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ABSTRACT

Recent advances in diffusion models bring the state-of-the art performance on
image generation tasks. However, image generation is still an arduous task in high
resolution, both theoretically and practically. From the theory side, the difficulty
arises in estimating the high precision diffusion because the data score goes to∞
as t → 0 of the diffusion time. This paper resolves this difficulty by improving
the previous diffusion models from three aspects. First, we propose an alternative
parameterization for such an unbounded data score, which theoretically enables the
unbounded score estimation. Second, we provide a practical Soft Truncation trick
(ST-trick) to handle the extreme variation of the score scales. Third, we design
a Reciprocal Variance Exploding Stochastic Differential Equation (RVESDE) to
enable the sampling at the high precision of t. These three improvements are
applicable to the variations of both NCSN and DDPM, and our improved versions
are named as HNCSN and HDDPM, respectively. The experiments show that the
improvements result in the state-of-the-art performances in the high resolution
image generation, i.e. CelebA-HQ. Also, our ablation study empirically illustrates
that all of 1) alternative parameterization, 2) ST-trick, and 3) RVESDE contributes
to the performance enhancement.

1 INTRODUCTION

Recent advances in the generative models enable creating of highly realistic images. One direction of
such modeling is likelihood-free models (Karras et al., 2019) based on the minimax training. The other
direction is likelihood-based models, including VAE Vahdat and Kautz (2020), autoregressive models
(Parmar et al., 2018), and flow models (Grcić et al., 2021). Diffusion models (Ho et al., 2020) are
one of the most successful likelihood-based models where the generative process is modeled by the
reverse diffusion process. The success of diffusion models achieves the state-of-the-art performance
in image generation (Dhariwal and Nichol, 2021; Song et al., 2020).

Despite of such success, the score-based diffusion models still struggle in generating realistic
images with high resolution (Jolicoeur-Martineau et al., 2021). Rather than improving the network
architecture, this paper focuses mostly on the theoretic and the optimization aspects of the diffusion
model to improve the sample quality. We first observe that the diffusion time acts in distinctive ways
on the sample generation: the diffusion process with the front diffusion time (t ≈ 0) influences
the local sample fidelity, and the end diffusion time (t ≈ T ) shapes the sample global structure.
However, the unbounded data score at the front diffusion time results in the training instability, and
this instability yields the diffusion model with poor estimation limiting the local sample fidelity,
which prevents the advancement in the high resolution because of its locality. Hence, this paper
constructs a diffusion model capable of training both front time and end time, effectively.

We observe that the current score parametrization is incapable of estimating the data score that blows
up as t→ 0, which requires a new theory-driven parametrization for the unbounded score network
to enable the successful score estimation near t ≈ 0. This parametrization is universally applicable
for any diffusion models including NCSN (Song and Ermon, 2019) and DDPM (Ho et al., 2020),
and we call this parametrization as High precision NCSN (HNCSN) and High precision DDPM
(HDDPM), respectively. Second, we propose a practical optimization method (ST-trick) to improve
the score estimation at the end of the diffusion time (t ≈ T ). This ST-trick provides a distinctive
way to optimize the diffusion model parameters, and we argue that this trick successfully trains the
score network at the end diffusion time by its nature, which is likely to be ignored due to the minor
contribution to the diffusion loss near t ≈ T in the previous studies. Like the new parametrization,
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ST-trick fits to any diffusion model, including NCSN/HNCSN and DDPM/HDDPM. Finally, we
suggest a new SDE (RVESDE) that 1) mitigates the theoretic dilemma of VESDE that arises as t→ 0
and 2) gives additional performance boost by reducing the Monte-Carlo variance for the diffusion
loss. We perform the ablation study on our three improvements, and we find that using 1) the new
parametrization, 2) ST-trick, and 3) RVESDE all together improves both density estimation and
sample fidelity on benchmark datasets. Although we proceed our arguments based on the continuous
diffusion models, we emphasize that both new parametrization and ST-trick are applicable for discrete
diffusion models, such as ADM (Dhariwal and Nichol, 2021) and CDM (Ho et al., 2021), as well.

2 PRELIMINARY

The diffusion model trains the network by minimizing the Negative Evidence Lower BOund (NELBO)

(NELBO) Epr(x0)

[
− log pθ(x0)

]
≤ L(θ;λ = g2) =

1

2

∫ T

0

g2(t)Lt(θ) dt, (1)

where
Lt(θ) = Ext

[
‖sθ(xt, t)−∇xt log pt(xt)‖22

]
= Ex0,xt

[
‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22

]
,

up to a constant. Here, λ is the weighting function for the diffusion loss ofLt(θ) at each diffusion time,
pt(xt) is the marginal distribution of the diffusion process of {xt}Tt=0, and p0t(xt|x0) is the transition
probability defined byN (xt;µ(t)x0, σ

2(t)I), where µ(t) and σ2(t) are determined by the governing
diffusion process. Previous works suggest a couple of diffusion processes: 1) VESDE dxt = g(t) dωt

with g(t) = σmin(
σmax
σmin

)t
√

2 log (σmaxσmin
), and 2) VPSDE dxt = − 1

2β(t)xt dt +
√
β(t) dωt with

β(t) = βmin + (βmax − βmin)t. With these diffusion schemes, VESDE has µ(t) ≡ 1 with
σ2(t) = σ2

min

[
(σmaxσmin

)2t − 1
]
, and VPSDE has µ(t) = e−

1
2

∫ t
0
β(s) ds with σ2(t) = 1− e−

∫ t
0
β(s) ds.

We observe that the transformation of yt = e
1
2

∫ t
0
β(s) dsxt reduces VPSDE to VESDE of dyt =

e
1
2

∫ t
0
β(s) ds

√
β(t) dωt by the Ito’s lemma (Oksendal, 2013), so VPSDE and VESDE are indeed

equivalent representations of the linear diffusion. Given their equivalence under the suggested
transformation, we build our model based on VESDE as a default diffusion otherwise stated.

2.1 EFFECT OF DIFFUSION TIME ON DIFFUSION MODEL
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Figure 1: Loss contribution to
NELBO by diffusion time.

10−3 10−2 10−1 100 101

Diffusion level σ (log)

2

4

6

8

10

12

14

16

N
E

L
B

O

1
2

∫ σmax
σ vLσ−1(v)(θ)dv

Figure 2: NELBO by diffu-
sion level.

Density Estimation In practice, previous diffusion models truncate
the diffusion time from [0, T ] to [ε, T ] to stabilize the training. Figure
1 emphasizes the loss contribution to the NELBO at t→ 0, which
signifies lowering ε in the practice. Moreover, Figure 2 shows the
cumulative loss of Figure 1 integrated over [σ, σmax] by changing
the integrating variable from t to σ in Eq. 2, and the high precision
(i.e., σ ≈ 0 or t ≈ 0) has significant portion on the NELBO.

L(θ; g2) = 1

2

∫ σmax

0

vLσ−1(v)(θ) dv. (2)

Therefore, lowering σmin = σ(ε) guarantees the tighter NELBO
given its large portion at t = ε. Empirically, NCSN++ (Song et al.,
2020) performs 3.45 for NELBO trained with σmin = 10−2 on
CIFAR-10, but this NELBO is tightened up to 3.04 by lowering
σmin to 10−3 in our experiments.

Sample Generation While we discussed the value of the loss at
t→ 0, both fron and end diffusion time contribute to the sample quality in two distinctive ways.

Diffusion Time Horizon 𝑡𝑡 = 0𝑡𝑡 = 𝑇𝑇

Generative Process

Not
Good

Good

Figure 3: Generative process.

End Time (t → T ) : The diffusion model creates a fake
sample by reverting the diffusion process with the score
estimation. Figure 3 shows two contrastive image genera-
tions: the realistic image at the first row, and the unrealistic
image at the second row with curly hair on its forehead.
This unwanted hair is synthesized at the early steps of the
reverse diffusion, which correspond to the end time of the forward diffusion. Therefore, Figure 3
implies that the overall sample quality is determined on the range of the end diffusion time.
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Figure 4: Generated images from CelebA-HQ
256 × 256. Image quality (NIQE (Mittal et al.,
2012)) improves as the denoising proceeds.

Front Time (t → 0) : The sample generation
in Figure 4 shows that the local fidelity heav-
ily depends upon the denoising process at the
front of the diffusion time. This intuitive re-
sult is grounded by theory: observe that the
random variable ‖xt − x0‖22/σ2(t) follows the
χ2-distribution of degree d, where d is the data
dimension. If the score network exactly esti-
mates the data score, the generated image at time t would follow xt, and the average distance between
the real sample (x0) with the fake sample (xε) becomes Epr(x0)Ep0ε(xε|x0)[‖xε − x0‖22] = σ2

mind.
Therefore, even if the score network perfectly estimates the data score, this leads that minimizing
σmin acts in a crucial way for the pixel-wise precision.

From these observations, we identified that the front diffusion time is critical in generating the high
resolution image for the pixel-wise details, and we also acknowledge that the end diffusion time
contributes to the overall image structure. Now, our question becomes whether the existing models
can learn the data score at both front and end diffusion time.

2.2 PROBLEMS OF TRAINING THE DIFFUSION MODEL
WITH HIGH PRECISION
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Figure 5: Unbounded score.

Unbounded Score Figure 5 presents that the data score is unbounded
as the diffusion level, σ2(t), diminishes. This requires the score
parametrization to handle this unboundedness. For instance, the
parametrization of sθ(xt, σ(t)) yields the failure of the score esti-
mation at t = 10−4 on the toy example in Figure 6.

Theoretically, Lemma 1 states that the score estimation with sθ(xt, t) (DDPM) or sθ(xt, σ(t))
(NCSN) fails if the data score is unbounded. See Appendix A for the proof.

Lemma 1. Let H[0,T ] = {s : Rd × [0, T ] → Rd, s is locally Lipschitz}. Suppose a continuous
vector field v defined on a subset U of a compact manifold M (i.e., v : U ⊂M → Rd) is unbounded,
then there exists no s ∈ H[0,T ] such that limt→0 s(x, t) = v(x) a.e. on U .

Data samples Data score Estimated score by NCSN++ Estimated score by HNCSN++

Figure 6: Score estimation of NCSN and
HNCSN on a toy dataset.

The score network, sθ, is an element in H[0,T ] for any
neural architecture as long as we put t in the network, so
Lemma 1 indicates that the vanilla score network cannot
estimate an unbounded data score.

Training Instability Training the diffusion time on the
front range is advantageous on the creation of high-quality
samples. However, training the diffusion model with lowered σmin induces the numerical instability,
which eventually harms the overall sample quality.
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Figure 7: Imbalanced Monte-
Carlo losses.
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Figure 8: VESDE violates the
geometric progression.

To analyze the logic of the training instability, Figure 7 illustrates
the Monte-Carlo samples of the diffusion loss, which blows up as
t → 0 (or σ → 0). This leads that the diffusion loss is dominated
by the diffusion time with the front range in practice, and the loss at
the end diffusion time is barely counted in the gradient signal. This
imbalanced loss brings the immatured score estimation at the end
diffusion time, which ruins the overall sample shape.

Limitation of Diffusion Process Continuous VESDE has its dif-
fusion variance to be σ2(t) = σ2

min

[
(σmaxσmin

)2t − 1
]
. As introduced

in Song and Ermon (2020), VESDE has been suggested in its orig-
inal discrete version based on the geometric property for its smooth
transition of the distributional shift. Mathematically, the variance is
geometric if d

dt log σ
2(t) is a constant, but the continuous VESDE

breaks this geometric progression as in Figure 8.

To make it geometric, Song et al. (2020) approximates the VESDE
diffusion process by the transition probability of p0t(xt|x0) =
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N
(
xt;x0, σ

2
min(

σmax
σmin

)2tI
)
, so this approximate diffusion process satisfies the geometric progres-

sion. However, this approximation leads that xt is not converging to x0 in distribution because
σ2
min(

σmax
σmin

)2t → σ2
min > 0 as t→ 0.

Proposition 1. There is no SDE that has the stochastic process {xt}t∈[0,T ], defined by a transition
probability p0t(xt|x0) = N (xt;x0, σ

2
min(

σmax
σmin

)2tI), as the solution.

Proposition 1 indicates that if we approximate the diffusion process by p0t(xt|x0) =
N
(
xt;x0, σ

2
min(

σmax
σmin

)2tI
)
, then the reverse diffusion cannot be modeled by a reverse SDE. There-

fore, VESDE loses its theoretic ground on the continuation of the discrete Markov chain.

3 HIGH PRECISION SCORE-BASED DIFFUSION MODELS

Given the three problems of unbounded score, training instability, and limited diffusion process, this
section improves the diffusion model in three corresponding aspects. Section 3.1 introduces the
theory-driven new parametrization, called HNCSN and HDDPM, that enables the successful score
estimation for the diffusion model with small σmin. Section 3.2 proposes the practical technique,
ST-trick, which could estimate the score network at the end of the diffusion time without being
dominated by the front diffusion. Section 3.3 suggests the new SDE, RVESDE, which develops the
VESDE suitable for small σmin.

3.1 PARAMETRIZATION MODEL FOR UNBOUNDED SCORE

As presented in Lemma 1, the score estimation of baseline models (NCSN/DDPM) fails because the
locally Lipschitz with respect to the time argument does not hold anymore at t = 0. From this, we
make the time argument extendable to the infinity at t = 0. To proceed, let us define η : t 7→ R as a
function that satisfies η(t)→∞ or −∞ as t→ 0. Then, the parametrization of sθ(xt, η(t)) would
successfully estimate the data score by Proposition 2.
Proposition 2. LetH[1,∞) = {s : Rd× [1,∞)→ Rd, s is locally Lipschitz}. Suppose a continuous
vector field v defined on a d-dimensional open subset U of a compact manifold M is unbounded,
and the projection of v on each axis is locally integrable. Then, there exists s ∈ H[1,∞) such that
limη→∞ s(x, η) = v(x) a.e. on U .

Table 1: Instantiation of the unbounded
parametrization from Proposition 1. See Ap-
pendix B for the choice of c1, c2, σ0.

Model η(t)

HNCSN η(t) :=

{
log σ(t) if σ(t) ≥ σ0

− c1
σ(t)

+ c2 if σ(t) < σ0

HDDPM η(t) :=
∫ g2(t)

σ2(t)
dt

Proposition 2 becomes the foundation of the un-
bounded parametrization, and the introduction
of η is the key to enable the estimation of the
unbounded data score. Therefore, we intro-
duce the new parametrization for the high pre-
cision score network as sθ(xt, η(t)), rather than
sθ(xt, t) (DDPM) or sθ(xt, σ(t)) (NCSN).

Table 1 presents example parametrizations following Proposition 2. We suggest HNCSN with η(t)
as the mixture of log σ(t) at the end diffusion time and 1

σ(t) at the front diffusion time, in which the
inverse function is beneficial on estimating the rapidly blowing data score by orders of 1

σ . Note that
Song and Ermon (2020) proposed the score parametrization of sθ(xt)

σ(t) , and Jolicoeur-Martineau et al.

(2020) showed that the optimal score function becomes s∗(xt, t) =
Ex0|xt [x0]−xt

σ2(t) ≈ z
σ(t) , where

z ∼ N (0, I). Therefore, we suggest HNCSN to put 1
σ(t) in place of log σ(t) at the front time.

Before we choose optimal η for DDPM, observe that DDPM with the importance sampling has g2(t)
σ2(t)

as the importance weight, and this weight forces the sampled diffusion time highly concentrated on
t ≈ ε. Since a small difference between two diffusion times near t1, t2 ≈ ε results in a large deviation
of two data scores in their scales, DDPM cannot approximate this extreme scale deviation with the
vanilla parametrization of sθ(xt, t) by Proposition 2.

We propose HDDPM with η(t) =
∫ g2(t)
σ2(t) dt as the antiderivative of the importance weight. For

instance, HDDPM with VPSDE has its antiderivative as
∫ g2(t)
σ2(t) dt = log (1− e−

∫ t
0
β(s) ds) +
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∫ t
0
β(s) ds. This antiderivative diverges to −∞ as t → 0 for both VPSDE and subVPSDE, so

it satisfies the condition of Proposition 2.
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Figure 9: Cumulative density
function of t and η.

The choice of such η(t) for HDDPM helps the enhanced score esti-
mation near t ≈ ε because the input of η(t) is distributed uniformly
when we draw samples from the importance weight. Concretely,
when the sampling distribution on the diffusion time is given by
p(t) ∝ g2(t)

σ2(t) , the η-distribution from the importance sampling be-
comes p(η) ∝ 1, which is depicted in Figure 9. Therefore, this
uniform distribution on η(t) in HDDPM guarantees the high preci-
sion to the score estimation.

3.2 SOFT TRUNCATION TRICK FOR PRACTICAL SCORE ESTIMATION

While the unbounded parametrization suggested in Section 3.1 provides the theoretic guarantee of the
score estimation, this section proposes a practical optimization method for the high precision score
estimation. In order to successfully train the score network without sacrificing the global fidelity, we
detour the training instability by introducing the Soft Truncation (ST) trick that is taking a distinctive
diffusion truncation for every mini-batch. In formula,

LST (θ;λ,P) = EP(τ)[L(θ;λ, τ)],
where P(τ) is the prior distribution for the diffusion truncation. In every mini-batch update, we
optimize L(θ;λ, τ) with the sampled τ ∼ P(τ) from the prior. Figure 7 illustrates four cases: blue
dots with τ = ε, green dots with τ = σ−1(0.01), etc. With ST-trick, a mini-batch with high truncation
of τ = σ−1(1) (purple) focuses on the score estimation at large t, and mini-batches with medium
τ = σ−1(0.1) (green) and = σ−1(0.01) (red) focus on the middle region of [ε, T ]. In consequence,
ST-trick trains the diffusion model by partitioning its diffusion time for each mini-batch update.

Table 2: Example pairs of (P, λP).
λ k P λP

RVE λ(t) ∞ δε(τ) λ(t)
λ(t) 2 1

τ2
1[ε,T ](τ) (1− ε

t )λ(t)

VP λ(t) ∞ δε(τ) λ(t)
λ(t) 1 1

τ 1[ε,T ](τ) (1− logε (t))λ(t)

The ST-trick with P(τ) = δε(τ) unconditionally
selects ε for every batch update, so it is equiva-
lent with the original optimization of L(θ;λ, ε).
Although it is free to choose P, we find that the
reciprocal functions work best in practice. Ob-
serving that 1

τk
1[ε,T ](τ)/Z → δε(τ) as k → ∞

where Z is the normalizing constant, the recipro-
cal functions are connected to the original optimization. We enumerate few examples of k = 2 and
k = 1 in Table 2 for RVESDE and VPSDE, respectively. Note that ST-trick is independent to the
choice on the weighting function λ for the batch-wise optimization loss, L(θ;λ, τ).
Theoretic Analysis of ST-trick The ST-loss reduces the original diffusion loss to LST (θ;λ,P) =
L(θ;λP, ε) with λP(t) :=

( ∫ t
0
P(τ) dτ

)
λ(t) in expectation by the Fubini theorem (Stein and

Shakarchi, 2009). While the ST-loss in average is identical to the original diffusion loss, the
major difference lies on that 1) L(θ;λP, ε) optimizes the diffusion loss in its averaged form and 2)
LST (θ;λ,P) with ST-trick optimizes the diffusion loss with the Monte-Carlo sampled truncation, τ .

To inspect how soft truncation affects to the optimization, let us assume λ(t) = g2(t). Then, we
observe that the theoretic analysis previously suggested in Song et al. (2021) is directly extendable to
any τ ∈ (0, T ] by simply switching the positive truncation time, τ , in place of the zero time:

Epτ (xτ )
[
− log pθ,τ (xτ )

]
≤ L(θ; g2, τ),

where pθ,τ is the marginal probability distribution at time τ of the reverse (generative) process that
starts from the prior distribution and flows backwards in time, and pτ is the marginal probability
density at time τ of the forward diffusion process. Then, the above inequality is equivalent to

DKL(pτ‖pθ,τ ) ≤ L(θ; g2, τ),
after omitting constants independent of θ for the above two inequalities. This KL bound means that
our ST-trick simply ignores the time range beneath τ , and optimizes the proxy of the KL divergence
between the forward and the reverse diffusion at time τ . On the other hand, no such interpretation
can be applied to the diffusion loss without ST-trick, L(θ;λP, ε).
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3.3 RECIPROCAL VARIANCE EXPLODING SDE FOR SMALL TRUNCATION

This section introduces RVESDE whose variance, σ2(t), is geometric by its nature. RVESDE is
defined as the form of dxt = g(t) dwt with

g(t) :=

{
σmax

(
σmin
σmax

)
ε
t

√
2ε log (σmaxσmin

)

t if t > 0,

0 if t = 0.1

The transition probability of RVESDE becomes p0t(xt|x0) = N
(
xt;x0, σ

2
max(

σmin
σmax

)
2ε
t I
)
.

Recall that VESDE assumes g(t) = σmin(
σmax
σmin

)t
√

2 log (σmaxσmin
) and p0t(xt|x0) =

N
(
xt;x0, σ

2
min

[
(σmaxσmin

)2t− 1
]
I
)
. As presented in Figure 8, RVESDE attains the geometric property

at the expense of having reciprocated time, 1/t. We could successfully model the forward diffusion
process with RVESDE without any approximation, and this exact modeling of the forward process
enables applying the stochastic calculus to compute the log-likelihood or to generate new samples.

It is common to apply the importance sampling (Song et al., 2021) in order to minimize the Monte-
Carlo variance on the diffusion loss as illustrated in Figure 13 (c). RVESDE is advantageous on
VE/VPSDEs that the importance sampling is easy to implement: the diffusion loss with RVESDE
becomes

L(θ; g2, ε) = 1

2

∫ T

ε

g2(t)Lt(θ) dt = ε log
(σmax
σmin

)∫ 1
ε

1
T

σ2(s−1)Ls−1(θ) ds,

by substituting the integrating variable into the reciprocated time. Therefore, the importance sampling
for RVESDE is equivalent to drawing the diffusion time uniformly on a reciprocated interval, [ 1T ,

1
ε ].

4 EXPERIMENTS

This section empirically studies our suggestions on benchmark datasets, including CIFAR-10
(Krizhevsky et al., 2009), STL-10 (Coates et al., 2011)2 CelebA (Liu et al., 2015) 64×64, CelebA-HQ
(Karras et al., 2017) 256 × 256, LSUN (Yu et al., 2015) Bedroom/Church 256 × 256, and FFHQ
(Karras et al., 2019). We compute bits-per-dim, proportional to NLL, by applying the Instantaneous
Change of Variable Chen et al. (2018); Song et al. (2020) to the probability flow (Song et al., 2020)
with the uniform dequantization (Theis et al., 2015; Hoogeboom et al., 2020), rather than the vari-
ational dequantization (Ho et al., 2019) in order to sidestep the need of training an auxiliary flow
network. Also, we use the clean-FID introduced in Parmar et al. (2021) for computing the FID
(Heusel et al., 2017) score with the predictor-corrector sampler (Song et al., 2020). Training and
evaluation details are available in Appendix B.

4.1 QUANTITATIVE RESULTS

Table 3 compares HNCSN++ (RVE) with ST-trick against the current best generative models, and
Table 3 shows that our model establishes the state-of-the-art performances. On CIFAR-10, we observe
that our model improves NCSN++ (VE) in NLL and IS at the expense of sacrificing FID slightly. In
particular, our model surpasses the previous best IS performance (StyleGAN2-ADA+Tuning (Karras
et al., 2020)) by performing 10.11 on CIFAR-10. HNCSN++ trained on CelebA is the best performer
in terms of the FID performance, but CR-NVAE (Sinha and Dieng, 2021) outperforms our model
in NLL. However, we emphasize that HDDPM++ in Table 6 with ST-trick (1.52) outperforms CR-
NVAE (1.86) in NLL by far. In particular, HNCSN++ with high-dimensional CelebA-HQ 256× 256
performs the state-of-the-art in FID out of the baselines in the diffusion models (NCSN++) and
the GAN models (PGGAN (Karras et al., 2017)). Finally, HNCSN++ on STL-10 dataset largely
outperforms the baselines by improving the state-of-the-art FID from 15.17 (Park and Kim, 2021) to
7.71, and IS from 11.01 (Park and Kim, 2021) to 13.43.

In Table 3, when computing the Inception Score (IS) (Salimans et al., 2016), there is a minor
discrepancy between likelihood-based models and likelihood-free models. IS-50k in diffusion models

1The existence and uniqueness of solution for RVESDE is guaranteed by Theorem 5.2.1 in Oksendal (2013).
2We downsize the dataset from 96× 96 to 48× 48 following Jiang et al. (2021); Park and Kim (2021).
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Table 3: Performance comparisons on benchmark datasets. The boldfaced numbers present the best
performance, and the underlined numbers present the second-best performance.

Model
CIFAR10 CelebA CelebA-HQ STL-10
32× 32 64× 64 256× 256 (8-bits) 48× 48

NLL (↓) FID (↓) IS (↑) NLL FID FID FID IS

HNCSN++ (RVE) + ST 3.04 2.33 10.11 1.93 1.92 7.16 7.71 13.43
Likelihood-based Models
CR-NVAE (Sinha and Dieng, 2021) 2.51 - - 1.86 - - - -
LSGM (FID) (Vahdat et al., 2021) 3.43 2.10 - - - - - -
DenseFlow-74-10 (Grcić et al., 2021) 2.98 - - 1.99 - - - -
Gamma Distribution DDIM (Nachmani et al., 2021) - - - - 2.92 - - -
VDM (Kingma et al., 2021) 2.65 - - - - - - -
NCSN++ cont. (deep, VE) (Song et al., 2020) 3.45 2.20 9.89 2.39 3.95 7.23 - -
DDPM++ cont. (deep, sub-VP) (Song et al., 2020) 2.99 2.41 9.57 - - - - -
ScoreFlow (cont. norm. flow) (Song et al., 2021) 2.74 5.70 - - - - - -
Improved DDPM (Lsimple) (Nichol and Dhariwal, 2021) 3.37 2.90 - - - - - -
Likelihood-free Models
StyleGAN2-ADA+Tuning (Karras et al., 2020) - 2.92 10.02 - - - - -
Styleformer (Park and Kim, 2021) - 2.82 9.94 - 3.66 - 15.17 11.01
PGGAN (Karras et al., 2017) - - 8.8 - - 8.03 - -
TransGAN (Jiang et al., 2021) - 9.26 9.02 - 5.01 - 18.28 10.43

(Song et al., 2020; Ho et al., 2020) computes the score with 50k generated images once, while
IS-5k in GAN models (Karras et al., 2020; Park and Kim, 2021) computes the score 10 trials with
independently generated 5k samples and report the performance as the average of scores. We report
IS-50k following Song et al. (2020), but we note that IS-5k performs almost identical to IS-50k by
performing 10.07 on CIFAR-10 and 13.34 on STL-10 in terms of IS-5k.

One particular observation in Table 3 is the IS performance (13.34) of STL-10 that exceeds the number
of classes (10) of the dataset. We follow Park and Kim (2021), the current state-of-the-art model on
STL-10, to train STL-10 with 105k images by aggregating the labeled (5k) and the unlabeled (100k)
images (Jiang et al., 2021). Although the labeled images have 10 classes, the unlabeled images are
sampled from a broader distribution of images, so the unlabeled dataset contains the other types of
animals such as bears or rabbits, whose classes are different from the labeled classes. Therefore, a
well-trained model with 105k images would perform IS that exceeds the number of labeled classes.

4.2 ABLATION STUDY

Throughout the ablation study, we train the model on CelebA as default otherwise stated.

Table 4: Ablation study for the
new parametrization.

Model σmin
CelebA

NLL FID

NCSN++ (VE) 10−2 2.39 3.95
NCSN++ (VE) 10−3 1.96 3.59
HNCSN++ (VE) 10−3 1.97 3.54
HNCSN++ (RVE) 10−3 1.97 3.36

DDPM++ (VP, IS) 10−3 1.53 5.31
HDDPM++ (VP, IS) 10−3 1.64 4.65

High Precision Parametrization Table 4 presents the model
performances after 0.5M of training iterations. First, NCSN++
with lowered σmin effectively reduces the performances on both
NLL and FID, as anticipated in Section 2. Second, the new
parametrization of HNCSN gives a slight performance gain
compared to the original parametrization of NCSN. This perfor-
mance gain comes from the better estimation for the data score,
evidenced by Figure 13 (a). Third, the new parametrization of
HDDPM largely improves the sample quality at the expense of
slight NLL degradation.

20000 40000 60000 80000 100000

Training iteration

18

20

22

24

F
ID

-1
k

L(θ; (1− ε
t)g

2(t), ε)

LST (θ; g2(t), 1
τ2 1[ε,T ](τ))

Figure 10: ST-trick improves
the sample generation.

Soft Truncation Figure 10 compares the diffusion model
with/without ST-trick in terms of the sample fidelity by training
iteration. To compare in a fair setting, we train the model in a pair
of comparative settings: first, we train the model with vanilla diffu-
sion loss of L(θ;λP, ε) with λP(t) = (1− ε

t )g
2(t); and second, we

train according to the same loss with ST-trick of λ(t) = g2(t) and
P(τ) ∝ 1

τ2 . At the initial stage of training, the sample fidelity with
ST-trick is worse than that without ST-trick because the model with
ST-trick learns the data score of small diffusion slower. However,
ST-trick effectively updates the score network as training proceeds,
and Figure 10 shows that the model with ST-trick surpasses the model without ST-trick after the
training.
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Table 5: Ablation study for ST-trick trained on
HNCSN++ (RVE).

P(τ)
Optimization

Loss
ST CelebA

NLL FID

δε(τ) L(θ; g2, ε) 7 1.97 3.36
δε(τ) L(θ; (1− ε

t
)g2, ε) 7 1.98 3.18

1
τ2

1[ε,T ](τ) LST (θ; g2, P) 3 1.93 1.92

Table 5 presents the performances after 0.5M of
training steps. It compares the diffusion models
with an identical weighting function, (1 − ε

t )g
2,

with/without ST-trick, and it shows that ST-trick
improves NLL from 1.98 to 1.93 and FID from 3.18
to 1.92, where 1.92 beats the current state-of-the-art
FID (2.92) by far.

Table 6: Ablation study for ST-trick.

Model λ ST CelebA
NLL FID

NCSN++ (VE) σ2 7 2.39 3.95
3 2.41 2.68

HNCSN++ (RVE) g2
7 1.97 3.36
3 1.93 1.92

DDPM++ (VP) σ2 7 1.79 3.03
3 1.75 2.88

HDDPM++ (VP) σ2 7 1.78 3.23
3 1.73 2.22

DDPM++ (VP, IS) g2
7 1.53 5.31
3 1.52 4.50

HDDPM++ (VP, IS) g2
7 1.64 4.65
3 1.52 4.45

Table 6 compares our ST-trick with the vanilla optimization
of the hard truncation on weighting functions of λ(t) =
g2(t) and λ(t) = σ2(t). Table 6 shows that ST-trick is
effective on both sample generation and density estimation.
In particular, for any model settings, we conclude that ST-
trick is a highly effective method that significantly enhances
the sample quality without any of model modification.

RVESDE Table 4 shows the efficacy of RVESDE on
HNCSN++. Applying RVESDE improves the FID score
while preserving the NLL performance, compared to
VESDE on HNCSN++. To analyze the performance, recall
that Proposition 2 implies that the inequality of NELBO in 1
does not hold anymore, so the NLL performance of VESDE
loses its theoretic ground on bounding the log-likelihood.
However, our RVESDE allows the inequality of NELBO, so
the NLL performance in Table 4 is theoretically grounded. In addition, the experiments in Table 6
shows that RVESDE harmonizes with ST-trick better than VESDE.

Table 7: Ablation study
for σmin trained on
HNCSN++ (RVE).

ST σmin
CIFAR-10

NLL FID-10k

7
10−3 2.96 7.04
10−4 2.97 8.17
10−5 2.97 8.29

3
10−3 2.99 5.09
10−4 2.97 5.54
10−5 2.96 5.98

Optimal Precision Table 7 finds that lowering σmin too small might
harm the sample quality due to the training instability. We find that
σmin = 10−3 is a sweet spot for the optimal sample quality. This
tendency maintains even when we apply the training stabilization method,
such as ST-trick.

The reasoning of such opposite trend could be partially explained by
how the data is saved. When we save the data, it is 8-bit quantized in
order to downsize the file size, so it is enough to downscale σmin less
than 1/256 to fit the model distribution to the data distribution, which is
approximately 0.004. Therefore, lowering σmin too small incurs severe
numerical instability without gaining additional performance enhancement.

Natural Image Quality Evaluator (NIQE)

Real
Generated (σ =0.1)
Generated (σ =0.01)
Generated (σ =0.001)

Figure 11: Optimal preci-
sion on FFHQ 256× 256.

Natural Image Quality Evaluator (NIQE)

Real
HNCSN++
(σmin = 10−3)

NCSN++
(σmin = 10−2)

Figure 12: Image-by-image
quality histogram on
CelebA-HQ 256× 256.

Empirical result in Figure 11 indicates that σmin of 10−3 is indeed
enough to create high precision images on high-dimensional FFHQ
256× 256 dataset. Figure 11 illustrates the histogram of the image-by-
image quality metric, evaluated by Natural Image Quality Evaluator
(NIQE) (Mittal et al., 2012), with 5k samples. Figure 11 implies
that the denoised images up to the diffusion levels of 0.1 or 0.01 are
not satisfactory in terms of this image-by-image metric. In fact, this
discrepancy of the image-to-image quality metric explains the gain
in FID when we lower σmin in Table 4, where FID is a distributional
metric for sample quality.

High Dimensions To clarify the modeling effect on high dimensional
datasets, we train HNCSN++ (RVE) with ST-trick for σmin = 10−3

on datasets of 256 × 256 resolutions. After the training of 3.3M
iterations, we draw 5k samples by stopping the reverse process at
σ = 10−1/10−2/10−3. When we denoise up to σ = 10−2, Table 8
shows that our model largely improves the sample quality: HNCSN++
outperforms by reporting 13.52 and 14.20 in FID-5k compared to the
NCSN++ of 16.42 and 29.14 on FFHQ 256× 256 and LSUN Church
256×256, respectively. Such a huge discrepancy on high-dimensional
datasets is attributed to the poorly synthesized images from NCSN++, which is evidenced by the right
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Figure 13: Qualitative experimental results for (a) score estimation, (b) Monte-Carlo loss density of
ST-trick, (c) Monte-Carlo loss variance without ST-trick.

Figure 14: Generated images from FFHQ (1st column) / FFHQ 256 (2,3th columns) / CelebAHQ
(4,5th columns) / LSUN Bedroom (6,7th columns) / LSUN Church (8,9th columns)

heavy tail in Figure 12. Also, as we denoise further from 10−2 to 10−3, the sample quality improves
from 13.52 to 10.35 on FFHQ 256× 256 and 14.20 to 13.75 on LSUN Church 256× 256.

4.3 QUALITATIVE RESULTS
Table 8: Ablation study for
denoising effect on high-
dimensional datasets.

Model σ
FFHQ Church
FID-5k FID-5k

HNCSN++
(RVE) + ST

10−1 60.56 48.06
10−2 13.52 14.20
10−3 10.35 13.75

NCSN++ 10−2 16.42 29.14

This section presents the qualitative experimental results for the
proposed methods. Figure 13 (a) compares the score estimation
for HNCSN++ and NCSN++ on CelebA. HNCSN++ succeeds in
estimating the unbounded score, whereas NCSN++ shows poor
estimation at the front diffusion time (or small diffusion level).
Figure 13 (b) compares the diffusion model with/without ST-trick
in terms of the Monte-Carlo loss density. As expected, the density
is bimodal for the model without ST-trick, but it turns out that this heavy tail is largely improved
by ST-trick. Figure 13 (c) illustrates that the Monte-Carlo loss variance is reduced with RVESDE,
compared to VESDE. We attribute this variance reduction to the exact modeling of the diffusion
process.

Figure 14 shows the generated images from various benchmark datasets. We find that our model
succeeds generating realistic images on high-dimensional datasets with resolution greater or equal to
256× 256. See Appendix C for the full image generation results.

5 CONCLUSION

This paper tackles the problem of exploding data score with three points: 1) we provide a theory-
driven parametrization for the high precision estimation; 2) we introduce a practical optimization
method of the diffusion model parameters; and 3) we suggest a new type of SDE that enables to apply
the stochastic calculus on small diffusion level. Applying the three improvements to NCSN/DDPM,
we presented the high precision version of NCSN and DDPM, which excels in generating the high
resolution images.

9
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6 ETHICS STATEMENT

Potential risk from this work is the negative usage of the deep generative models, such as deep-
fake images. Our contribution enables the creation of the high resolution virtual images, and we
acknowledge that there is any chance of misuse for malicious purposes.

7 REPRODUCIBILITY STATEMENT

Complete proofs of the theoretic analyses in the main paper are provided in Appendix A. The code
for the experiments would be released to the reviewers at the discussion phase through an anonymous
repository for the reproducibility. Most of our code is built based on the released code of the previous
work (Song et al., 2020) including the network structure and hyperparameters, as explained in
Appendix B.
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A PROOFS OF LEMMA 1, PROPOSITION 1, AND PROPOSITION 2

Lemma 1. Let H[0,T ] = {s : Rd × [0, T ] → Rd, s is locally Lipschitz}. Suppose a continuous
vector field v defined on a subset U of a compact manifold M (i.e., v : U ⊂M → Rd) is unbounded,
then there exists no s ∈ H[0,T ] such that limt→0 s(x, t) = v(x) a.e. on U .

Proof. Since U is an open subset of a compact manifold M , ‖x1 − x2‖ ≤ diam(M) for all
x1,x2 ∈ U . Also, if t1, t2 ∈ [0, T ], |t1 − t2| is bounded. Hence, the local Lipschitzness of s implies
that there exists a positive K > 0 such that ‖s(x1, t1) − s(x2, t2)‖ ≤ K(‖x1 − x2‖ + |t1 − t2|)
for any x1,x2 ∈ U and t1, t2 ∈ [0, T ]. Therefore, for any s ∈ H[0,T ], there exists C > 0 such that
‖s(x, t)‖ < C for all x ∈ U and t ∈ [0, T ], which leads no s that satisfies s(x, t)→ v(x) a.e. on U
as t→ 0.

Proposition 2. LetH[1,∞) = {s : Rd× [1,∞)→ Rd, s is locally Lipschitz}. Suppose a continuous
vector field v defined on a d-dimensional open subset U of a compact manifold M is unbounded,
and the projection of v on each axis is locally integrable. Then, there exists s ∈ H[1,∞) such that
limη→∞ s(x, η) = v(x) a.e. on U .

Proof. Let h be a standard mollifier function. If ht(x) = t−nh(x/t), then vt := ht ∗ v converges
to v a.e. on U as t → 0 (Theorem 7-(ii) of Appendix C in Evans (1998)). Therefore, if we define
s(x, η) := v1/η(x) on the domain of v1/η(x) and s(x, η) := 0 elsewhere, then s(x, η) = v1/η(x)→
v(x) a.e. on U as η →∞.

Now, to show that s(x, η) is locally Lipschitz, let M̃×[η, η] be a compact subset of Rn×[1,∞). From
‖s(x1, η1) − s(x2, η2)‖ = ‖v1/η1(x1) − v1/η2(x2)‖ ≤ ‖v1/η1(x1) − v1/η1(x2)‖ + ‖v1/η1(x2) −
v1/η2(x2)‖, if there exists K1,K2 > 0 such that ‖v1/η1(x1) − v1/η1(x2)‖ ≤ K1‖x1 − x2‖ and
‖v1/η1(x1) − v1/η2(x1)‖ ≤ K2|η1 − η2| for all x1,x2 ∈ M̃ and η1, η2 ∈ [η, η], then s(x, η) =

v1/η(x) is Lipschitz on M̃ × [η, η].

First, since v1/η is infinitely differentiable on its domain (Theorem 7-(i) of Appendix C in Evans
(1998)) and η ∈ [η, η], there exists K1 > 0 such that ‖v1/η(x1) − v1/η(x2)‖ ≤ K1‖x1 − x2‖.
Second, the mollifier satisfies the uniform convergence on any compact subset of U (Theorem 7-
(iii) of Appendix C in Evans (1998)), which leads that ‖v1/η1(x) − v1/η2(x)‖ ≤ K2| 1η1 −

1
η2
| =

K2
|η1−η2|
η1η2

≤ K3|η1 − η2| for some K2,K3 > 0. Therefore, s becomes an element ofH[1,∞).

B IMPLEMENTATION DETAILS

Since the major contribution of this paper is developing the diffusion model in perspectives of theory
and optimization method, we use the same model architecture introduced in Song et al. (2020).

B.1 EXPERIMENTAL DETAILS

Training Throughout the experiments, we train our model with a learning rate of 0.0002, warmup
of 5000 iterations, gradient clipping by 1. On the experiments for HNCSN++ with σmin = 10−3,
we train the diffusion model by truncating σmin to 10−2 at the initial stage of training, and after the
saturation in terms of the FID score, we begin to train the score network with the whole range of
[σmin, σmax]. We find this way of training works best in practice for the training stability. We follow
the convention of Song et al. (2020) to choose σmax. Also, for DDPM-style model training, we use
βmin = 0.1 and βmax = 20. For all experiments, we set ε = 10−5 and T = 1.

We stabilize the training by the Exponential Moving Average (EMA) (Song et al., 2020) with the rate
of 0.999 on NCSN++/HNCSN++ and 0.9999 on DDPM++/HDDPM++. In addition, we stabilize the
training by applying the dropout (Srivastava et al., 2014) with 0.1 rate. For the optimizer, we use the
Adam optimizer (Kingma and Ba, 2014) with (β1, β2) = (0.9, 0.999).

On datasets of resolution 32× 32, we use the batch size of 128, which consumes about 48Gb GPU
memory. On STL-10 with resolution 48 × 48, we use the batch size of 192, and on datasets of
resolution 64× 64, we experiment with 128 batch size. The batch size for the datasets of resolution
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256×256 is 40, which takes nearly 120Gb of GPU memory. On the dataset of 1024×1024 resolution,
we use the batch size of 16, which takes around 120Gb of GPU memory. We use five NVIDIA RTX-
3090 GPU machines to train the model exceeding 48Gb, and we use a pair of NVIDIA RTX-3090
GPU machines to train the model that consumes less than 48Gb.

Evaluation We apply the EMA with rate of 0.999 on NCSN++/HNCSN++ and 0.9999 on
DDPM++/HDDPM++. For the density estimation, we obtain the NLL performance by the In-
stantaneous Change of Variable (Song et al., 2020; Chen et al., 2018). For the sampling, we apply
the Predictor-Corrector (PC) algorithm introduced in Song et al. (2020). We set the signal-to-noise
ratio as 0.16 on 32 × 32 datasets, 0.17 on 48 × 48 and 64 × 64 datasets, 0.075 on 256×256 sized
datasets, and 0.15 on 1024× 1024. On datasets less than 256× 256 resolution, we iterate 1,000 steps
for the PC sampler, while we apply 2,000 steps on the other high-dimensional datasets. Throughout
the experiments, we use the reverse diffusion (Song et al., 2020) for the predictor algorithm and the
annealed Langevin dynamics (Welling and Teh, 2011) for the corrector algorithm.

We compute the FID score (Song et al., 2020) based on the modified Inception V1 network3 using
the tensorflow-gan package for CIFAR-10 dataset, and we use the clean-FID (Parmar et al., 2021)
based on the Inception V3 network (Szegedy et al., 2016) for the remaining datasets. We note that
FID computed by Parmar et al. (2021) reports a higher FID score compared to the original FID
calculation4.

B.2 CHOICE OF η(t)

HNCSN As described in Section 3.1, HNCSN assumes the score parametrization of sθ(xt, η(t))
with η(t) being the mixture of log σ(t) and 1

σ(t) . Despite of the clear advantage of log σ(t) that the
distribution of p(σ) is uniform in VE/RVESDEs, the drastic scale variation at t ≈ 0 prevents the
enhanced score estimation. We empirically find that the reciprocal function of 1

σ(t) works best on the
estimation at the front diffusion time, and we combine these two functions to create a continuously
differentiable η(t) by

η(t) :=

{
log σ(t) if σ(t) ≥ σ0
− c1
σ(t) + c2 if σ(t) < σ0,

where c1, c2 and σ0 are the hyperparameters. By acknowledging the parametrization of log σ(t) intro-
duced in Song et al. (2020), we choose σ0 as 0.01. Also, to satisfy the continuously differentiability
of η(t), the choice of two hyperparameters c1 and c2 satisfies a system of equations with degree 2, so
c1 and c2 are fully determined with this system of equations.

HDDPM Looking at the antiderivative
∫ g2(t)
σ2(t) dt = log (1− e−

∫ t
0
β(s) ds) +

∫ t
0
β(s) ds =

log σ2(t)+
∫ t
0
β(s) ds, the unbounded function reduces to η(t) = 2 log σ(t)+

∫ t
0
β(s) ds. Therefore,

HDDPM resembles the temporal parametrization of log σ(t) (Song et al., 2020) at t ≈ 0 because the
second term,

∫ t
0
β(s) ds, is nearly zero at t ≈ 0.

C ADDITIONAL EXPERIMENTAL RESULTS

Figure 15 shows how images are created from the trained model on 256-dimensional datasets, and
Figures from 16 to 21 present randomly generated samples of the trained model. Also, Tables 9
and 10 present the additional experimental results in terms of FID on LSUN Bedroom and FFHQ
256× 256.

3https://tfhub.dev/tensorflow/tfgan/eval/inception/1
4See https://github.com/GaParmar/clean-fid for the detailed experimental results.
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Figure 15: Image generation by denoising via predictor-corrector sampler.

Table 9: LSUN Bedroom

Model
Bedroom
256× 256

FID
UDM (RVE) + ST 4.57
Likelihood-based Models
ADM Dhariwal and Nichol (2021) 1.90
DDPM Ho et al. (2020) 4.90
Likelihood-free Models
StyleGAN Karras et al. (2019) 2.65
INR-GAN-bil Skorokhodov et al. (2020) 4.95
COCO-GAN Lin et al. (2019) 6.95

Table 10: FFHQ

Model
FFHQ

256× 256
FID

UDM (RVE) + ST 5.54
Likelihood-free Models
InsGen Yang et al. (2021) 3.31
Anycost GAN Lin et al. (2021) 3.35
StyleGAN2 ADA+bCR Karras et al. (2020) 3.62
CIPS Anokhin et al. (2020) 4.38
U-Net GAN Schonfeld et al. (2020) 7.48
BigGAN Schonfeld et al. (2020) 11.48
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Figure 16: Random samples on CIFAR10.
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Figure 17: Random samples on LSUN Bedroom.
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Figure 18: Random samples on LSUN Church.
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Figure 19: Random samples on FFHQ 256.
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Figure 20: Random samples on CelebA-HQ 256.
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Figure 21: Random samples on FFHQ 1024
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