
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOOLCOMP: A MULTI-TOOL REASONING & PROCESS
SUPERVISION BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances in AI, the development of systems capable of executing
complex, multi-step reasoning tasks involving multiple tools remains a significant
challenge. Current benchmarks fall short in capturing the real-world complex-
ity of tool-use reasoning, where verifying the correctness of not only the final
answer but also the intermediate steps is important for evaluation, development,
and identifying failures during inference time. To bridge this gap, we introduce
ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use
reasoning. ToolComp is developed through a collaboration between models and
human annotators, featuring human-edited/verified prompts, final answers, and
process supervision labels, allowing for the evaluation of both final outcomes and
intermediate reasoning. Evaluation across six different model families demon-
strates the challenging nature of our dataset, with the majority of models achiev-
ing less than 50% accuracy. Additionally, we generate synthetic training data
to compare the performance of outcome-supervised reward models (ORMs) with
process-supervised reward models (PRMs) to assess their ability to improve com-
plex tool-use reasoning as evaluated by ToolComp. Our results show that PRMs
generalize significantly better than ORMs, achieving a 19% and 11% improve-
ment in rank@1 accuracy for ranking base and fine-tuned model trajectories, re-
spectively. These findings highlight the critical role of process supervision in both
the evaluation and training of AI models, paving the way for more robust and
capable systems in complex, multi-step tool-use tasks. *

1 INTRODUCTION

Recent advancements in large language models (LLMs) have demonstrated remarkable progress
in a range of natural language processing tasks. These models have achieved state-of-the-art per-
formance across diverse benchmarks, including question answering, summarization, and reasoning
tasks. In order to further increase the usefulness of LLMs, a growing area of research is centered
around the development of agentic capabilities, particularly their ability to autonomously interact
with external tools to solve complex, multi-step tasks as well as to interact with human systems such
as the web or mobile devices.

However, evaluating the effectiveness of these tool-use capabilities remains a pressing challenge.
While there have been notable efforts in developing benchmarks for tool-use capability, these often
assess isolated instances of tool use, focusing on whether the model can invoke the correct tool
at the right time (Huang et al., 2024; Zhuang et al., 2023; Peng et al., 2021). Additionally, while
benchmarks for multi-step tool usage exist, most focus only on scoring the correctness of the final
answer (Mialon et al., 2023), despite that the complex nature of multi-step reasoning often requires
the evaluation for partial correctness or step-wise correctness of the reasoning trajectories. This can
be valuable for both understanding model failure modes and developing systems that can improve
upon these intermediate reasoning flaws.

To address these shortcomings, we introduce ToolComp, a benchmark comprising 485 complex,
human-verified prompts that require language models to chain together multiple tool calls, accom-
panied by human-edited step-wise and final answers. By demanding intricate tool interactions and

*Code, ToolComp benchmark, and synthetic training data will be made publicly available.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

providing human verification, ToolComp offers a rigorous assessment of a model’s ability to per-
form complex, multi-step reasoning and tool use. We evaluate the current landscape of state-of-
the-art models on their ability to chain together tool calls to reach the final answer, as well as their
step-wise reasoning ability.

Moreover, in light of recent works demonstrating how process supervision significantly improve
reasoning in language models (Lightman et al., 2023; Wang et al., 2024a), we explore the best
methods for improving agentic tool-use reasoning by conducting an initial comparative analysis be-
tween process-supervised reward models (PRMs) and outcome-supervised reward models (ORMs)
on ToolComp. Our results demonstrate that process-supervised models outperform outcome-based
approaches, underscoring the importance of training models with and evaluating against process
supervision signals.

In order to avoid early contamination, we plan to open source the entire benchmark when either 1)
any model scores over 85% on ToolComp or 2) at the end of 2025, whichever comes earlier.

1.1 CONTRIBUTIONS AND KEY TAKEAWAYS

Our key contributions and takeaways are summarized as follows:

• Introduction of ToolComp We introduce ToolComp, a multi-tool reasoning and process
supervision benchmark with 485 human-edited/verified prompts and final answers, de-
signed to evaluate a model’s ability to perform multi-step tool-use tasks (Section 3).

• Step-by-Step Process Annotations ToolComp includes 1731 detailed per-step supervision
labels, enabling a comprehensive assessment of a model’s intermediate reasoning when
performing complex, multi-step tool-use tasks (Section 3).

• Assessment of State-of-the-Art Models We evaluate 16 models across 6 different model
families on their ability to perform complex multi-step tool-use tasks as well as their in-
termediate reasoning ability. We find that o1-preview has the best performance, achieving
61.83% against the human-verified final answers and 80.18% against the process supervi-
sion labels (Section 4 and Section A).

• Process-Supervision Outperforms Outcome-Supervision Our analysis shows that
process-supervised reward models outperform outcome-based reward models by 19% in
rank@1 accuracy on base model generations and by 11% in rank@1 accuracy on fine-
tuned model generations (Section 5 and Section B).

• Release of Synthetic Training Data and Evaluation Pipeline We provide the complete
synthetic training dataset, which includes 11K prompts, 11K preferred and dis-preferred
full trajectories for ORM training, and 15K preferred and dis-preferred steps for PRM
training. We also release the evaluation pipeline for ToolComp. (Section 5).

2 RELATED WORKS

Benchmarks for Complex Tool Use Planning With rising interest in tool-augmented LLMs
(Schick et al., 2023; Patil et al., 2023; Qin et al., 2023), several benchmarks have been introduced
to assess their abilities. Earlier benchmarks were designed to assess a model’s ability to do proper
retrieval, execution, and extraction of one tool call for specific tasks such as general question an-
swering (Yang et al., 2018; Joshi et al., 2017), fact verification (Thorne et al., 2018), or answering
temporal queries (Chen et al., 2021; Kasai et al., 2024; Zhang & Choi, 2021; Dhingra et al., 2022; Vu
et al., 2023). However, these benchmarks fail to assess a model’s ability to plan and chain together
multiple tool calls to answer more complex queries. More recent benchmarks aimed at evaluating
multiple tool calls are often placed within or dependent on state-full systems (such as a code-base
and/or a dynamic database) (Yan et al., 2024; Jimenez et al., 2024; Liu et al., 2023). Although
these types of benchmarks assess a language model’s ability to chain together multiple tool calls,
the evaluation may penalize general-purpose language models that are not familiar with the given
environments. Other benchmarks primarily rely on state-based evaluations, where the final state
of the system is assessed against the desired state (Li et al., 2023; Peng et al., 2021), or win-rates
against another reference state-of-the-art model (Qin et al., 2023), both of which lack the rigour of
human-verified ground truth final answers. Closest to our work, the GAIA benchmark is a collection

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: The contributions and metadata of popular benchmarks in Tool Use. Our work, ToolComp,
is shown in the first column. From left to right, we include work from Mialon et al. (2023), Yan et al.
(2024), Qin et al. (2023), Li et al. (2023),and Xu et al. (2023). * Although 2 of the 8 tools are not
evaluated by simply matching a verified final answer, the remaining 6 have verified final answers.

Resource ToolComp GAIA BFCL ToolBench API-Bank ToolBench
Real-World API Calls ✓ ✓ ✓ ✓ ✓ ✓
Multi-Tools Scenario ✓ ✓ ✓ ✓ ✗ ✗
Multi-Step Reasoning ✓ ✓ ✓ ✓ ✓ ✓
Step-Wise Labels ✓ ✗ ✗ ✗ ✗ ✗
Verified Final Answer ✓ ✓ ✗ ✗ ✗ ✓*
Number of Tools 11 23 3 3451 53 8

of complex tool-use queries that require multi-step tool-use reasoning and associated ground-truth
answers (Mialon et al., 2023). Crucially, it does not contain step-wise labels, which can be important
for identifying where an error occurred and providing precise feedback. Additionally, a significant
portion of GAIA requires specialized capabilities such as web browsing, multi-modality, and di-
verse file-type reading. In our work, we focus on text-only tasks in order to disentangle specialized
capabilities and multi-step reasoning, allowing us to focus on the latter.

Process Reward Models Recent work has shown the power of utilizing process supervision sig-
nals, which are granular signals on the step-wise correctness of a solution, as opposed to outcome
supervision signals, which are broad signals on the correctness of the entire solution. Utilizing these
signals, Lightman et al. (2023) and Wang et al. (2024a) have shown dramatic improvements in per-
formance in ranking solutions to mathematical reasoning tasks and using these signals to further
improve performance in traditional RLHF algorithms such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017).

In this work, through a hybrid human-AI annotation workflow, we generate per-step process su-
pervision labels, which uniquely enable us to rigorously evaluate a model’s intermediate reasoning
capability. Table 1 provides a comparative overview of popular tool-use benchmarks, including
our work, ToolComp. In addition, we investigate how to best apply process supervision signals to
improve multi-step tool-use reasoning, which introduces novel design challenges compared to its
application in mathematical reasoning. For instance, the granularity of supervision becomes a key
consideration, where we must decide between supervising the entire ReAct (Yao et al., 2023) pro-
cess or its subcomponents. These design choices alongside comparisons with outcome supervision
are explored in detail in Section 5.

3 TOOLCOMP

3.1 TOOLS

For the creation of this benchmark and evaluation framework, we support 11 tools: Date, Current
Weather, Historical Weather (Zippenfenig, 2024), Calculator, Wiki Search (Majlis, 2017), Google
Search (SerpApi, 2024), Wolfram Alpha (Wolfram Research, 2024), Intra-day Stock Info, Daily
Stock Info, Stock Symbol Search (AlphaVantage), and Python. There were several considerations
when choosing these set of tools, namely, we wanted to cover a broad range of use cases from fact
retrieval to financial assistant, have some overlap in use cases to encourage various valid trajectories,
ensure the tools are general enough to not require specialized knowledge for LLMs to use, and allow
for interesting interactions between tools. A detailed breakdown of each tool, including descriptions,
parameters, input examples, and output examples are available in Appendix G.

3.2 REACT FORMAT

We chose the ReAct format as it is frequently used for tool use and agentic workflows (Wang et al.,
2024b; Mekala et al., 2024; Zhuang et al., 2023). The ReAct format combines reasoning and tool
calls by prompting the model to first generate a thought, which contains the rationale behind the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Thought

Action

Action Input

Thought

Action

Action Input

Model Human Corrected

Tool Observation

Step 1

Tool Observation

Thought

Action

Action Input

Thought

Action

Action Input

Model Human Corrected

Final Answer

Step N

Final Answer

❌

❌

❌

Action Plan

…Action Plan Human Corrected

❌

Model

Action Plan

Figure 1: An example annotation path for collecting data that provides tool-call trajectories with
human verified-final answers along with step-by-step process supervision labels. Each model gener-
ated step (Action Plan and ReAct steps) are first labelled as correct or incorrect. For the components
labelled incorrect, a rewrite is made to correct the corresponding component. The annotations and
rewrites are made by human annotators for the benchmark (or by a state-of-the-art LM for generat-
ing synthetic training data as further described in Section 5.1). A full annotated trajectory example
is available in Appendix F.2.

following tool call action (Yao et al., 2023). The structured nature of the ReAct format into a
thought, action, action input, and observation allows us to collect granular signals at each sub-step,
and the relative simplicity of the ReAct format makes it easier to operationalize for annotations.

3.3 PROMPT CREATION

In developing the prompts for this dataset, there are two main criteria we desire each prompt to
satisfy: 1) the solution to the prompt contains a chain of dependent tool calls to answer and 2)
the final answer to the prompt can be programmatically verified. To achieve this, we generate
a set of candidate prompts through few-shot prompting which are then refined and validated by
human annotators. The overall process includes 1) manually developing in-context (IC) examples,
2) generating initial prompts, 3) an iterative process of filtering prompts, adding filtered prompts as
negative IC examples, and regenerating more prompts, and 4) human refinement. These steps are
described in more detail in Appendix C.1

3.4 CHAT VS. ENTERPRISE USE CASES

In creating the benchmark, we developed two subsets of prompts, coined ToolComp-Enterprise and
ToolComp-Chat. ToolComp-Enterprise allows the use of 11 tools and aims to emulate settings
in which LLM agents must compose a larger number of expressive APIs together correctly, such
as in enterprise settings. The second subset, ToolComp-Chat, is designed to test general purpose
chatbots with the minimally sufficient set of tools for information retrieval and processing tasks,
namely Google Search and Python. We chose only google search and python execution as these are
standard tools found in major chat-bot providers. We only allow the respective tools for each subset
during prompt generation, labeling, and evaluation. ToolComp-Enterprise contains 287 examples
and ToolComp-Chat contains 198 examples.

3.5 LABEL CREATION

To create the process supervision labels as well as the final answer for each prompt, we utilize a
hybrid human-AI approach, where the language model and human annotators use the same tools to
collaborate to get to the final answer. We start by prompting the Policy Model LLM to outline a
plan, called Action Plan, on which tools to call and in what order using the prompt in E.1. We have
human annotators validate/modify the Action Plan, which is then appended to the sequence before
using the LLM to formulate tool calls. We then use the LLM to call tools in the ReAct format, where
the specific prompt can be found in E.2.

We asked the annotators to rate if a step is Correct (i.e., the step is a reasonable action towards
achieving the final answer) or Incorrect (i.e., the step is nonsensical, incorrect, or is not a reasonable
action towards acheiving the final answer). All components of the ReAct Step (Thought, Action,
Action Input) must be marked as Correct or Incorrect by the annotator. If the annotator marks a
step as Correct, the model is allowed to proceed further and generate the next step. If the annotator

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

deems a step as Incorrect, they must modify the step to make it correct. Once corrected, the model
is then prompted to advance to the next step with the human-corrected step as part of its context.
This is repeated until the Finish Action is chosen by the LLM and marked as Correct by the anno-
tator or until the annotator corrects an Action step to ‘Finish’ because we have enough information
to answer the question. The overall flow is shown in Figure 1. An example golden trajectory is
available in Appendix F.1 and an example annotated trajectory is available in Appendix F.2. We
use FireFunction-V1 as the Policy Model LLM (at the time, this was the best open-source tool-use
LLM) and humans as the annotators (Fireworks, 2024).

With this process, we retrieve, per task, a valid step-by-step chain of tool calls that successfully
gets to the final answer along with step-wise correct/incorrect labels and associated rewrites. The
correct/incorrect labels and the associated rewrites allow us to assess intermediate reasoning through
LLM-as-judge evaluations (described in Section 4.3).

3.6 QUALITY CONTROL

To ensure the highest quality of ToolComp, we conduct a thorough manual inspection of all exam-
ples. Any data samples with ambiguous prompts, erroneous process supervision labels, or incorrect
final answers are redone. After the initial creation of the benchmark, the authors collaborated with
three trusted annotators to perform a final re-review of all samples and make any necessary correc-
tions.

As a final quality control step, we evaluate the entire benchmark using GPT-4o (May 2024), GPT-4
Turbo, Claude 3.5 Sonnet, and Llama 3.1 405b (OpenAI et al., 2024; Dubey et al., 2024; Anthropic).
We identify the set of data samples where all models’ answers differed from the ground truth final
answers. We then repeated the refinement process on these samples, as they represented the most
challenging and/or potentially mislabeled data points. This iterative approach yielded the final ver-
sion of ToolComp.

4 TOOLCOMP EVALUATIONS

4.1 EVALUATION METRIC

We have two metrics to evaluate the quality or the correctness of a model’s final answers: LLM
Grading and Exact Match. For the final answer evaluations in this section (Table 2), we use LLM
Grading since it rewards correct answers without penalizing minor formatting issues. Our Exact
Match evaluation methodology and the corresponding results are shown in Appendix A.1.

LLM Grading By using LLM grading against ground truth answers we opt to be charitable to
exact formatting and focus on assessing the tool use capabilities of the model. We intentionally
choose not to focus on final answer formatting given that (1) there are existing benchmarks that
assess formatting ability (e.g. FOFO (Xia et al., 2024)) and (2) our final answers are quite complex,
containing multiple elements, lists which may or may not be sorted, and dictionaries. This approach
prompts an LLM Judge to look at the prompt, the ground truth answer, and the model’s answer and
asks the model to classify it as Incorrect, Correct, or Correct with Bad Formatting. We use GPT-4
Turbo as the de-facto judge for all of our models (OpenAI et al., 2024). The prompt used is shown
in Appendix E.5. We consider both Correct and Correct with Bad Formatting as a win (accurate)
and Incorrect as a loss (inaccurate).

4.2 FINAL ANSWER EVALUATIONS

The overall scores of the various state-of-the-art tool-use models are shown in Table 2. We com-
bine ToolComp-Chat and ToolComp Enterprise subsets to get an overall score and 95% confidence-
intervals (CIs) for the entire benchmark. We use native function calling for all the models except for
o1-preview. Since the o1-preview API does not accept system prompts nor allows for native function
calling, we prepend our ReAct System Instruction (Appendix E.2) to the user query. Additionally,
we allow each model to retry up to 3 times if it fails to output a final answer. This is determined by
whether there is a parse-able JSON object in the final output with the key “final answer”. To ensure
scores are not indicative of tool or endpoint failures due to rate limiting, we use verbose logging to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Accuracy and the 95% CIs of all selected models using the final answer and scored using
an LLM judge (Dubey et al., 2024; OpenAI et al., 2024; Gemini et al., 2024; Anthropic; Mistral;
Cohere). We combined the results of each subset to give an overall score for the entire benchmark.
Exact Match results are reported in Appendix A.1 but the rankings do not significantly differ, with
the top 5 and bottom 4 models remaining the same. *Llama models sometimes fail to call tools/ter-
minate early or call tools in the wrong format. Using constrained decoding and other techniques to
guarantee structured outputs can improve their performance. **Since o1-preview does not support
native function calling via API, we prompt the model to formulate tool calls in the ReAct format.

Model Family Model Name Total (%) Chat (%) Enterprise (%)

OpenAI

o1-preview** 61.83 ± 4.34 55.1 ± 6.96 66.43 ± 5.47
GPT-4o (Aug 2024) 58.68 ± 4.39 56.85 ± 6.92 59.93 ± 5.67
GPT-4o (May 2024) 58.44 ± 4.38 49.5 ± 6.96 64.58 ± 5.52
GPT-4 Turbo Preview 57.61 ± 4.39 53.03 ± 6.95 60.76 ± 5.64
GPT-4 45.89 ± 4.43 37.88 ± 6.78 51.39 ± 5.77
GPT-4o Mini 44.03 ± 4.41 32.83 ± 6.54 51.74 ± 5.77

Anthropic
Claude 3.5 Sonnet 58.03 ± 4.39 56.06 ± 6.91 59.38 ± 5.67
Claude 3 Opus 51.03 ± 4.44 48.49 ± 6.96 52.78 ± 5.77
Claude 3 Sonnet 48.56 ± 4.44 40.4 ± 6.84 54.17 ± 5.78

Google Gemini 1.5 Pro (Aug 2024) 56.61 ± 4.41 51.27 ± 6.98 60.28 ± 5.66
Gemini 1.5 Pro (May 2024) 38.43 ± 4.34 35.5 ± 6.57 40.42 ± 5.68

Mistral Mistral Large 2 46.30 ± 4.43 40.4 ± 6.84 50.35 ± 5.78

Meta
Llama 3.1 405B Instruct* 46.19 ± 4.44 40.1 ± 6.84 50.35 ± 5.78
Llama 3.1 70B Instruct* 35.74 ± 4.27 33.5 ± 6.59 37.23 ± 5.6
Llama 3.1 8B Instruct* 12.81 ± 2.98 6.09 ± 3.34 17.42 ± 4.39

Cohere Command R+ 26.13 ± 3.91 20.2 ± 5.59 30.21 ± 5.3

Average 46.64 ± 4.27 41.08 ± 6.50 50.46 ± 5.58

Table 3: Accuracy and the 95% CIs (third column) of all of our models on the process supervision
labels in ToolComp. We evaluate the model’s effectiveness as a pairwise judge in selecting the
human-corrected answer versus the model-generated incorrect answer. We show judge accuracy
using the ReAct steps (fourth column) and the Action Plan (fifth column).

Model Family Model Name Total (%) ReAct (%) Action Plan (%)

OpenAI

o1-preview 80.19 ± 1.89 79.62 ± 2.22 81.76 ± 3.55
GPT-4o (Aug 2024) 72.61 ± 2.11 72.84 ± 2.46 71.98 ± 4.13
GPT-4o (May 2024) 71.24 ± 2.14 71.37 ± 2.49 70.88 ± 4.17
GPT-4 Turbo Preview 70.66 ± 2.15 70.18 ± 2.52 71.98 ± 4.13
GPT-4o Mini 63.02 ± 2.28 64.27 ± 2.64 59.56 ± 4.51
GPT-4 60.02 ± 2.32 55.87 ± 2.74 71.54 ± 4.15

Anthropic
Claude 3.5 Sonnet 66.46 ± 2.23 67.74 ± 2.58 62.97 ± 4.44
Claude 3 Opus 64.28 ± 2.27 64.55 ± 2.64 63.52 ± 4.42
Claude 3 Sonnet 61.10 ± 2.31 62.93 ± 2.67 56.04 ± 4.56

Google Gemini 1.5 Pro (Aug 2024) 69.11 ± 2.19 68.48 ± 2.56 70.88 ± 4.17
Gemini 1.5 Pro (May 2024) 67.89 ± 2.21 67.72 ± 2.58 68.35 ± 4.27

Mistral Mistral Large 2 72.67 ± 2.11 73.16 ± 2.45 71.32 ± 4.16

Meta
Llama 3.1 405B Instruct 71.62 ± 2.13 73.87 ± 2.42 65.39 ± 4.37
Llama 3.1 70B Instruct 70.75 ± 2.15 71.33 ± 2.50 69.12 ± 4.25
Llama 3.1 8B Instruct 57.63 ± 2.34 59.60 ± 2.71 52.20 ± 4.56

Cohere Command R+ 61.31 ± 2.30 64.91 ± 2.63 51.32 ± 4.59

Average 67.54 ± 2.20 68.03 ± 2.55 66.18 ± 4.28

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

log all failures and retry any prompt where a tool or model outputs failed due to rate/load limits. In
addition, we run error analysis on the types of failures for each model. A description of the error
category taxonomy and the breakdown of failure modes for each model can be found in Appendix
A.2.

We also show exact match evaluation numbers in Table 6 of Appendix A.1 to ensure that our LLM
Judge (GPT-4 Turbo) isn’t biased in favor of outputs from the same model family. Upon inspection
of the discrepancies (i.e., examples marked correct by the LLM judge but incorrect under exact
match), we find that they are all due to issues with the model’s formatting of the final answer despite
getting to the correct answer.

4.3 LLM-AS-JUDGE EVALUATIONS

We further evaluate these models using our process supervision labels, aiming to assess each model’s
effectiveness as a pairwise judge in selecting the human-corrected step over the step generated by the
original policy used during annotation. To mitigate position bias, we swap the order of the human-
corrected and model-generated steps and conduct two separate predictions for each arrangement.
Additionally, models are permitted to indicate a tie. If a model designates a tie at least once, or
consistently predicts the same position (before and after swapping) for a given data sample, we
classify the outcome as a tie. Mirroring the methodology used in RewardBench (Lambert et al.
(2024)), we score losses as 0, ties as 0.5, and wins as 1. We show the results below in Table 3.

4.4 INTERMEDIATE REASONING VS. FINAL ANSWER

Figure 2 shows the correlation between a model’s intermediate reasoning performance and final an-
swer accuracy based on the multi-step tool-use tasks in ToolComp. The standard Pearson correlation
coefficient is r = 0.63 with a statistical p-value of 0.0084, which makes the correlation statistically
significant under a significance level of 0.05 (Freedman et al., 2007). Intuitively, this suggests that
with stronger step-wise performance as assessed by our LLM-as-judge evaluations, we can expect
an increased likelihood of reaching the correct final answer. However, the moderate magnitude of
the correlation value could be due to additional signals captured by the step-wise reasoning evalua-
tions that are not captured by evaluating final answers. Work done by Havrilla et al. (2024) similarly
suggests that there is complementary and non-overlapping information in step-wise and final answer
refinement, further highlighting the importance of assessing intermediate reasoning.

Figure 2: Comparison of step-wise reasoning accuracy (x-axis) and final answer accuracy (y-axis)
on ToolComp across 6 different model families.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 PROCESS SUPERVISION VS. OUTCOME SUPERVISION

Figure 3: A comparison of outcome-supervised and process-supervised reward models across vari-
ous scales of training data (10%, 25%, 50%, 100%), evaluated by their ability to pick out the best
answer out of 30 tool call trajectories. The 95% confidence intervals captures the variance of 500
random samples of 30 completions out of 50 completions. We plot both the performance on gen-
erations from Llama-3.1-8b-Instruct (left) and Llama-3.1-8b-Instruct fine-tuned on all the preferred
trajectories (right) (Dubey et al., 2024). The plot also shows the Pass@1 given by greedy sampling
and the average Pass@30 accuracies for the respective generating models.

Recent works have demonstrated the power of process supervision signals in domains such as math-
ematical reasoning (Lightman et al., 2023; Wang et al., 2024a). Despite this, the application of
process-supervised signals towards tool-augmented LLMs remains under-explored. By focusing on
the process rather than just the outcome, process-supervised models could provide more granular
feedback during multi-step tool-use, leading to faster convergence, especially in complex applica-
tions where each step is associated with dynamic feedback from the environment. In this section,
we provide a preliminary analysis to assess the value of process supervision for multi-step tool-use
by training PRM and ORM models using additionally generated synthetic data.

5.1 EXPERIMENT DESIGN

Training Dataset For the generation of synthetic prompts and the process/outcome supervision
labels, we mirror the strategies outlined in Section 3.3 and Section 3.5, respectively. We use Llama-
3.1-8b-Instruct as the Policy Model generator and Chat GPT-4o as the Critic Model generator (Ope-
nAI et al., 2024; Dubey et al., 2024). A detailed accounting of the training data generation, including
generation parameters, dataset sizes, and methodology can be found in Appendix D.1. Furthermore,
the construction of the outcome-supervised, process-supervised reward modelling and supervised
fine-tuning datasets are detailed in Appendix D.2.

Reward Model Training Objective We equip the base model, Llama-3.1-8b-Instruct (Dubey
et al., 2024), with a linear layer to serve as the reward head. For ORM training, the reward model
places a probability of correctness of the whole preferred and dis-preferred trajectory. For PRM
training, we experiment with 4 different levels of process supervision. The first axis of variation
experiments with including/excluding the “Observation” of the ReAct step, which is the output ob-
served from the tool call. The second axis of variation ablates the granularity of the process signals,
i.e., rewarding the whole ReAct step or rewarding each substep of the ReAct step (recall that a ReAct
step contains Thought, Action, and Action Input, the correctness of which is determined/modified
by the Critic Model). This leads us to 4 total supervision methods: Full ReAct step with or without
Observation, Sub ReAct Step with or without Observation. Under each type of supervision, the
PRM places a probability of correctness of the preferred step and dis-preferred step. The training
objective is given by the average Binary Cross Entropy loss, assessing the probability of correctness
with the corresponding label. A more detailed explanation of the training objective is in Appendix
D.3 and training implementation along with hyper-parameters is in Appendix D.5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Evaluation To evaluate, we use our ORM and PRM models to select the best response out of a
set of candidates. Specifically, we use a generator model to produce 50 completions per problem in
ToolComp. We experiment with two different generator model in these experiments: base Llama-
3.1-8b-Instruct and a supervised fine-tuned Llama-3.1-8b-Instruct model, which is trained on all of
the full preferred trajectories in the synthetic training data. After collecting these completions, we
use the trained ORM and PRM to rank these completions, returning the best answer according to
this ranking. We then assess the rank@1 accuracy by judging the correctness of said highest scoring
completion against the ground truth final answer per problem. For the ORM, we simply use the
reward score it places on each completion. For the PRM, in order to compress per-step scores into
one single score for the entire chain, we experiment with different aggregation functions, namely:
min, max, average, and product.

To account for variance in the rankings, we perform 500 permutations of 30 random samples from
the 50 total completion per problem, and calculate the average rank@1 accuracy. Moreover, we vary
the dataset sizes at 10, 25, 50, and 100 percent of the full dataset in order to assess how performance
of each method scales with increasing training data.

5.2 RESULTS

PRM outperforms ORM in selecting the best trajectory In Figure 3, we observe that for both
the base model generations and the SFT model generations, our best PRM model (see Table 4)
outperforms the ORM in rank@1 accuracy. On the base model generations, the PRM achieves an
accuracy of 42.65% compared to the ORM accuracy of 23.89%. Moreover, towards enhancing an
already fine-tuned model, we see that the PRM is able to push rank@1 accuracy to 60.25%, nearly
matching the generator’s pass@30 performance. Overall, these results suggest that PRMs are able
to efficiently translate these per tool call step-level signals to provide superior performance than
utilizing just outcome-level signals. In Appendix B, we also find the PRM scales better than the
ORM on increasing prompt complexity.

Full step with observation is the best PRM supervision method Table 4 shows the performance
of the PRM using different supervision methods trained on the full-scale dataset. We see that pro-
viding the model signals about whether an entire step, including the observation, was correct or
incorrect led to the best performance. These findings suggest that 1) intermediate information from
the environment (tool call outputs) provide valuable signal to PRMs as these dynamic signals pro-
vide additional insight in determining the correctness of a trajectory, and 2) there is a balance to
be struck when determining the granularity of supervision during training. Intuitively, providing
less granular, full-step signals gives the model more freedom to learn and identify what makes one
step better than another, without being constrained by potentially noisy or overly detailed sub-step
labels. This allows the model to generalize more effectively, rather than being limited by specific,
finer-grained supervision.

Table 4: Comparison of the average rank@1 accuracy across different methods of PRM supervised-
training, which are all trained on the full-scale training dataset.

Method Rank@1 Accuracy (%)

Full Step with Observation 60.25
Full Step without Observation 55.43
Sub Step with Observation 49.48
Sub Step without Observation 45.70

PRM scales better than ORM with increasing data Part of the design of our experiment is to
measure the scaling performance of PRMs versus ORMs as we incorporate more training data. In
Figure 3, we find that the PRM rank@1 performance consistently outperforms the ORM at all train-
ing data scales in ranking both the base model completions as well as the SFT model completions.
Interestingly, we observe greater performance scaling for the base model completions, emphasizing
the importance of utilizing process level signals as the PRM is able to still pick out the best trajec-
tory amongst lots of low-quality trajectories. This ability could also serve to pick out high-quality
trajectories for further training the base model for multi-step tool-use reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison of the performance of dif-
ferent aggregation methods used to combine step-
wise level PRM scores. Results here use the PRM
model trained on all data with the Full Step with
Observation supervision method.

Method rank@1 Accuracy (%)

Max 60.25
Min 23.68

Average 25.74
Product 23.06

Figure 4: Distribution of the position of the
maximum scoring step, normalized by the
length of the trajectory, for the rank@1 se-
lected trajectories.

Max is the best PRM aggregation function Since the PRM provides a score for each step in
the trajectory, an important design decision is how to combine step-level scores into a single score
that can be used for ranking. Table 5 clearly demonstrates that max is by far the best aggregation
function for scoring trajectories. By examining many trajectories and their step-level scores, we
find that min and average both heavily penalize any wrong steps that are taken, even if the model
eventually recovers and gets to the correct final answer. When using product as the aggregation
function, the final aggregation results in low magnitudes that are biased towards shorter trajectories.
Max is a better aggregation function because it avoids these aforementioned pitfalls and tends to
favor the later steps (as shown by Figure 4) which are a better proxy for a successful trajectory.

6 LIMITATIONS AND FUTURE DIRECTIONS

In this study, we focus solely on applying outcome and process supervision to the reward model.
Although fine-tuning the policy model with supervision from the reward model using reinforcement
learning (RL) is a logical next step, we leave this for future work and focus instead on the contributed
dataset and the value of process supervision even without RL.

A notable limitation of our work is the reliance on synthetic data to scale the policy. We hypothe-
size that incorporating human-generated data to expand the training set could enhance the tool-use
capabilities beyond the performance of the state-of-the-art critic model, which was used to label our
synthetic dataset.

Additionally, the restricted set of tools used in this work, primarily focused on information retrieval
and data processing, presents another limitation. In contrast, a common approach in the field in-
volves employing specialized models for various tasks such as image generation and translation.
This opens up further questions regarding how process supervision could facilitate the scaling of
more nuanced capabilities when integrating with other specialized models.

7 ETHICS STATEMENT

In the creation of this dataset and any further analysis, we abide by the ICLR Code of Ethics. We
ensure all prompts in this dataset do not contain any harmful or sensitive material by requiring
annotators to flag any such prompts. The authors of this paper have also manually inspected all the
prompts and tool calls for harmful content. In addition, we applied best practices for code execution,
ensuring that all the code execution is done in a sand-boxed environment for any past and/or future
benchmark evaluations. We also ensured that all tools used have a permissive license for research
purposes, and we plan to open-source both the code for running evaluations and the full benchmark
dataset.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY

For the creation of the benchmark, we detail the exact process by which we create the dataset in
Section 3. We also detail the exact evaluation method used to evaluate each model in Section D.4
and Appendix A.1. Moreover, for the training of the ORM, PRM and SFT models, we detail the
exact process (including methodology, hyperparmeters, and additional settings) in Section 5.1 and
Appendix D. We plan to open source both the code for evaluation and the benchmark dataset.

REFERENCES

Inc. AlphaVantage. Alphavantage - stock api. https://www.alphavantage.co/. Accessed:
February 2023–September 2024.

Anthropic. Claude 3: An ai assistant by anthropic. https://www.anthropic.com. Accessed:
2024-02 to 2024-10.

Wenhu Chen, Xinyi Wang, and William Yang Wang. A dataset for answering time-sensitive ques-
tions, 2021. URL https://arxiv.org/abs/2108.06314.

Cohere. Cohere command r+ model. https://cohere.com. Accessed: 2024-10-01.

Bhuwan Dhingra, Jeremy R. Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W. Cohen. Time-aware language models as temporal knowledge bases. Transactions
of the Association for Computational Linguistics, 10:257–273, 2022. ISSN 2307-387X. doi:
10.1162/tacl a 00459. URL http://dx.doi.org/10.1162/tacl_a_00459.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,

11

https://www.alphavantage.co/
https://www.anthropic.com
https://arxiv.org/abs/2108.06314
https://cohere.com
http://dx.doi.org/10.1162/tacl_a_00459

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

12

https://arxiv.org/abs/2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

AI Fireworks. Firefunction-v1: Gpt-4 level function calling. https://fireworks.ai/blog/
firefunction-v1-gpt-4-level-function-calling, 2024.

David Freedman, Robert Pisani, and Roger Purves. Statistics (international student edition). Pisani,
R. Purves, 4th edn. WW Norton & Company, New York, 2007.

Gemini, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng,
Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin,
Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love,
Paul Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, Junwhan Ahn,
Tao Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming Gu, Yujing Zhang, Matthew Rahtz,
Manaal Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui Zhu, Nobuyuki
Morioka, Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo, Samer
Hassan, Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal,
Paul Barham, DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry
Lepikhin, Michela Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran Vo-
drahalli, Chulayuth Asawaroengchai, Roman Ring, Norbert Kalb, Livio Baldini Soares, Sid-
dhartha Brahma, David Steiner, Tianhe Yu, Fabian Mentzer, Antoine He, Lucas Gonzalez, Bibo
Xu, Raphael Lopez Kaufman, Laurent El Shafey, Junhyuk Oh, Tom Hennigan, George van den
Driessche, Seth Odoom, Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, San-
tiago Ontanon, Luheng He, Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis
Ho, Sebastian Riedel, Karel Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran
Kazemi, Ehsan Amid, Anastasia Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris
Larkin, Mario Pinto, Geng Yan, Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave
Orr, Sebastien M. R. Arnold, Jordan Grimstad, Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas
Yadav, Xi Chen, Elena Gribovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel, Paul Komarek,
Sophia Austin, Sebastian Borgeaud, Linda Friso, Abhimanyu Goyal, Ben Caine, Kris Cao, Da-
Woon Chung, Matthew Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia Chen,
Kaushik Shivakumar, Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes
Dotiwalla, Yuan Liu, Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Ma-
teo Wirth, James Qin, Ivo Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain,
Quoc Le, Arjun Kar, Madhu Gurumurthy, Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lam-
prou, Rich Munoz, Nathan Lintz, Harsh Mehta, Heidi Howard, Malcolm Reynolds, Lora Aroyo,
Quan Wang, Lorenzo Blanco, Albin Cassirer, Jordan Griffith, Dipanjan Das, Stephan Lee, Jakub
Sygnowski, Zach Fisher, James Besley, Richard Powell, Zafarali Ahmed, Dominik Paulus, David
Reitter, Zalan Borsos, Rishabh Joshi, Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil
Sethi, Megha Goel, Takaki Makino, Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butter-
field, Anja Hauth, Alex Goldin, Will Hawkins, Evan Senter, Sergey Brin, Oliver Woodman, Mar-
vin Ritter, Eric Noland, Minh Giang, Vijay Bolina, Lisa Lee, Tim Blyth, Ian Mackinnon, Machel
Reid, Obaid Sarvana, David Silver, Alexander Chen, Lily Wang, Loren Maggiore, Oscar Chang,
Nithya Attaluri, Gregory Thornton, Chung-Cheng Chiu, Oskar Bunyan, Nir Levine, Timothy
Chung, Evgenii Eltyshev, Xiance Si, Timothy Lillicrap, Demetra Brady, Vaibhav Aggarwal, Boxi
Wu, Yuanzhong Xu, Ross McIlroy, Kartikeya Badola, Paramjit Sandhu, Erica Moreira, Wojciech
Stokowiec, Ross Hemsley, Dong Li, Alex Tudor, Pranav Shyam, Elahe Rahimtoroghi, Salem
Haykal, Pablo Sprechmann, Xiang Zhou, Diana Mincu, Yujia Li, Ravi Addanki, Kalpesh Krishna,
Xiao Wu, Alexandre Frechette, Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang, Thi Avrahami,
Ye Zhang, Emanuel Taropa, Hanzhao Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano, Hyun-
Jeong Choe, Alex Tomala, Chalence Safranek-Shrader, Nora Kassner, Mantas Pajarskas, Matt
Harvey, Sean Sechrist, Meire Fortunato, Christina Lyu, Gamaleldin Elsayed, Chenkai Kuang,
James Lottes, Eric Chu, Chao Jia, Chih-Wei Chen, Peter Humphreys, Kate Baumli, Connie Tao,
Rajkumar Samuel, Cicero Nogueira dos Santos, Anders Andreassen, Nemanja Rakićević, Do-
minik Grewe, Aviral Kumar, Stephanie Winkler, Jonathan Caton, Andrew Brock, Sid Dalmia,
Hannah Sheahan, Iain Barr, Yingjie Miao, Paul Natsev, Jacob Devlin, Feryal Behbahani, Flavien
Prost, Yanhua Sun, Artiom Myaskovsky, Thanumalayan Sankaranarayana Pillai, Dan Hurt, An-
geliki Lazaridou, Xi Xiong, Ce Zheng, Fabio Pardo, Xiaowei Li, Dan Horgan, Joe Stanton,
Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu Wang, Basil Mustafa, Albert Webson, Hyo
Lee, Rohan Anil, Martin Wicke, Timothy Dozat, Abhishek Sinha, Enrique Piqueras, Elahe Dabir,
Shyam Upadhyay, Anudhyan Boral, Lisa Anne Hendricks, Corey Fry, Josip Djolonga, Yi Su,
Jake Walker, Jane Labanowski, Ronny Huang, Vedant Misra, Jeremy Chen, RJ Skerry-Ryan,

13

https://fireworks.ai/blog/firefunction-v1-gpt-4-level-function-calling
https://fireworks.ai/blog/firefunction-v1-gpt-4-level-function-calling

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros, Beer Changpinyo, Romina Datta, Sumit
Bagri, Arnar Mar Hrafnkelsson, Marcello Maggioni, Daniel Zheng, Yury Sulsky, Shaobo Hou,
Tom Le Paine, Antoine Yang, Jason Riesa, Dominika Rogozinska, Dror Marcus, Dalia El Badawy,
Qiao Zhang, Luyu Wang, Helen Miller, Jeremy Greer, Lars Lowe Sjos, Azade Nova, Heiga Zen,
Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang, Charlie Chen, Ruibo Liu, Tara Sainath, Maxim
Krikun, Alex Polozov, Jean-Baptiste Lespiau, Josh Newlan, Zeyncep Cankara, Soo Kwak, Yun-
han Xu, Phil Chen, Andy Coenen, Clemens Meyer, Katerina Tsihlas, Ada Ma, Juraj Gottweis,
Jinwei Xing, Chenjie Gu, Jin Miao, Christian Frank, Zeynep Cankara, Sanjay Ganapathy, Ishita
Dasgupta, Steph Hughes-Fitt, Heng Chen, David Reid, Keran Rong, Hongmin Fan, Joost van
Amersfoort, Vincent Zhuang, Aaron Cohen, Shixiang Shane Gu, Anhad Mohananey, Anastasija
Ilic, Taylor Tobin, John Wieting, Anna Bortsova, Phoebe Thacker, Emma Wang, Emily Caveness,
Justin Chiu, Eren Sezener, Alex Kaskasoli, Steven Baker, Katie Millican, Mohamed Elhawaty,
Kostas Aisopos, Carl Lebsack, Nathan Byrd, Hanjun Dai, Wenhao Jia, Matthew Wiethoff, El-
naz Davoodi, Albert Weston, Lakshman Yagati, Arun Ahuja, Isabel Gao, Golan Pundak, Su-
san Zhang, Michael Azzam, Khe Chai Sim, Sergi Caelles, James Keeling, Abhanshu Sharma,
Andy Swing, YaGuang Li, Chenxi Liu, Carrie Grimes Bostock, Yamini Bansal, Zachary Nado,
Ankesh Anand, Josh Lipschultz, Abhijit Karmarkar, Lev Proleev, Abe Ittycheriah, Soheil Has-
sas Yeganeh, George Polovets, Aleksandra Faust, Jiao Sun, Alban Rrustemi, Pen Li, Rakesh
Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron, Anirudh Baddepudi, Sebastian Krause,
Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich, Melvin Johnson, Behnam Neyshabur,
Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer Abbas, Arthur Guez, Constant Segal,
Duc Dung Nguyen, James Svensson, Le Hou, Sarah York, Kieran Milan, Sophie Bridgers, Wiktor
Gworek, Marco Tagliasacchi, James Lee-Thorp, Michael Chang, Alexey Guseynov, Ale Jakse
Hartman, Michael Kwong, Ruizhe Zhao, Sheleem Kashem, Elizabeth Cole, Antoine Miech,
Richard Tanburn, Mary Phuong, Filip Pavetic, Sebastien Cevey, Ramona Comanescu, Richard
Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko Iinuma, Clara Huiyi Hu, Aurko Roy,
Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Saputro, Anita Gergely, Steven Zheng,
Dawei Jia, Ioannis Antonoglou, Adam Sadovsky, Shane Gu, Yingying Bi, Alek Andreev, Sina
Samangooei, Mina Khan, Tomas Kocisky, Angelos Filos, Chintu Kumar, Colton Bishop, Adams
Yu, Sarah Hodkinson, Sid Mittal, Premal Shah, Alexandre Moufarek, Yong Cheng, Adam Blo-
niarz, Jaehoon Lee, Pedram Pejman, Paul Michel, Stephen Spencer, Vladimir Feinberg, Xuehan
Xiong, Nikolay Savinov, Charlotte Smith, Siamak Shakeri, Dustin Tran, Mary Chesus, Bernd
Bohnet, George Tucker, Tamara von Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa, Ambrose
Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr, Michael Sharman, Jay Pavagadhi,
Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael Laskin, David Barker, Qiujia Li, An-
ton Briukhov, Neil Houlsby, Mia Glaese, Balaji Lakshminarayanan, Nathan Schucher, Yunhao
Tang, Eli Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria Recasens, Guangda Lai, Alberto
Magni, Nicola De Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay, Mostafa Dehghani, Jenny
Brennan, Yifan He, Kelvin Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi Wu, Seb Arnold,
Solomon Chang, Julian Schrittwieser, Elena Buchatskaya, Soroush Radpour, Martin Polacek,
Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent Hellendoorn, Thibault Sottiaux, Sarah
Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu Thakoor, Laurent Shefey, Siyuan Qiao,
Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao Zhang, Benjamin Lee, Paul Kishan Ruben-
stein, Gan Song, Tom Kwiatkowski, Anna Koop, Ajay Kannan, David Kao, Parker Schuh, Axel
Stjerngren, Golnaz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Felipe Tiengo Ferreira, Aish-
warya Kamath, Ted Klimenko, Ken Franko, Kefan Xiao, Indro Bhattacharya, Miteyan Patel, Rui
Wang, Alex Morris, Robin Strudel, Vivek Sharma, Peter Choy, Sayed Hadi Hashemi, Jessica
Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan Barnes, Matthew Mauger, Dennis
Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Henryk Michalewski, Fabio Viola, Fe-
lix de Chaumont Quitry, Charline Le Lan, Tom Hudson, Qingze Wang, Felix Fischer, Ivy Zheng,
Elspeth White, Anca Dragan, Jean baptiste Alayrac, Eric Ni, Alexander Pritzel, Adam Iwan-
icki, Michael Isard, Anna Bulanova, Lukas Zilka, Ethan Dyer, Devendra Sachan, Srivatsan Srini-
vasan, Hannah Muckenhirn, Honglong Cai, Amol Mandhane, Mukarram Tariq, Jack W. Rae, Gary
Wang, Kareem Ayoub, Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris Alberti, Dan Gar-
rette, Kashyap Krishnakumar, Mai Gimenez, Anselm Levskaya, Daniel Sohn, Josip Matak, Inaki
Iturrate, Michael B. Chang, Jackie Xiang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian Hut-
ter, Vahab Mirrokni, Nanxin Chen, Kaisheng Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty,
Praveen Kallakuri, Evan Palmer, Sanjay Ghemawat, Jasmine Liu, David Tao, Chloe Thornton,
Tim Green, Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yu, Ed Chi, Alexander Neitz, Jens Heitkaemper, Anu Sinha, Denny Zhou, Yi Sun, Charbel
Kaed, Brice Hulse, Swaroop Mishra, Maria Georgaki, Sneha Kudugunta, Clement Farabet, Izhak
Shafran, Daniel Vlasic, Anton Tsitsulin, Rajagopal Ananthanarayanan, Alen Carin, Guolong Su,
Pei Sun, Shashank V, Gabriel Carvajal, Josef Broder, Iulia Comsa, Alena Repina, William Wong,
Warren Weilun Chen, Peter Hawkins, Egor Filonov, Lucia Loher, Christoph Hirnschall, Weiyi
Wang, Jingchen Ye, Andrea Burns, Hardie Cate, Diana Gage Wright, Federico Piccinini, Lei
Zhang, Chu-Cheng Lin, Ionel Gog, Yana Kulizhskaya, Ashwin Sreevatsa, Shuang Song, Luis C.
Cobo, Anand Iyer, Chetan Tekur, Guillermo Garrido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven
Zheng, Hui Li, Ananth Agarwal, Christel Ngani, Kati Goshvadi, Rebeca Santamaria-Fernandez,
Wojciech Fica, Xinyun Chen, Chris Gorgolewski, Sean Sun, Roopal Garg, Xinyu Ye, S. M. Ali
Eslami, Nan Hua, Jon Simon, Pratik Joshi, Yelin Kim, Ian Tenney, Sahitya Potluri, Lam Nguyen
Thiet, Quan Yuan, Florian Luisier, Alexandra Chronopoulou, Salvatore Scellato, Praveen Srini-
vasan, Minmin Chen, Vinod Koverkathu, Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith
Anderson, Thibault Sellam, Nick Fernando, Fantine Huot, Junehyuk Jung, Mani Varadarajan,
Michael Quinn, Amit Raul, Maigo Le, Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha Bullard,
Achintya Singhal, Thang Luong, Boyu Wang, Sujeevan Rajayogam, Julian Eisenschlos, Johnson
Jia, Daniel Finchelstein, Alex Yakubovich, Daniel Balle, Michael Fink, Sameer Agarwal, Jing Li,
Dj Dvijotham, Shalini Pal, Kai Kang, Jaclyn Konzelmann, Jennifer Beattie, Olivier Dousse, Di-
ane Wu, Remi Crocker, Chen Elkind, Siddhartha Reddy Jonnalagadda, Jong Lee, Dan Holtmann-
Rice, Krystal Kallarackal, Rosanne Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen
Jafari, Huanjie Zhou, Lilly Taylor, Jennifer Prendki, Marcus Wu, Tom Eccles, Tianqi Liu, Kavya
Kopparapu, Francoise Beaufays, Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hi-
lal Dib, Jeff Stanway, Frank Perbet, Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li,
Xihui Wu, Sonam Goenka, David Madras, Sasha Goldshtein, Willi Gierke, Tong Zhou, Yaxin
Liu, Yannie Liang, Anais White, Yunjie Li, Shreya Singh, Sanaz Bahargam, Mark Epstein, Sujoy
Basu, Li Lao, Adnan Ozturel, Carl Crous, Alex Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna
Walton, Lucas Dixon, Ming Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles, Mi-
lad Nasr, Ilia Shumailov, Marco Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy,
Misha Khalman, Mrinal Shukla, Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang,
Harry Richardson, James Martens, Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mah-
moud Alnahlawi, Brian McWilliams, Sankalp Singh, Annie Louis, Wen Ding, Dan Popovici,
Lenin Simicich, Laura Knight, Pulkit Mehta, Nishesh Gupta, Chongyang Shi, Saaber Fatehi, Jo-
vana Mitrovic, Alex Grills, Joseph Pagadora, Dessie Petrova, Danielle Eisenbud, Zhishuai Zhang,
Damion Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas Brovelli, Prateek
Jain, Mihajlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolfgang Macherey, Ravin Kumar, Jun Xu,
Haroon Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias
Bauer, Nick Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish
Shenoy, Bryan Seybold, Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa,
Andrea Michi, Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre
Elisseeff, Pedro Valenzuela, Kay McKinney, Kim Paterson, Albert Cui, Eri Latorre-Chimoto,
Solomon Kim, William Zeng, Ken Durden, Priya Ponnapalli, Tiberiu Sosea, Christopher A.
Choquette-Choo, James Manyika, Brona Robenek, Harsha Vashisht, Sebastien Pereira, Hoi Lam,
Marko Velic, Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn
Lu, Jane Park, Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei
Sozanschi, Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Wooyeol Kim,
Nandita Dukkipati, Anthony Baryshnikov, Christos Kaplanis, XiangHai Sheng, Yuri Chervonyi,
Caglar Unlu, Diego de Las Casas, Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno, Siim
Poder, Chester Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek Dimitriev, Aaron Parisi, Dan-
gyi Liu, Tomy Tsai, Toby Shevlane, Christina Kouridi, Drew Garmon, Adrian Goedeckemeyer,
Adam R. Brown, Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, Sara Mc Carthy,
Jay Hoover, Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham, Evan
Rosen, Lisa Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong
Hwang, Lily Yu, Jennifer Pullman, Srini Narayanan, Kyle Levin, Siddharth Gopal, Megan Li,
Asaf Aharoni, Trieu Trinh, Jessica Lo, Norman Casagrande, Roopali Vij, Loic Matthey, Braman-
dia Ramadhana, Austin Matthews, CJ Carey, Matthew Johnson, Kremena Goranova, Rohin Shah,
Shereen Ashraf, Kingshuk Dasgupta, Rasmus Larsen, Yicheng Wang, Manish Reddy Vuyyuru,
Chong Jiang, Joana Ijazi, Kazuki Osawa, Celine Smith, Ramya Sree Boppana, Taylan Bilal, Yuma
Koizumi, Ying Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam Choo, Olaf
Ronneberger, Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene Cai,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Shariq Iqbal, Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy,
Prakash Shroff, Inderjit Dhillon, Tejasi Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia,
Vitaly Nikolaev, Somer Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John
Zhang, Praseem Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Pa-
traucean, Dayou Du, Igor Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi Mohan, Janek
Nowakowski, Vlad-Doru Ion, Nan Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hudson, Vaishakh
Keshava, Shubham Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Madhavi Se-
wak, Bryce Petrini, DongHyun Choi, Ivan Philips, Ziyue Wang, Ioana Bica, Ankush Garg, Jarek
Wilkiewicz, Priyanka Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew
Leach, Sadh MNM Khan, Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao
Wang, Tina Ornduff, Folake Abu, Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Fred-
erick Liu, Joshua Maynez, Andreas Terzis, Pouya Samangouei, Riham Mansour, Tomasz Kepa,
François-Xavier Aubet, Anton Algymr, Dan Banica, Agoston Weisz, Andras Orban, Alexandre
Senges, Ewa Andrejczuk, Mark Geller, Niccolo Dal Santo, Valentin Anklin, Majd Al Merey,
Martin Baeuml, Trevor Strohman, Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis, Koray
Kavukcuoglu, Jeffrey Dean, and Oriol Vinyals. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context, 2024. URL https://arxiv.org/abs/2403.05530.

Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how
to improve llm reasoning via global and local refinements. In Forty-first International Conference
on Machine Learning, 2024.

Jian Hu, Xibin Wu, Weixun Wang, Xianyu, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework, 2024.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language models:
Deciding whether to use tools and which to use, 2024. URL https://arxiv.org/abs/
2310.03128.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu,
Dragomir Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. Realtime qa: What’s the an-
swer right now?, 2024. URL https://arxiv.org/abs/2207.13332.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023.
URL https://arxiv.org/abs/2304.08244.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023. URL https://arxiv.org/abs/
2308.03688.

Martin Majlis. Wikipedia-api, 2017. URL https://github.com/martin-majlis/
Wikipedia-API/tree/master.

16

https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/2207.13332
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://github.com/martin-majlis/Wikipedia-API/tree/master
https://github.com/martin-majlis/Wikipedia-API/tree/master

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Dheeraj Mekala, Jason Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli, Jingbo Shang,
and Jane Dwivedi-Yu. Toolverifier: Generalization to new tools via self-verification. arXiv
preprint arXiv:2402.14158, 2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/
abs/2311.12983.

Mistral. Mistral large 2 model. https://mistral.ai. Accessed: 2024-10-01.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-

17

https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://mistral.ai
https://arxiv.org/abs/2303.08774

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun Gao, and Michael Lyu.
Revisiting, benchmarking and exploring api recommendation: How far are we?, 2021.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

SerpApi. Serpapi - search engine results api. https://serpapi.com/, 2024. Accessed:
February 2023–September 2024.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-
scale dataset for fact extraction and verification, 2018. URL https://arxiv.org/abs/
1803.05355.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan
Sung, Denny Zhou, Quoc Le, and Thang Luong. Freshllms: Refreshing large language models
with search engine augmentation, 2023. URL https://arxiv.org/abs/2310.03214.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.
URL https://arxiv.org/abs/2312.08935.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024b. URL https://arxiv.org/abs/2402.
01030.

Inc. Wolfram Research. Mathematica, Version 14.1, 2024. URL https://www.wolfram.
com/mathematica. Champaign, IL, 2024.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and
Caiming Xiong. Fofo: A benchmark to evaluate llms’ format-following capability, 2024. URL
https://arxiv.org/abs/2402.18667.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models, 2023.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

18

https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/1707.06347
https://serpapi.com/
https://arxiv.org/abs/1803.05355
https://arxiv.org/abs/1803.05355
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://arxiv.org/abs/2402.18667
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Michael J. Q. Zhang and Eunsol Choi. Situatedqa: Incorporating extra-linguistic contexts into qa,
2021. URL https://arxiv.org/abs/2109.06157.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

Patrick Zippenfenig. Open-Meteo.com Weather API, 2024. URL https://github.com/
open-meteo/open-meteo.

19

https://arxiv.org/abs/2109.06157
https://github.com/open-meteo/open-meteo
https://github.com/open-meteo/open-meteo

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A TOOLCOMP EXTENDED EVALUATIONS

In this appendix section, we include additional evaluations, namely the exact match grading (A.1)
and error analysis for each model (A.2 and A.3).

A.1 EXACT MATCH

This paradigm aims to assess both the tool use capabilities and the instruction/format following
capabilities of the model. Formatting is particularly important when we want to use the LLM to
automate a backend process. This paradigm programmatically evaluates unsorted lists (eg. prompt
asks for a list of all states in the US), sorted lists (eg. prompt asks for a list of all states in the US
in alphabetical order), numbers (eg. prompt asks for the areas of Texas in square miles) and strings
(eg. prompt asks for the name of the football team that won the Superbowl in 2016)

Unsorted lists are sorted and exact matched (set match gets rid of duplicates) Sorted lists are exact
matched Number are checked if they are within a tolerance param (the tolerance param is to account
for variance among different sources online) String are stripped, lower cased, and exact matched

Table 6: Model Family Performance Comparison: Accuracy and 95% Confidence Intervals

Model Family Model Name Total Accuracy (%)

OpenAI

o1-preview 38.92 ± 4.36
GPT-4o (Aug 2024) 43.52 ± 4.43
GPT-4o (May 2024) 40.60 ± 4.38
GPT-4 Turbo Preview 40.11 ± 4.39
GPT-4 38.45 ± 4.34
GPT-4o Mini 34.70 ± 4.25

Anthropic
Claude 3.5 Sonnet 42.92 ± 4.42
Claude 3 Opus 36.96 ± 4.43
Claude 3 Sonnet 33.58 ± 4.21

Google Gemini 1.5 Pro (August 27, 2024) 43.22 ± 4.43
Gemini 1.5 Pro (May 2024) 27.36 ± 3.98

Mistral Mistral Large 2 33.63 ± 4.21

Meta
Llama 3.1 405B Instruct* 33.10 ± 4.20
Llama 3.1 70B Instruct* 26.19 ± 3.93
Llama 3.1 8B Instruct* 11.75 ± 2.88

Cohere Command R+ 0.00 ± 0.00

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.2 FINAL ANSWER FAILURE ANALYSIS

In order to better understand the reasons behind each model’s failures, we come up with an Error
Taxonomy and use GPT-4 Turbo to categorize the reasoning behind each failure. We note that the
error categories are not mutually exclusive. We inspect the individual failure cases predicted by
GPT-4 Turbo and find that it is reasonably accurate. The different categories and their definitions
are shown in Table 7 and the error counts for each model is shown in Figure 5.

Table 7: Common Error Category Taxonomy.

Category Description

Final Answer Missing Information The model’s trajectory got to the final answer however
the final answer fails to answer all parts of the prompt.

Called Incorrect Tool The model called irrelevant tools that lead it down the
wrong direction.

Incorrect Tool Call Formatting

The model tried to call the relevant tool but consis-
tently used the wrong formatting for the input argu-
ments (e.g., wrong input format, didn’t include a re-
quired argument). You can tell this is occurring if the
tool call’s result is an error message.

Terminated Early Unexpectedly
The model stopped short of reaching the final answer
even though it should have kept proceeding. It is un-
clear why the model stopped early.

Hallucinated Information

The model either didn’t call the relevant tool and just
made up information or it called the relevant tool but
didn’t use its outputs in the next tool call or final answer
properly (made up information afterwards).

Misunderstood Tool Info The model called the relevant tool but misunderstood
the information it gave back.

Repeatedly Calling Same Tool

The model called the same tool with the same argu-
ments multiple times (even though it didn’t have any
errors) and didn’t use the returned info to proceed to
the next step or the final answer.

Action Plan Flawed The Action Plan provided to the model in the user
query was fundamentally flawed.

Miscellaneous The reason for the error doesn’t fit into any of the above
categories.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 5: Breakdown of the various error categories in our taxonomy for each model (on the
ToolComp-Enterprise).

A.3 INTERMEDIATE REASONING FAILURE ANALYSIS

In this appendix section, we conduct a thorough failure analysis for the intermediate reasoning
evaluations shown in Table 3.

A.3.1 REACT-STEP-ERROR-BASED FAILURE TRENDS IN MODELS

Figures 6 and 7 shows the count for type of mistake between the human corrected substep and
the original incorrect substep whenever the model fails to pick the more appropriate trajectory (see
Figure 1 for an overview on the annotation process). We define the failure cases in terms of which
subset of the ReAct step needed correction. We end up with 5 different cases:

• Case 1: Thought Correct, Action Correct, Action Input Incorrect
• Case 2: Thought Incorrect, Action Incorrect, Action Input Incorrect
• Case 3: Thought Incorrect, Action Correct, Action Input Correct
• Case 4: Thought Incorrect, Action Correct, Action Input Incorrect
• Case 5: Thought Correct, Action Incorrect, Action Input Incorrect

Together, these figures highlight what types of errors are most common during a lapse in reasoning
when picking the best next course of action or invoking a tool correctly. In particular, we notice
that models often fail in reasoning about the better course of action when the deciding factor is in
picking the better Action Input with all else equal.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 6: Histogram showing the LLM as judge evaluation failure counts for each model, which is
further categorized by subset of the ReAct step that needed correction. Full Benchmark denotes the
counts for the entire ToolComp benchmark. Recall from 4.3, we have 3 outcomes for LLM judge
evaluation: win, tie, or loss. Here we count a failure as either a tie or a loss outcome.

Figure 7: Density of the error-type between correct and incorrect step for the LLM as judge eval-
uation failures for each model. Full Benchmark denotes the distribution for the entire ToolComp
benchmark.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.3.2 POSITION-BASED ERROR TRENDS IN MODELS

Figures 8 and 9 shows the count and percentage of the relative positions where each respective model
failed to chose the better step when serving as an LLM judge choosing between two steps. In order
to calculate the position, we divide the step number at which the decision is taking place by the
total number of steps in the trajectory and multiply by 100. Hence, the position of a step will be a
number between 0 and 100. We bin these position values by increments of 20. Overall, these figures
illustrate that most, if not, all of the models struggle when judging steps towards the middle-end
(position values between 60 and 80) of the trajectory. Intuitively this makes sense because this is
likely where models have to compose the observations of previous tools into the input for the next
tool call, which requires more nuanced and sophisticated reasoning.

Figure 8: Histogram showing the LLM as judge evaluation failure counts for each model, which is
further categorized by the position of the decision step. Full Benchmark denotes the counts for the
entire ToolComp benchmark.

Figure 9: Density of the position of the LLM as judge evaluation failures for each model. Full
Benchmark denotes the distribution for the entire ToolComp benchmark.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B PERFORMANCE SCALING ON INCREASING COMPLEXITY

In this appendix section, we compare how process supervised reward model performance scales with
more complex tool use prompts.

Categorizing Prompt Complexity We group ToolComp prompts into three categories of com-
plexity — Easy, Medium, and Hard — based on the number of tool calls required in the human-
verified trajectory (see Figure 1 for an overview on the annotation process) to answer the prompt:

• Easy: Prompts solved in 1–4 steps. (199 total prompts)
• Medium: Prompts solved in 5–8 steps. (210 total prompts)
• Hard: Prompts solved in 9–12 steps. (62 total prompts)

While there can be multiple valid trajectories of different lengths for the same prompt, we consider
this categorization a reasonable proxy for complexity.

Figure 10: A comparison of outcome-supervised and process-supervised reward models across var-
ious scales of training data (10%, 25%, 50%, 100%) on different complexity of prompts. We use
the same 50 completions from the fine-tuned Llama-3.1-8b-Instruct generator in the experiments in
Section 5 and we consider all 50 completions when ranking the trajectories.

PRM performance scaling is the greater for more complex prompts. Figure 10 compares the
rank@1 performance scaling of ORM and PRM across the different prompt complexity. PRM con-
sistently demonstrates better scalability for harder prompts, with the largest performance gains over
ORM observed in the Hard category. This highlights that PRMs are particularly effective in handling
more complex queries requiring sophisticated reasoning across multiple tool call steps.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C TOOLCOMP DETAILS

In this appendix section, we provide further details regarding benchmark creation steps such as
prompt creation (C.1, C.2, C.3). We also provide additional benchmark metadata revolving different
characteristics and statistics about the benchmark (C.4).

C.1 PROMPT CREATION DETAILS

Step 1: Develop In-Context Examples We crafted high-quality in-context (IC) examples with
supporting reasoning, which we call ‘processes’, to guide the prompt generation. These processes
are Chain of Thought reasonings that describe the process by which we came up with the prompt.
One of the IC Prompts and a corresponding CoT is shown in Appendix C.2

Step 2: Generate Initial Prompts Using the IC examples, we generated synthetic prompts, en-
suring diversity by selecting random subsets of IC examples. Each subset used distinct in-context
prompts and randomly sampled tools from its set of available tools. The seed prompt used in this
step in Appendix C.3.

Step 3: Filtering We manually inspected each prompt to ensure they were reasonable, interesting,
and challenging, labeling them as Good, Too Simple, or Nonsensical with justifications for each
classification. These labeled examples served as IC inputs for GPT-4 Turbo (OpenAI et al., 2024) to
classify additional prompts. We iteratively review the outputs, make necessary edits, and add more
IC examples. Through three iterations, the filtered prompts were of high quality, exhibiting only
minor mistakes.

Step 4: Human Refinement After filtering, annotators reviewed the finals prompts to resolve any
issues related to complexity, clarity and ambiguity. We gave clear instructions on ambiguity (only
one possible correct answer) and complexity (requires two or more tool calls to answer), instructing
our annotators to ensure the prompt has only one correct answer that is complex, challenging and
requires the use of tools.

C.2 IN CONTEXT EXAMPLE

Prompt

I wanna know if eating meat is correlated with heart issues, find the annual per capita con-
sumption of meat in (kg/person) and also the per capita heart attack rates (in heart attack-
s/person) for every country. Then run a linear regression with y as heart attack rates and x
as meat consumption, return the Pearson’s correlation as well as the slope of the fit line.

Process

I will first start by creating a prompt that requires the use of google search. I want to make
this prompt about investigating whether the amount of meat you consume is correlated to
heart disease. In order to make sure there is only one possible answer, I will ask to find
the per capita consumption of meat (in kg/person) and heart attacks rates (heart attacks per
person) in all countries. This standardizes the actual data that needs to be pulled and specifies
the units to ensure there is only one possible answer. I will then ask for a linear regression
using that data since it requires a python interpreter. Since linear regression is deterministic
when the data is fixed and the data required to fit the linear regression is well defined, I
can ask to output itś parameters and ensure there is only one possible answer that can be
returned. This ensures that the good prompt is clear, unambiguous and has an answer that is
easy to verify through an exact string match while also requiring a chain of dependent tool
calls (google search call, then python interpreter call) to solve.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.3 SEED PROMPT

I want you to act as a Prompt Writer.

Please adhere to the following instructions:

• Write a prompt that requires the use of all of the tools.
• The prompt should require a chain of dependent tools calls who’s outputs influence

the inputs of the next tool invocation.
• The prompt should be appropriate for someone in {grade}.
• Please do not specify the tools to be used in the prompt. We want the assistant to

figure out on it’s own what tools to call so it should not be specified in the prompt
itself. No phrases like “Use the ... tool” should be in the written prompt.

• The prompt should be a couple sentences.
• Make sure the prompt has only one possible answer that is concrete and easily

verifiable. We want to be able to check the final answer using exact match.
• Make sure the answer is not in the prompt.
• Place [STOP] at the end of the prompt.

Examples:

{examples}

[BEGIN ALLOWED TOOLS]

{tools}

[END ALLOWED TOOLS]

C.4 BENCHMARK METADATA

0 2 4 6 8 10 12 14 16 18 20
of Tools

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Figure 11: About 85% of prompts in ToolComp require at least 3 tool calls to solve, indicating that
they have a decent amount of complexity and difficulty. Furthermore, 20% of prompts still require
7 or more tool calls to solve. This indicates that an agent being evaluated on this benchmark requires
high context length, sophisticated reasoning over long context, and advanced tool calling capabilities
in order to process long tool chains, formulate a high level plan, and understand the outputs of each
tool call to proceed to the next step and subsequently achieve a high score.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
of Characters

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Figure 12: Due to the nature of ToolComp needing to have answers that are easily verifiable, we
choose to create prompts that have numbers and short strings to match. However, there are still some
examples of prompts that require long structured outputs such as dictionaries,tuples and lists. These
test the agent’s ability to follow complex queries that involve returning long outputs such as lists or
dictionaries of city names, temperatures, altitudes, etc.

0 200 400 600 800 1000 1200
Frequency

Number

Text

Date

Ty
pe

Figure 13: We show the distribution of the following primitive data types: number, string and
date. We care most about evaluation of compositional tool use and reasoning rather than aesthetic
output structuring and formatting. This is why the benchmark’s labels are predominantly numeric
while containing a significant fraction of string outputs. In many cases, strings and names are
intermediary outputs, but we most often ask for numerical final answers to make the answer easier
to unambiguously verify.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Frequency

wolfram_alpha

calculator

google_search

historical_weather

python_interpreter

ticker_search

time_series_daily

date

wiki_search

time_series_intraday

current_weather

To
ol

Figure 14: The distribution of tools called in our human supervised tool call chains. The heavy bias
towards Google and Python are due to ToolComp Chat only allowing these tools as well them being
generally applicable for a wide range of tasks (web retrieval and information processing).

Figure 15: The distribution of tools called in our human supervised tool call chains for just the
ToolComp Enterprise subset.

Figure 16: The distribution of tools called in our human supervised tool call chains for just the
ToolComp Chat subset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400
Frequency

Abstract Mathematics
Arithmetic
Geography

Meteorology
Finance/Investment Analysis

Computer Science
History

Environmental Science
Physics

Chemistry
Astronomy

Architecture
Geology

Engineering
Biology

Computational Mathematics
Other

Ca
te

go
rie

s

Frequency of Categories Across Prompts

Figure 17: Here, we show the various topics our prompts address. Many prompts require arithmetic
operations and mathematical reasoning along with a somewhat uniform distribution of multiple dis-
ciplines ranging from Geography, Finance, History, Physics, Chemistry, Astronomy, Architecture
etc. The topics are not mutually exclusive since many of these prompts span multiple domains and
require multiple tools, multiple sources of knowledge and diverse forms of reasoning.

D PROCESS SUPERVISION VS. OUTCOME SUPERVISION TRAINING DETAILS

D.1 DETAILED SYNTHETIC TRAINING DATA GENERATION

Synthetic Prompt Generation For the generation of synthetic prompts, we mirror the strategies
outlined in Section 3.3 with the notable exception of the Human Refinement step due to the high
level of associated cost. Instead, we replace this step with final answer consistency across different
model families. Using the following models – GPT-4o (May 2024), GPT- 4 Turbo, Claude 3.5
Sonnet, and Llama 3.1 70b – we generate full trajectories and only keep the prompts for which
every model arrives at the same final answer. From empirical evaluation, this serves as a good proxy
for unambiguous and sensible prompts. Table 8 notes the initial amount of prompts generated and
the final number of prompts that are final answer consistent across the model families.

Table 8: Count of training data through the different stages of generation.

Type Count

Initial Prompts 75K
Final Answer Consistent Prompts 17369
Trajectories with Final Answers 13628
Trajectories with Correctly Formatted Final Answers 11654

Synthetic Training Data Suppose we have a LLM that acts as a policy, coined the Policy Model,
and another LLM that acts as a judge, coined the Critic Model. Given a query, q, we first use
the Policy Model to generate an action plan, a. Then, conditioned on the action plan, we prompt
the Policy Model to generate a full chain trajectory {t1, . . . , tN}, where each ti is ReAct step that
invokes a tool call or invokes the finish action. The prompt to generate the action plan and each
tool call is given in E.1 and E.2, respectively. We bound N by 15, allowing at most 15 tool call in
trajectory. If the model reaches a final answer, then tN is the finish action. We then use the Critic
Model to critique the action plan a and react steps ti. The prompt for the Critic Model to critique
the action plan and the react steps is given in E.3 and E.4, respectively. In the case that the critique
model finds a fault with a step, it then proposes a corrected step. The corrected step is then used to
continue the chain. Using the latest correct step, the Policy Model will then be invoked to generate

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

a new ReAct step and the Critic Model will critique the step iteratively until either the Policy Model
reaches a final answer and the Critic Model agrees or the Critic Model proposes a final answer when
correcting a step. All Policy Model full trajectories that did not reach a final answer was discarded
and all Critic Model trajectories that did not reach a final answer was also discarded. For the Policy
Model, we used Llama-3.1-8b-Instruct, and for the Critic Model, we used GPT-4o. The process
described here mimics the same process we used to create ToolComp described in Figure 1, where
human annotators is replaced by GPT-4o and the policy is Llama-3.1-8b-Instruct. Table 9 shows the
different generation parameters used for the Policy Model and the Critic Model. From Table 8, the
total number of trajectories with correctly formatted final answers is 10342.

Table 9: Policy Model and Critic Model Generation Parameters

Parameter Policy Model Critic Model

Temperature 0.5 0
Max New Tokens 1024 4096

Num Retries Per Step 3 3

Stop
“End Action”,

“End Action\n”,
“\nEnd Action”

“End Action”

D.2 CONSTRUCTION OF TRAINING DATASETS

Reward Model Datasets The preference ranking dataset for outcome reward modelling (ORM) is
composed of the dis-preferred trajectory being the original Policy Model full trajectory and preferred
trajectory being the fully corrected Critic Model trajectory (assuming at least one edit was made in
the duration of the Critic Model trajectory). The step-by-step preference ranking dataset for the
process reward modelling (PRM) is comprised of every Critic Model correction, we take the dis-
preferred step to be the original Policy Model’s full ReAct step and the preferred step to be the
Critic Model’s full ReAct corrected step. The trajectory history is the most correct chain leading
up to the given step. In total, as in Table 10, the ORM dataset size is same as the total number of
trajectories with correctly formatted final answers (11654) and the PRM dataset size is equivalant
to the number of times the Policy and Critic models had disputes and corrections (14932). We note
that the ORM samples are full trajectories, whereas the PRM samples are simply the steps that were
correct.

SFT Dataset The SFT dataset is comprised of the most corrected trajectory taken by simply fol-
lowing all Critic Model correct steps where applicable.

Table 10: Training dataset sizes.

Dataset Number of Samples

ORM 11654
PRM 14932
SFT 11654

D.3 DETAILED TRAINING OBJECTIVES

Outcome Reward Model The base model is equipped with a linear layer to serve as the reward
head, which outputs a scalar reward value per token. We place a special RM token at the end of the
preferred and dis-preferred completion, followed by an EOS token. The training objective is then
given by a Binary Cross Entropy loss on the reward value output on the special RM token. We use
Llama-3.1-8b-Instruct as the base model.

Process Reward Model Similarly, the base model is equipped with a linear layer to serve as the
reward head, which outputs a singular scalar value. We test 4 different levels of supervision. For the

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Full Step with Observation and Full Step without Observation, a singular special RM token is placed
at the end of the observation step and at the end of the action input step, respectively. Moreover, for
Sub Step with Observation and Sub Step without Observation, 4 special RM tokens are placed after
each ReAct step (including the observation) and 3 special RM tokens are placed after each ReAct
step (excluding the observation), respectively. For all variation, the training objective is given by the
average Binary Cross Entropy loss across the reward value output at each of the special RM tokens
and the corresponding label. We use Llama-3.1-8b-Instruct as the base model.

D.4 PRM VS. ORM EVALUATION

Ranking Trajectories We use a generator to generate 50 completions per problem in ToolComp.
Then for each completion, we discard all completions that did not reach a final answer. We then use
an ORM and PRM to rank the completions per problem. For the ORM, we simply take the sigmoid
of the reward score it places on the completions as that is the probability the model assigns that the
trajectory is correct. For PRM, given a trajectory, we collect a list of probability scores for each
step. To combine the list of probability scores into a single number, we experiment with a couple of
aggregation functions, namely: min, max, average, and product. In order to account for variance in
the ranking scores, we perform 500 permutations of the completion per problem, leaving 20 out at
random each permutation. We consider the best-of-30 accuracy, which takes the best trajectory as
ranked by the corresponding method and evaluates the correctness of that single trajectory.

Training Dataset Scales In order to assess the generalizability of PRM vs. ORM with increasing
scales of data, we vary the dataset sizes to be 10, 25, 50, and 100 percent of the full dataset. At each
dataset scale, we train the models for 3 epochs and then take the best performing model on a held
out synthetically generated validation set.

Base Model vs. SFT Model Generations To account for a variety in the quality of Tool-Use
trajectories to rank and to assess the performance gains beyond SFT, in addition to using Llama-
3.1-8b-Instruct model as a generator, we also use a Supervise Fine-Tuned Llama-3.1-8b-Instruct.
The model is trained on the full set of golden trajectories given by following all the Critic Model’s
corrections.

D.5 TRAINING IMPLEMENTATION AND HYPER-PARAMETERS

Implementation We implement the reward model and SFT training using the OpenRLHF library
(Hu et al., 2024) in combination with PyTorch (Paszke et al., 2019). We made the following modi-
fication to the OpenRLHF Library:

• The RewardDataset object optionally took indices that signified where to place the special
RM tokens to implement the ORM training and the 4 different PRM supervision training

• We update the BCE loss function implementation to additional consider more than one
RM classification token id for the PRM training. We simply average the BCE loss for the
multiple settings.

Training Parameters and Selection We use Llama-3.1-8b-Instruct weights as initialization for
both the ORM and the PRM. For each of the ORM and PRM training across the different dataset
scales, we keep a constant batch size of 64 with 3 epochs and experiment with 5 different learning
rates: 1e−5, 1e−6, 9e−7, 6e−7, and 1e−7. We then pick the best respective model using the best
performance on a held-out (10%) validation set. Generally speaking, the best learning rate for PRM
training is 9e−7 and for ORM training is 1e−6 across dataset scales. For the SFT training we
experiment with 3 different learning rates 1e−5, 1e−6, and 1e−7 and 5 epochs. Table 11 and Table
12 summarizes hyper-parameters and training settings.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 11: Training settings for ORM and PRM.

hyper-parameter and settings value

epochs 3
context length 16384

batch size 64
deepspeed zero stage 2

seed 42
loss function BCE

learning rates 1e−5, 1e−6, 9e−7,
6e−7, 1e−7

Table 12: Training settings for SFT.

hyper-parameter and settings value

epochs 5
context length 16384

batch size 64
deepspeed zero stage 3

seed 42
loss function CE

learning rates 1e−5, 1e−6, 1e−7

E TOOL-USE PROMPTS

In this section, we summarize all of the prompts that were used during the creation of the benchmark,
evaluation of the benchmark, and creation of the synthetic training data. For the creation of the
benchmark, we state the “Action Plan Prompt” for the Policy Model in Section E.1 and the “Tool
Call Prompt” for the Policy Model in Section E.2. For the evaluation of the benchmark, we state the
LLM grading prompt and the in-context examples used to aid grading in Section E.5. Lastly, for the
creation of the synthetic training data, we use the same policy model prompts for the action plan and
tool call, and we additionally include the “Action Plan Prompt” for the Critic Model in Section E.3
and the “Tool Call Prompt” for the Critic Model in Section E.4.

E.1 ACTION PLAN PROMPT (POLICY MODEL)

You are a helpful action planner with access to functions. Please use the tools to provide
information accurate up to current date: {current date}

FUNCTIONS: {func spec}

Question: {question}

Given the tools available to you above, please formulate an action plan to answer the question
in a bulleted list for each step. Refrain from using any specific tool calls in your action plan,
instead focus on the high-level steps you would take to answer the question and the name of
the tool you would use and how you would use it. Refrain from trying to answer the question
directly in the action plan.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E.2 REACT TOOL CALL PROMPT (POLICY MODEL)

SYSTEM:

You are a helpful assistant with access to functions, each function will be regarded as an
action. Your job is to take relevant and necessary actions to get to the final answer to a user
question. Please use the actions to provide information accurate up to current date and time:
{current date}. The user will provide you a question and a high level action plan. Your job
is to execute on the action plan to answer the question. It’s okay to slightly deviate from the
action plan if you think it’s necessary.

FUNCTIONS: {func spec}

Please stick to the following format:

Thought: ⟨ your reasoning/thought on why/how to use an action⟩
Action: ⟨the action to take, should be one of {func list}⟩
Action Input: ⟨the input to the action (should be in JSON format with the required fields)⟩
End Action

If you believe that you have obtained enough information (which can be judged from the
history observations) to answer the question, please call:

Thought: I have enough information to answer the question
Action: finish
Action Input: {“answer”: [your answer string]}}
End Action

For your final answer (the finish action input), make sure you answer the full question.
Additionally, we want to make sure the final answers/outputs in the finish action input are
returned in the order that they are given in a list format so we can verify them with an exact
string match. For eg. if the prompt asks for a city name, its temperature and a list of names
of all the NBA teams whose home stadium is within a 400 mile radius, you would output
[’San Francisco’, 78, [’Los Angeles Lakers’, ’Golden State Warriors’]].

If the prompt asks for a special sorting of the list, make sure to output wrap the list in {{}}
and if doesn’t require any special sorting wrap it in [] like you normally would. So if the
prompt instead asked to list the names of all the NBA teams whose home stadium is within
a 400 mile radius in alphabetical order, you would output [San Francisco, 78, {{Golden
State Warriors, Los Angeles Lakers}}].

Only output the final answer with no additional text or natural language. Give dates in
YYYY-MM-DD format, temperatures in celcius, prices in dollars, lengths in meters, area in
meters2, volume in m3 and angles in degrees if the prompt doesn’t specify what format/units
to output the answer in.
Given a user provided question and action plan, as well as your previous actions and
observations, take your next action.

USER:

Question: {question}

Action Plan: {action plan}

ASSISTANT:

{history of react steps}

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E.3 ACTION PLAN PROMPT (CRITIC MODEL)

You are an expert planner of tool calls. Your job is to critique the action plan of an assistant.

The following information is shown to the assistant in order to devise an action plan:

[Start of the message]

You are a helpful assistant with access to functions. Please use the tools to provide
information accurate up to current date and time: {current date}.

FUNCTIONS: {func spec}

Question: {question}

Given the question and the tools available to you above, please formulate an action plan to
answer the question in a bulleted list for each step.

Refrain from using any specific tool calls in your action plan, instead focus on the high-level
steps you would take to answer the question and the name of the tool you would use and
how you would use it. Refrain from trying to answer the question directly in the action plan.

[End of the message]

Given the set of functions and the question, please critique the action plan provided by the
assistant.

First, determine if the action plan is correct or incorrect. To do so, provide a reasoning and
then label the action plan as correct or incorrect. In order to determine if the action plan
needs revision, consider the following:

• Is the action plan reasonable given the set of functions available?
• Is the action plan clear and concise?
• Is the action plan missing any steps?

Please err on the side of giving the assistant the benefit of the doubt, and only critique the
action plan if it is clearly incorrect.
If the action plan is incorrect, provide a revised action plan that you believe would be correct.

Furthermore, your output should follow the format:

Reasoning: ⟨ your reasoning for the correctness or incorrectness of the action plan ⟩

Label: ⟨ correct/incorrect ⟩

Revised Action Plan: ⟨ your revised action plan or empty if no revision needed ⟩

Here is the action plan provided by the assistant:

{action plan}

Please provide your critique of the action plan.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E.4 REACT TOOL CALL PROMPT (CRITIC MODEL)

You are an expert judge of tool calls. Your job is to critique each of the ReAct steps of an
assistant.

The following information is shown to the assistant in order to devise a ReAct step.

[Start of the message]

You are a helpful assistant with access to functions. Use them if required. Please use the
tools to provide information accurate up to current date and time: {current date}.

FUNCTIONS: {func spec}

Please stick to the following format:

Thought: you should always think about what to do
Action: the action to take, should be one of {func list}
Action Input: the input to the action
End Action

If you believe that you have obtained enough information (which can be judged from the
history observations) to answer the question, please call:

Thought: I have enough information to answer the question
Action: finish
Action Input: ”answer”: [your answer string]
End Action

Question: {question}

[End of the message]

Given the set of functions, question, action plan and history of past actions, critique the
Thought, Action, and Action Input step. Assume the action plan and history of past
actions are optimal. To assess the thought step, if the step is roughly reasonable and the
action and action input step are correlated with the thought step, then the thought step
is correct. Please give the assistant the benefit of the doubt and be lenient in your assessment.

To assess the action step, let’s assume that the Assistant cannot complete simple function-
alities such as simple arithmetic, converting units, or utilizing simple facts without the
use of tools. If the action specifies a reasonable function to use, then the action step is correct.

To assess the action input step, if the input is reasonable and the action is correct, then the
action input step is correct.

If any of the steps are incorrect, label them as incorrect in the Labels section.

For the Revised ReAct Step section, provide the correct step that the assistant should have
taken. If the assistant’s step is correct, provide the assistant’s step as the revised step. If the
assistant’s step is incorrect, provide the correct step that the assistant should have taken. As
a general rule of thumb, if your revised step is different from the assistant’s step, then the
assistant’s step is incorrect, and if your revised step is the same as the assistant’s step, then
the assistant’s step is correct.

As an important reminder, for your final answer (the finish action input), we want to make
sure the final answers/outputs in the finish action input are returned in the order that they

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

are given in a list format so we can verify them with an exact string match. For eg. if the
prompt asks for a city name, its temperature and a list of names of all the NBA teams whose
home stadium is within a 400 mile radius, you would output [’San Francisco’, 78, [’Los
Angeles Lakers’, ’Golden State Warriors’]]. If the prompt asks for a special sorting of the
list, make sure to output wrap the list in {{}} and if doesn’t require any special sorting
wrap it in [] like you normally would. So if the prompt instead asked to list the names
of all the NBA teams whose home stadium is within a 400 mile radius in alphabetical or-
der, you would output [San Francisco, 78, {{Golden State Warriors, Los Angeles Lakers}}].

Only output the final answer with no additional text or natural language or units. Give dates
in YYYY-MM-DD format, temperatures in Celcius, prices in dollars, lengths in meters,
area in meters2, volume in m3 and angles in degrees if the prompt doesn’t specify what
format/units to output the answer in.

As a reminder, you should not use an external information that is not provided in the
prompt or by a tool call. As a simple example, you may know a ticker symbol already for
a company, but you should not use it unless you have called the ticker search or a similar
function (e.g. google search, wiki search, etc.) to retrieve that information.

Your output should follow the format:

[Start of format]

Reasoning: ⟨ your reasoning for the correctness or incorrectness of each step ⟩

Labels: [⟨correct/incorrect⟩, ⟨correct/incorrect⟩, ⟨correct/incorrect⟩] (in the order of
Thought, Action, Action Input)

Revised ReAct Step:

Thought: ⟨ your revised thought or assistant’s thought if correct ⟩
Action: ⟨ your revised action or assistant’s action if correct ⟩
Action Input: ⟨ your revised action input or assistant’s action input if correct ⟩
End Action

[End of format]

Here is the action plan:

{action plan}

Here is the history of past actions. If there are no past actions yet, this will be empty:

{history}

Here is the latest ReAct step provided by the assistant:

Thought: {thought}
Action: {action}
Action Input: {action input}
End Action
Observation: {observation}

Please provide your critique of the latest ReAct step provided by the assistant.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.5 LLM GRADING PROMPT

E.5.1 MAIN PROMPT

You are an expert test grader. You have been given a student answer (‘Student Answer:’) to
grade. You have also been the correct answer (‘Correct Answer:’) and the original question
(‘Question:’). Each correct answer is a list of strings.

{In-Context Examples}

The possible grades are

INCORRECT: ‘Student Answer:’ is different from ‘Correct Answer:’

• numbers are completely different
• lists are completely different
• ‘Question:’ asks for special sorting of a list but the list in ‘Student Answer:’ is

sorted differently than ‘Correct Answer:’
• strings are completely different or information present in the string is completely

different

CORRECT BUT BAD FORMATTING: ‘Student Answer:’ has the same info as ‘Correct
Answer:’ but is formatted differently.

• ‘Student Answer:’ includes natural language or additional text
• numbers are formatted differently but they are close to one another (‘Student An-

swer:’ is within
• lists are wrapped differently than the correct answer but contains the same infor-

mation and sorted the same way as ‘Correct Answer:’ if asked ‘Question:’ asks for
a special sorting

• Strings are the same but may be formatted differently

CORRECT: The student answer has the same info as ‘Correct Answer:’ and is also format-
ted the same as ‘Correct Answer:’

• numbers are close to one another (‘Student Answer:’ is within 10% of the correct
answer)

• if ‘Question:’ asks for a special sorting of the list the ’Student Answer:’ list is sort
the same as ‘Correct Answer:’

• lists are wrapped the same
• Strings are identical

Remember you are assuming the correct answer provided is correct, your job is is only to
compare the correct answer to the student answer and grade it based on the above criteria.
Do not try to determine the correct answer yourself. Make sure to include a reasoning and
final grade in the format:

Reasoning: ⟨ reasoning ⟩ Final Grade: ⟨ INCORRECT / CORRECT BUT BAD FORMAT-
TING / CORRECT ⟩ [ENDOFGRADE]

Now do this for the following user provided question, student answer and correct answer.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

E.5.2 IN-CONTEXT EXAMPLES (ORDERING)

We want to make sure the values in the student answer are returned in the order that they
are asked in ‘Question:’.

For example, if ‘Question:’ asks for a city name, its temperature and a list of names of all
the NBA teams whose home stadium is within a 400 mile radius, and ‘Correct Answer:’
is [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]] we would want
‘Student Answer:’ can be [’San Francisco’, 78, [’Los Angeles Lakers’, ’Golden State
Warriors’]].

Examples:

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium
is within a 400 mile radius
Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, 74, [’Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is correct because it identifies the same city , the
temperature is within 10% of the Correct Answer and the same team names are present in
the list.
Final Grade: CORRECT

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium
is within a 400 mile radius
Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: The city name is San Francisco, its temperature is 80 degrees and the Los
Angeles Lakers and the Golden State Warriors are two NBA teams whose home stadium is
within a 400 mile radius
Reasoning: Although the Student Answer is correct (identifies the same city , the temper-
ature is within 10% of the Correct Answer and the same team names are present), it’s not
formatted the same and contains extra text and natural language.
Final Grade: CORRECT BUT BAD FORMATTING

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium
is within a 400 mile radius
Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, -15, [’Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is incorrect because although identifies the same city and
the same team names are present in the list, the temperature is well outside of 10% of the
Correct Answer.
Final Grade: INCORRECT

E.5.3 IN-CONTEXT EXAMPLES (SORTING)

If ‘Question:’ asks for a special sorting of the list, make sure ‘Student Answer:’ is sorted
the same as ‘Correct Answer:’. So if ‘Question:’ instead asked to list the names of all
the NBA teams whose home stadium is within a 400 mile radius in alphabetical order, we
would want ‘Student Answer:’ to contain [’San Francisco’, 78, [’Golden State Warriors’,
’Los Angeles Lakers’]].

Examples:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium
is within a 400 mile radius in alphabetical order
Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’SF’, 75, [’Golden State Warriors’, ‘Los Angeles Lakers’]]
Reasoning: The Student Answer is correct because it identifies the same city (SF is a
commonly known short form for San Francisco), the temperature is within 10% of the
Correct Answer and the same team names are present in the list and sorted the same given
the Question asks for a special sorting (alphabetical order).
Final Grade: CORRECT

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium
is within a 400 mile radius in alphabetical order
Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: The city name is San Francisco, its temperature is 80 degrees and
the Golden State Warriors and the Los Angeles Lakers are two NBA teams whose home
stadium is within a 400 mile radius (in alphabetical order)
Reasoning: Although the Student Answer is correct (identifies the same city , the tempera-
ture is within 10% of the Correct Answer and the same team names are present in the same
order), it’s not formatted the same and contains extra text and natural language.
Final Grade: CORRECT BUT BAD FORMATTING

Question: Find the name of the city known for its famous tourist attraction Alcatraz, also
give it’s current temperature and a list of names of all the NBA teams whose home stadium
is within a 400 mile radius in alphabetical order
Correct Answer: [’San Francisco’, 78, [’Golden State Warriors’, ’Los Angeles Lakers’]
Student Answer: [’San Francisco’, 79, [’Los Angeles Lakers’, ’Golden State Warriors’]]
Reasoning: The Student Answer is incorrect because although it identifies the same city
and the temperature is within of 10% of the Correct Answer, the list of teams name is in a
differently ordered even though ‘Question:’ explicitly asks for a special sorting.
Final Grade: INCORRECT

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

F TOOLCOMP EXAMPLES

F.1 EXAMPLE GOLDEN TRAJECTORY

Question: Suppose you have a 2 inch × 2 inch × 2 inch box. How many of these boxes can
you fit into the biggest U-Haul truck (biggest truck as of 2024)?

Action Plan

1. Use the google search tool to find the name of the biggest U-Haul truck and find its
dimensions.

2. Use python interpreter to calculate the total number of boxes that would fit given
the dimensions.

3. Return the answer.

ReAct Step 1

• Thought: I need to find the dimensions of the biggest U-Haul truck.
• Action: google search

• Action Input: {"query": "biggest U-Haul truck 2024"}
• Observation: {(search results omitted for brevity)}

ReAct Step 2

• Thought: I now have the dimensions of the biggest U-Haul truck, so I can use Python to
calculate how many boxes can fit inside.

• Action: python interpreter

• Action Input:

1 import math
2 box_length = 2
3 box_width = 2
4 box_height = 2
5 # convert truck dimensions into inches
6 truck_length = (26 * 12) + 5
7 truck_width = (7 * 12) + 8
8 truck_height = (8 * 12) + 3
9 num_boxes = math.floor(truck_length // box_length) * \

10 math.floor(truck_width // box_width) * \
11 math.floor(truck_height // box_height)
12 print(f’Total number of boxes: {num_boxes}’)

• Observation: {"result": "Total number of boxes: 356132",
"error": null}

ReAct Step 3

• Thought: I have the total number of boxes that can fit inside the truck, so I should return
that as the answer.

• Action: finish
• Action Input: {"answer": " 356132 "}
• Observation: 356132

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

F.2 EXAMPLE ANNOTATED TRAJECTORY

Question: Using the 2023 birth-rate, death-rate, and population of Japan, assuming no one
leaves or enters, what will be the projected population in 10 years?

Action Plan

Model

1. Use the python interpreter tool to
calculate the population growth rate using
the birth-rate, death-rate, and population
of Japan.

2. Use the python interpreter tool to
calculate the population in 10 years using
the population growth rate and the current
population of Japan.

3. Use the google search tool to search
for the current birth-rate, death-rate, and
population of Japan.

4. ... (truncated since the model goes in cir-
cles)

(Label: ✗)

Human

1. Use the google search tool to calcu-
late the population growth rate using the
birth-rate, death-rate, and population of
Japan in 2023.

2. Use the python interpreter tool to
calculate the population in 10 years using
the population growth rate and the popu-
lation of Japan in 2023.

3. Use the finish action to return the final an-
swer.

ReAct Step 1

Model

• Thought: I need to use the
google search tool to calculate the
population growth rate using the birth-
rate, death-rate, and population of Japan in
2023. (Label: ✓)

• Action: google search (Label: ✓)
• Action Input: { "query": "Japan
2023 population growth
rate using birth-rate,
death-rate, and population" }
(Label: ✗)

• Observation:
[{"source": "nippon.com",
"date": "Mar 13, 2024",
"title": "Number of Births
in Japan Reaches New Low
in 2023", "snippet": "In
2023, Japan had more than
twice as many deaths as
births, leading to a
natural population decline
(excluding migration) of
over 800000.", "highlight":
"had more than twice as
many deaths as births"},
... truncated]

Human

• Thought: N/A
• Action: N/A
• Action Input: { "query": "Japan
2023 birth-rate per 1000" }

• Observation:
[{ "source":
"statista.com", "date":
"Jul 04, 2024", "title":
"Japan: total population
2019-2029", "snippet": "In
2023, the total population
of Japan amounted to around
124.62 million inhabitants.
See the figures for the
population of South Korea
for ...", "highlight":
"124.62 million inhabitants"
}, ... truncated]

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

ReAct Step 2

Model

• Thought: I need to use the
google search tool to calculate
the population growth rate using the
birth-rate, death-rate, and population of
Japan in 2023. (Label: ✗)

• Action: google search (Label: ✓)
• Action Input: { "query": "Japan
2023 death-rate per 1000" }
(Label: ✗)

• Observation:
[{"source":
"data.worldbank.org",
"date": null, "title":
"Death rate, crude (per 1000
people) - Japan", "snippet":
"Death rate, crude (per
1000 people) - Japan from
The World Bank: Data.",
"highlight": "Death rate
| per 1000 | Japan" }, ...
truncated]

Human

• Thought: According to wikipedia
the 2023 estimates for the birthrate
6.6 births/1000 population and 11.7
deaths/1000 population. I need to find the
2023 population for Japan.

• Action: N/A
• Action Input: { "query": "Japan
2023 population" }

• Observation:
[{ "source":
"statista.com", "date":
"Jul 04, 2024", "title":
"Japan: total population
2019-2029", "snippet": "In
2023, the total population
of Japan amounted to around
124.62 million inhabitants.
See the figures for the
population of South Korea
for ...", "highlight":
"124.62 million inhabitants"
}, ... truncated]

ReAct Step 3

Model

• Thought: I need to use the python inter-
preter tool to calculate the population in 10
years using the population growth rate and
the population of Japan in 2023.
(Label: ✓)

• Action: python interpreter
(Label: ✓)

• Action Input:

import numpy as np
population = 124352000
population growth rate =
0.0012
population in 10 years
= population * (1 +
population growth rate)**10
print(population in 10 years)
(Label: ✗)

• Observation: 125852307.84945872

Human

• Thought: N/A
• Action: N/A
• Action Input:

population = 124620000
death rate per thousand =
11.7 total births extrapolated
= birth rate per thousand
* (population / 1000)
total deaths extrapolated
= death rate per thousand
* (population / 1000)
population growth rate =
(total births extrapolated
- total deaths extrapolated)
/ population
population in 10 years
= population * (1 +
population growth rate)**10
print(population in 10 years)

• Observation: 118408275.35965854

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

ReAct Step 4

Model

• Thought: I have enough information to
answer the question (Label: ✓)

• Action: finish (Label: ✓)
• Action Input:
{"answer": ["118,408,275"]}
(Label: ✗)

• Observation: [“118, 408, 275”]

Human

• Thought: N/A
• Action: N/A
• Action Input:
{"answer": ["118408275"]}

• Observation: [“118408275”]

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

G TOOLS

In this appendix section, we provide a detail breakdown of each of the 11 tools, providing a descrip-
tion, the parameters, an input example and a corresponding output example.

G.1 DATE

Description: Returns the current date (e.g., January 1, 2024).

Input Example:

1 {}

Output Example:

1 {
2 "result": "Today is Friday, February 16, 2024.",
3 "error": ""
4 }

Parameters:

1 []

G.2 CALCULATOR

Description: Calculates expressions including basic arithmetic and brackets.

Input Example:

1 {
2 "operation": "2*32-4+456+(1+2)+3+(1/2*3+3+(1+2))"
3 }

Output Example:

1 {
2 "error": "",
3 "result": "529.5"
4 }

Parameters:

1 [
2 {
3 "Input Name": "operation",
4 "Type": "String",
5 "Description": "Computes numerical expressions involving float

numbers and operators like +, -, *, /, ˆ.\""
6 }
7]

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

G.3 CURRENT WEATHER

Description: Retrieves current daily averages for temperature, rainfall, and hours of precipitation
for a specified city and country. Does not return historical data.

Input Example:

1 {
2 "city_name": "London",
3 "country_code": "GB"
4 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "date": "2024-03-25 00:00:00",
6 "temperature (F)": "47.78615",
7 "total rain (mm)": "1.4000001",
8 "total snowfall (mm)": "0.0",
9 "precipitation hours (hours)": "4.0"

10 },
11 {
12 "date": "2024-03-26 00:00:00",
13 "temperature (F)": "48.374897",
14 "total rain (mm)": "8.2",
15 "total snowfall (mm)": "0.0",
16 "precipitation hours (hours)": "11.0"
17 },
18 {
19 "date": "2024-03-27 00:00:00",
20 "temperature (F)": "47.217274",
21 "total rain (mm)": "2.399999",
22 "total snowfall (mm)": "0.0",
23 "precipitation hours (hours)": "4.0"
24 }
25]
26 }

Parameters:

1 [
2 {
3 "Input Name": "city_name",
4 "Type": "String",
5 "Description": "The name of the city."
6 },
7 {
8 "Input Name": "country_code",
9 "Type": "Two Alphabet-Number",

10 "Description": "The country code (ISO 3166-2). The list can be found
here: https://en.wikipedia.org/wiki/ISO_3166-2"

11 }
12]

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

G.4 HISTORICAL WEATHER

Description: Retrieves daily averages for temperature and precipitation starting from the 1940s for
a given city. Note: 5-day data delay, meaning you cannot get current weather data for the last 5 days.

Input Example:

1 {
2 "city_name": "London",
3 "country_code": "GB",
4 "start_date": "2023-03-09",
5 "end_date": "2023-03-21"
6 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "date": "2024-03-09 00:00:00",
6 "temperature (F)": "48.102356",
7 "total rain (mm)": "0.4",
8 "total snowfall (mm)": "0.0",
9 "precipitation hours (hours)": "2.0"

10 },
11 ...
12 {
13 "date": "2024-03-23 00:00:00",
14 "temperature (F)": "43.373596",
15 "total rain (mm)": "1.0999999",
16 "total snowfall (mm)": "0.42000002",
17 "precipitation hours (hours)": "3.0"
18 }
19]
20 }

Parameters:

1 [
2 {
3 "Input Name": "city_name",
4 "Type": "String",
5 "Description": "The name of the city."
6 },
7 {
8 "Input Name": "country_code",
9 "Type": "Two Alphabet-Number",

10 "Description": "The country code (ISO 3166-2). The list can be found
here https://en.wikipedia.org/wiki/ISO_3166-2"

11 },
12 {
13 "Input Name": "start_date",
14 "Type": "Date Format",
15 "Description": "The start date in YYYY-MM-DD format"
16 },
17 {
18 "Input Name": "end_date",
19 "Type": "Date Format",
20 "Description": "The start date in YYYY-MM-DD format"
21 }
22]

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

G.5 WIKI SEARCH

Description: Searches Wikipedia and returns a summary of the top pages matching the query.

Input Example:

1 {
2 "query": "covid-19",
3 "num_results": "1"
4 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "title": "COVID-19",
6 "summary": "Coronavirus disease 2019 (COVID-19) is a contagious

disease caused by the coronavirus SARS-CoV-2. The first known
case was identified in Wuhan, China, in December 2019. Most
scientists believe the SARS-CoV-2 virus entered into human
populations through natural zoonosis, similar to the SARS-CoV-1
and MERS-CoV outbreaks, and consistent with other pandemics in
human history. Social and environmental factors including
climate change, natural ecosystem destruction and wildlife
trade increased the likelihood of such zoonotic spillover. The
disease quickly spread worldwide, resulting in the COVID-19
pandemic. The symptoms of COVID-19 are variable but often
include fever, fatigue, cough, breathing difficulties, loss of
smell, and loss of taste. Symptoms may begin one to fourteen
days after exposure to the virus. At least a third of people
who are infected do not develop noticeable symptoms. Of those
who develop symptoms noticeable enough to be classified as
patients, most (81%) develop mild to moderate symptoms (up to
mild pneumonia), ... truncated"

7 }
8]
9 }

Parameters:

1 [
2 {
3 "Input Name": "query",
4 "Type": "String",
5 "Description": "The search query."
6 },
7 {
8 "Input Name": "num_results (Optional)",
9 "Type": "Integer",

10 "Description": "Number of search results to return."
11 }
12]

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

G.6 INTRADAY STOCK INFO

Description: Provides intraday time series data for specified equities.

Input Example:

1 {
2 "symbol": "AAPL",
3 "interval": "60min"
4 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "timestamp": "2024-07-16 19:00:00",
6 "open_market_value": "234.6520",
7 "high_market_value": "234.7200",
8 "low_market_value": "234.2200",
9 "close_market_value": "234.3200",

10 "volume": "38722"
11 },
12 {
13 "timestamp": "2024-07-16 18:00:00",
14 "open_market_value": "234.6220",
15 "high_market_value": "234.7500",
16 "low_market_value": "234.5050",
17 "close_market_value": "234.7000",
18 "volume": "24098"
19 },
20 ...
21 {
22 "timestamp": "2024-07-08 16:00:00",
23 "open_market_value": "227.8100",
24 "high_market_value": "227.8800",
25 "low_market_value": "226.0630",
26 "close_market_value": "227.6400",
27 "volume": "14364524"
28 }
29]
30 }

Parameters:

1 [
2 {
3 "Input Name": "symbol",
4 "Type": "String",
5 "Description": "The ticker symbol of the equity."
6 },
7 {
8 "Input Name": "interval",
9 "Type": "String",

10 "Description": "Data point interval (1min, 5min, etc.)."
11 },
12 {
13 "Input Name": "month (optional)",
14 "Type": "String",
15 "Description": "You can use the month parameter (in YYYY-MM format)

to query a specific month in history."
16 }
17]

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

G.7 DAILY STOCK INFO

Description: Returns daily time series data for specified equities.

Input Example:

1 {
2 "symbol": "AAPL",
3 "number_of_days": 5
4 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "timestamp": "2024-07-16",
6 "open_market_value": "235.0000",
7 "high_market_value": "236.2700",
8 "low_market_value": "232.3300",
9 "close_market_value": "234.8200",

10 "volume": "43234278"
11 },
12 {
13 "timestamp": "2024-07-15",
14 "open_market_value": "236.4800",
15 "high_market_value": "237.2300",
16 "low_market_value": "233.0900",
17 "close_market_value": "234.4000",
18 "volume": "62631252"
19 },
20 ...
21 {
22 "timestamp": "2024-07-10",
23 "open_market_value": "229.3000",
24 "high_market_value": "233.0800",
25 "low_market_value": "229.2500",
26 "close_market_value": "232.9800",
27 "volume": "62627687"
28 }
29]
30 }

Parameters:

1 [
2 {
3 "Input Name": "symbol",
4 "Type": "String",
5 "Description": "The ticker symbol of the equity."
6 },
7 {
8 "Input Name": "number_of_days",
9 "Type": "Integer",

10 "Description": "The number of days before today to return data for."
11 }
12]

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

G.8 STOCK SYMBOL SEARCH

Description: Searches for stock tickers based on provided keywords.

Input Example:

1 {
2 "keywords": "tesla"
3 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "symbol": "TSLA",
6 "name": "Tesla Inc",
7 "type": "Equity",
8 "region": "United States",
9 "market_open": "09:30",

10 "market_close": "16:00",
11 "timezone": "UTC-04",
12 "currency": "USD",
13 "match_score": "0.8889"
14 },
15 {
16 "symbol": "TL0.DEX",
17 "name": "Tesla Inc",
18 "type": "Equity",
19 "region": "XETRA",
20 "market_open": "08:00",
21 "market_close": "20:00",
22 "timezone": "UTC+02",
23 "currency": "EUR",
24 "match_score": "0.7143"
25 },
26 ...
27 {
28 "symbol": "TL01.FRK",
29 "name": "TESLA INC. CDR DL-001",
30 "type": "Equity",
31 "region": "Frankfurt",
32 "market_open": "08:00",
33 "market_close": "20:00",
34 "timezone": "UTC+02",
35 "currency": "EUR",
36 "match_score": "0.3846"
37 }
38]
39 }

Parameters:

1 [
2 {
3 "Input Name": "keywords",
4 "Type": "String",
5 "Description": "Keywords to search, , e.g., company name, to retrieve

the ticker symbol for"
6 }
7]

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

G.9 PYTHON

Description: Runs a python interpreter on a code snippet.

Input Example:

1 {
2 "code": "print(4 + 5)"
3 }

Output Example:

1 {
2 "result": "9",
3 "error": ""
4 }

Parameters:

1 [
2 {
3 "Input Name": "code",
4 "Type": "String",
5 "Description": "The code snippet that we want to run on a python

interpreter."
6 }
7]

G.10 WOLFRAM ALPHA

Description: Accesses Wolfram Alpha to generate outputs from the Knowledgebase for compu-
tations and data queries. Wolfram Alpha excels at complex number-crunching, computation and
calculations.

Input Example:

1 {
2 "query": "what is Ronaldo’s age?"
3 }

Output Example:

1 {
2 "error": "",
3 "result": "47 years 5 months 13 days"
4 }

Parameters:

1 [
2 {
3 "Input Name": "query",
4 "Type": "String",
5 "Description": "The query to perform computations/searches on. When

unsure of your query search, try searching yourself on the
website!"

6 }
7]

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

G.11 GOOGLE SEARCH

Description: Performs a Google search and returns snippet results, without linked page details
Google is often used for popular culture, location-awareness and crowdsourcing.

Input Example:

1 {
2 "query": "What is the capital of France?",
3 "location": "Paris"
4 }

Output Example:

1 {
2 "error": "",
3 "result": [
4 {
5 "source": "en.wikipedia.org",
6 "date": "None",
7 "title": "Paris",
8 "snippet": "Paris is the capital and largest city of France. With

an official estimated population of 2,102,650 residents as of 1
January 2023 in an area of more than ...",

9 "highlight": "Paris"
10 },
11 {
12 "source": "home.adelphi.edu",
13 "date": "None",
14 "title": "Paris facts: the capital of France in history",
15 "snippet": "Paris facts: Paris, the capital of France. Paris is the

capital of France, the largest country of Europe with 550 000
km2 (65 millions inhabitants).",

16 "highlight": "Paris"
17 },
18 ...
19 {
20 "source": "britannica.com",
21 "date": "None",
22 "title": "France | History, Maps, Flag, Population, Cities, Capital

, & ...",
23 "snippet": "Get a special academic rate on Britannica Premium. The

capital and by far the most important city of France is Paris,
one of the world’s preeminent cultural ...",

24 "highlight": "Paris"
25 },
26]
27 }

Parameters:

1 [
2 {
3 "Input Name": "query",
4 "Type": "String",
5 "Description": "The search query."
6 },
7 {
8 "Input Name": "location (Optional)",
9 "Type": "String",

10 "Description": "The geographical location for the search (optional)."
11 }
12]

53

	Introduction
	Contributions and Key Takeaways

	Related Works
	ToolComp
	Tools
	ReAct Format
	Prompt Creation
	Chat vs. Enterprise Use Cases
	Label Creation
	Quality Control

	ToolComp Evaluations
	Evaluation Metric
	Final Answer Evaluations
	LLM-as-Judge Evaluations
	Intermediate Reasoning vs. Final Answer

	Process Supervision vs. Outcome Supervision
	Experiment Design
	Results

	Limitations and Future Directions
	Ethics Statement
	Reproducibility
	ToolComp Extended Evaluations
	Exact Match
	Final Answer Failure Analysis
	Intermediate Reasoning Failure Analysis
	ReAct-Step-Error-Based Failure Trends in Models
	Position-Based Error Trends in Models

	Performance Scaling on Increasing Complexity
	ToolComp Details
	Prompt Creation Details
	In Context Example
	Seed Prompt
	Benchmark Metadata

	Process Supervision vs. Outcome Supervision Training Details
	Detailed Synthetic Training Data Generation
	Construction of Training Datasets
	Detailed Training Objectives
	PRM vs. ORM Evaluation
	Training Implementation and Hyper-parameters

	Tool-Use Prompts
	Action Plan Prompt (Policy Model)
	ReAct Tool Call Prompt (Policy Model)
	Action Plan Prompt (Critic Model)
	ReAct Tool Call Prompt (Critic Model)
	LLM Grading Prompt
	Main Prompt
	In-Context Examples (Ordering)
	In-Context Examples (Sorting)

	ToolComp Examples
	Example Golden Trajectory
	Example Annotated Trajectory

	Tools
	Date
	Calculator
	Current Weather
	Historical Weather
	Wiki Search
	Intraday Stock Info
	Daily Stock Info
	Stock Symbol Search
	Python
	Wolfram Alpha
	Google Search

