Under review as a conference paper at ICLR 2026

RF-DETR: NEURAL ARCHITECTURE SEARCH FOR
REAL-TIME DETECTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-vocabulary detectors achieve impressive performance on COCO, but often
fail to generalize to real-world datasets with out-of-distribution classes not typi-
cally found in their pre-training. Rather than simply fine-tuning a heavy-weight
vision-language model (VLM) for new domains, we introduce RF-DETR, a light-
weight specialist detection transformer that discovers accuracy-latency Pareto
curves for any target dataset with neural architecture search (NAS). Our approach
fine-tunes a pre-trained base network on a target dataset and evaluates thousands
of network configurations with different accuracy-latency tradeoffs without re-
training. Further, we revisit the “tunable knobs” for NAS to improve the trans-
ferability of DETRs to diverse target domains. Our proposed approach outper-
forms prior state-of-the-art methods at all latencies on COCO and Roboflow100-
VL. Notably, RF-DETR (medium) approaches performance parity with Ground-
ingDINO (tiny) on Roboflow100-VL while running 60x as fast, and RF-DETR
(nano) achieves 48.0 AP on COCO, improving upon D-FINE (nano) by 5.3 AP.

1 INTRODUCTION

Object detection is a fundamental problem in computer vision that has matured in recent
years (Felzenszwalb et al.l 2009; [Lin et al., 2014} Ren et al., 2015). Open-vocabulary detectors
like GroundingDINO (Liu et al., [2023) and YOLO-World (Cheng et al., 2024} achieve remarkable
zero-shot performance on common categories like car, truck, and pedestrian. However,
state-of-the-art vision-language models (VLMs) still struggle to generalize to out-of-distribution
classes, tasks and imaging modalities not typically found in their pre-training (Robicheaux et al.,
2025). Fine-tuning VLMs on a target dataset significantly improves in-domain performance at the
cost of runtime efficiency (due to heavy-weight text encoders) and open-vocabulary generalization.
In contrast, specialist (i.e., closed-vocabulary) object detectors like D-FINE (Peng et al.| 2024) and
RT-DETR (Zhao et al.,[2024)) achieve real-time inference, but underperform fined-tuned VLMs like
GroundingDINO. In this paper, we modernize specialist detectors by combining internet-scale pre-
training with real-time architectures to achieve state-of-the-art performance and fast inference.

Are Specialist Detectors Over-Optimized for COCO? Sustained progress in object detection can
be largely attributed to standardized benchmarks like PASCAL VOC (Everingham et al., 2015)
and COCO (Lin et al.l 2014). However, we find that recent specialist detectors implicitly overfit
to COCO at the cost of real-world performance using bespoke model architectures, learning rate
schedulers, and augmentation schedulers. Notably, state-of-the-art object detectors like YOLOvVS8
(Jocher et al., |2023) generalize poorly to real-world datasets with significantly different data distri-
butions from COCO (e.g., number of objects per image, number of classes, and dataset size). To
address these limitations, we present RF-DETR, a scheduler-free approach that leverages internet-
scale pre-training to generalize to real-world data distributions. To better specialize our model for
diverse hardware platforms and dataset characteristics, we revisit neural architecture search (NAS)
in the context of end-to-end object detection and segmentation.

Rethinking Neural Architecture Search (NAS) for DETRs. NAS discovers accuracy-latency
tradeoffs by exploring architectural variants within a pre-defined search space. NAS has been pre-
viously explored in the context of image classification (Tan & Lel 2019; |Cai et al., [2019) and for
model sub-components like detector backbones [Tan et al.| (2020) and FPNs |Ghiasi et al.| (2019).
Unlike prior work, we explore end-to-end weight-sharing NAS in the context of object detection

Under review as a conference paper at ICLR 2026

and segmentation. Our key insight, inspired by OFA (Cai et al.| 2019), is that we can vary model
inputs like image resolution, and architectural components like patch size during training. Further,
weight-sharing NAS allows us to modify inference configurations like the number of decoder layers
and query tokens to specialize our strong base model without fine-tuning. We evaluate all model
configurations with grid search on a validation set. Importantly, our approach does not evaluate the
search space until the base model has been fully-trained on the target dataset. As a result, all possi-
ble sub-nets (i.e., model configurations within the search space) achieve strong performance without
further fine-tuning, significantly reducing the computational cost of optimizing for new hardware.
Interestingly, we find that sub-nets not explicitly seen during training still achieve high performance,
suggesting that RF-DETR can generalize to unseen architectures (cf. Table[5). Extending RF-DETR
for segmentation is also relatively straightforward and only requires adding a lightweight instance
segmentation head. We denote this model as RF-DETR-Seg. Notably, this allows us to leverage
end-to-end weight-sharing NAS to discover Pareto optimal architectures for real-time instance seg-
mentation as well.

Standardizing Latency Evaluation. We evaluate our proposed approach on COCO (Lin et al.,
2014) and Roboflow100-VL (RF100-VL) (Robicheaux et al.,2025)) and achieve state-of-the-art per-
formance among real-time detectors. RF-DETR (nano) outperforms D-FINE (nano) by 5% AP on
COCO at comparable runtimes, and RF-DETR (medium) approaches parity with GroundingDINO
(tiny) at a fraction of the runtime. RF-DETR-Seg. (nano) outperforms YOLOv11-Seg. (medium)
while running twice as fast. However, comparing RF-DETR’s latency with prior work remains chal-
lenging because reported latency evaluation varies significantly between papers. Notably, each new
model re-benchmarks the latency of prior work for fair comparison on their hardware. For example,
D-FINE’s reported latency evaluation of LW-DETR (Chen et al.l [2024a) is 25% faster than origi-
nally reported. We identify that this lack of reproducibility can be primarily attributed to GPU power
throttling during inference. We find that buffering between forward passes limits power over-draw
and standardizes latency evaluation (cf. Table[T).

Contributions. We present three major contributions. First, we introduce RF-DETR, a family of
scheduler-free NAS-based detection and segmentation models that outperform prior state-of-the-art
real-time methods for all latencies < 40 ms on COCO (Lin et al., 2014) and RF100-VL (Robicheaux
et al.| 2025) (cf. Fig. [I). Next, we explore the “tunable-knobs” for weight-sharing NAS to improve
accuracy-latency tradeoffs for end-to-end object detection (cf. Fig. [3). Notably, our use of a weight-
sharing NAS allows us to leverage large-scale pre-training and effectively transfer to small datasets.
Lastly, we revisit current benchmarking protocols for measuring latency and propose a simple stan-
dardized procedure to improve reproducibility.

2 RELATED WORKS

Neural Architecture Search (NAS) automatically identifies families of model architectures with
different accuracy-latency tradeoffs (Zoph & Le},2016; Zoph et al.,2018;|Real et al.,|2019; Cai et al.}
2018a)). Early NAS approaches (Zoph & Le, 2016} Real et al.| [2019) focused primarily on maxi-
mizing accuracy, with little consideration for efficiency. As a result, discovered architectures (e.g.,
NASNet and AmoebaNet) were often computationally expensive. More recent hardware-aware NAS
methods (Cai et al.| [2018bj [Tan et al.| 2019;|Wu et al.| 2019)) address this limitation by incorporating
hardware feedback directly into the search process. However, these methods must repeat the search
and training process for each new hardware platform. In contrast, OFA (Cai et al.,[2019) proposes a
weight-sharing NAS that decouples training and search by simultaneously optimizing thousands of
sub-nets with different accuracy-latency tradeoffs. Contemporary methods typically evaluate NAS
for object detection by simply replacing standard backbones with NAS backbones in existing detec-
tion frameworks. Unlike prior work, we directly optimize end-to-end object detection accuracy to
find Pareto optimal accuracy-latency tradeoffs for any target dataset.

Real-Time Object Detectors are of significant interest for safety-critical and interactive applica-
tions. Historically, two-stage detectors like Mask-RCNN (He et al., 2017) and Hybrid Task Cascade
(Chen et al., 2019) achieved state-of-the-art performance at the cost of latency, while single-stage
detectors like YOLO (Redmon et al. 2016)) and SSD (Liu et al.l [2016) traded accuracy for state-
of-the-art runtime. However, modern detectors (Zhao et al.| 2024)) reexamine this accuracy-latency
tradeoff, simultaneously improving on both axes. Recent YOLO variants innovate on architecture,

Under review as a conference paper at ICLR 2026

COCO Object Detection COCO Instance Segmentation

45

Accuracy (MAP@50:95)
Accuracy (MAP@50:95)

—e— YOLOVB
—=— YOLOV11
—e- D-FINE 30.0
—u— RT-DETR

LW-DETR 275
35 4 — RF-DETR

40

2 3 4 5 6 2 3 4 5 6 7 8
Latency (ms) Latency (ms)

COCO Object Detection RF100-VL Object Detection

/+
87 *
86
/‘/'
—e— YOLOVB

<
—a— YOLOVI1 83
~e- D-FINE

R ——
—— RT-DETR 82 .
LW-DETR
W
o

—— RF-DETR

70

Accuracy (mAP@50)
®
?

curacy (mAP@50)
@
&

55

1 2 3 4 5 6 2.0 25 3.0 35 4.0 4.5 5.0 5.5
Latency (ms) Latency (ms)

Figure 1: Accuracy-Latency Pareto Curve. We plot the Pareto accuracy-latency frontier for real-
time detectors on the COCO detection val-set (top left, bottom left), COCO segmentation val-set
(top right), and RF100-VL test-set (bottom right).

data augmentation, and training techniques (Redmon et al., 2016; [Wang et al., 2023} 2024; |Jocher,
et al, 2023 2024) to improve performance while maintaining fast inference. Despite their effi-
ciency, most YOLO models rely on non-maximum suppression (NMS), which introduces additional
latency. In contrast, DETR (Carion et al., 2020) removes hand-crafted components like NMS and
anchor boxes. However, early DETR variants (Zhu et al., 2020; Zhang et al., 2022a; Meng et al.,
2021} [Liu et al., [2022) achieved strong accuracy at the cost of runtime, limiting their use in real-
time applications. Recent works such as RT-DETR (Zhao et al., 2024) and LW-DETR (Chen et al.,
2024a)) have successfully adapted high performance DETRs for real-time applications.

Vision-Language Models are trained on large-scale, weakly supervised image-text pairs from the
web. Such internet-scale pre-training is a key enabler for open-vocabulary object detection (Liu
et al., [2023; |Cheng et al., 2024). GLIP (Li et al., 2022)) frames detection as phrase grounding with
a single text query, while Detic (Zhou et al.,|2022) boosts long-tail detection using ImageNet-level
supervision (Russakovsky et al., [2015). MQ-Det (Xu et al., 2024) extends GLIP with a learnable
module that enables multi-modal prompting. Recent VLMs demonstrate strong zero-shot perfor-
mance and are often applied as black-box models in diverse downstream tasks (Ma et al.| [2023}; |Peri
et al., 2023} [Khurana et al.| [2024; [Osep et al., 2024; [Takmaz et al.| |2025). However, we find that
such models perform poorly when evaluated on categories not typically found in their pre-training,
requiring further fine-tuning. In addition, many vision-language models are prohibitively slow, mak-
ing them difficult to use for real-time tasks. In contrast, RF-DETR combines the fast inference of
real-time detectors with the internet-scale priors of VLMs to achieve state-of-the-art performance at
all latencies on COCO and RF100-VL.

3 RF-DETR: WEIGHT-SHARING NAS WITH FOUNDATION MODELS

In this section, we describe the architecture of our base model (cf. Fig. 2) and present the “tunable
knobs” of our weight-sharing NAS (cf. Fig. [3). Further, we highlight the limitations of hand-
designed learning-rate and augmentation schedulers, and advocate for a scheduler-free approach.

Incorporating Internet-Scale Priors. RF-DETR modernizes LW-DETR (Chen et al., |2024a) by
simplifying its architecture and training procedure to improve generalization to diverse target do-

Under review as a conference paper at ICLR 2026

Detection Head

Class Head

Box Head

Image
Patches

Decoder Group 13

Decoder Group x N

ViT Backbone

Segmentation

i e L

i
i
+++ +++++ + Layer 6 " Depthwise Conv 6
i
r { BN |- [[
Block 3 i :
Layerx N i Depthwise Conv x N
i
1 FEN |- ([.
Block 2 ' +
Layer 1 ' i
Feed Forward ! Depthwise Conv 1
Positional i
I
|
ten !

Embeddings

Block 1
Non-Windowed Encoder Layer

Windowed Encoder Layer x 2 [m}¥,@
ey -
i
: i

Figure 2: RF-DETR Architecture. RF-DETR uses a pre-trained ViT backbone to extract multi-
scale features of the input image. We interleave windowed and non-windowed attention blocks
balance accuracy and latency. Notably, the deformable cross-attention layer and segmentation head
both bilinearly interpolate the the output of the projector, allowing for consistent spatial organization
of features. Lastly, we apply detection and segmentation losses at all decoder layers to facilitate
decoder drop out at inference.

mains. First, we replace LW-DETR’s CAEv2 (Zhang et al, 2022b) backbone with DINOv2
2023)). We find that initializing our backbone with DINOv2’s pre-trained weights significantly
improves detection accuracy on small datasets. Notably, CAEv2’s encoder has 10 layers with a
patch size of 16, while DINOv2’s encoder has 12 layers. Our DINOv2 backbone has more layers
and is slower than CAEv2, but we make up for this latency using NAS (discussed next). Lastly, we
facilitate training on consumer-grade GPUs via gradient accumulation by using layer norm instead
of a batch norm in the multi-scale projector.

Real-Time Instance Segmentation. Similar to (2023), we add a lightweight instance
segmentation head to jointly predict high quality segmentation masks. Our segmentation head bi-
linearly interpolates the output of the FPN and learns a lightweight projector to generate a pixel
embedding map. Specifically, we upsample the same low-resolution feature map for the detection
and segmentation heads to ensure that it contains relevant spatial information. Lastly, we compute
the dot product of all projected query token embeddings (at the output of each decoder layer trans-
formed by a FFN) with the pixel embedding map to generate segmentation masks. Interestingly,
we can interpret this pixel embedding as segmentation prototypes as in [Bolya et al.|(2019). Moti-
vated by LW-DETR’s observation that pre-training improves DETRs, we pre-train RF-DETR-Seg
on Objects-365 psuedo-labeled with SAM?2 (Ravi et al. instance masks.

End-to-End Neural Architecture Search. Our weight-sharing NAS evaluates thousands of model
configurations with different input image resolutions, patch sizes, window attention blocks, decoder
layers, and query tokens. At every training iteration, we sample a random model configuration
and perform a gradient update. This allows our model to efficiently train thousands of sub-nets
in parallel, similar to ensemble learning with dropout (Srivastava et al, [2014). We find that this
weight-sharing NAS approach also serves as a regularizer during training, effectively performing

Under review as a conference paper at ICLR 2026

- U
A

8x8 32x32

Smaller Patches Larger Patches Fewer Layers More Layers
More Tokens Fewer Tokens Faster More Accurate
More Accurate Faster
a) Patch Embedding Interpolation b) Decoder Layers
Fewer Queries
Faster
[
More Queries Lower Resolution Higher Resolution Fewer Windows More Windows
More Accurate Faster More Accurate More Accurate Faster
¢) Query Dropping d) Resolution Interpolation e) Number of Windows

Figure 3: NAS Search Space. We vary (a) patch size, (b) number of decoder layers, (c) number
of queries, (d) image resolution, and (¢) number of windows per attention block in our weight-
sharing NAS. In addition to training thousands of network configurations in parallel, we find that
this “architectural augmentation” serves as a regularizer and improves generalization.

“architecture augmentation”. To the best of our knowledge, RF-DETR is the first end-to-end weight-
sharing NAS applied to object detection and segmentation. We describe each component below.

* Patch Size. Smaller patches lead to higher accuracy at greater computational cost. We
adopt a FlexiVIT-style (Beyer et all [2023)) transformation to interpolate between patch
sizes during training.

* Number of Decoder Layers. Recent DETRs (Peng et al., [2024)) apply a regression loss to
the output of all decoder layers. Therefore, we can drop any (or all) decoder blocks during

inference. Interestingly, removing the entire decoder during inference effectively turns RF-
DETR into a single-stage detector. Notably, truncating the decoder also shrinks the size of
the segmentation branch, allowing for greater control over segmentation latency.

* Number of Query Tokens. Query tokens learn spatial priors for bounding box regression and
segmentation. We drop query tokens (ordered by the confidence of the corresponding token
at the output of the encoder) at test time to vary the maximum number of detections and
reduce inference latency. The Pareto optimal number of query tokens implicitly encodes
dataset statistics about the average number of objects per image in a target dataset.

* Image Resolution. Higher resolution improves small object detection performance, while
lower resolution improves runtime. We pre-allocate /N positional embeddings correspond-
ing to the largest image resolution divided by the smallest patch size and interpolate these
embeddings for smaller resolutions or larger patch sizes.

* Number of Windows per Windowed Attention Block. Window attention restricts self-
attention to only process a fixed number of neighboring tokens. We can add or remove
windows per block to balance accuracy, global information mixing, and computational ef-
ficiency.

At inference time, we pick a specific model configuration to select an operating point on the
accuracy-latency Pareto curve. Similar to (2019), we see little benefit from fine-tuning
the NAS-mined models unless the model is particularly small (e.g. RF-DETR (nano)). Notably,
prior weight-sharing NAS methods train in stages and use a different learning-rate

Under review as a conference paper at ICLR 2026

Table 1: Standardizing Latency Evaluation. Variance in latency measurements can be largely
attributed to power throttling and GPU overheating. We mitigate this issue by buffering for 200ms
between forward passes. We are unable to reproduce YOLOvVS and YOLOv11’s mAP results in
TensorRT, likely because these models evaluate with multi-class NMS but only use single-class
NMS in inference. We use the standard NMS-tuned confidence threshold of 0.01. YOLOvS8 and
YOLOvVI11 performance degrades further when quantizied from FP32 to FP16, reaffirming that all
models should report latency and accuracy using the same model artifact. Notably, naively quan-
tizing D-FINE to FP16 reduces performance to 0.5 AP. We fix this issue by changing the authors’
export code to use ONNX opset 17. See Appendix [A]for more details.

Method Reported Buffering (FP-32) Buffering (FP-16)
AP50.95 Latency (ms) APs50.95 Latency (ms) AP50.95 Latency (ms)
YOLOvV8 (M) 50.2 5.86 49.3 14.8 47.3 5.4
YOLOvI1 (M) 51.5 4.7 49.7 18.7 48.3 5.2
RT-DETR (R18) 49.0 4.61 49.0 12.2 49.0 4.4
LW-DETR (M) 52.5 5.6 52.6 26.8 52.6 4.4
D-FINE (M) 55.1 5.62 55.1 13.9 55.0 (0.5%) 54
RF-DETR (M) - - 54.8 20.5 54.7 44

scheduler per-stage. However, such schedulers make strict assumptions about model convergence,
which may not hold across diverse datasets.

Training Schedulers and Augmentations Bias Model Performance. State-of-the-art detectors
often require careful hyper-parameter tuning to maximize performance on standard benchmarks.
However, such bespoke training procedures implicitly bias the model towards certain dataset char-
acteristics (e.g. number of images). Concurrent with DINOv3 (Siméoni et al., 2025), we ob-
serve that cosine schedules assume a known (fixed) optimization horizon, which is impractical
for diverse target datasets like those in RF100-VL. Data augmentations introduce similar biases
by presuming prior knowledge of dataset properties. For example, prior work leverages aggres-
sive data augmentation (e.g., VerticalFlip, RandomFlip, RandomResize, RandomCrop,
YOLOXHSVRandomAug, and CachedMixUp) to increase effective dataset size. However, cer-
tain augmentations like VerticalF1lip may negatively bias model predictions in safety-critical
domains. For example, a person detector in a self-driving vehicle should not be trained with
VerticalFlip to avoid false positive detections from reflections in puddles. Therefore, we limit
augmentations to horizontal flips and random crops. Lastly, LW-DETR applies a per-image random
resize augmentation, where each image is padded to match the largest image in the batch. As a
result, most images have significant padding, which introduces window artifacts, and wastes com-
putation on padded regions. In contrast, we resize images at the batch level to minimize the number
of padded pixels per-batch and to ensure that all positional encoding resolutions are equally likely
to be seen at train time.

4 EXPERIMENTS

We evaluate RF-DETR on COCO and RF100-VL and demonstrate that our approach achieves state-
of-the-art accuracy among all real-time methods. In addition, we identify inconsistencies in standard
benchmarking protocols and present a simple standardized procedure to improve reproducibility.

Datasets and Metrics. We evaluate RF-DETR on COCO for fair comparison with prior work and
on RF100-VL to evaluate generalization to real-world datasets with significantly different data dis-
tributions. We use pycocotools to report standard metrics like mean average precision (mAP) and
provide breakdown analysis for APso, AP75, APsaii, APnredium, and APrq,.g.. Further, we eval-
uate efficiency by measuring GFLOPs, number of parameters, and inference latency on an NVIDIA
T4 GPU with Tensor-RT 10.4 and CUDA 12.4.

Standardizing Benchmarking. Despite its maturity, benchmarking object detectors remains incon-
sistent across prior work. For example, YOLO-based models often omit non-maximal suppression
(NMS) when computing latency, leading to unfair comparisons with end-to-end detectors. Addi-
tionally, YOLO-based segmentation models measure the latency of generating prototype predictions
instead of directly usable per-object masks (Jocher et al., 2024), leading to biased runtime measure-
ments. Further, D-FINE’s reported latency evaluation of LW-DETR is 25% faster than reported by
Chen et al.| (2024b). We observe that such differences can be attributed to detectable power throttling

Under review as a conference paper at ICLR 2026

Table 2: COCO Detection Evaluation. We compare RF-DETR with popular real-time and open-
vocabulary object detectors below. We find that RF-DETR (nano) outperforms D-FINE (nano) and
LW-DETR (nano) by nearly 5 AP. RF-DETR significantly outperforms YOLOv8 and YOLOvI1,
with RF-DETR’s nano size achieve performance pairty with YOLOv8 and YOLOv11’s medium
size model. We denote non-TensorRT latency results with a star.

Model Size \ #Params. GFLOPS Latency (ms) AP AP;, AP;; APgs AP, AP,
Real-Time Object Detection w/ NMS

YOLOV8 (Jocher et al.[[2023) [N [32M 8.7 2.1 [352 492 38.3 158 388 513
YOLOv11 (Jocher et al.[[2024) | N | 26eM 6.5 22 [371 516 404 173 407 556
YOLOVS (Jocher et al.[|2023) [S [112Mm 28.6 2.9 [424 576 460 222 411 59.6 |
YOLOVIT (Jocher et al.|[2024) [S | 94M 21.5 32 [441 593 479 26.1 485 626 |
YOLOV8 (Jocher et al.||2023) [M [259M 78.9 5.4 [473 625 515 275 529 651 |
YOLOv11 (Jocher et al.[[2024) [M [20.1M 68.0 5.1 | 483 63.6 525 29.1 538 663 |
Open-Vocabulary Object Detection

GroundingDINO (Liu etal.]2023) | T [173.0M 1008.3 427.6* [504 66.7 552 375 533 650 |
LLMDet (Fu et al.[|[2025) | T [173.0M 1008.3 427.6* | 555 724 609 407 392 694 |
End-to-End Real-Time Object Detection

LW-DETR (Chen et al.[[2024a) T 12.1M 21.4 1.9 429 60.7 459 227 473 600
D-FINE (Peng et al.|[2024] N 3.8M 7.3 2.1 4277 602 454 229 46,6 621
RF-DETR (Ours) N 26.9M 31.8 23 480 670 514 252 535 700
LW-DETR (Chen et al.{[2024a) S 14.6M 31.8 2.6 480 66.8 51.6 267 525 65.6
D-FINE (Peng et al.[[2024) S 10.2M 25.2 35 506 67.6 550 326 546 66.6
RF-DETR (Ours) S 33.1M 60.0 3.5 529 719 570 320 583 730
RT-DETR (Zhao et al.][2024] RI8 36.0M 100.0 4.4 49.0 66.6 533 328 521 65.0
LW-DETR (Chen et al.[[2024a) M 28.2M 83.9 44 526 720 56.6 325 576 705
D-FINE (Peng et al.[[2024) M 19.2M 56.6 5.4 550 726 597 376 594 717
RF-DETR (Ours) M 30.IM 78.5 4.4 54.7 73.5 59.2 36.1 59.7 73.8

events, particularly when the GPU overheats (cf. Table[I)). In contrast, simply pausing for 200ms
between consecutive forward passes largely mitigates power throttling, yielding more stable latency
measurements. Lastly, we find that prior work often reports latency using FP16 quantized models,
but evaluates performance with FP32 models. However, naive quantization can significantly de-
grade performance (in some cases dropping performance to near 0 AP). To ensure fair comparison,
we advocate reporting accuracy and latency with the same model artifact.

Evaluating RF-DETR and RF-DETR-Seg on COCOQO. COCO (Lin et all [2014) is a flagship
benchmark for object detection and instance segmentation. In Table [2| we compare RF-DETRwith
leading real-time and open-vocabulary detectors. RF-DETR (nano) beats both D-FINE (nano) and
LW-DETR (nano) by nearly 5 AP. We see similar trends for small and medium sizes as well. No-
tably, RF-DETR also significantly outperforms YOLOvS8 and YOLOv11. RF-DETR (nano) matches
the performance of YOLOvS and YOLOvI1 (medium). In Table |3, we compare RF-DETR-Seg
with real-time instance segmentation models. RF-DETR-Seg (nano) outperforms YOLOvS8 and
YOLOV11 at all sizes. Furthermore, RF-DETR-Seg (nano) beats FastInst by 4.4% while running al-
most ten times faster. Similarly, RF-DETR (medium) approaches the accuracy of GroundingDINO
(tiny), and RF-DETR-Seg approaches the performance of MaskDINO (R50), at a fraction of their
runtime.

Evaluating RF-DETR on RF100-VL. RF100-VL is a challenging detection benchmark composed
of 100 diverse datasets. We report latencies, FLOPs, and accuracy averaged over all 100 datasets in
Table 4] Our results show that RF-DETR (medium) approaches performance parity with Ground-
ingDINO and LLMDet while requiring only a fraction of their runtime. Interestingly, RT-DETR
outperforms D-FINE (which is built on RT-DETR) at mAP50, indicating that D-FINE’s hyperpa-
rameters are potentially overoptimized for COCO. We also note that only models with pretrained
ViT backbones (e.g. LW-DETR and RF-DETR) benefit from scaling to larger model sizes. In con-
trast, YOLOv8 and YOLOV11 consistently underperform DETR-based detectors, and scaling these
model families to larger sizes does not improve their performance on RF100-VL.

Impact of Neural Architecture Search. We ablate the impact of weight-sharing NAS in Table [3]
We find that adopting a gentler set of hyperparameters compared to LW-DETR (e.g. larger batch
size, lower learning rate, and replacing batch normalization with layer normalization) reduces perfor-
mance over LW-DETR by 1.3%. However, replacing LW-DETRs CAEv2 backbone with DINOv2
improves performance by 2%. The lower learning rate, in particular, helps preserve DINOv2’s pre-
trained knowledge, while additional epochs of Objects-365 pre-training further compensate for the

Under review as a conference paper at ICLR 2026

Table 3: COCO Instance Segmentation Evaluation. We compare RF-DETR with popular real-
time instance segmentation methods on COCO. Notably, RF-DETR (nano) outperforms all re-
ported YOLOvVS and YOLOvI11 model sizes. Further RF-DETR (nano) outperforms Fastlnst by
4.4%, while running nearly ten times faster. RF-DETR(medium) approaches the performance on
MaskDINO at a fraction of the runtime. We denote non-Tensor-RT latency numbers with a star.
Our latencies for YOLOs also include the conversion of protos into masks, which are not typically
included in prior benchmarks but nonetheless contribute meaningfully to practical latency.

Model Size \ #Params. GFLOPS Latency (ms) \ AP AP;5y AP;; APs AP, AP,
Real-Time Instance Seg; tation w/ NMS
YOLOVS (Jocheretal.;2023) [N [34M 12.6 3.5 [283 456 29.8 9.3 313 443
YOLOVIT (Jocheretal.[2024) [N [29M 10.4 3.6 [300 478 31.5 10.0 334 477
YOLOVS (Jocheretal.;2023) [S | 11.8M 42.6 42 [340 538 36.0 136 385 522]
YOLOVIT (Jocheretal.[2024) [S | 10.IM 35.5 4.6 | 350 554 37.1 153 397 539 |
YOLOVS (Jocher et al.[2023) | M | 27.3M 110.2 7.0 [373 582 39.9 167 430 56.1
YOLOvIT (Jocheretal.[2024) [M | 22.4M 1233 6.9 | 385 60.0 409 180 443 57.6
End-to-End Instance Segmentation
FastInst (He et al.|[2023) [R50 | 29.M 99.7 39.6* [349 560 362 133 380 56.8
MaskDINO (Li et al.|[2023} [R50 [52.IM 586 242* | 463 69.0 507 26.1 493 66.1
[RF-DETR-Seg. (Ours) [N [339%™ 49.0 33 [393 617 41.6 165 440 632]
[RF-DETR-Seg. (Ours) [S [340Mm 74.9 45 [427 6538 454 213 417 643 |
[RF-DETR-Seg. (Ours) [M [342M 96.6 5.6 [443 6738 4717 240 494 649 |

Table 4: RF100-VL Evaluation. We compare RF-DETR with real-time and open-vocabulary ob-
ject detectors on RF100-VL. Interestingly, RF-DETR (medium) achieves performance parity with
GroundingDINO (tiny), and LLMDet (tiny) at a fraction of their runtime. We report the average
latency and FLOPs over all 100 datasets. We note that YOLOvVS and YOLOv11’s latency measure-
ments may be suboptimal because the default tuned NMS threshold of 0.01 may not work well for
all datasets in RF100-VL. We denote non-TensorRT latency results with a star.

Model Size \ #Params. GFLOPS Latency (ms) AP AP;y AP;; APs AP, APg
Real-Time Object Detectors w/ NMS

YOLOVS (Jocher et al.]|2023) [N [32M 8.7 2.6 [550 8I.I 59.5 4.8 44.1 48.0
YOLOvVI1 (Jocher et al.[[2024) | N | 26M 6.5 3.0 [555 813 60.3 4.7 444 492
YOLOV8 (Jocher et al.[[2023) [S [112M 28.6 3.1 [563 820 609 6.1 456 436 |
YOLOv11 (Jocher et al.[|2024) | S | 94Mm 21.5 33 | 564 825 61.3 6.5 455 485 |
YOLOV8 (Jocher et al.[[2023) [M [259M 78.9 5.4 [565 823 60.9 6.4 4577 48.6
YOLOvV11 (Jocher et al.[[2024) | M | 201M 63.0 5.1 [57.0 825 61.9 7.3 46.1 48.6
Open-Vocabulary Object-Detectors

GroundingDINO (Liuetal.]2023) [T [173.0M 1008.3 309.9% [623 8838 67.8 392 577 695
LLMDet (Fu et al.]|]2025) | T [173.0M 1008.3 308.4* [623 883 67.8 39.1 57.6 703
End-to-End Real-Time Object Detectors

LW-DETR (Chen et al.[[2024a) N 12.1IM 214 1.9 57.1 847 61.5 312 518 658
D-FINE (Peng et al.[[2024) N 3.8M 7.3 2.0 582 844 625 324 529 658
RF-DETR (Ours) N 30.8M 36.3 2.5 573 843 617 667 389 63.1
LW-DETR (Chen et al.[[2024a) S 14.6M 31.8 2.6 574 850 620 32.1 521 658
D-FINE (Peng et al.[2024) S 10.2M 25.2 35 603 853 654 366 560 684
RF-DETR (Ours) S 333M 65.5 377 60.6 87.1 658 696 405 656
RT-DETR (Zhao et al.|[2024) M 36.0M 100.0 4.3 59.6 857 64.6 364 546 6713
LW-DETR (Chen et al.[[2024a) M 28.2M 83.9 4.3 59.8 86.8 649 340 544 689
D-FINE (Peng et al.[[2024) M 19.2M 56.6 5.6 60.6 855 658 360 566 675
RF-DETR (Ours) M 33.6M 91.0 4.7 61.5 8717 67.0 702 409 663

slower optimization. Our final model with weight-sharing NAS improves over LW-DETR by 2%
without increasing latency.

Impact of Backbone Architecture and Pre-Training. We study the impact of different backbone
architectures in RF-DETR. We find that DINOv2 achieves the best performance, outperforming
CAEV2 by 2.4%. Interestingly, despite having fewer parameters than Sigl.IPv2, SAM2’s Hiera-S
backbone is considerably slower. This is in contrast with the Hiera-S claim to be meaningfully faster
than equivalently performant ViTs. However, Hiera does not explore latency in the context of opti-
mized kernels such as Flash Attention, which are leveraged heavily in compilers such as TensorRT.
Additionally, existing foundation model families typically do not release lightweight ViT variants
such as ViT-S or ViT-T, making it difficult to repurpose such models for real-time applications.

Analysis on Standard Benchmarking Practices. Following prior work, we report all COCO re-
sults on the validation set. However, relying solely on the validation for both model selection and

Under review as a conference paper at ICLR 2026

Table 5: Ablation on Neural Architecture Search. We ablate the impact of each “tunable knob”
on accuracy and latency below. Using a gentler set of hyperparameter compared to LW-DETR
(e.g. smaller batch size, lower learning rate, replacing batch norm with layer norm) reduces per-
formance by 1.3%. However, we regain this lost performance by replacing LW-DETR’s CAEV2
backbone with DINOv2. Importantly, the lower learning rate and layer-norm allow us to better
preserve DINOv2’s foundational knowledge and allows us to train with larger batch sizes, mak-
ing weight-sharing NAS more effective. Counterintuitively, introducing weight sharing NAS to the
training scheme improves performance of the base configuration even though patch size 14 isn’t in
the NAS search space.

Model #Params. GFLOPS Latency (ms) AP AP;y AP;; APs APy, AP,
LW-DETR (M) 28.2M 83.7 4.4 526 720 56.6 325 57.6 70.5
+ Gentler Hyperparameters 28.2M 83.7 4.4 51.3 71.2 55.1 323 56.0 69.3
+ DINOv2 Backbone 32.3M 78.2 4.7 532 726 57.5 33.7 57.9 72.2
+ Additional 0365 Pre-Training 32.3M 78.2 4.7 54.3 73.4 58.8 35.8 59.2 72.3
+ Weight Sharing NAS 32.3M 78.2 4.7 546 734 59.3 36.3 59.3 72.1
+ Patch Size 14 — 16, Res 560 — 640 32.3M 78.5 4.7 544 732 59.1 359 59.2 72.1
+ Image Resolution 640 — 576 32.2M 64.2 4.0 536 724 58.2 34.8 58.6 72.0
+ # Windows per Block 4 — 2 322M 63.7 4.3 543 733 58.8 35.6 59.4 73.2
+ # Decoder Layers 3 — 4 33.7M 64.8 4.4 546 735 59.1 36.0 59.8 73.7
+ # Query Tokens 300 — 300 33.7M 64.8 4.4 546 735 59.1 36.0 59.8 73.7

Table 6: Ablation on Backbone. We ablate the impact of using different backbone architectures for
RF-DETR below. We find that DINOv2 achieves the highest performance, outperforming CAEv2 by
2.4%. All models are pretrained with 60 epochs of Objects365 and the ’Gentler Hyperparameters’
setting. Note that SAM2 and SigLIPv2 perform poorly when evaluated in FP16. Therefore, we
report FP16 TensorRT latency with FP32 ONNX accuracy for these two models as an upper bound
on what their performance could be if optimized for FP16.

LW-DETR (M) + Gentler Hyperparameters | # Params. GFLOPS Latency (ms) | AP AP;, AP;; APs AP, AP,
w/ CAEvV2 ViT/S-16-Truncated Backbone 28.3M 83.7 44 517 71.1 558 320 561 69.2
w/ DINOvV2 ViT/S-14 Backbone 32.3M 78.2 4.7 543 734 588 358 592 723
w/ SigLIPv2 ViT/B-32 Backbone* 105.1M 81.6 4.8 504 704 537 280 553 73.0
w/ SAM2 Hiera-S Backbone* 44.0M 109.1 11.2 536 724 579 333 583 710

evaluation can lead to overfitting. For example, D-FINE (which builds on RT-DETR) conducts an
extensive hyperparameter sweep on COCQO’s validation set and reports its best model. However,
evaluating this configuration on RF100-VL, we find that D-FINE underperforms RT-DETR on the
test set. In contrast, our method achieves state-of-the-art performance among all real-time detectors
on RF100-VL and COCO, demonstrating the robustness of our weight-sharing NAS. In addition to
evaluating on COCO, we advocate that future detectors should also evaluate on datasets with public
validation and test splits like RF100-VL.

Limitations. Despite controlling for power throttling and GPU overheating during inference, our
latency measurements still have a variance of up to 0.1ms due to the non-deterministic behavior of
TensorRT during compilation. Specifically, TensorRT can introduce power throttling, which in turn
affects the resulting engine and leads to random fluctuations in latency. Although the measurement
of a given TensorRT engine is generally consistent, recompiling the same ONNX artifact can pro-
duce different latency results. Therefore, we only report latencies with one digit of precision after
the decimal place.

5 CONCLUSION

In this paper, we introduce RF-DETR, a state-of-the-art NAS-based method for fine-tuning specialist
end-to-end object detectors for target datasets and hardware platforms. Our approach outperforms
prior state-of-the-art real-time methods on COCO and RF100-VL, improving upon D-FINE (nano)
by 5% AP on COCO. Moreover, we highlight that current architectures, learning rate schedulers
and augmentation schedulers are tailored to maximize performance on COCO, suggesting that the
community should benchmark models on diverse large-scale datasets to prevent implicit overfitting.
Lastly, we highlight the high variance in latency benchmarking due to power throttling and propose
a standardized protocol to improve reproducibility.

Under review as a conference paper at ICLR 2026

REFERENCES

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496-145006, 2023.

Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance segmentation.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9157-9166,
2019.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search
by network transformation. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018a.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018b.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213-229. Springer, 2020.

Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Zi-
wei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4974—
4983, 2019.

Qiang Chen, Xiangbo Su, Xinyu Zhang, Jian Wang, Jiahui Chen, Yunpeng Shen, Chuchu Han,
Ziliang Chen, Weixiang Xu, Fanrong Li, et al. Lw-detr: A transformer replacement to yolo for
real-time detection. arXiv preprint arXiv:2406.03459, 2024a.

Qiang Chen, Xiangbo Su, Xinyu Zhang, Jian Wang, Jiahui Chen, Yunpeng Shen, Chuchu Han,
Ziliang Chen, Weixiang Xu, Fanrong Li, et al. Lw-detr: a transformer replacement to yolo for
real-time detection. arXiv preprint arXiv:2406.03459, 2024b.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2024.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,
111, 2015.

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE transactions on pattern analysis and ma-
chine intelligence, 32(9):1627-1645, 2009.

Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, and Wei-Shi
Zheng. Llmdet: Learning strong open-vocabulary object detectors under the supervision of large

language models. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 14987-14997, 2025.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid archi-
tecture for object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 70367045, 2019.

Junjie He, Pengyu Li, Yifeng Geng, and Xuansong Xie. Fastinst: A simple query-based model for
real-time instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 23663-23672, 2023.

10

Under review as a conference paper at ICLR 2026

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961-2969, 2017.

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, January 2023. URL https:
//docs.ultralytics.com/models/yolovsl

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, January 2024. URL docs.
ultralytics.com/models/yololl.

Mehar Khurana, Neehar Peri, Deva Ramanan, and James Hays. Shelf-supervised multi-modal pre-
training for 3d object detection. arXiv preprint arXiv:2406.10115, 2024.

Feng Li, Hao Zhang, Huaizhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
Mask dino: Towards a unified transformer-based framework for object detection and segmenta-

tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 3041-3050, 2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Li-
juan Wang, Lu Yuan, Lei Zhang, Jenqg-Neng Hwang, et al. Grounded language-image pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10965-10975, 2022.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014.

Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
Dab-detr: Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329,
2022.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

Yechi Ma, Neehar Peri, Shuoquan Wei, Wei Hua, Deva Ramanan, Yanan Li, and Shu Kong. Long-
tailed 3d detection via 2d late fusion. arXiv preprint arXiv:2312.10986, 2023.

Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jing-
dong Wang. Conditional detr for fast training convergence. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3651-3660, 2021.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Aljosa Osep, Tim Meinhardt, Francesco Ferroni, Neehar Peri, Deva Ramanan, and Laura Leal-Taixe.
Better call sal: Towards learning to segment anything in lidar. 2024.

Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu. D-fine: Redefine
regression task in detrs as fine-grained distribution refinement. arXiv preprint arXiv:2410.13842,
2024.

Neehar Peri, Achal Dave, Deva Ramanan, and Shu Kong. Towards long-tailed 3d detection. 2023.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rédle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024. URL https://arxiv.org/abs/2408.00714.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

11

https://docs.ultralytics.com/models/yolov8
https://docs.ultralytics.com/models/yolov8
docs.ultralytics.com/models/yolo11
docs.ultralytics.com/models/yolo11
https://arxiv.org/abs/2408.00714

Under review as a conference paper at ICLR 2026

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779-788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
2015.

Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan,
and Neehar Peri. Roboflow100-vl: A multi-domain object detection benchmark for vision-
language models. arXiv preprint arXiv:2505.20612, 2025.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
Sun. Objects365: A large-scale, high-quality dataset for object detection. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pp. 8429-8438. IEEE, 2019.

Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaé¢l Ramamonjisoa, et al. Dinov3. arXiv
preprint arXiv:2508.10104, 2025.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929-1958, 2014.

Ayca Takmaz, Cristiano Saltori, Neehar Peri, Tim Meinhardt, Riccardo de Lutio, Laura Leal-Taixe,
and Aljosa Osep. Towards Learning to Complete Anything in Lidar. In International Conference
on Machine Learning (ICML), 2025.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820-2828, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10781-10790, 2020.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7464-7475, 2023.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn
using programmable gradient information. In European conference on computer vision, pp. 1-21.
Springer, 2024.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10734-10742, 2019.

Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen, Xiaoshan Yang, Ke Li, and Changsheng Xu.
Multi-modal queried object detection in the wild. Advances in Neural Information Processing
Systems, 36, 2024.

Xiaoju Ye. calflops: a flops and params calculate tool for neural networks in pytorch framework,
2023. URL https://github.com/MrYxJ/calculate-flops.pytorch.

12

https://github.com/MrYxJ/calculate-flops.pytorch

Under review as a conference paper at ICLR 2026

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605, 2022a.

Xinyu Zhang, Jiahui Chen, Junkun Yuan, Qiang Chen, Jian Wang, Xiaodi Wang, Shumin Han,
Xiaokang Chen, Jimin Pi, Kun Yao, et al. Cae v2: Context autoencoder with clip target. arXiv
preprint arXiv:2211.09799, 2022b.

Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
and Jie Chen. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16965-16974, 2024.

Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krihenbiihl, and Ishan Misra. Detecting
twenty-thousand classes using image-level supervision. In European Conference on Computer
Vision, pp. 350-368. Springer, 2022.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

13

	Introduction
	Related Works
	RF-DETR: Weight-Sharing NAS With Foundation Models
	Experiments
	Conclusion
	Implementation Details
	Ablation on Query Tokens and Decoder Layers
	Benchmarking FLOPs
	Model Predictions from RF-DETR and RF-DETR-Seg

