid Task Cascade
(Chen et al., 2019) achieved state-of-the-art performance at the cost of latency, while single-stage
detectors like YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016) traded accuracy for state-
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Figure 1: Accuracy-Latency Pareto Curve. We plot the Pareto accuracy-latency frontier for real-
time detectors on the COCO detection val-set (top left, bottom left), COCO segmentation val-set
(top right), and RF100-VL test-set (bottom right). Since RF100-VL contains 100 distinct datasets,
we select target latencies for the N, S, M, L, XL, 2XL configurations, search for RF-DETR models
with latencies within 10% of the target and report their average performance after fine-tuning to
convergence. Importantly, all points along RF-DETR’s continuous Pareto curves for COCO are
derived from a single training run.

of-the-art runtime. However, modern detectors (Zhao et al., 2024) reexamine this accuracy-latency
tradeoff, simultaneously improving on both axes. Recent YOLO variants innovate on architecture,
data augmentation, and training techniques (Redmon et al., 2016; Wang et al., 2023; 2024; Jocher
et al., 2023; 2024) to improve performance while maintaining fast inference. Despite their effi-
ciency, most YOLO models rely on non-maximum suppression (NMS), which introduces additional
latency. In contrast, DETR (Carion et al., 2020) removes hand-crafted components like NMS and
anchor boxes. However, early DETR variants (Zhu et al., 2020; Zhang et al., 2022a; Meng et al.,
2021; Liu et al., 2022) achieved strong accuracy at the cost of runtime, limiting their use in real-
time applications. Recent works such as RT-DETR (Zhao et al., 2024) and LW-DETR (Chen et al.,
2024a) have successfully adapted high performance DETRs for real-time applications. Building on
LW-DETR, RF-DETR is the first real-time detector to achieve more than 60 AP on COCO.

Vision-Language Models are trained on large-scale, weakly supervised image-text pairs from the
web. Such internet-scale pre-training is a key enabler for open-vocabulary object detection (Liu
et al., 2023; Cheng et al., 2024). GLIP (Li et al., 2022) frames detection as phrase grounding with
a single text query, while Detic (Zhou et al., 2022) boosts long-tail detection using ImageNet-level
supervision (Russakovsky et al., 2015). MQ-Det (Xu et al., 2024) extends GLIP with a learnable
module that enables multi-modal prompting. Recent VLMs demonstrate strong zero-shot perfor-
mance and are often applied as black-box models in diverse downstream tasks (Ma et al., 2023; Peri
et al., 2023; Khurana et al., 2024; Osep et al., 2024; Takmaz et al., 2025). However, Robicheaux
et al. (2025) find that such models perform poorly when evaluated on categories not typically found
in their pre-training, requiring further fine-tuning. In addition, many vision-language models are
prohibitively slow, making them difficult to use for real-time tasks. In contrast, RF-DETR combines
the fast inference of real-time detectors with the internet-scale priors of VLMs to achieve state-of-
the-art performance on RF100-VL and at all latencies ≤ 40 ms on COCO.
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Figure 2: RF-DETR Architecture. RF-DETR uses a pre-trained ViT backbone to extract multi-
scale features of the input image. We interleave windowed and non-windowed attention blocks to
balance accuracy and latency. Notably, the deformable cross-attention layer and segmentation head
both bilinearly interpolate the output of the projector, allowing for consistent spatial organization
of features. Lastly, we apply detection and segmentation losses at all decoder layers to facilitate
decoder drop out at inference.

3 RF-DETR: WEIGHT-SHARING NAS WITH FOUNDATION MODELS

In this section, we describe the architecture of our base model (Figure 2) and present the “tunable
knobs” of our weight-sharing NAS (Figure 3). Further, we highlight the limitations of hand-designed
learning-rate and augmentation schedulers, and advocate for a scheduler-free approach.

Incorporating Internet-Scale Priors. RF-DETR modernizes LW-DETR (Chen et al., 2024a) by
simplifying its architecture and training procedure to improve generalization to diverse target do-
mains. First, we replace LW-DETR’s CAEv2 (Zhang et al., 2022b) backbone with DINOv2 (Oquab
et al., 2023). We find that initializing our backbone with DINOv2’s pre-trained weights significantly
improves detection accuracy on small datasets. Notably, CAEv2’s encoder has 10 layers with a
patch size of 16, while DINOv2’s encoder has 12 layers. Our DINOv2 backbone has more layers
and is slower than CAEv2, but we make up for this latency using NAS (discussed next). Lastly, we
facilitate training on consumer-grade GPUs via gradient accumulation by using layer norm instead
of batch norm in the multi-scale projector.

Real-Time Instance Segmentation. Inspired by Li et al. (2023), we add a lightweight instance
segmentation head to jointly predict high quality segmentation masks. Our segmentation head bi-
linearly interpolates the output of the encoder and learns a lightweight projector to generate a pixel
embedding map. Specifically, we upsample the same low-resolution feature map for the detection
and segmentation heads to ensure that it contains relevant spatial information. Unlike MaskDINO
(Li et al., 2023), we do not incorporate multi-scale backbone features in our segmentation head to
minimize latency. Lastly, we compute the dot product of all projected query token embeddings (at
the output of each decoder layer transformed by a FFN) with the pixel embedding map to gener-
ate segmentation masks. Interestingly, we can interpret these pixel embeddings as segmentation
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Figure 3: NAS Search Space. We vary (a) patch size, (b) number of decoder layers, (c) number of
queries, (d) image resolution, and (e) number of windows per attention block when evaluating dif-
ferent operating points along RF-DETR’s Pareto curve. In addition to training thousands of network
configurations in parallel, we find that this “architecture augmentation” serves as a regularizer and
improves generalization.

prototypes (Bolya et al., 2019). Motivated by LW-DETR’s observation that pre-training improves
DETRs, we pre-train RF-DETR-Seg on Objects-365 (Shao et al., 2019) psuedo-labeled with SAM2
(Ravi et al., 2024) instance masks.

End-to-End Neural Architecture Search. Our weight-sharing NAS evaluates thousands of model
configurations with different input image resolutions, patch sizes, window attention blocks, decoder
layers, and query tokens. At every training iteration, we uniformly sample a random model con-
figuration and perform a gradient update (Appendix ??). This allows our model to efficiently train
thousands of sub-nets in parallel, similar to ensemble learning with dropout (Srivastava et al., 2014).
We find that this weight-sharing NAS approach also serves as a regularizer during training, effec-
tively performing “architecture augmentation”. To the best of our knowledge, RF-DETR is the first
end-to-end weight-sharing NAS applied to object detection and segmentation. We describe each
component below.

• Patch Size. Smaller patches lead to higher accuracy at greater computational cost. We
adopt a FlexiVIT-style (Beyer et al., 2023) transformation to interpolate between patch
sizes during training.

• Number of Decoder Layers. Similar to recent DETRs (Peng et al., 2024; Zhao et al., 2024),
we apply a regression loss to the output of all decoder layers during training. Therefore,
we can drop any (or all) decoder blocks during inference. Interestingly, removing the entire
decoder during inference effectively turns RF-DETR into a single-stage detector. Notably,
truncating the decoder also shrinks the size of the segmentation branch, allowing for greater
control over segmentation latency.

• Number of Query Tokens. Query tokens learn spatial priors for bounding box regression
and segmentation. We drop query tokens (ordered by the maximum sigmoid of the corre-
sponding class logit per token at the output of the encoder, see Appendix ??) at test time to
vary the maximum number of detections and reduce inference latency. The Pareto optimal
number of query tokens implicitly encodes dataset statistics about the average number of
objects per image in a target dataset.
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• Image Resolution. Higher resolution improves small object detection performance, while
lower resolution improves runtime. We pre-allocate N positional embeddings correspond-
ing to the largest image resolution divided by the smallest patch size and interpolate these
embeddings for smaller resolutions or larger patch sizes.

• Number of Windows per Windowed Attention Block. Window attention restricts self-
attention to only process a fixed number of neighboring tokens. We can add or remove
windows per block to balance accuracy, global information mixing, and computational ef-
ficiency.

At inference time, we pick a specific model configuration to select an operating point on the
accuracy-latency Pareto curve. Importantly, different model configurations may have similar pa-
rameter counts but significantly different latencies. Similar to Cai et al. (2019), we see little benefit
from fine-tuning the NAS-mined models on COCO (Appendix ??), but note modest improvements
from fine-tuning NAS-mined models on RF100-VL. This additional fine-tuning is optional, and is
often unnecessary for practical deployment. We posit that RF-DETR benefits from additional fine-
tuning on RF100-VL because the “architecture augmentation” regularization requires more than 100
epochs to converge on small datasets. Notably, prior weight-sharing NAS methods (Cai et al., 2019)
train in stages and use a different learning-rate scheduler per-stage. However, such schedulers make
strict assumptions about model convergence, which may not hold across diverse datasets.

Training Schedulers and Augmentations Bias Model Performance. State-of-the-art detectors
often require careful hyper-parameter tuning to maximize performance on standard benchmarks.
However, such bespoke training procedures implicitly bias the model towards certain dataset char-
acteristics (e.g. number of images). Concurrent with DINOv3 (Siméoni et al., 2025), we ob-
serve that cosine schedules assume a known (fixed) optimization horizon, which is impractical
for diverse target datasets like those in RF100-VL. Data augmentations introduce similar biases
by presuming prior knowledge of dataset properties. For example, prior work leverages aggres-
sive data augmentation (e.g., VerticalFlip, RandomFlip, RandomResize, RandomCrop,
YOLOXHSVRandomAug, and CachedMixUp) to increase effective dataset size. However, cer-
tain augmentations like VerticalFlip may negatively bias model predictions in safety-critical
domains. For example, a person detector in a self-driving vehicle should not be trained with
VerticalFlip to avoid false positive detections from reflections in puddles. Therefore, we limit
augmentations to horizontal flips and random crops. Lastly, LW-DETR applies a per-image random
resize augmentation, where each image is padded to match the largest image in the batch. As a
result, most images have significant padding, which introduces window artifacts, and wastes com-
putation on padded regions. In contrast, we resize images at the batch level to minimize the number
of padded pixels per-batch and to ensure that all positional encoding resolutions are equally likely
to be seen at train time.

4 EXPERIMENTS

We evaluate RF-DETR on COCO and RF100-VL and demonstrate that our approach achieves state-
of-the-art accuracy among all real-time methods. In addition, we identify inconsistencies in standard
benchmarking protocols and present a simple standardized procedure to improve reproducibility.
Following LW-DETR (Chen et al., 2024a), we group models of similar latency into the same size
bucket rather than grouping based on parameter count.

Datasets and Metrics. We evaluate RF-DETR on COCO for fair comparison with prior work
and on RF100-VL to evaluate generalization to real-world datasets with significantly different data
distributions. Due to the diversity of RF100-VL’s 100 datasets, we posit that overall performance
on this benchmark is a proxy for transferability to any target domain. We use pycocotools to report
standard metrics like mean average precision (mAP) and provide breakdown analysis for AP50,
AP75, APSmall, APMedium, and APLarge. Further, we evaluate efficiency by measuring GFLOPs,
number of parameters, and inference latency on an NVIDIA T4 GPU with Tensor-RT 10.4 and
CUDA 12.4.

Standardizing Latency Benchmarking. Despite its maturity, benchmarking object detectors re-
mains inconsistent across prior work. For example, YOLO-based models often omit non-maximal
suppression (NMS) when computing latency, leading to unfair comparisons with end-to-end detec-
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Table 1: Standardizing Latency Evaluation. Variance in latency measurements can be largely
attributed to power throttling and GPU overheating. We mitigate this issue by buffering for 200ms
between forward passes. Notably, this benchmarking approach is not designed to measure sustained
throughput, but rather ensures reproducible latency measurements. We are unable to reproduce
YOLOv8 and YOLOv11’s mAP results in TensorRT, likely because these models evaluate with
multi-class NMS but only use single-class NMS in inference. We use the standard NMS-tuned con-
fidence threshold of 0.01. YOLOv8 and YOLOv11 performance degrades further when quantizied
from FP32 to FP16, reaffirming that all models should report latency and accuracy using the same
model artifact. Notably, naively quantizing D-FINE to FP16 reduces performance to 0.5 AP. We fix
this issue by changing the authors’ export code to use ONNX opset 17 (Appendix ??).

Method Reported Buffering (FP-32) Buffering (FP-16)
AP50:95 Latency (ms) AP50:95 Latency (ms) AP50:95 Latency (ms)

YOLOv8 (M) 50.2 5.86 49.3 14.8 47.3 5.4
YOLOv11 (M) 51.5 4.7 49.7 18.7 48.3 5.2
RT-DETR (R18) 49.0 4.61 49.0 12.2 49.0 4.4
LW-DETR (M) 52.5 5.6 52.6 26.8 52.6 4.4
D-FINE (M) 55.1 5.62 55.1 13.9 55.0 (0.5∗) 5.4
RF-DETR (M) - - 54.8 20.5 54.7 4.4

Table 2: COCO Detection Evaluation. We compare RF-DETR with popular real-time and open-
vocabulary object detectors below. We find that RF-DETR (nano) outperforms D-FINE (nano) and
LW-DETR (tiny) by more than 5 AP. RF-DETR significantly outperforms YOLOv8 and YOLOv11,
while RF-DETR’s nano size achieves performance parity with YOLOv8 and YOLOv11’s medium
size model. We denote models that do not support TensorRT execution with a star, and instead report
PyTorch latency results. See Appendix ?? for L, XL, and Max variants of RF-DETR on COCO.

Model Size # Params. GFLOPS Latency (ms) AP AP50 AP75 APS APM APL

Real-Time Object Detection w/ NMS
YOLOv8 (Jocher et al., 2023) N 3.2M 8.7 2.1 35.2 49.2 38.3 15.8 38.8 51.3
YOLOv11 (Jocher et al., 2024) N 2.6M 6.5 2.2 37.1 51.6 40.4 17.3 40.7 55.6
YOLOv8 (Jocher et al., 2023) S 11.2M 28.6 2.9 42.4 57.6 46.0 22.2 47.1 59.6
YOLOv11 (Jocher et al., 2024) S 9.4M 21.5 3.2 44.1 59.3 47.9 26.1 48.5 62.6
YOLOv8 (Jocher et al., 2023) M 25.9M 78.9 5.4 47.3 62.5 51.5 27.5 52.9 65.1
YOLOv11 (Jocher et al., 2024) M 20.1M 68.0 5.1 48.3 63.6 52.5 29.1 53.8 66.3
Open-Vocabulary Object Detection (Fully-Supervised Fine-Tuning)
GroundingDINO (Liu et al., 2023) T 173.0M 1008.3 427.6* 58.2 - - - - -
End-to-End Real-Time Object Detection
LW-DETR (Chen et al., 2024a) T 12.1M 21.4 1.9 42.9 60.7 45.9 22.7 47.3 60.0
D-FINE (Peng et al., 2024) N 3.8M 7.3 2.1 42.7 60.2 45.4 22.9 46.6 62.1
RF-DETR (Ours) N 30.5M 31.9 2.3 48.0 67.0 51.4 25.2 53.5 70.0
LW-DETR (Chen et al., 2024a) S 14.6M 31.8 2.6 48.0 66.8 51.6 26.7 52.5 65.6
D-FINE (Peng et al., 2024) S 10.2M 25.2 3.5 50.6 67.6 55.0 32.6 54.6 66.6
RF-DETR (Ours) S 32.1M 59.8 3.5 52.9 71.9 57.0 32.0 58.3 73.0
RT-DETR (Zhao et al., 2024) R18 36.0M 100.0 4.4 49.0 66.6 53.3 32.8 52.1 65.0
LW-DETR (Chen et al., 2024a) M 28.2M 83.9 4.4 52.6 72.0 56.6 32.5 57.6 70.5
D-FINE (Peng et al., 2024) M 19.2M 56.6 5.4 55.0 72.6 59.7 37.6 59.4 71.7
RF-DETR (Ours) M 33.7M 78.8 4.4 54.7 73.5 59.2 36.1 59.7 73.8
RF-DETR (Ours) 2XL 126.9M 438.4 17.2 60.1 78.5 65.5 43.2 64.9 76.2

tors. Additionally, YOLO-based segmentation models measure the latency of generating prototype
predictions instead of directly usable per-object masks (Jocher et al., 2024), leading to biased run-
time measurements. Further, D-FINE’s reported latency evaluation of LW-DETR is 25% faster than
reported by Chen et al. (2024b). We observe that such differences can be attributed to detectable
power throttling events, particularly when the GPU overheats (Table 1). In contrast, simply pausing
for 200ms between consecutive forward passes largely mitigates power throttling, yielding more sta-
ble latency measurements (Appendix ??). Lastly, we find that prior work often reports latency using
FP16 quantized models, but evaluates accuracy with FP32 models. However, naive quantization can
significantly degrade performance (in some cases dropping performance to near 0 AP). To ensure
fair comparison, we advocate for reporting accuracy and latency with the same model artifact. We
release our stand-alone benchmarking tool on GitHub.

Evaluating RF-DETR and RF-DETR-Seg on COCO. COCO (Lin et al., 2014) is a flagship
benchmark for object detection and instance segmentation. In Table 2, we compare RF-DETR with
leading real-time and open-vocabulary detectors. RF-DETR (nano) beats both D-FINE (nano) and
LW-DETR (nano) by more than 5 AP. We see similar trends for small and medium sizes as well. No-
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Table 3: COCO Instance Segmentation Evaluation. We compare RF-DETR with popular real-
time instance segmentation methods on COCO. Notably, RF-DETR (nano) outperforms all re-
ported YOLOv8 and YOLOv11 model sizes. Further RF-DETR (nano) outperforms FastInst by
5.4%, while running nearly ten times faster. RF-DETR (medium) approaches the performance on
MaskDINO at a fraction of the runtime. We denote models that do not support TensorRT execution
with a star, and instead report PyTorch latency results. Our latencies for YOLOs also include the
conversion of protos into masks, which are not typically included in prior benchmarks but nonethe-
less contribute meaningfully to practical latency. See Appendix ?? for L, XL, and Max variants of
RF-DETR-Seg on COCO.

Model Size # Params. GFLOPS Latency (ms) AP AP50 AP75 APS APM APL

Real-Time Instance Segmentation w/ NMS
YOLOv8 (Jocher et al., 2023) N 3.4M 12.6 3.5 28.3 45.6 29.8 9.3 31.3 44.3
YOLOv11 (Jocher et al., 2024) N 2.9M 10.4 3.6 30.0 47.8 31.5 10.0 33.4 47.7
YOLOv8 (Jocher et al., 2023) S 11.8M 42.6 4.2 34.0 53.8 36.0 13.6 38.5 52.2
YOLOv11 (Jocher et al., 2024) S 10.1M 35.5 4.6 35.0 55.4 37.1 15.3 39.7 53.9
YOLOv8 (Jocher et al., 2023) M 27.3M 110.2 7.0 37.3 58.2 39.9 16.7 43.0 56.1
YOLOv11 (Jocher et al., 2024) M 22.4M 123.3 6.9 38.5 60.0 40.9 18.0 44.3 57.6
End-to-End Instance Segmentation
RF-DETR-Seg. (Ours) N 33.6M 50.0 3.4 40.3 63.0 42.6 16.3 45.3 63.6
RF-DETR-Seg. (Ours) S 33.7M 70.6 4.4 43.1 66.2 45.9 21.9 48.5 64.1
FastInst (He et al., 2023) R50 29.7M 99.7 39.6∗ 34.9 56.0 36.2 13.3 38.0 56.8
MaskDINO (Li et al., 2023) R50 52.1M 586 242∗ 46.3 69.0 50.7 26.1 49.3 66.1
RF-DETR-Seg. (Ours) M 35.7M 102.0 5.9 45.3 68.4 48.8 25.5 50.4 65.3
RF-DETR (Ours) 2XL 38.6M 435.3 21.8 49.9 73.1 54.5 33.9 54.1 65.7

tably, RF-DETR also significantly outperforms YOLOv8 and YOLOv11. RF-DETR (nano) matches
the performance of YOLOv8 and YOLOv11 (medium). We use mmdetection’s implementation of
GroundingDINO and include their reported AP since they do not release a model artifact for Ground-
ingDINO fine-tuned on COCO. We benchmark mmGroundingDINO’s parameter count, GFLOPS,
and latency using the released open-vocabulary model. In Table 3, we compare RF-DETR-Seg
with real-time instance segmentation models. RF-DETR-Seg (nano) outperforms YOLOv8 and
YOLOv11 at all sizes. Furthermore, RF-DETR-Seg (nano) beats FastInst by 5.4% while running
almost ten times faster. Similarly, RF-DETR (x-large) surpasses GroundingDINO (tiny), and RF-
DETR-Seg (large) outperforms MaskDINO (R50), at a fraction of their runtime.

Evaluating RF-DETR on RF100-VL. RF100-VL is a challenging detection benchmark composed
of 100 diverse datasets. We report latencies, FLOPs, and accuracy averaged over all 100 datasets in
Table 4. Our results show that RF-DETR (2x-large) outperforms GroundingDINO and LLMDet
while requiring only a fraction of their runtime. Interestingly, RT-DETR outperforms D-FINE
(which is built on RT-DETR) at AP50, indicating that D-FINE’s hyperparameters are potentially
overfit to COCO. We also note that RF-DETR benefits from scaling to larger backbone sizes (Ap-
pendix ??). In contrast, YOLOv8 and YOLOv11 consistently underperform DETR-based detectors,
and scaling these model families to larger sizes does not improve their performance on RF100-VL
(Figure 1).

Impact of Neural Architecture Search. We ablate the impact of weight-sharing NAS in Table 3.
We find that adopting a gentler set of hyperparameters compared to LW-DETR (e.g. larger batch
size, lower learning rate, and replacing batch normalization with layer normalization) reduces per-
formance over LW-DETR by 1.0%. Notably, replacing batch normalization with layer normalization
hurts performance, but is necessary to train on consumer hardware. However, replacing LW-DETR’s
CAEv2 backbone with DINOv2 improves performance by 2%. The lower learning rate, in partic-
ular, helps preserve DINOv2’s pre-trained knowledge, while additional epochs of Objects-365 pre-
training further compensate for the slower optimization. Our final model with weight-sharing NAS
improves over LW-DETR by 2% without increasing latency.

Impact of Backbone Architecture and Pre-Training. We study the impact of different backbone
architectures in RF-DETR. We find that DINOv2 achieves the best performance, outperforming
CAEv2 by 2%. Interestingly, despite having fewer parameters than SigLIPv2, SAM2’s Hiera-S
backbone is considerably slower. This is in contrast with Hiera’s claim that it is meaningfully faster
than equivalently performant ViTs. However, Hiera does not explore latency in the context of Flash
Attention kernels, which are highly optimized in compilers such as TensorRT. Additionally, existing
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Table 4: RF100-VL Evaluation. We compare RF-DETR with real-time and open-vocabulary object
detectors on RF100-VL. Interestingly, RF-DETR (2x-large) outperforms GroundingDINO (tiny),
and LLMDet (tiny) at a fraction of their runtime. We report the average latency and FLOPs over
all 100 datasets. We note that YOLOv8 and YOLOv11’s latency measurements may be suboptimal
because the default tuned NMS threshold of 0.01 may not work well for all datasets in RF100-VL.
We denote models that do not support TensorRT execution with a star, and instead report PyTorch
latency results. See Appendix ?? for L, XL, and Max variants of RF-DETR on RF100-VL.

Model Size # Params. GFLOPS Latency (ms) AP AP50 AP75 APS APM APL

Real-Time Object Detectors w/ NMS
YOLOv8 (Jocher et al., 2023) N 3.2M 8.7 2.6 55.0 81.1 59.5 4.8 44.1 48.0
YOLOv11 (Jocher et al., 2024) N 2.6M 6.5 3.0 55.5 81.3 60.3 4.7 44.4 49.2
YOLOv8 (Jocher et al., 2023) S 11.2M 28.6 3.1 56.3 82.0 60.9 6.1 45.6 48.6
YOLOv11 (Jocher et al., 2024) S 9.4M 21.5 3.3 56.4 82.5 61.3 6.5 45.5 48.5
YOLOv8 (Jocher et al., 2023) M 25.9M 78.9 5.4 56.5 82.3 60.9 6.4 45.7 48.6
YOLOv11 (Jocher et al., 2024) M 20.1M 68.0 5.1 57.0 82.5 61.9 7.3 46.1 48.6
Open-Vocabulary Object-Detectors (Fully-Supervised Fine-Tuning)
GroundingDINO (Liu et al., 2023) T 173.0M 1008.3 309.9∗ 62.3 88.8 67.8 39.2 57.7 69.5
LLMDet (Fu et al., 2025) T 173.0M 1008.3 308.4∗ 62.3 88.3 67.8 39.1 57.6 70.3
End-to-End Real-Time Object Detectors
LW-DETR (Chen et al., 2024a) N 12.1M 21.4 1.9 57.1 84.7 61.5 31.2 51.8 65.8
D-FINE (Peng et al., 2024) N 3.8M 7.3 2.0 58.2 84.4 62.5 32.4 52.9 65.8
RF-DETR (Ours) N 31.2M 34.5 2.5 57.8 85.1 62.5 30.1 52.2 67.2
RF-DETR w/ Fine-Tuning (Ours) N 31.2M 34.5 2.5 58.6 85.7 63.0 31.0 53.2 67.6
LW-DETR (Chen et al., 2024a) S 14.6M 31.8 2.6 57.4 85.0 62.0 32.1 52.1 65.8
D-FINE (Peng et al., 2024) S 10.2M 25.2 3.5 60.3 85.3 65.4 36.6 56.0 68.4
RF-DETR (Ours) S 33.5M 62.4 3.7 60.9 87.5 66.1 34.2 55.7 69.6
RF-DETR w/ Fine-Tuning (Ours) S 33.5M 62.4 3.7 61.2 87.7 66.1 34.9 55.6 69.5
RT-DETR (Zhao et al., 2024) M 36.0M 100.0 4.3 59.6 85.7 64.6 36.4 54.6 67.3
LW-DETR (Chen et al., 2024a) M 28.2M 83.9 4.3 59.8 86.8 64.9 34.0 54.4 68.9
D-FINE (Peng et al., 2024) M 19.2M 56.6 5.6 60.6 85.5 65.8 36.0 56.6 67.5
RF-DETR (Ours) M 33.5M 86.7 4.6 61.7 88.0 66.9 35.8 56.5 70.0
RF-DETR w/ Fine-Tuning (Ours) M 33.5M 86.7 4.6 62.0 88.1 67.1 36.2 56.4 70.2
RF-DETR (Ours) 2XL 123.5M 410.2 15.6 63.3 88.9 69.0 38.7 58.2 71.6
RF-DETR (Ours) w/ Fine-Tuning 2XL 123.5M 410.2 15.6 63.5 89.0 69.2 38.9 58.3 71.7

Table 5: Ablation on Neural Architecture Search. We ablate the impact of each “tunable knob”
on accuracy and latency below. Using a gentler set of hyperparameters compared to LW-DETR (e.g.
smaller batch size, lower learning rate, replacing batch norm with layer norm) reduces performance
by 1%. However, we regain this lost performance by replacing LW-DETR’s CAEV2 backbone with
DINOv2. Importantly, the lower learning rate and layer-norm allow us to better preserve DINOv2’s
foundational knowledge and allows us to train with larger batch sizes, making weight-sharing NAS
more effective. Counterintuitively, introducing weight sharing NAS to the training scheme improves
the performance of the base configuration even though patch size 14 isn’t in the NAS search space.

Model # Params. GFLOPS Latency (ms) AP AP50 AP75 APS APM APL

LW-DETR (M) 28.2M 83.7 4.4 52.6 72.0 56.6 32.5 57.6 70.5
+ Gentler Hyperparameters 28.2M 83.7 4.4 51.6 71.1 55.5 31.7 56.4 69.4
+ DINOv2 Backbone 32.3M 78.2 4.7 53.6 72.7 58.0 34.3 58.3 72.4
+ Additional O365 Pre-Training 32.3M 78.2 4.7 54.3 73.4 58.8 35.8 59.2 72.3
+ Weight Sharing NAS 32.3M 78.2 4.7 54.6 73.4 59.3 36.3 59.3 72.1

+ Patch Size 14→ 16, Res 560→ 640 32.3M 78.5 4.7 54.4 73.2 59.1 35.9 59.2 72.1
+ Image Resolution 640→ 576 32.2M 64.2 4.0 53.6 72.4 58.2 34.8 58.6 72.0
+ # Windows per Block 4→ 2 32.2M 63.7 4.3 54.3 73.3 58.8 35.6 59.4 73.2
+ # Decoder Layers 3→ 4 33.7M 64.8 4.4 54.6 73.5 59.1 36.0 59.8 73.7
+ # Query Tokens 300→ 300 33.7M 64.8 4.4 54.6 73.5 59.1 36.0 59.8 73.7

foundation model families typically do not release lightweight ViT variants such as ViT-S or ViT-T,
making it difficult to repurpose such models for real-time applications.

Rethinking Standard Accuracy Benchmarking Practices. Following prior work, we report all
COCO results on the validation set. However, relying solely on the validation for both model se-
lection and evaluation can lead to overfitting. For example, D-FINE (which builds on RT-DETR)
conducts an extensive hyperparameter sweep on COCO’s validation set and reports its best model.
However, evaluating this configuration on RF100-VL shows that D-FINE underperforms RT-DETR
on the test set. In contrast, our method achieves state-of-the-art performance among all real-time de-
tectors on both RF100-VL and COCO, demonstrating the robustness of our weight-sharing NAS. In
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Table 6: Ablation on Backbone. We ablate the impact of using different backbone architectures for
RF-DETR below. We find that DINOv2 achieves the highest performance, outperforming CAEv2 by
2.4%. All models are pretrained with 60 epochs of Objects-365 and the “Gentler Hyperparameters”
setting. Note that SAM2 and SigLIPv2 perform poorly when evaluated in FP16. Therefore, we
report FP16 TensorRT latency with FP32 ONNX accuracy for these two models as an upper bound
on their performance if optimized for FP16.

LW-DETR (M) + Gentler Hyperparameters # Params. GFLOPS Latency (ms) AP AP50 AP75 APS APM APL

w/ CAEv2 ViT/S-16-Truncated Backbone 28.3M 83.7 4.4 52.3 71.4 56.3 32.3 56.4 70.0
w/ DINOv2 ViT/S-14 Backbone 32.3M 78.2 4.7 54.3 73.4 58.8 35.8 59.2 72.3
w/ SigLIPv2 ViT/B-32 Backbone∗ 105.1M 81.6 4.8 50.4 70.4 53.7 28.0 55.3 73.0
w/ SAM2 Hiera-S Backbone∗ 44.0M 109.1 11.2 53.6 72.4 57.9 33.3 58.3 71.0

addition to evaluating on COCO, we advocate that future detectors should also evaluate on datasets
with public validation and test splits like RF100-VL.

Limitations. Despite controlling for power throttling and GPU overheating during inference, our
latency measurements still have a variance of up to 0.1ms due to the non-deterministic behavior of
TensorRT during compilation. Specifically, TensorRT can introduce power throttling, which in turn
affects the resulting engine and leads to random fluctuations in latency. Although the measurement
of a given TensorRT engine is generally consistent, recompiling the same ONNX artifact can pro-
duce slightly different latency results. Therefore, we only report latencies with one digit of precision
after the decimal place.

5 CONCLUSION

In this paper, we introduce RF-DETR, a state-of-the-art NAS-based method for fine-tuning special-
ist end-to-end object detectors for diverse target datasets and hardware platforms. Our approach
outperforms prior state-of-the-art real-time methods on COCO and RF100-VL, improving upon D-
FINE (nano) by 5% AP on COCO. Moreover, we highlight that current architectures, learning rate
schedulers and augmentation schedulers are tailored to maximize performance on COCO, suggest-
ing that the community should benchmark models on diverse, large-scale datasets to prevent implicit
overfitting. Lastly, we highlight the high variance in latency benchmarking due to power throttling
and propose a standardized protocol to improve reproducibility.
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024. URL https://arxiv.org/abs/2408.00714.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

12

https://docs.ultralytics.com/models/yolov8
https://docs.ultralytics.com/models/yolov8
docs.ultralytics.com/models/yolo11
docs.ultralytics.com/models/yolo11
https://arxiv.org/abs/2408.00714


Published as a conference paper at ICLR 2026

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
2015.

Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan,
and Neehar Peri. Roboflow100-vl: A multi-domain object detection benchmark for vision-
language models. arXiv preprint arXiv:2505.20612, 2025.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
Sun. Objects365: A large-scale, high-quality dataset for object detection. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 8429–8438, 2019. doi: 10.1109/ICCV.
2019.00852.
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preprint arXiv:2508.10104, 2025.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014.

Ayca Takmaz, Cristiano Saltori, Neehar Peri, Tim Meinhardt, Riccardo de Lutio, Laura Leal-Taixe,
and Aljosa Osep. Towards Learning to Complete Anything in Lidar. In International Conference
on Machine Learning (ICML), 2025.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10781–10790, 2020.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7464–7475, 2023.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn
using programmable gradient information. In European conference on computer vision, pp. 1–21.
Springer, 2024.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10734–10742, 2019.

Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen, Xiaoshan Yang, Ke Li, and Changsheng Xu.
Multi-modal queried object detection in the wild. Advances in Neural Information Processing
Systems, 36, 2024.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605, 2022a.

13



Published as a conference paper at ICLR 2026

Xinyu Zhang, Jiahui Chen, Junkun Yuan, Qiang Chen, Jian Wang, Xiaodi Wang, Shumin Han,
Xiaokang Chen, Jimin Pi, Kun Yao, et al. Cae v2: Context autoencoder with clip target. arXiv
preprint arXiv:2211.09799, 2022b.

Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
and Jie Chen. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16965–16974, 2024.

Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting
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