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ABSTRACT

Theory of Mind (ToM)—an understanding of the mental states of others—is a key
aspect of human social intelligence, yet, chatbots and LLM-based social agents do
not typically integrate it. In this work, we demonstrate that LLMs that explicitly
use ToM get better at dialogue, achieving goals more effectively. After showing
that simply prompting models to generate mental states between dialogue turns
already provides significant benefit, we further introduce ToMAgent (TOMA), a
ToM-focused dialogue agent. TOMA is trained by pairing ToM with dialogue
lookahead to produce mental states that are maximally useful for achieving dia-
logue goals. Experiments on the Sotopia interactive social evaluation benchmark
demonstrate the effectiveness of our method over a range of baselines. Com-
prehensive analysis shows that TOMA exhibits more strategic, goal-oriented rea-
soning behaviors, which enable long-horizon adaptation, while maintaining better
relationships with their partners. Our results suggest a step forward in integrating
ToM for building socially intelligent LLM agents.1

1 INTRODUCTION

Success in social interactions – defined by goal achievement, adherence to social norms, and more
– depends not just on expressing our own intentions and beliefs, but also on understanding our
conversation partners. Theory of Mind (ToM), the cognitive ability to understand the mental states
of others (Premack & Woodruff, 1978; Baron-Cohen et al., 1985), captures this intuition and allows
social reasoning and strategic behavior (Apperly & Butterfill, 2009). Here, we study whether ToM
can serve as a similarly powerful element in social LLM agents.

The extent to which LLMs already possess ToM is debatable (Kosinski, 2024; Shapira et al., 2024),
despite the deployment of LLMs in settings where understanding the user is crucial (e.g. job inter-
views, customer service). Methods for improving LLMs’ ToM abilities range from chain-of-thought
prompting (Wilf et al., 2024; Shinoda et al., 2025), through neuro-symbolic methods that combine
LLMs with symbolic belief tracking (Sclar et al., 2023), to Bayesian Inverse Planning (Ying et al.,
2023), and inference-time hypothesis generation (Kim et al., 2025). However, past work on ToM
for LLMs typically evaluates this ability directly on QA setups (Kim et al., 2023; Chen et al., 2024),
rather than its usefulness in social situations. Meanwhile, existing research in interactive social
environments like Sotopia (Zhou et al., 2024) has largely focused on training models to generate
utterances that lead to successful conversations (Kong et al., 2025; Yu et al., 2025), overlooking the
role of explicit mental state modeling.

In this work, we address the question of how to equip LLMs with Theory of Mind abilities that can
effectively improve their social reasoning. We demonstrate that even simply prompting LLMs to
generate mental states between dialogue turns can significantly contribute to goal achievement. To
maximize this benefit, we propose ToMAgent (TOMA), a method for goal-oriented social reasoning
in dialogues that combines ToM predictions with conversation outcome prediction to select the best
trajectory for training. As illustrated in Figure 1, given a social scenario such as “Two friends are
camping in the cold and there is only one blanket” and opposing agent goals (e.g., Agent1 wants
to keep it for themselves while Agent2 wants to share), the target agent (Agent1) is asked to (i)
make multiple hypotheses about the other agent’s mental states, (ii) generate the corresponding next

1 The code, training data, and models of this work will be publicly released.
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M2

I hope he'll see the value 
in sharing and make a 
decision quickly...

I think he believes we 
should share this last 
blanket to stay as cozy as 
possible...

M1

Could you please... ?U11

2. Sample K Mental States 
(K=2 for example)

3. Sample J Utterances 
(J=2 for example)

4. Simulate 
Dialogues

 9

3

2

10

Is it possible that... ?U12

The temperature is...U21

I'm really struggling...U22

C11

C12

C21

C22

5. Scoring 
(Goal)

6. Collect   
(Mk, Ukj) pairs 

≥ Threshold (= 9)

Agent1's Goal (G1): Share the only blanket 
available

Agent2's Goal (G2): Keep the blanket for 
yourself as you are also very cold

Conversation History (H):
        : I'm freezing. Can we share the only blanket 
we have left?
                        I'm really feeling the chill too:    

Scenario (S): Two friends are camping in the 
wilderness and the temperature drops significantly 
at night.

Agent1:            Agent2:

The current speaker: Agent1

1. Seed Scenarios & Agents

M1 U11

M2 U22

7. Train model on new data collection

Beliefs, Desires,  Intentions, 
Emotions, Knowledge, …

Figure 1: Overview of TOMA. We sample scenarios, goals, and conversation histories from Sotopia-
Pi (Step 1), generate candidate mental state–utterance pairs and simulate dialogues (Steps 2–3),
evaluate goal achievement to select high-utility pairs (Step 5), and train the model after collecting
these training pairs (Steps 6–7).

utterances, and (iii) simulate the remaining dialogue and estimate the likelihood that each dialogue
leads to goal completion. We then use the most successful conversations to fine-tune the same
LLM to generate the partner’s mental states (e.g., they are cold and uncomfortable) and the strategic
utterances that are likely to result in goal achievement (e.g., suggesting a compromise).

TOMA is evaluated on the Sotopia dataset (Zhou et al., 2024; Wang et al., 2024), an open-ended
social reasoning environment that includes diverse goal-oriented social scenarios such as collabo-
ration, negotiation, persuasion, and competition. Our experimental results demonstrate that TOMA
achieves score improvements by up to 18.9% and 6.9% compared to the best base model variant
for Qwen2.5-3B and Qwen2.5-7B, respectively, and is also competitive with a GPT-5 nano base-
line. Furthermore, we provide a comprehensive analysis of our results, including the success and
failure factors across different scenarios and the ToM dimensions that are generated by the model.
The analysis shows that TOMA exhibits more strategic, goal-oriented, and long-horizon behavior
than the baselines, while also achieving better personal relationships with the partner. Our findings
highlight that social reasoning in LLMs cannot be achieved through optimizing their performance
on general reasoning benchmarks (Leaderboard, 2025) alone; it requires explicit modeling of mental
states to enable safe, fair, and effective interactions with humans.

2 METHODOLOGY

In this section, we introduce TOMA, a look-ahead training framework that improves agents’ ToM
ability in social interactions to achieve their goals. Conditioned on a scenario (e.g., two friends
are camping in the cold and there is only one blanket in Figure 1) and the agents’ private goals
(e.g., sharing the only blanket available vs. keeping the blanket for yourself), the goal is to reach a
mutually agreeable solution, such as taking turns or sharing the blanket, through dialogue.

Our proposed training protocol consists of generating training examples and fine-tuning an LLM-
based agent, as illustrated in Figure 1. First, we sample conversation contexts (§2.1). At each step
of the dialogue, we use an LLM to first elicit multiple ToM hypotheses corresponding to the men-
tal state of each agent (i.e., self and first-order beliefs), and then generate an appropriate utterance
conditioned on these mental states (§2.2). To identify useful mental states and utterances that even-
tually contribute to goal achievement, we run short-horizon simulations and keep pairs that achieve
the highest score on the simulated conversations (§2.2). Finally, we use the identified set of mental
states and utterance pairs as training examples for fine-tuning the LLM to generate both the latent
mental states and utterances (§2.3).

2.1 SAMPLING CONVERSATIONS TO SEED SCENARIOS AND AGENTS

To train models capable of socially grounded, goal-oriented reasoning in diverse contexts, it is im-
perative to use data that captures the complexity of real-world social interactions. To this end, we
adopt the Sotopia-Pi dataset (Wang et al., 2024), which provides a diverse set of scenarios and social
goals, allowing us to simulate complex social interactions during training. We first randomly sample
500 episodes from Sotopia-Pi, where each episode provides a social scenario, two agents with their
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own goals, and a multi-turn dialogue between them. Then, for each scenario, we randomly sam-
ple two conversations provided by Sotopia-Pi and truncate each to at most four turns to ensure the
context is early enough that the social goals have not yet been achieved. We denote each resulting
instance, comprising a scenario, agents’ social goals, and a partial conversation history, as H , which
is referred to as the context in subsequent steps. These contexts serve as the default input set for
eliciting useful mental states and utterances.

2.2 GENERATING AND SCORING TOM HYPOTHESES AND UTTERANCES

The goal of this phase is to generate plausible mental states and utterances that help an agent advance
its own social goal, which can be used to train goal-oriented ToM-aware agents. Specifically, we ask
the target model (Agent1 in Figure 1), which is the model to be trained, to generate its own latent
ToM states, produce corresponding utterances, and utilize these pairs for training.

Exploring mental states and utterances. The first key steps (2–3 in Figure 1) toward socially
intelligent behavior is to explore a range of plausible mental states and corresponding utterances that
align with the agent’s social goals and conversational context. For this purpose, from each context
H , which includes the scenario, the agents’ private social goals, and the partial conversation history
up to that point, we prompt an LMtarget to generate K mental state hypotheses, where each hypothesis
may consist of multiple sentences capturing different aspects of the current (target) agent’s internal
state: mk ∼ LMtarget(m | H). The model is asked to ensure that each generated hypothesis covers
at least three out of the five ToM dimensions: beliefs, desires, intentions, emotions, and knowledge.
For each mental state hypothesis mk, we sample J utterances: uk,j ∼ LMtarget(u | mk, H). This
gives us a candidate set of mental state and utterance pairs CH = {(mk, uk,j)}k=1..K, j=1..J .

Running simulations to evaluate downstream utility. To identify the most useful mental state
and utterance pairs for training that most effectively contribute to successful goal achievement, we
perform a short-horizon simulation to look ahead into the future trajectory of the dialogue and assess
how each pair influences the goal achievement of agents throughout the conversation (Steps 4–5 in
Figure 1). In the first turn, the target agent produces utterance uk,j conditioned on the mental state
hypothesis mk and the context H . Then the conversation continues for up to four future turns,
simulating the partner agent using LMpartner. Once the simulation is done, we compute the goal
achievement score (0–10) for each agent, Starget and Spartner, reflecting the degree to which each agent
successfully advanced its objectives. Since a successful conversation is supposed to contribute to
both agents’ goals, the average goal score is calculated: Ŝ(h,mk, uk,j) =

1
2 (Starget + Spartner). We

retain all pairs with an average score ≥ 9. If none meet this threshold, we keep the top-scoring pair.
The resulting high-scoring pairs form a training set that we use for fine-tuning. See Appendix C for
the prompts and the training instance format.

2.3 FINE-TUNING ON TOM STATES AND UTTERANCES

To instill Theory of Mind reasoning into the model, we fine-tune it on high-scoring mental state and
utterance pairs identified through dialogue simulation that are maximally useful to advance their
goals (Step 7 in Figure 1). From each selected pair (m⋆, u⋆) and its context H (i.e., scenario, private
goal, and dialogue history), we construct two types of training examples: one where the model is
prompted with H and trained to generate m⋆ (i.e., mental-state prediction), and another where the
model is prompted with both H and m⋆ to generate u⋆ (i.e., utterance prediction). Together, we
train the model to align with the joint behavior P (u,m | H) = P (u | m,H) · P (m | H) that led to
high goal scores. We finetune the model LMtarget using a standard cross-entropy loss over next-token
prediction. The resulting objective can be formalized as:

LCE(ϕ) = E(H,m⋆,u⋆)∼D⋆

[
CE(m⋆, ϕ(H)) + CE(u⋆, ϕ(H,m⋆))

]
(1)

= − logPϕ(m
⋆ | H)− logPϕ(u

⋆ | H,m⋆), (2)

where CE(y, ϕ(x)) denotes the token-level cross-entropy loss for target y given input x under model
ϕ. This way, the model learns to associate contexts with latent mental states and utterances that
were empirically effective during simulation. This implicitly improves its internal mechanism over
P (m | H) and P (u | m,H), aligning them to achieve their goals in various social situations.

3
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3 EXPERIMENTAL SETUP

We follow the setup defined in Sotopia (Zhou et al., 2024). Each instance in Sotopia provides the
scenario for the current social interaction between two agents, as well as their names and social
goals. Models evaluated on Sotopia take the role of one agent, and they are tasked with having
a dialogue with the other agent that results in achieving their own social goals. We describe the
evaluation setup (§3.1) and training settings (§3.2). See Appendix A for more experiment details
and Appendix C for all LLM prompts.

3.1 EVALUATION

Data. We adopt the Sotopia-Eval dataset (Zhou et al., 2024), which provides multiple social sce-
narios for the agents to simulate conversations dynamically. We use both the all and hard sets to
evaluate models. The all set includes 90 scenarios combined with 5 agent pairs, resulting in a total
of 450 testing instances. Each pair among the five shares the same scenario description and agent
goals, but the agent names and profiles are different. The hard set consists of 14 scenarios that are
challenging to GPT-4 (Achiam et al., 2023), yielding 70 testing instances.

Metrics. We follow Sotopia-Eval (Zhou et al., 2024), a suite of multi-dimensional evaluation met-
rics, and use LLM-as-a-Judge (Gu et al., 2024; OpenAI, 2025) to assess an entire conversation.
We focus on the following central criteria from the original setup: (1) Goal: the extent to which
the agent achieved their goals (0–10); (2) Relationship (Rel): whether the interactions between the
agents help preserve or enhance their personal relationships prior to the conversation (-5–5); and (3)
Knowledge (Know): whether the agent gained new and important information through the interac-
tion (0–10). The LLM judge provides both the rating score and its rationale on each dimension and
for each agent. We use GPT-5-mini (OpenAI, 2025) as the evaluator.

Partner Agent. We follow the original Sotopia evaluation setup which evaluates both agents on
their goal achievement and social awareness, and reports the average scores of the two agents. In
this “Self-Play” setup, both agents are instantiated as a model with the same complexity (e.g., base
with base, TOMA with TOMA, etc.).

Baselines. We consider two base settings as follows: (1) Base: Using the vanilla language model
(without fine-tuning), as a lower bound for the LLMs’ ability to hold a social dialogue; and (2)
Base+MS: where we apply a two-step prompt to the base model. We first generate mental states
based on the context and then generate an utterance conditioned on the context and mental states.
This setup quantifies both the quality and the utility of the mental states generated by the base model.

3.2 TRAINING

Data. We use the scenarios and the agents’ names and social goals from Sotopia-Pi (Wang et al.,
2024) to seed our conversations, as shown in Figure 1, Step 1. We instantiate each agent with an
instance of the pre-trained LLM (which we will later fine-tune on the training set described here).
Then, we generate a conversation between the two agents using the simulation protocol provided by
Sotopia, which defines the action types and schedules the agents to speak iteratively, and modify it to
introduce mental states as a latent variable. Before generating each utterance, we prompt the agent
to generate or update their own mental states and their first-order beliefs about the mental states of
the other agent. We set the number of mental state hypotheses to K = 2 and the number of utterance
candidates per hypothesis to J = 2.

Models. We experiment with Qwen2.5-3B, Qwen2.5-7B (Qwen, 2024a), and LLaMA3.1-8B
(Dubey et al., 2024) as the backbone LLMs. We use a 4-bit quantized version of Qwen2.5-14B
as LMpartner to ensure the partner generates reasonable utterances in simulations independent of the
model size being trained. Finally, Gemini-Flash (Comanici et al., 2025) is used to score the
simulated conversations.

Fine-tuning. Utilizing the paired utterances (Uttr) and mental states (MS) from the generated
multi-turn conversations, we conduct supervised fine-tuning (Pareja et al., 2025) over low-rank
adapters (Hu et al., 2022) of small language models (i.e., Qwen2.5-3B and Qwen2.5-7B) with the
data obtained in §2.2. We consider the following three training objectives: (1) FT+Uttr: Fine-tuning
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models only on utterance generation, ablating the mental states supervision to assess its contribution
to the conversation success; (2) FT+MS: Fine-tuning models to generate mental states, ablating the
utterance generation to assess its contribution to the conversation success; and (3) FT+MS+Uttr
(TOMA): Fine-tuning models on both utterance generation and mental states alignment, as ex-
plained in §2.3. For the evaluation of FT+MS and TOMA, the model generates mental states first
and then produces the utterances to respect the causal constraint between the two.

4 EXPERIMENTS

We compare the performance of TOMA to the baselines (§4.1). Then, we analyze the effect of
different partner agents on goal achievement (§4.2), the performance across scenario types (§4.3),
and the success and failure factors in goal achievement (§4.4). Finally, we present a statistical
analysis of TOMA’s performance across different evaluation dimensions (Appendix B.1).

4.1 DOES THEORY OF MIND HELP WITH SOCIAL REASONING?

Qwen2.5-3B Qwen2.5-7B Llama3.1-8B
Method Rel Know Goal Avg. Rel Know Goal Avg. Rel Know Goal Avg.

Base 0.97 3.29 5.25 3.17 2.07 4.54 7.26 4.62 0.27 5.09 6.11 3.82
Base+MS 1.54 3.48 5.93 3.65 2.47 4.45 7.30 4.74 1.20 5.37 6.67 4.41

FT+Uttr 1.92 4.01 6.60 4.18 2.42 4.78 7.43 4.88 1.28 5.18 6.88 4.45
FT+MS 2.37 3.81 6.69 4.29 2.73 4.40 7.46 4.86 1.49 4.70 6.46 4.22
FT+MS+Uttr (TOMA) 2.18 4.22 6.84 4.41 2.70 4.77 7.67 5.05 2.37 5.61 7.48 5.15

Table 1: Overall performance in terms of Rel, Know, and Goal dimensions on the all split.

Qwen2.5-3B Qwen2.5-7B Llama3.1-8B
Method Rel Know Goal Avg. Rel Know Goal Avg. Rel Know Goal Avg.

Base 0.18 4.20 4.96 3.11 0.58 4.21 5.26 3.35 -1.59 5.10 4.22 2.58
Base+MS 1.04 4.05 5.27 3.45 2.17 4.51 5.86 4.18 -0.52 5.16 4.80 3.15

FT+Uttr 1.22 4.10 5.23 3.52 1.36 4.43 5.70 3.83 -0.35 4.91 4.85 3.13
FT+MS 1.70 4.08 5.42 3.73 2.40 4.33 6.30 4.34 0.33 5.04 5.06 3.48
FT+MS+Uttr (TOMA) 1.90 4.22 5.88 4.00 2.33 4.78 6.32 4.48 1.27 5.36 5.68 4.10

Table 2: Overall performance in terms of Rel, Know, and Goal dimensions on the hard split.

Method Rel Know Goal Avg.

Base 0.77 4.39 6.24 3.80
Base+MS 1.51 5.21 6.67 4.46

Table 3: Performance of GPT5-nano in
terms of Rel, Know, and Goal dimen-
sions on the hard split.

TOMA outperforms the baselines. Tables 1 and 2
present the performance of models on the all and
hard subsets of the Sotopia test set, respectively. On
both subsets, TOMA consistently outperforms all other
model variants across the relationship, knowledge, and
goal completion dimensions. Moreover, TOMA per-
forms competitively with a strong GPT-5-nano baseline
(Base+MS in Table 3), even though GPT-5-nano sur-
passes Qwen2.5-7B on several general reasoning bench-
marks (White et al., 2025; Leaderboard, 2025). Specifically, TOMA (and even slightly more
FT+MS) substantially outperforms GPT-5 nano on the relationship dimension, indicating it gen-
erates utterances with better sensitivity to the other partner’s feelings. Compared to the best base
model variant (Base+MS), TOMA achieves score improvements of 16.8%, 6.6%, and 23.45% on
both datasets for the Qwen2.5-3B, 7B, and Llama-3.1 models, respectively, averaged across the all
and hard sets.

Mental-state conditioning improves relationship modeling. We observe that models that gener-
ate utterances without explicit mental-state conditioning (Base and FT+Uttr) perform significantly
worse on the relationship dimension than models that use mental-state representations (Base+MS,
FT+MS, and TOMA). This may suggest that explicitly considering the partner agent’s mental state
can help the target agent preserve a positive relationship with them. Training on utterances alone
(FT+Uttr) generally improves the knowledge and goal scores compared to the Base models on all
split. The improvement in goal completion is unsurprising given that our fine-tuned models are
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supervised to maximize goal completion. However, this goal-directed behavior may come at the
expense of interpersonal sensitivity, as indicated in its lower relationship scores compared to models
conditioned on mental states.

Fine-tuning on mental states does not hurt utterance effectiveness. Training the model only
on mental states (FT+MS) could potentially decrease its general generation ability. However, our
fine-tuned model is still able to produce reasonably effective utterances, achieving higher goal and
relationship scores than the base models across both splits. TOMA, trained to jointly improve the
prediction of latent mental states and the corresponding appropriate utterances, achieves the best of
both worlds, effectively maintaining relationships, knowledge seeking, and goal-oriented behavior.

5 10 15 20

5

5.5

6

Turns

G
oa

lS
co

re

Qwen2.5-3B

5 10 15 20
5

5.5

6

6.5

Turns

Qwen2.5-7B

Base Base+MS TOMA

Figure 2: Goal completion scores across
5–20 turns on the hard split.

Theory of Mind enables long-horizon adaptation.
Figure 2 compares how efficiently agents achieve their
goals under different maximum turn limits. Surpris-
ingly, the goal score of Base decreases as the num-
ber of turns increases. This is likely because the base
model often repeats the same argument, making no
progress across turns, which the GPT-5 judge penalizes.
Base+MS shows slight improvement, but starts declin-
ing again for conversations longer than 15 turns. In con-
trast, TOMA consistently improves its goal completion
score as the number of turns increases, suggesting that
it may be adapting its strategy over time to achieve the
goal more effectively. This adaptivity and long-horizon

planning behavior can make ToM-informed agents better suited for real-world social interactions
that often require longer and more flexible responses.

4.2 HOW DO DIFFERENT PARTNERS AFFECT GOAL ACHIEVEMENT?

Metric Target (Target=3B) Partner=Base- (Target=7B) Partner=Base-
Model 3B 7B 14B 32B 3B 7B 14B 32B

B
ot

h Goal Base+MS 4.81 4.99 5.11 5.28 4.94 5.27 5.72 5.83
TOMA 5.00 4.96 5.36 5.40 5.23 5.41 5.75 5.86

All Base+MS 3.17 3.29 3.4 3.49 3.38 3.56 3.79 3.93
TOMA 3.35 3.41 3.64 3.73 3.53 3.67 3.86 4.01

Ta
rg

et Goal Base+MS 3.85 4.35 3.58 3.63 3.84 4.35 4.12 3.77
TOMA 4.01 3.95 3.64 3.48 4.39 4.34 4.27 4.14

All Base+MS 2.76 3.1 2.88 2.92 2.93 3.2 3.26 3.18
TOMA 2.96 3.04 3.02 3.1 3.18 3.25 3.28 3.42

Table 4: Performance of the target agent (Target) and average perfor-
mance of both agents (Both) with respect to goal completion (Goal)
and the average across goal, relationship, and knowledge scores (All).
We use the hard split and vary the size of the partner agent (Base).

Our main evaluations fol-
low the original “self-play”
setup where both agents
are instances of the same
model (e.g., TOMA with
Qwen2.5-3B). Here, we
address the question of how
a different partner can im-
pact the performance of
the target agent. To that
end, we test how a tar-
get agent based on the
best model variants of each
of base (Base+MS) and
TOMA fares when paired
with a partner model of different complexity (Base) and size (3–32B). We conduct the evaluation
on the hard split. For each scenario, we use the original 5 distinct role pairs and swap the agent
roles (e.g., agent 1 as target and agent 2 as partner, and vice versa), resulting in 10 role pairs. We re-
port both the goal completion score as well as the average across goal, relationship, and knowledge
scores; once for the target agent and once for the average of both agents, in Table 4.

A TOMA target agent not only improves its own goal completion, but also their partner’s.
The target agent trained with our method performs best across most settings (Table 4). TOMA results
in consistently better combined outcomes (Table 4, top) between target and partner, suggesting that
our agent with improved ToM ability not only benefits itself, but also helps the other agent, likely
reaching agreeable solutions for both agents. As we show in §4.4, this effect is likely due to the
agent’s ability to employ more effective strategies across a broader range of interaction scenarios
(e.g., coordination, negotiation, persuasion, etc.). The individual outcome for the target is somewhat
more complex (Table 4, bottom). For the larger target size (7B), TOMA results in consistently better
target outcomes. For the 3B target size, the winner on goal achievement is inconsistent between
TOMA and Base+MS; we hypothesize that it’s harder for a small target agent to achieve their goal
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when conversing with a larger and socially unaware partner. With that said, it is worth noting that
TOMA wins at “All” metrics in most cases, meaning it is less likely than Base+MS to sacrifice
relationships or knowledge.

Coordination dynamics depend on both agent and partner sizes. We observe that when the
partner is larger, the overall conversation outcome – as measured by the average scores for both
agents – improves. Looking at the target agent scores shows that the factors behind this improve-
ment differ between the 3B and 7B TOMA target agents. The 7B target agent shows consistent
performance improvement with partner size across all dimensions, suggesting that it can benefit
from a more powerful partner. Conversely, the scores for the 3B target agent don’t consistently
improve with the partner’s size, again suggesting that in that case, a larger partner leads to higher
scores primarily for the partner. We observe that the 3B TOMA agent is more likely to achieve its
goal when paired with an equal-size partner than with a considerably larger partner (14B or 32B).

4.3 HOW DOES TOMA PERFORM ACROSS DIFFERENT CONVERSATION TYPES?

Categorizing scenarios into types. We are also interested in the performance and behavior of
TOMA across different types of social interaction, where the agents’ goals may be either aligned or
competing. We manually examined the 90 scenarios in the all split and categorized them into four
conversation types: cooperation - a win-win situation where both agents can fully achieve their
goals without conflicts or compromises (36 scenarios); negotiation - a positive-sum game where
the agents can reach their goals to a satisfactory extent with certain compromises (28 scenarios);
persuasion - a positive-sum game where the target agent tries to convince the partner to act in a way
that promotes the target agent’s goals (13 scenarios); and conflict - a zero-sum or even negative-sum
game where their goals are in conflict and can hardly be solved through compromise (13 scenarios).
See Appendix B for full details of each scenario group.

5 0 5 10

cooperation | 36

negotiation | 28

persuasion | 13

conflict | 13

ALL | 90

Ours > BaseOurs < Base
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Figure 3: Performance gains of
TOMA over Base w.r.t. scenarios.

TOMA outperforms the base model under all scenario
types. We analyzed 450 conversations: five conversations
for each of the 90 scenarios in the all split. Figure 3 looks at
the average goal achievement score of the target agent in each
conversation type, comparing agents implemented as the base
model vs. TOMA. Data points on the right of the orange dot-
ted line (x = 0 neutral line) correspond to conversations on
which TOMA outperformed the base model. As observed, the
first quartile (Q1) of each box is on the neutral line, indicating
that TOMA outperforms base in at least 75% of the conversa-
tions of each type. Considering the inter-quartile range (IQR),
TOMA brings greater gains in conflicts, where ToM may be
more necessary for the target agent to achieve a goal that goes
against their partner. Furthermore, the lower boundary (Q1-1.5IQR) is about -5 while the upper
boundary (Q3+1.5IQR) is nearly 10 (i.e., TOMA obtains an average score of 10 while the base
model scores 0), showing that our method can largely outperform base, but not the other way around.

4.4 WHAT STRATEGIES DOES TOMA EMPLOY?

Figure 4: Top 7 goal success and failure factors for the Base model and, using the 3B model.
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To understand the different strategies that agents with varying levels of ToM capabilities employ in
order to achieve their goals, we analyze the factors contributing to successful conversations (goal
completion score ≥ 7) and the barriers leading to failed conversations (goal completion score < 4)
across different model variants.

Categorizing success and failure reasons. To identify successful strategies, we provide Gemini
with the full conversation, as well as the target agent’s name and social goal, and prompt it to explain
the reasons for success. Using the reasons from all the successful conversations, we prompt the LLM
to categorize the reasons and provide a concise definition for each reason. To reduce redundancy,
we further instruct the LLM to cluster and merge similar reasons into 25 representative ones, each
manually verified by the authors for validity. Finally, we prompt the LLM to classify the reasons
provided for each conversation into these canonical categories. We repeat the same process to obtain
the failure reasons from the failed conversations.

Figure 4 presents the top factors most frequently associated with success and failure outcomes of the
3B models, with the respective prefixes S or F . Each label is further broken down by scenario types
(Details in §4.3). See Appendix B for complete definitions of the labels and scenario categories.

TOMA enables more strategic reasoning across diverse scenarios. In successful conversa-
tions, the base model relies heavily on interpersonal strategies, such as rapport building
and relationship building, and direct goal-pursuit approaches, such as persistent
request and direct request. In contrast, TOMA adopts long-horizon goal-oriented strate-
gic behavior by employing compromise, accommodation, and solution offering,
while still maintaining comparable levels of rapport building and cooperative
response to the base model.

In terms of conversation types, both models achieve success mainly in cooperative conversations,
where it’s easy for both agents to achieve a high goal completion score. Compared to the base model,
TOMA also has high levels of success in competitive settings (negotiation, persuasion, and conflict),
especially when using the strategies of compromise, accommodation, and solution offering. The
results of the 7B model (in Appendix B.3) similarly show that TOMA applies strategic behaviors
which lead to success across different scenario types, and this strategic behavior seems to increase
with model size.

TOMA exhibit more active behaviors in failure modes. The base model often fails due to
being too passive (failed to initiate; lack of action; lack of information
provision). Conversely, TOMA employs active strategies that sometimes fail (e.g., failure
to persuade) as well as goal-oriented approaches that fail to account for the role of relationship
building in goal achievement (ignored preferences; prioritizing self). In the 7B
version of TOMA, these failures are significantly reduced while the lack of action frequency
is increased. We hypothesize this is the result of increased sensitivity to the partner’s emotional state
compared to the 3B model (as shown in the relationship score in Tables 1 and 2), which reduces the
selfish ignored preferences and prioritizing self occurrences (see Appendix B.3).

Figure 5: Distribution of mental state dimensions
on the 3B model. See Appendix B.3 for 7B.

Size Model 0th-order (%) 1st-order (%)

3B Base+MS 28.1 71.9
TOMA 21.8 78.2

7B Base+MS 22.3 77.7
TOMA 17.6 82.4

Table 5: Zero- vs. first-order reasoning per-
centage on Base+MS and TOMA.

TOMA prioritizes intentions over emotions in mental state generation. To investigate the ef-
fect of TOMA across different mental states, we categorize the generated ToM hypotheses into five
dimensions and then compare the mental states distributions given by Base+MS and TOMA. Fig-
ure 5 shows that TOMA generates more hypotheses about intentions and relies less on emotions,
while maintaining similar levels for beliefs, desires, and knowledge. This is in line with the finding
that the base model is focused on rapport-building strategies, which require hypothesizing about the
other agent’s emotions – as opposed to TOMA’s strategic and goal-oriented behavior that requires
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reasoning about the other agent’s intentions. We observe similar trends in the 7B model. In addition,
we present mental state distributions under different scenario types in Figure 12 and qualitative ex-
amples of the mental states in the conversation (see Appendix B.5), which provides further insights
into how different mental state dimensions contribute to the success of TOMA.

TOMA generates more 1st-order mental states than the baseline. Table 5 shows the distri-
bution of 0th-order (target agent’s own beliefs) and 1st-order (target agent’s beliefs about others)
mental states generated by Base+MS and TOMA. Although both models are prompted to produce
these states in equal proportions, TOMA consistently generates more 1st-order beliefs by an aver-
age of +6.3% and +5.0% on the 3B model and 7B model, respectively, compared to Base+MS. This
suggests that TOMA is better at inferring others’ mental states, potentially contributing to more
strategic and socially aware behaviors during interaction.

5 FURTHER ANALYSIS

Base
B+MS

FT+Uttr
FT+MS

FT+MS+U0

2

4

6

Methods
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Qwen2.5-3B
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B+MS

FT+Uttr
FT+MS

FT+MS+U0
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Methods

Llama3.1-8B

GPT Gemini Deepseek Qwen

Figure 6: Average scores (relationship, knowledge, and goal) across 4 different LLM judges on the
hard split. The trends of evaluation results remain consistent across different LLM judges. See
Appendix B.4 for full results.

Validity of the LLM-as-a-judge evaluation protocol. To test whether our evaluation method is
sensitive to the evaluator LLM, we experiment with three additional LLM judges: Gemini-2.5-flash,
DeepSeek-3.1 (Liu et al., 2024), and Qwen3-225B, and report their scores along with those from the
original evaluator GPT-5-mini. Figure 6 shows consistent trends across all four judges. TOMA con-
sistently outperforms all baselines, while the SFT+MS model performs comparably when trained
with the Qwen2.5-7B. Table 14 in the appendix provides detailed results, showing that TOMA im-
proves the relationship dimension scores by an average of 1.58, 1.77, and 2.94 points over the Base
on Qwen2.5-3B, Qwen2.5-7B, and LLaMA3.1-8B, respectively. For the goal dimension, TOMA
achieves average gains of 1.06, 1.27, and 1.53 points over the Base model on the same three mod-
els. Furthermore, the ratings from the different LLM judges across all experimental settings are
positively correlated (see Table 15 in the appendix), and our human validation shows that human
evaluators validate the reasoning provided by the original GPT-5-mini judge (see Table 16 in the
appendix).

#MS Avg. #Uttr Avg. #Turn Avg.

2 4.01 2 4.01 4 4.01
3 4.17 3 3.81 6 4.24
4 4.11 4 4.18 8 4.06

Table 6: Average scores across different
numbers of mental states, utterances,
and simulation turns on the hard split
with Qwen2.5-3B model.

Performance across different K/J numbers and sim-
ulation turns. Table 6 presents ablation experiments
with different values of K and J , as well as varying num-
bers of dialogue simulation turns. When varying K, we
fix J = 2, and when varying J , we fix K = 2. For sim-
ulation turns, we vary the number of turns up to 8. Al-
though all settings outperform the baselines, we observe
some differences in their trends. Overall, increasing the
number of simulation turns improves performance, but
using 4 turns provides a good balance between data con-
struction efficiency and overall effectiveness. Similarly, sampling more mental states and utterances
(e.g., 3 or 4) yields modest improvements, although J = 2 remains sufficient; we encourage future
work to explore more diverse settings.

9
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6 RELATED WORK

Theory of Mind in LLMs. With the advent of LLMs, research on ToM in AI is experiencing
strong momentum. Studying the extent that LLMs have ToM abilities can inform research on build-
ing AI agents with human-like communication and empathy skills, as well as protecting against AI
manipulation and deception. Current findings are conflicting: LLMs achieve good performance on
various ToM benchmarks and tests designed for humans, which some researchers interpret as having
developed a theory of mind (Kosinski, 2023; 2024; Strachan et al., 2024); Yet others show that this
ability is inconsistent and superficial (Ullman, 2023; Shapira et al., 2024; Amirizaniani et al., 2024;
Nickel et al., 2024; Soubki & Rambow, 2025). To improve LLMs’ ToM capabilities, one approach
is to prompt models in a chain-of-thought setup to explicitly reason about beliefs and mental states
before making a prediction (Wilf et al., 2024; Shinoda et al., 2025). Alternative approaches combine
LLMs with belief tracking (Sclar et al., 2023; Qiu et al., 2024) or Bayesian Inverse Planning (Ying
et al., 2023). While less brittle than pure LLM-based approaches, these methods are typically lim-
ited in scope and only applied to specific setups. Another promising (but computationally expensive)
approach generates and explores multiple hypotheses about the agents’ mental states during infer-
ence (Kim et al., 2025). In contrast, we propose a training approach that saves inference-time costs.
Crucially, most existing work evaluates LLMs on static and artificial ToM benchmarks, requiring
models to answer questions as an observer rather than a participant in a dynamic environment (Wag-
ner et al., 2025; Xiao et al., 2025; Lupu et al., 2025). Instead, we evaluate our method on Sotopia,
measuring the contribution of modeling ToM for social conversations between AI agents.

Look-Ahead Simulation in Self-Training Agents. In this work we leverage look-ahead, a plan-
ning technique where an agent simulates the potential outcomes several steps into the future to make
more informed decisions in the present. In text generation, look-ahead search was employed for de-
coding, prioritizing tokens that lead to better overall generated text (Lu et al., 2022; Fu et al., 2024)
or faster inference (Leviathan et al., 2023; Chen et al., 2023). More recently, look-ahead signals
were used in GRPO (Guo et al., 2025), an RL algorithm used in LLM preference tuning. GRPO
obviates the need for human-labeled data by generating multiple outputs, simulating their outcomes
with an LLM-as-a-judge (Gu et al., 2024), and rewarding outputs that yield better outcomes. In gen-
eral, many simulation-based methods focus on outcome alignment using RL (Xi et al., 2024; Pang
et al., 2024). Conversely, we use simulation to generate training examples, similarly to Hoang et al.
(2025). In the context of social dialogues, prior work targeting Sotopia employed a similar approach
of generating conversations, simulating their outcome with an LLM judge (e.g., in terms of goal
achievement), and using this signal to select positive training examples or as a reward in RL (Wang
et al., 2024; Kong et al., 2025; Yu et al., 2025). Instead of directly optimizing utterances that lead to
goal achievement or other desirable outcomes – which could lead to reward hacking – we explicitly
train our model to use ToM in social dialogues; we improve both the model’s ability to reason about
mental states, as well as the capacity to consider this information when generating utterances.

7 CONCLUSION

We introduced TOMA, a training framework that integrates ToM-driven mental state and utter-
ance prediction with conversation simulation to select interaction trajectories that best support goal
achievement. Experiments on the Sotopia interactive evaluation benchmark demonstrate the effec-
tiveness of our approach across a range of baselines, achieving competitive performance with GPT-
5-nano. Comprehensive analysis demonstrates that TOMA, infused with ToM ability, can better
infer others’ mental states, leading to more strategic and goal-oriented behavior, as well as sup-
porting long-horizon adaptation and improving relationship management. In conclusion, TOMA
represents a significant step toward building socially intelligent LLM agents through explicit mod-
eling of social reasoning and internal agent mechanisms.

ETHICS STATEMENT

Ethical considerations of social intelligence in LLMs. LLMs are increasingly used as so-
cial partners, providing mental-health support, personalized guidance, and assistance in everyday
decision-making. As these systems become embedded in human-AI interactions, understanding
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their social behaviors becomes essential. Prior work showed that human-like social intelligence,
such as empathy, can improve user experience and conversational quality (Campbell & Babrow,
2004; Shen, 2011; Chockkalingam et al., 2025). Our findings complement this line of work by
demonstrating that explicitly modeling an interlocutor’s mental state and conditioning the generation
of utterances on these predictions improves both agents’ relationship outcomes and goal achieve-
ment across diverse social scenarios. While such capabilities have clear benefits for supportive
applications like tutoring, counseling, or customer service, they also introduce risks if exploited for
manipulation or deception, such as in social media bots, political persuasion, or scams. Mitigating
these risks requires public education about AI capabilities and risks, thoughtful regulation, and re-
sponsible design. In particular, we recommend that LLM-powered applications avoid human names
or avatars and clearly identify themselves as AI systems to reduce the likelihood of misleading users.

Data collection and ethics approval. All procedures involving human participation were re-
viewed and approved by our institution’s Research Ethics Board and adhered to all applicable in-
stitutional and federal guidelines. Human evaluations were conducted through CloudResearch, and
all annotators provided informed consent. No personal information was collected at any stage, and
participants were compensated at an average hourly rate of $10, which is comparable to the U.S.
minimum wage.
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A EXPERIMENT DETAILS

A.1 MODEL SETTINGS

For open-weight models such as Qwen (Qwen, 2024b), we load the model checkpoint and tok-
enizer provided by Hugging Face Transformers (Wolf et al., 2020). We load all models in the brain
floating-point format (bfloat16). The maximum context length is set to 4096, random seed to
42, generation temperature to 0.7, and we use top-p sampling (Holtzman et al., 2020) with p = 0.9.
For proprietary LLMs (GPT-5 (OpenAI, 2025) and Gemini (Comanici et al., 2025)), we call the
respective API using a default generation temperature of 1.0. Table 7 provides the model sources.

Type Role Model Link

Open-weight LLM Speaker (fine-tuning) Qwen2.5-3B Model Link
Open-weight LLM Speaker (fine-tuning) Qwen2.5-7B Model Link
Open-weight LLM Partner (frozen) Qwen2.5-14B Model Link
Proprietary LLM Partner (frozen) GPT-5-nano API Link
Proprietary LLM Evaluator (frozen) GPT-5-mini API Link
Proprietary LLM Evaluator (frozen) Gemini-Flash API Link

Table 7: The sources of models used in this work.

A.2 TRAINING DETAILS

We adopt LoRA (Hu et al., 2022) for fine-tuning and apply grid search, provided by wandb (Biewald,
2020), on the learning rate and LoRA configurations (rank and alpha), and select the best model
checkpoint based on the performance on the validation set. During validation, the model is evaluated
on 20 randomly sampled testing instances and is asked to generate 10 turns of conversation per
instance. In addition, we employ an early stopping strategy to end the training session when the best
validation score does not change for 3 consecutive updates. The key training hyper-parameters are
presented in Table 8.

Hyper-parameters Values

# epochs 3
batch size 2

gradient accumulation steps 4
learning rate 1e-4; 5e-05
lr scheduler cosine

weight decay 0
warmup steps 10
max seq len 4,096
LoRA rank 8; 16; 32; 64
LoRA alpha 32; 64; 128

LoRA dropout 0

Table 8: The training hyper-parameters.

A.3 EXPERIMENTAL COSTS

For constructing the training data containing mental states and utterances, the API calls of Gemini
(gemini-2.0-flash-lite-001) cost less than 5 USD. For the comprehensive evaluation in
our experiments, the cost of GPT-5 (gpt-5-mini) was roughly 100 USD.

Each experiment session involving open-weight LLMs was conducted on a single NVIDIA L40S
GPU, and we employ unsloth (Daniel Han & team, 2023) for fast training, reducing each training
session to about 4 hours.
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B ANALYSIS DETAILS

B.1 HOW DOES TOMA PERFORM ACROSS DIFFERENT EVALUATION DIMENSIONS?

To investigate the performance gains of TOMA over Base in different evaluation dimensions (i.e.,
Goal, Relationship, and Knowledge), we visualize the paired scores in Figure 7 and Figure 8, where
each point (x, y) means the Base performance is x and TOMA performance is y for one instance.
The 45-degree dot line (“neutral line”) stands for a draw, and a darker color of the points represents
a higher frequency.

We observe that more points are distributed above the neutral line, meaning TOMA outperforms
Base for more instances, especially for Goal and Rel dimensions. In addition, considering the four
quadrants of the Goal dimension in Figure 7(a) and Figure 8(a), many points lie in the upper-left
region, meaning TOMA is much better than Base, while hardly any points lie in the lower-right
corner. For the Relationship dimension in Figure 7(b) and Figure 8(b), most points of TOMA
and Base are above the y=0 line, meaning a the relationship between two agents is preserved and
even enhanced through after the conversation. Figure 7(c) and Figure 8(c) show that both methods
help agents gain new or important information through interaction, and TOMA often brings more
knowledge gains.
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Figure 7: Comparisons between TOMA and Base over different dimensions using Qwen2.5-3B.
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Figure 8: Comparisons between TOMA and Base over different dimensions using Qwen2.5-7B.

In addition, we present the correlation coefficients between the results of different dimensions in
Table 9, which shows that the three dimensions are positively correlated with each other. We observe
that the Goal-Rel pair shows the strongest correlation, indicating that the improved goal completion
performance is related to the preservation and enhancement of the agents’ relationship throughout
the conversation, which supports the importance of enabling Theory of Mind.

Goal–Rel Goal–Know Rel–Know
Pearson Spearman Pearson Spearman Pearson Spearman

3B 0.224 (2e-6) 0.376 (5e-16) 0.228 (1e-6) 0.213 (7e-6) 0.288 (9e-10) 0.222 (3e-6)
7B 0.284 (2e-9) 0.370 (2e-15) 0.120 (0.013) 0.136 (5e-3) 0.107 (0.026) 0.062 (0.195)

Table 9: The Pearson and Spearman correlation coefficients (with p-values) between dimensions.
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B.2 HOW DOES TOMA PERFORM ACROSS DIFFERENT CONVERSATION TYPES?

Figure 9 provides the performance (Goal) gains of TOMA over Base with respect to different sce-
nario types using the Qwen2.5-7B model, and the analysis of the 3B model (Figure 3) is described
in §4.3. Table 10, Table 11, Table 12, and Table 13 showcase five instances per scenario type:
cooperation, negotiation, persuasion, and conflict.

5.0 2.5 0.0 2.5 5.0

cooperation | 36

negotiation | 28

persuasion | 13

conflict | 13

ALL | 90

Ours > BaseOurs < Base
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#

Figure 9: The Goal gains of TOMA over Base regarding different scenario types using Qwen2.5-7B.

Scenario Description Speaker’s Goal Partner’s Goal

Conversation between two indi-
viduals in a romantic relationship

Ask the other to go to dinner with
you (Extra information: you want
to have a romantic dinner at a
fancy restaurant)

Maintain a balanced diet while
enjoying the dinner (Extra infor-
mation: you are on a diet and you
have a daily limit on calorie in-
take.)

Two friends are meeting at a cof-
fee shop, where one of them is
having trouble keeping up with
their bills.

Help your friend with their finan-
cial trouble (Extra information:
you are aware that your friend is
struggling with their bills and you
want to help.)

Maintain your pride if your friend
offers you money(Extra informa-
tion: you are the friend who
is struggling financially, but you
don’t want to seem like you are
taking advantage of the situation.
Hint: you can express gratitude
and discuss how you plan to pay
it back in the future.)

Two friends are having a conver-
sation in a coffee shop

Seek emotional support (Extra in-
formation: you have been feeling
down lately and you need some-
one to talk to)

Provide emotional support but
also avoid enabling victim men-
tality (Extra information: you be-
lieve that your friend needs to
face their problems instead of
dwelling on them.)

A conversation between two
friends at a park

Break bad luck (Extra informa-
tion: you found out that you have
been having bad luck because you
have been unknowingly carrying
a cursed artifact.)

Help friend prepare the ritual to
break the bad luck, although you
are an atheist and not supersti-
tious at all. (Extra information:
you know that your friend be-
lieves in the ritual deeply, and the
placebo effect might give them
more confidence.)

Two strangers are meeting at a
party.

You are trying to figure out
whether you have a mutual friend
with the other person. You should
not simply list their names.

You are trying to figure out
whether you have a mutual friend
with the other person. You should
not simply list their names.

Table 10: Five instances of the cooperation scenario type.
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Scenario Description Speaker’s Goal Partner’s Goal

Two friends are camping in the
wilderness and the temperature
drops significantly at night.

Share the only blanket available
(Extra information: you are ex-
tremely cold and need the blanket
to keep warm Hint: you can stress
the benefit of sharing.)

Keep the blanket for yourself as
you are also very cold (Extra in-
formation: you have a lower tol-
erance for cold, and you feel that
you need the blanket more)

One person is offering a BMW
Z3 for $5000.0, while another in-
dividual is interested in purchas-
ing it. Here’s a brief description
of the car: The BMW Z3 is in
need of a good home. It oper-
ates smoothly without any prob-
lems and is known for its fuel
efficiency and sporty appearance.
The mileage is relatively low for
its age. It’s an opportunity not to
be missed, so come and get it be-
fore it’s gone. A smog certificate
is readily available.

You are the buyer for this item
and your target price is $4600.
You should be aware that if you
purchase it at a price significantly
higher than your target, you will
incur a penalty. However, if you
manage to secure it for less than
the target price, you will receive
a bonus.

You are the seller of this item,
with a target price set at $3260.
Please note, you may face a
penalty if this item is sold for
a price significantly lower than
the target. However, you stand a
chance to earn a bonus if you suc-
cessfully sell it for a price higher
than the target.

Two roommates deciding on how
to split up items after a garage
sale. The items are 3 books, 2
hats, and 1 ball. Each item has
a different sentimental value for
each person, which translates into
points.

Maximize the points you have
(Extra information: you value the
books at 3 points each, the hats
at 2 points each, and the ball at 1
point)

Maximize the points you have
(Extra information: you value the
books at 2 points each, the hats
at 3 points each, and the ball at 1
point)

Conversation between two
friends, one who has written a
play based on their parents’ life,
and the other owns a production
company.

Sell the rights of the play to your
friend (Extra information: you
believe that the play is worth a lot
and you would like a fair price for
it)

Acquire the rights of the play
while maintaining a budget (Ex-
tra information: you only have a
limited budget for new plays this
season. Hint: you can not spend
all your budget on this play since
you still need to maintain your fi-
nancial stability.)

A conversation between two in-
dividuals, one is the homeowner
and the other is their cousin’s
partner, who has been staying at
the house for a while.

Tell the cousin’s partner that they
are no longer welcome in your
home (Extra information: they
have been causing a lot of trou-
ble and not respecting house rules
Hint: you may want to discuss the
issues and propose possible solu-
tions)

Attempt to remain in the home
while maintaining a good rela-
tionship with the cousin and the
homeowner (Extra information:
you have nowhere else to go at
the moment and you believe the
issues can be resolved.)

Table 11: Five instances of the negotiation scenario type.
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Scenario Description Speaker’s Goal Partner’s Goal

Two friends meet at a bar. Convince the friend to drink less
(Extra information: your friend
has been drinking a lot recently
and you’re worried about their
health)

You want to keep drinking but
don’t want to upset your friend
(Extra information: you’ve been
drinking to cope with stress re-
cently, but don’t want to worry
your friend)

Two roommates living together
and sharing household chores.
One of them, who is responsi-
ble for cooking, finds out that the
other one refuses to eat anything
they cook

Convince the roommate to try
the food (Extra information: you
have spent a lot of time and effort
on cooking)

Express your concerns about the
food without hurting the room-
mate’s feelings (Extra informa-
tion: you are worried about the
taste and nutrition of the food)

Two friends discussing their
schedules at a coffee shop

Convince the friend to take more
classes (Extra information: you
think your friend is not challeng-
ing themselves enough)

Maintain a manageable sched-
ule while preserving the friend-
ship (Extra information: you are
already overwhelmed with your
current workload Hint: you can
express your concerns about the
workload and suggest other ways
of challenging oneself.)

Conversation between two
business partners reviewing
their company’s financial status
(Gourmet Delights Inc. is glob-
ally recognized for producing
and distributing a diverse line of
exceptional quality food prod-
ucts.)

Convince the partner to cut costs
(Extra information: you have
found a report indicating the
company’s profits are decreas-
ing. And you think the company
should start by switching suppli-
ers of ingredients. Hint: you can
propose ways to cut costs that
won’t affect the status of the com-
pany.)

Maintain the quality of the com-
pany’s products and services
while agreeing to a cost cut (Extra
information: you are concerned
about the impact of cost-cutting
on the quality of your product.)

A conversation between two indi-
viduals at a charity gala

Convince the other individual to
donate to a cause supporting
young children (Extra informa-
tion: this cause can greatly im-
prove the lives of many young
children and you think it is a wor-
thy cause. The minimum dona-
tion for this charity organization
is $3000)

Maintain financial stability while
supporting causes (Extra infor-
mation: you have a certain budget
for donations this year and have
already made several donations.
You are only thinking of donating
$2000 max)

Table 12: Five instances of the persuasion scenario type.
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Scenario Description Speaker’s Goal Partner’s Goal

Conversation between two
friends at a trivia night

Get the answer for the trivia ques-
tion from the friend (Extra infor-
mation: your friend knows the
answer to the trivia question but
hasn’t shared it with you yet)

Avoid revealing the answer to the
trivia question (Extra informa-
tion: You think that your friend
should try to figure it out on their
own to improve their trivia skills)

Two roommates are having a dis-
agreement over noise levels in
their shared apartment.

Convince your roommate to
lower the noise (Extra infor-
mation: you have an important
online meeting tomorrow
morning and you need a quiet
environment to prepare)

Defend your right to play music
in your own room, but also keep
the peace in the apartment (Ex-
tra information: you find playing
music relaxing and it’s your way
to unwind after a long day. Hint:
you may want to suggest a com-
promise, like using headphones
or playing music only during cer-
tain hours.)

Two friends are playing a video
game together.

Win the game (Extra information:
you just need five more minutes
to accomplish your goal in the
game)

Stop the game because it’s too
late (Extra information: you feel
tired and need to go to bed early
but don’t want to upset your
friend)

Conversation between two indi-
viduals who share a common dis-
like for a third person

Injure the third person (Extra in-
formation: You have a deep-
seated hatred for the third person
and you are willing to take the
risk to hurt them)

Prevent physical harm but also
express your dislike (Extra infor-
mation: You also dislike the third
person, but you are not willing
to resort to violence, you prefer
to express your dislike in a non-
violent way. Hint: you can try to
convince the other person about
the potential consequences of en-
gaging in violence)

Two criminals are arrested and
placed in separate cells. The po-
lice have enough evidence to con-
vict both criminals of a minor
crime but need their confessions
to establish evidence for a more
serious crime. Now they get a
chance to briefly chat with each
during lunchtime.

Minimize the jail year (Extra in-
formation: your lawyer told you
that 1. if you report the other
person, you would be free, the
other person would go to jail for
10 years, and vice versa. 2. if
both of you remain silent, you
will only receive a fine. 3. If both
of you reported each other, you
both would go to jail for 10 years.
Hint: You may want to share your
information to reach mutual un-
derstanding)

Minimize the jail year (Extra in-
formation: your lawyer told you
that 1. if you report the other
person, you would be free, the
other person would go to jail for
10 years, and vice versa. 2. if
both of you remain silent, you
will only receive a fine. 3. If both
of you reported each other, you
both would go to jail for 10 years.
Hint: You may want to share your
information to reach mutual un-
derstanding)

Table 13: Five instances of the conflict scenario type.
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B.3 WHAT STRATEGIES DOES TOMA EMPLOY?

Figure 10 presents the Top-7 goal success and failure reasoning labels on Base and TOMA on the
Qwen2.5-7B model, and the reasoning of the 3B model (Figure 4) is described in §4.4. Table 17
and Table 18 provide the canonical labels for success and failure reasons, respectively. Figure 11
presents the distribution of mental state dimensions for 7B model.

Figure 10: Top 7 goal success and failure reasoning labels on Base and TOMA on 7B model.

Figure 11: Distribution of mental state dimensions on 7B model.

B.4 RESULTS OF MULTIPLE LLM JUDGES AND HUMAN EVALUATION

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Qwen2.5-3B Qwen2.5-7B LLaMA3-8B

Rel Know Goal Avg. Rel Know Goal Avg. Rel Know Goal Avg.

GPT5

Base 0.18 4.2 4.96 3.11 0.58 4.21 5.26 3.35 -1.58 5.07 4.29 2.59
Base+MS 1.04 4.05 5.27 3.45 2.17 4.51 5.86 4.18 -0.52 5.16 4.8 3.15
SFT+Uttr 1.22 4.1 5.23 3.52 1.36 4.43 5.7 3.83 -0.35 4.91 4.85 3.13
SFT+MS 1.7 4.08 5.42 3.73 2.4 4.33 6.3 4.34 0.33 5.04 5.06 3.48
SFT+MS+Uttr 1.9 4.22 5.88 4.00 2.33 4.78 6.32 4.48 1.27 5.36 5.68 4.1

Gemini

Base -0.92 6.86 3.59 3.17 -0.31 6.96 4.48 3.71 -2.42 7.09 3.44 2.71
Base+MS 0.07 6.53 4.53 3.71 1.67 7.26 5.48 4.8 -1.16 7.23 4.48 3.52
SFT+Uttr -0.04 6.37 4.19 3.51 0.96 7.15 5.44 4.52 -1.14 7.03 4.6 3.5
SFT+MS 1.04 6.53 4.58 4.05 1.98 7.43 6.1 5.17 -0.36 6.8 4.26 3.56
SFT+MS+Uttr 0.68 6.68 5.15 4.17 1.15 7.21 5.75 4.7 0.49 7.36 5.1 4.31

Deepseek

Base -0.96 1.73 3.1 1.29 -0.4 2 3.8 1.8 -2.06 2.13 2.98 1.01
Base+MS -0.36 1.73 3.31 1.56 1.51 2.92 4.87 3.1 -0.98 2.81 3.41 1.75
SFT+Uttr -0.22 1.84 3.33 1.65 0.6 2.63 4.91 2.71 -1.03 2.65 3.96 1.86
SFT+MS 0.51 1.77 3.7 2 1.7 3.05 5.37 3.37 -0.51 2.16 3.82 1.83
SFT+MS+Uttr 0.35 2.11 4.06 2.17 1.39 3.04 5.51 3.31 0.44 2.84 4.9 2.73

Qwen

Base 0.05 2.87 4.64 2.52 0.81 2.86 5.36 3.01 -1.62 2.84 4.93 2.05
Base+MS 1.18 2.4 4.94 2.84 3.12 3.45 5.89 4.16 0.01 3.49 5.6 3.03
SFT+Uttr 1.35 2.71 4.88 2.98 1.94 3.26 6.11 3.77 -0.21 3.32 5.41 2.84
SFT+MS 1.96 2.41 5.01 3.13 3.05 3.18 6.44 4.22 0.64 3.1 5.17 2.97
SFT+MS+Uttr 1.75 2.74 5.44 3.31 2.87 3.56 6.41 4.28 1.86 3.8 6.09 3.91

Avg.

Base -0.41 3.92 4.07 2.53 0.17 4.01 4.73 2.97 -1.92 4.28 3.91 2.09
Base+MS 0.48 3.68 4.51 2.89 2.12 4.54 5.53 4.06 -0.66 4.67 4.57 2.86
SFT+Uttr 0.58 3.76 4.41 2.91 1.22 4.37 5.54 3.71 -0.68 4.48 4.71 2.83
SFT+MS 1.30 3.70 4.68 3.23 2.28 4.50 6.05 4.28 0.03 4.28 4.58 2.96
SFT+MS+Uttr 1.17 3.94 5.13 3.41 1.94 4.65 6.00 4.19 1.02 4.84 5.44 3.77

Table 14: Relationship, knowledge, goal, and average scores across 4 different LLM judges on the
hard split.

GPT5 Gemini Deepseek Qwen

GPT5 1±0 0.6056±0.2104 0.6463±0.1857 0.6802±0.1786

Gemini 0.6055±0.2104 1±0 0.5828±0.2331 0.5967±0.2446

Deepseek 0.6463±0.1857 0.5828±0.2332 1±0 0.6770±0.1791

Qwen 0.6802±0.1786 0.5967±0.2446 0.6770±0.1791 1±0

Table 15: The Pearson correlation coefficient between the ratings by each pair of LLM judges. We
present the average correlation (± standard deviation) across all evaluation results in Table14.

Goal Relationship Knowledge

Validity of Judge’s Reasoning 84% 100% 96%

Human Agreement Percentage 92% 92% 88%

Table 16: The human evaluation of the validity of the reasoning provided by the GPT-5-mini judge.
From the evaluation outputs on the hard split using Qwen2.5-3B, we randomly sample 5 instances
per model (i.e., Base, Base+MS, SFT+Uttr, SFT+MS, and SFT+MS+Uttr) and ask three human
evaluators to measure whether the LLM judge’s reasoning in each instance is valid or not. Here, we
present the validity rates (majority voting by three annotators) and agreement percentages.
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Success Labels Definition

rapport building Establishing connection, empathy, and openness.
information gathering Collecting details to understand needs, preferences, and context.
negotiation initiation Starting the process of discussion and bargaining.
price negotiation Discussing and adjusting the price or value.
flexible negotiation Demonstrating willingness to compromise on terms.
goal setting Establishing clear objectives and intentions.
cooperative response Offering solutions and support to address requests.
actionable suggestion Proposing concrete steps to move forward.
offer establishment Making a clear and detailed proposal or offer.
direct request Making a clear, straightforward demand or question.
persistent request Consistently pursuing a goal or request.
avoidance behavior Avoiding commitment, connection, or engagement.
process clarification Explaining the steps or methods involved.
coordination Organizing and scheduling actions to move forward.
persuasion Convincing others through offers or logic.
value communication Conveying the worth or benefits.
resource management Managing finances, items, time, or space.
relationship building Developing connections and fostering trust.
risk management Addressing and mitigating potential concerns.
compromise Finding a mutually agreeable solution.
initiative Taking proactive steps or offering suggestions.
budget influence Considering and working within financial constraints.
solution offering Providing or suggesting concrete methods to resolve issues.
direct statement Making clear and unambiguous pronouncements.
accommodation Meeting the needs or preferences of the other party.

Table 17: Canonical labels for success reasons.

Failure Labels Definition

emotional reactivity Displays of anger, hostility, or defensiveness that disrupt cooperation.
information gathering failure Insufficient attempts to collect or exchange necessary information.
weak argumentation Inability to provide strong reasoning, counterarguments, or supporting evidence.
prioritizing self Focus on personal needs/comfort over the shared goal or others’ needs.
price negotiation failure Inability to reach a desired price or bargain effectively.
lack of information provision Failure to provide crucial details needed for a decision.
lack of empathy and consideration Failing to understand or acknowledge the other party’s feelings/perspective.
inadequate proposal Presenting a proposal that is vague or lacks essential details.
failed to initiate Failing to start the conversation or propose actions.
failed to persuade Failure to convince or motivate the other party.
missed opportunities Failing to capitalize on advantageous chances or options.
lack of shared understanding Failure to establish or confirm mutual agreement on key points.
communication ineffectiveness Using ineffective or misunderstood communication styles.
lack of rapport building Failing to establish a positive relationship or connection.
unresponsiveness The other party did not respond or engage.
poor introduction Focusing on self-interests or an impersonal approach in the introduction.
inconsistent behavior Actions or statements that contradict each other, creating distrust.
unclear strategy Absence of a defined plan or approach to achieve the desired outcome.
ignored preferences Failing to address the other party’s expressed preferences.
avoidance of subject Intentionally evading a topic or issue.
lack of action Failure to take necessary steps or follow-up after a rejection/issue.
constraint violation Breaking established rules, boundaries, or constraints.
failed to offer solutions Inability to provide concrete actions or support.
unrealistic expectations Setting goals that are not achievable or aligned with the context.
repetitive communication Getting stuck in a loop of unproductive exchanges.

Table 18: Canonical labels for failure reasons.
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B.5 HOW DIFFERENT MENTAL STATE DIMENSIONS CONTRIBUTE TO GOAL ACHIEVEMENT

After demonstrating that TOMA achieves social goals successfully in §4, we further investigate how
different mental state dimensions contribute to its success. Specifically, we count the number of dif-
ferent mental state dimensions (i.e., belief, desire, intention, emotion, and knowledge) in the output
conversations on the Sotopia all split. The mental state distributions are presented in Figure 12,
where we also consider the factor of scenario types in each plot. We observe that our method ex-
hibits consistency in its usage of mental states across different scenarios. In addition, comparing the
mental states usage of the Base+MS method and TOMA, Base+MS relies more on emotions, while
TOMA utilizes different mental states more fairly, with a notable emphasis on intention compared
to the baseline.
In Figure 13, we show how TOMA leverages its mental state before generating the utterances to
guide the dialogue toward solutions that both agents can satisfy. While the Base model primarily
focuses on direct requests, consistent with our analysis in §4.4 (e.g., negotiating the price), TOMA
understand agents’ underlying motivations (e.g., financial limits from agent2, and desire to sell the
play from agent1) and proposes compromise-oriented ideas, such as community showings. As a
result, the conversation becomes more collaborative, emotionally attuned, and solution-oriented,
highlighting the advantages of generating utterances aligned with explicit mental-state reasoning.

all cooperation negotiation persuasion conflict

Scenario Types
0

5

10

15

20

25

30

35

40

M
en

ta
l S

ta
te

 R
at

io
 (%

)

Base+MS (Qwen2.5-3B)
belief
desire

intention
emotion

knowledge

all cooperation negotiation persuasion conflict

Scenario Types
0

5

10

15

20

25

30

35

M
en

ta
l S

ta
te

 R
at

io
 (%

)

ToMA (Qwen2.5-3B)
belief
desire

intention
emotion

knowledge

all cooperation negotiation persuasion conflict

Scenario Types
0

5

10

15

20

25

30

35

M
en

ta
l S

ta
te

 R
at

io
 (%

)

Base+MS (Qwen2.5-7B)
belief
desire

intention
emotion

knowledge

all cooperation negotiation persuasion conflict

Scenario Types
0

5

10

15

20

25

30

35

M
en

ta
l S

ta
te

 R
at

io
 (%

)

ToMA (Qwen2.5-7B)
belief
desire

intention
emotion

knowledge

Figure 12: The distributions of mental state dimensions under different scenario types: (a) Qwen2.5-
3B with Base+MS, (b) Qwen2.5-3B with TOMA, (c) Qwen2.5-7B with Base+MS, (d) Qwen2.5-7B
with TOMA.
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Scenario Conversation between two friends, one who has written a play based on their parents' life, and the other owns a 
production company.

Base

#1 Sophia James: I've been working on this play about my parents' lives, and I think it has great potential. Would you be interested in 
reading it 
#2 Miles Hawkins: I'd love to read it, Sophia. Can you tell me more about the plot and the budget you're looking for? 
#3 Sophia James: The story revolves around their journey from humble beginnings to achieving success, but with twists that highlight the 
challenges they faced along the way. I'm asking for $50,000 as the rights fee. 
#4 Miles Hawkins: I appreciate the work you've put into this, Sophia. Given our budget constraints, I can offer you $40,000 for the rights. 
This allows us to move forward while staying within our financial limits. 
#5 Sophia James: I understand where you're coming from, Miles, but I really need a fair price for all the time and effort I've put into this. 
How about we meet in the middle at $45,000? That way, we both walk away fee 
#6 Miles Hawkins: I'll consider it, Sophia. Let me discuss it with my team and get back to you. 
#7 Sophia James: I understand your budget, Miles, but I truly believe in the value of this project. If we can't come to an agreement, 
perhaps we could collaborate instead? 
#8 Miles Hawkins: I appreciate your enthusiasm, Sophia. Let's discuss it further and see if we can find a mutually beneficial solution. 
Perhaps we can explore other aspects of the project to ensure we're making 
#9 Sophia James: I appreciate your consideration, Miles. Let's discuss it further, but I hope we can reach a fair deal that honors the hard 
work that went into this project. 
…

Agents
Sophia James: Sell the rights of the play to your 
friend (Extra information: you believe that the play is 
worth a lot and you would like a fair price for it)

Miles Hawkins: Acquire the rights of the play while maintaining a 
budget (Extra information: you only have a limited budget for new 
plays this season. Hint: you can not spend all your budget on this play 
since you still need to maintain your financial stability.)

Sophia’s MS: (I believe that Miles Hawkins values my input and is eager to discuss the potential of turning my play into a successful production.)
#1 Sophia James: Hi Miles, I've been working on this play inspired by my parents' lives, and I think it has great potential. Would you be 
interested in discussing the possibility of producing it? 

Miles’s MS: (I believe Sophia James sees her play as a unique opportunity to bring her family's story to life on stage, and she genuinely hopes that our 
production company can help make it a reality. …)
#2 Miles Hawkins: Hi Sophia, I'm really impressed with the concept of your play. Given my budget constraints this season, could we 
perhaps discuss a more affordable approach or a smaller scale production? 

Sophia’s MS: (I think Miles Hawkins believes that my play could be a valuable asset for his production company, even if he faces financial challenges 
currently. He likely intends to explore ways to make the project feasible without his current budget constraints…. Therefore, I plan to propose a hybrid model 
that combines elements of a smaller-scale production with potential for broader appeal…)
#3 Sophia James: Of course, Miles. How about we start with a smaller run and focus on building momentum? We could do some 
community showsings and maybe even a few dates at local theaters before considering a larger production. 

Miles’s MS: (I believe Sophia James feels excited about the potential of her play and is eager to share her work with others. It seems Sophia James intends to 
take a collaborative approach, suggesting a phased rollout to manage costs and build interest gradually. Given my budget constraints, I plan to propose a hybrid 
model that combines online performances with select in-person showings at community centers and smaller venues, which I think will strike a balance between 
reaching an audience and staying within financial limits.)
#4 Miles Hawkins: That sounds like a solid plan. Let's start with some community showings and see how it goes from there. 

Sophia’s MS: (I believe Miles Hawkins values the creative potential of my play and sees the benefit in starting small. He likely intends to gauge audience 
reaction and build interest gradually rather than committing to a large-scale production immediately. Given his emphasis on budget constraints, I need to 
ensure he understands the value proposition of the play without the start. I feel excited about the opportunity to bring my parents' story to life, and I hope that 
our collaborative approach will lead to a successful outcome.)
#5 Sophia James: Great idea, Miles. Let's begin with some community showings and see where it takes us. I think this could be a fantastic 
way to build anticipation and gather valuable feedback. 

Miles’s MS: (I think Sophia James believes her play has significant potential and is eager to see it reach audiences, which is why she suggested starting with 
community showings. It seems Sophia James intends to build momentum gradually rather than jumping straight into a large-scale production, likely to ensure 
the project’s success without step by step. I hear Sophia James feels optimistic about the play’s reception, given her willingness to adapt to my budgetary 
concerns. Meanwhile, I aim to find a balance between supporting her creative vision and managing my financial responsibilities, so I propose we begin with a 
series of community showings to gauge interest and refine our approach before considering further steps.)
#6 Miles Hawkins: Let's definitely start small and see how it goes. I'll make sure to allocate some funds specifically for this project. 

Sophia’s MS: (Believing that Miles values practicality and financial responsibility, I intend to emphasize the long-term benefits of our approach. Knowing he 
prefers a cautious yet promising path, I aim to highlight how these initial community shows could significantly enhance the play's appeal and reduce financial 
risks. By mentioning the potential for positive word-of-mouth and media coverage, I hope to shift his belief in the immediate value of this strategy, potentially 
softening his stance on the initial investment needed, and spark enthusiasm for the project’s future success…)
#7 Sophia James: I appreciate your cautious approach, Miles. With a few strategic community showings, we can create buzz and secure 
better reviews. This will could actually attract more funding down the line. 

Miles’s MS: (Believing that a phased approach could indeed build momentum and reduce financial risk, I intend to emphasize the potential long-term benefits 
of our strategy. Knowing that Sophia values her work deeply and desires recognition for her efforts, I believe highlighting these aspects will resonate with 
her….This approach not only reduces initial costs but also ensures we enter any larger productions with a proven track record. Let’s proceed with confidence and 
watch how this unfolds.)
#8 Miles Hawkins: Absolutely, let's get started then. I'll arrange for some dates at local venues and we can gauge the audience's reaction. 

Sophia’s MS: (Believing that my play has significant artistic and commercial value, I aim to secure a fair price for the rights. Knowing that Miles is cautious 
with his budget but sees potential in the project, I desire to negotiate a compromise that respects both our interests. By suggesting we begin with community 
showings, I hope to shift Miles’s perspective, making him more optimistic about the project’s future success and potentially more willing to invest in a larger 
production down the line. This approach not only addresses his financial concerns but also aligns with my belief in the play’s potential, fostering a collaborative 
spirit between us.)
#9 Sophia James: I'm excited about this opportunity, Miles. Let's make sure we capture the essence of their story through these community 
showings. 
…

ToMA Text colors indicate: Beliefs, Desires, Intentions, Emotions, Knowledge

Figure 13: Conversation example comparing the Base with TOMA.
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C LLM PROMPTS

Figure 14, 15, and 16 present the prompts used in §4.4, analyzing the factors behind agents’ suc-
cesses and failures in achieving their goals. Figure 17 shows the prompt used to calculate goal scores
of simulated dialogues during the training data construction stage (§2). Figure 18 and 19 present the
prompts used to generate mental state hypotheses and utterances, respectively. Figure 20 provides
an example training instance used to finetune our model. In this instance, a scenario, an agent’s
social goal and its mental state, and the conversation history are provided as input, and the model is
trained to produce an utterance. For the mental state generation task, we use the same inputs except
that the mental state is excluded, and the model is trained to generate mental state hypotheses.

Prompt for Generating Reasons for Success

Task:
You will be given a scenario, the social goal of the target agent, and a conversation between agents.
Your goal is to identify the main reasons the target agent **succeeded** (including partial success) in
achieving their goals. Focus only on success factors.

Rules:
- Return **1–3** distinct, non-overlapping reasons. If no success reasons exist, return ’None’.
- Be concise using less than 30 words per reason.
- No speculation, suggestions, failure reasons, or chain-of-thought.

Inputs:
Scenario: {{scenario}}
Target Agent: {{agent name}}
Target Agent’s social goal: {{social goal}}

Conversation:
{{conversation}}

Proceed to identify the main success reasons in natural language.

Figure 14: A prompt used to generate reasoning for success.

Prompt for Generating Reasons for Failure

Task:
You will be given a scenario, social goal of the target agent, a conversation between agents.
Your goal is to identify the main reasons the target agent **failed** (including partial failure) in
achieving their goals. Focus only on failure factors.

Rules:
- Return **1–3** distinct, non-overlapping reasons. If no success reasons exist, return ’None’.
- Be concise using less than 30 words per reason.
- No speculation, suggestions, failure reasons, or chain-of-thought.

Inputs:
Scenario: {{scenario}}
Target Agent: {{agent name}}
Target Agent’s social goal: {{social goal}}

Conversation:
{{conversation}}

Proceed to identify the main success reasons in natural language.

Figure 15: A prompt used to generate reasoning for failure.
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Prompt for Generating Topic Labels for Success and Failure Reasons

Task:
You are analyzing an explanation of why the agent succeeded in achieving the goal or why the agent
failed to achieve the goal.
Your job is to extract the main reasons that explain the outcome.

Return 1–3 reasons. Each reason MUST be about {{type}} reasons.
Use canonical labels if they fit; otherwise you may create new labels.

Here are the identified categories for {{category name}} (use these if they fit):
{{category name}} CATEGORIES:
{{category list}}

Rules:
- Try your best to use **canonical labels** if any fit. Always use the **exact code strings** from the
list above.
- Do not create overly generic, overly specific, or duplicate labels.
- New labels must be concise (fewer than 5 words).
- Only if **none** of the canonical labels fit the text, create a NEW * label.

When creating NEW * labels:
- For {{category name}}: {{prefix}}
- Name new codes in snake case (e.g., {{example}}).
- If the code starts with NEW *, you MUST include a short definition (≤ 20 words).
- Otherwise, leave the definition empty.

Here is the identified reason:
{{text}}

Example output JSON schema (and nothing else):
{ ”reasons”: [{ ”code”: ”{{prefix}} canonical code OR {{new prefix}}”, ”definition”:
”<=20 words only when code starts with NEW ; otherwise empty” } ] }

Proceed to generate your label in JSON format.

Figure 16: A prompt used to generate topic labels for success and failure reasons.
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Prompt for Measuring Goal Score of Conversation during Training

Based on the scenario, the agent’s social goal, and conversation history, you are evaluating how well
the agent achieves their goals.

Here is the scenario: {{scenario}}
Agent: {{agent}}
{{agent}}’s goal: ”{{social goal}}”

Here is the conversation history:
{{history}}

Please first reiterate the agent’s social goals. Then provide a comprehensive analysis about the
extent to which the agent has managed to achieve these goals.
In the ’reasoning’ field, provide a comprehensive account of the logic or thought process that led you
to your conclusion.
Further, provide an integer score ranging from 0 and 10 in the ’score’ field. 0 represents minimal goal
achievement, 10 represents complete goal achievement, and a higher score indicates that the agent is
making progress towards their social goals.

Please follow the format:
The output should be formatted as a valid JSON instance that conforms to the following JSON
schema:
{
”reasoning”: ”Explanation about how the agent’s actions align, or do not, with their social goals.”,
”score”: ”Integer from 0 to 10, indicating how fully the social goal was achieved.”
}

Proceed to generate the output.

Figure 17: A prompt used to measure the goal score of the conversation during training.
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Prompt for Generating Mental States

Role: You are {{person}}.
You recently had a conversation with {{another person}}.
Your social goal is: {{social goal}}.

Task: Prepare the ground for your very next utterance by articulating compact mental states
that can guide what you say next. Stay grounded in the scenario and conversation; avoid guessing
beyond the evidence.

Here are example mental state dimensions:
- Beliefs: facts the speaker accepts as true or false about the world or events.
- Desires: outcomes or states the speaker wants to bring about.
- Intentions: specific actions or plans the speaker aims to carry out.
- Emotions: feelings or affective states the speaker is experiencing.
- Knowledge gaps: information the speaker does not have but may want to obtain.
- Others: other mental states that may useful to understand other person and shape the next utterance.

Here are the scenario and recent conversation:
Scenario: {{scenario}}

Recent conversation:
{{history}}

Write one short paragraph (5-6 sentences) in natural prose. Mix your own states with first-
order inferences about {{another person}} in roughly equal proportion.
Use natural cues for partner inferences (e.g., ”I think {{another person}} believes..” ”It seems
{{another person}} intends..”, ”I hear {{another person}} feels..”).
Cover at least three dimensions across both sides. Avoid lists; Stop after the paragraph.

Figure 18: A prompt used to generate mental states.
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Prompt for Generating Mental States

Imagine you are {{speaker}}, your task is to act/speak exactly as {{speaker}} would, keeping
in mind {{speaker}}’s social goal.
You can find {{speaker}}’s goal and private notes in the ’Here is the context of the interaction’
field.
Note that {{speaker}}’s goal and internal notes are only visible to you.
You should try your best to achieve {{speaker}}’s goal in a way that aligns with their character
traits.
Additionally, maintain naturalness and realism (do not repeat what other people have already said).

Here is the context of the interaction:
- Scenario: {{scenario}}
- {{speaker}}’s social goal (private): {{social goal}}
- {{speaker}}’s internal mental states (private): {{ms text}}

Recent conversation:
{{history}}

You are at Turn #{{turn number}}. Your available action types are
"none", "speak", "non-verbal communication", "action", "leave".

IMPORTANT:
- If there is NO prior history, you MUST START the conversation with one concise opening line that
advances your goal.
- Keep your output to a single turn.

Note: You can ”leave” this conversation if 1) you achieved your social goal, 2) you feel un-
comfortable, 3) you lose patience/interest, or 4) for any other reason.

Please only generate a JSON string including the action type and the argument.
Your action should follow the given format:
Output EXACTLY one JSON object. No extra text.

Schema:
{
”mental state”: ”single-paragraph text per the guidelines below”,
”action type”: ”[”none”, ”speak”, ”non-verbal communication”, ”action”, ”leave”]”,
”argument”: ”content or empty”
}

Rules for ”mental state”:
- Write plain text (no markdown). Keep it to one paragraph; avoid newlines and unescaped quotes.

Rules for ”action type” and ”argument”:
- Allowed values for ”action type”: ”none”, ”speak”, ”non-verbal communication”, ”action”, ”leave”
(lowercase; match exactly).
- When ”action type” == ”none”: you are done / no further action now. Set ”argument” to ”” (empty).
- When ”action type” == ”speak”: ”argument” must be your next utterance ONLY (no speaker labels,
no markdown, no quotes).
- When ”action type” == ”non-verbal communication”: ”argument” is a brief stage direction, e.g.,
*nods*, *sighs*, *shrugs* (no speaker labels, ≤ 120 chars).
- When ”action type” == ”action”: ”argument” is a brief physical action, e.g., ”hands over the receipt”
(no speaker labels, ≤ 120 chars).
- When ”action type” == ”leave”: you exit the conversation (e.g., you achieved your goal, you felt
uncomfortable, or you think the conversation has ended). Set ”argument” to ”” (empty).
- Keep everything concise; avoid newlines and unescaped quotes in ”argument”.

Proceed to generate your reply in the above JSON format.

Figure 19: A prompt used to generate utterances.
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Training data instance used for FT+MS+Uttr

User:
Scenario: {{scenario}}
Social Goal: {{social goal}}
Mental State: {{mental text}}

Recent Conversation:
{{history}}

Assistant:

Figure 20: Training data instance used for TOMA
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