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Abstract

Deep neural networks (DNNs) have become piv-
otal in machine learning, but the impact of weight
precision, such as in networks with rectified linear
units (ReLU), remains underexplored. We analyti-
cally investigate the interplay of three key factors:
the precision of ReLU network weights, the num-
ber of neurons, and the time of the preprocessing
algorithm that generates the network description.
Our study, which, to the best of our knowledge, is
the first formal work on weight precision, yields
three main results.

(1) We present an exponential time preprocessing
algorithm that showcases the possibility of trading
ReLU nodes for weight precision. Specifically,
our method achieves an exponential reduction in
neuron count when computing any function of
high complexity with boolean input encoding.

What is the implication of the above result in
theoretical and practical works?

(2) In theory of computing, in general, there is
no free lunch. In our case, if you significantly
reduce the number of neurons then you should
pay the cost in weight precision. To address this,
we introduce a notion of network size that consid-
ers weight precision in addition to the network’s
number of neurons. We establish that under this
redefined notion of network size, it is generally
impossible to exchange neurons for weight pre-
cision in ReLU networks of the same (redefined)
size.

(3) In practice, we show that high weight preci-
sion alone cannot help in reducing the neuron
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count. If instead of our exponential time prepro-
cessing algorithm one uses any polynomial time
algorithm, then it is impossible to non-trivially
reduce the neuron count, regardless of the high
weight precision.

1. Introduction
Deep Neural Networks (DNNs) have been intensively stud-
ied and, in the last decade, have become widely popular.
In this work, we revisit the resources a DNN is using. We
show that the standard notion of network size, which is the
number of neurons in a ReLU network, allows networks to
have unreasonably high computational power using only a
small number of neurons and high weight precision. This
means that in addition to the number of neurons, one should
take into account the numerical precision of the weights of
the network.

A ReLU network is an edge-weighted graph whose nodes
(neurons) are ReLU functions (σ(x) = x, x > 0 and
σ(x) = 0, x ≤ 0) evaluated over the weighted sum of their
inputs. If we view it as a circuit, a ReLU network encodes
a real-valued function. To compare with boolean models,
we study ReLU networks on boolean inputs, which is not
an actual restriction in a world of finite precision. In the
real world, all real-valued problems are compiled in binary.
This means that for every ReLU network with real-weights
there exists an equivalent ReLU network with boolean in-
puts. Thus, it formally suffices to study the computational
capabilities of neural networks on boolean problems.

Prior to our work, there were many excellent works that
studied the computational power of various neural networks
architectures both theoretically, e.g. (Siegelmann & Sontag,
1992; 1994; Siegelmann, 1999; Chen et al., 2018; Pérez
et al., 2019) and empirically in finite precision settings,
e.g. (Weiss et al., 2018). To the best of our knowledge, our
work is the first to consider formally and in a comprehensive
fashion the computational power of neural networks in terms
of the precision of their weights.

Allowing high precision or equivalently large-number arith-
metic often makes a computational model unreasonably
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strong. Such unreasonably powerful models charge a sin-
gle step per operation; for example, integer addition on
large numbers. In particular, the unit-cost RAM model
(Random Access Machine) can solve NP-hard and even
PSPACE-hard problems in polynomial time (Schönhage,
1979); see also (Hartmanis & Simon, 1974; Bertoni et al.,
1985; van Emde Boas, 1990). Similarly, for the notoriously
difficult open question of solving a semidefinite program
(SDP) exactly. Although SDPs are known to be solvable
in polynomial time, for a tolerance parameter ε > 0, the
exact version of the same problem is conjectured to be NP-
hard (Tarasov & Vyalyi, 2008; Allender et al., 2009). The
same thing holds for the “sum of square roots” problem.
In this problem, the input consists of two lists of positive
integers a1, . . . , an and b1, . . . , bn and one wants to decide
whether

∑n
i=1

√
ai >

∑n
i=1

√
bi. The “sum of square roots”

problem has an obvious linear time algorithm in the real-
RAM model. However, its complexity is a long-standing
open question in a practical model of computation such as a
polynomial-time Turing Machine (O’Rourke, 1981). As of
now, this problem is not even known to be in NP.

In the standard Neural Networks model, ReLU nodes can
possess any real-number weights. We investigate the conse-
quences when these weights have high but finite precision
or can be large integers. Theorem 1 (below) suggests that
this adaptation confers unreasonable power to the model.
Interestingly, this holds true even for inputs consisting of
small numbers, such as binary input vectors. Compared to
theorems about unit-cost RAM models, Theorem 1 has a
significantly different statement and proof but conveys a
narrative of similar flavor.

Theorem 1 (informal). Every hard boolean function can be
computed in the standard model of ReLU networks (i.e. with
unbounded weights) using a number of nodes (or edges),
which is exponentially smaller than the size of the small-
est combinatorial circuit (or ReLU network with bounded
weights) for this function. Note that this exponentially
smaller ReLU network is generated by an algorithm that
runs in exponential time.

To put this result in the proper context, we recall that Shan-
non showed (Shannon, 1949) that almost every boolean
function requires a boolean circuit of size Ω(2n/n) (also
see (Riordan & Shannon, 1942)). The 2n/n bound holds
for circuits of constant fan-in. To provide a meaningful
comparison between ReLU networks and combinatorial
circuits, we will also consider ReLU networks with con-
stant fan-in. Shannon’s lower bound is asymptotically tight,
as Lupanov (Rus, 1958) showed that every boolean func-
tion can be computed in size O(2n/n). Later, when we
formally restate Theorem 1, we will see that we can com-
pute every boolean function using a number of network
edges smaller than Shannon’s bound. Specifically, we

show that every boolean function can be computed in size
O(

√
2n) = o(2n/n) with bounded fan-in. Going exponen-

tially below the lower bound encapsulates the meaning of
the phrase ”the model has unreasonable computing power.”
Our proof leverages a somewhat similar idea to the construc-
tion in (Dančı́k, 1996). However, unlike (Dančı́k, 1996), we
do not blow up exponentially the fan-in, which is a critical
step in (Dančı́k, 1996). We also note that our construction
of ReLU networks are as deep as its size (i.e., of depth
O(

√
2n)). We do not know if there is an algorithm that

can trade precision for a similar neuron count in a shallow
network.

This discussion does not mean that NNs are super-powerful
in practice. The reason is that the algorithm that generates
the network description runs in time exponential in the input
size of the network. However, this result shows that in a
NN it is possible to trade the number of nodes (or edges)
for the precision of weights. Therefore, the number of the
ReLU nodes/edges alone is insufficient in describing the
complexity of the NN. To that end, we introduce a natural
definition of size, which takes into account the precision
and the magnitude of NN weights. Under this new “weight-
sensitive ReLU size” definition we show the following.

Theorem 2 (informal). The model of ReLU networks under
our “weight-sensitive ReLU size” has the same computing
power as standard combinatorial circuits of the same size.

We formalize the above result by showing a variant of Shan-
non’s lower bound for ReLU networks where “size” is our
“precision-sensitive size”. In the variant of Shannon’s theo-
rem, we obtain asymptotically the same result as for combi-
natorial circuits (but, in our case “size” is something differ-
ent).

Theorem 3 (informal). The set of all problems computable
in polynomial time is the set of problems computable by
ReLU networks (with unbounded weights) whose description
is generated by an algorithm that runs in polynomial time.

Theorem 3 complements Theorem 1. Theorem 1 tells us
that the weight precision matters. Theorem 3 tells us that
the weight precision does not matter if one invests only
polynomial time to output the network description. In other
words, if the algorithm that outputs the network description
does not use too much time, then there is no advantage in
utilizing high-precision weights.

We note that an analogous phenomenon to Theorem 3 is
not true for other high-precision models of computation.
For example, consider circuits with real-valued gates doing
the arithmetic of the unit-cost RAM model. The algorithm
that outputs the circuit description is efficient (polynomial
time), but the circuit it outputs is computationally extremely
powerful; it can compute the entire PSPACE with only a
polynomial number of gates.
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We conclude the introduction with two remarks regarding
our results in the context of machine learning.

First, we do not know how a training algorithm (learning
algorithm) could utilize high-precision weights to give more-
than-usual power to a learned ReLU model. For example,
we do not know how one can devise a training algorithm for
neural networks, which for a fixed number of ReLU nodes
the more it trains the more it can take advantage of high
precision weights. Exploring different ways to update the
weights (other than this, using the same training algorithm)
could lead to new insights in the practice of machine learn-
ing. This seems to be an interesting question that can be
studied both theoretically and, importantly, empirically.

Second, our study highlights the importance of considering
weight precision in theoretical works on ReLU networks,
particularly in works proving lower bounds. This considera-
tion should extend to both the statements of such theorems
and their proofs to ensure sound arguments.

The rest of the paper is organized as follows. First, we intro-
duce the necessary notation and the new NN size definition
in Section 2. We also define gadgets useful for constructing
ReLU networks in Section 3. In the last three sections, we
introduce and prove our three main results: we prove that
ReLU networks are strictly more powerful than standard
circuit models with the same number of gates (by using
an exponential time algorithm that generates the network
description); we show that ReLU networks under our new
definition of size match Shannon’s circuit lower-bound; and
finally, we show that ReLU networks that are generated by a
polynomial time algorithm compute exactly the polynomial-
time computable problems.

2. Definitions and Notation
In this section, we provide definitions and notations.

For any predicate P , define the Iverson bracket [P ] to be
1 iff P is true, and [P ] = 0 otherwise. LCM(x1, ..., xk)
is the least common multiple of the integer xis, and
GCD(x1, ..., xk) is their greatest common divisor. All loga-
rithms are of base 2. For any two natural numbers p, q, p|q
indicates that p divides q.

2.1. ReLU Networks and Other Models

The formal definition of ReLU networks is as follows:

Definition 2.1 (see (Arora et al., 2019)). A ReLU network
C is an edge-weighted acyclic directed graph G = (V,E).
The sources (i.e. vertices with in-degree 0) of the graph are
either inputs or constants 0, 1. To differentiate with sources,
non-source vertices are called neurons (nodes). The value

val(x) of a neuron x is given by ReLU functions:

val(x) =def σ(
∑

(y,x)∈E

w(y,x) · vy)

where E is the edge set of the ReLU network, w(y,x) ∈ R
is the weight of edge (y, x), and σ is the ReLU function
defined as σ(x) =def max(x, 0). Besides, the sinks (i.e. ver-
tices with out-degree 0) are the outputs of the ReLU net-
work.

In this work, the inputs are either 0 or 1. We shall omit the
activation function σ(x) if it is clear that x is non-negative.

Other usual computational models, such as Turing machines,
the RAM model, boolean circuits, and so on, have the same
power in the sense that each one of them can simulate other
models with an at most polynomial loss. In this work, we
will mainly compare ReLU networks to boolean circuits. We
note that a boolean circuit and a ReLU network where the
weights are of at most polynomial precision or magnitude
are polynomially equivalent. That is, when we say that
“we compare boolean circuits and ReLU networks”, this is
the same as saying that “we compare ReLU networks of
reasonable weight-precision and ReLU networks of arbitrary
precision”.

To show that ReLU networks can simulate boolean circuits
efficiently, we shall first define boolean circuits. A boolean
circuit is a directed acyclic graph, whose inputs are bits, and
nodes are boolean operators. Boolean circuits with bounded
fan-in (i.e., in-degree) only use binary and unary operators
∧,∨,¬ as gates (nodes). Boolean circuits with unbounded
fan-in use ∧n,∨n,¬ for any n.

2.2. Network Size

Prior to this work, in neural networks, the size is defined as
the number of neurons (or the number of edges/connections
between neurons). The number of neurons is at most the
product of the network’s depth and width. As for boolean
circuits, the size of circuits is either defined as the number
of nodes or the number of edges, where for notational con-
venience we choose the latter one as the definition of circuit
size. For the size of boolean circuits with unbounded fan-in
and ReLU networks, we make the same choice to apply
Shannon’s circuit lower-bound on these models.

To address the issue of limited precision in the weights we
introduce the following definition.
Definition 2.2. For a ReLU network C whose weights
{wx,y} are all rational numbers, we define the precision
size of C to be the sum of bits to describe each weight:

p-SIZE(C)

=
∑

(x,y)∈E

(⌈
log(|px,y|+ 1)

⌉
+
⌈
log(|qx,y|+ 1)

⌉)
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where E is the edge set of C, and px,y/qx,y = wx,y , where
px,y and qx,y form an irreducible fraction wx,y .

The above definition quantifies the number of bits we need
to describe the weights of a network. It is equal to the
number of binary bits we need to write all the integers
(|px,y|), (|qx,y|) for (x, y) ∈ E.

3. Gadgets for ReLU Networks
In this section, we give gadgets for building ReLU networks.
These gadgets are used throughout our paper.

Lemma 3.1. For input x ∈ S where S ⊂ R is a finite set,
there is a ReLU network of constant size computing [x ≥ c].

Proof. Since S is a finite set, there exists a c′ < c ∈ R
such that if x < c then x < c′. We first compute: y :=
σ( 1

c−c′x− c′

c−c′ ). y is non-zero if and only if x > c′, and is
greater than or equal to 1 if and only if x ≥ c. We have

[x ≥ c] = σ(y − σ(y − 1))

To put things in context, here is an example of constructing
[x ≤ c] and [x = c] by [x ≥ c]:

[x ≤ c] = [(−x) ≥ (−c)]

[x = c] = [[x ≥ c] + [x ≤ c] ≥ 2]

Other relations between x and c can be obtained similarly
from the gadget above.

Fact 3.2. For input x, y ∈ R≥0 bounded by a sufficiently
big constant C, and a switch z ∈ {0, 1}, there exists a ReLU
network computing the formula below in constant size

(z ? x : y) =def

{
x, if z = 0
y, if z = 1

Proof. We construct it directly:

(z ? x : y) = σ(x− z · C) + σ(y − (1− z) · C)

We can construct “if switches” the same way as above.

Lemma 3.3. The boolean functions ¬ and ∧n,∨n for any n
can be implemented by ReLU networks of constant neurons.

Proof. Negation function ¬x is 1− x.

For the remaining functions, we first use a single ReLU
neuron to get the sum of the n input bits s = σ(

∑n
i=1 xi).

Then, we can compute them by comparing s to particular
numbers:

∧n = [s = n]

∨n = [s ≥ 1]

4. ReLU Networks Are Strictly Stronger than
Boolean Circuits with the Same Number of
Nodes (and the Same Fan-in)

Lemma 3.3 says that ReLU networks are at least as powerful
as boolean circuits, while boolean circuits are composed
of AND, OR, and NOT gates (nodes). In this section, we
show that ReLU networks are strictly stronger than boolean
circuits, by showing that ReLU networks can compute par-
ticular functions with asymptotically less number of neurons
and wires. Let us formally restate our first result.

Theorem 4.1 (restatement of Theorem 1). For any boolean
function f : {0, 1}n → {0, 1}, there exists a ReLU network
of size O(2n/2) that computes f . Furthermore, the network
description is computed in time 2O(n).

This upper-bound is exponentially smaller than the
Ω(2n/n) lower-bound given by Shannon for the number
of gates/wires in a constant fan-in combinatorial circuit.

Overview of the algorithm that beats Shannon’s bound.
Denote by the inputs of the network x1, x2, ..., xn ∈ {0, 1}.
The algorithm consists of two parts. First, we print the
truth table of the function f(x1, x2, ..., x⌊n/2⌋) by fixing
the first ⌊n/2⌋ inputs. Then we “lookup” and output the
(x⌊n/2⌋+1...xn)2-th item of the truth table.

Here are the details of our argument.

We construct the network by encoding the whole truth table
Tf of a boolean function f into the weights. Formally, Tf

is a big constant whose binary representation encodes the
function f :

Tf = (t0t1...t2n−1)2

where for all x1, ..., xn ∈ {0, 1},

t(x1...xn)2 = f(x1, ..., xn)

To formalize this argument, we first need the ability to
“lookup” whether a specific entry in the truth table is 0
or 1. However, we note that it is hard to do so by a small
number of neurons.

Lemma 4.2. Given x1, ..., xn ∈ {0, 1} and Tf ∈
{0, 1, ..., 22n − 1} as inputs, there exists a ReLU network of
size O(2n) whose output is the (x1...xn)2-th bit of Tf .
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Algorithm 1 2n-sized network for looking up the truth table
Input: x1, ..., xn, Tf

Output: The (x1...xn)2-th bit of Tf

1: Sum := 0
2: for k := 2n − 1 to 0 do
3: Sum := Sum + ([Tf ≥ 2k] ∧ [(x1...xn)2 = k])
4: // [Tf ≥ 2k] decides whether the k-th bit is on or off.
5: Tf := ([Tf ≥ 2k] ? Tf − 2k : Tf )
6: // Remove the k-th bit.
7: end for
8: Output := Sum

Algorithm 2 2n/2-sized network for computing f

Input: x1, ..., xn

Output: f(x1, ..., xn)

1: T := 0
2: for k := 0 to 2⌊n/2⌋ − 1 do
3: T := T + ([(x1...x⌊n/2⌋)2 = k] ? Tf(k1,...,k⌊n/2⌋) :

0)
4: // Assign the (x1...x⌊n/2⌋)2-th truth table to T .
5: end for
6: Output := the (x⌊n/2⌋+1...xn)-th bit of T
7: // This is done using Algorithm 1.

Proof. We give the construction as pseudocode in Algo-
rithm 1.

The procedure slices Tf bit-by-bit and determines whether
or not the highest bit of Tf is 1.

The for-loop can be simply implemented sequentially in the
network. The operators involved can all be implemented
in constant size by Lemmas 3.1, 3.2 and 3.3. By pre-
computing (x1x2...xn)2 =

∑n
i=1 xi · 2n−i, the formula

[(x1x2...xn)2 = k] also costs constant size as stated in
Lemma 3.1. The total size of the construction above is
O(2n).

It is worth noting that Tf is not necessarily an input in
the lemma above, as the truth table Tf is a constant not
depending on the input. We will come to this in the proof of
Theorem 4.1, when Tf will be a variable.

We will not use the above lemma directly on the given
function. Note that this size is worse than the 2n/n size in
Lupanov’s construction for boolean circuits. However, we
will use Lemma 4.2 after we partition the truth table using a
different algorithmic idea.

Proof of Theorem 4.1. Let Tf(x1,...,xi) ∈ {0, 1, ..., 22n−i −
1} be the truth table of f fixing the first i bits.

Once more, we give the construction as pseudocode in Al-
gorithm 2.

In the construction, we first iteratively search the truth table
of Tf(x1,...,x⌊n/2⌋) in O(2n/2) size, then lookup the truth
table using Lemma 4.2. The total size of the network is still
O(2n/2).

Remark. Previously it was shown (Dančı́k, 1996) that
computing any boolean function in unbounded fan-in
boolean circuits can be done in O(2n/2) nodes as well,
which is proved by a similar construction as ours. Impor-
tantly, the construction in (Dančı́k, 1996) uses O(2n) many
wires, whereas ours uses O(2n/2). And our construction
above consists of neurons of only constant fan-in. This still
implies a huge gap between ReLU networks and unbounded
fan-in boolean circuits.

Theorem 4.1 shows that ReLU networks are strictly stronger
than boolean circuits. In contrast, Shannon’s Theorem
(Shannon, 1949) staets that almost every n-ary boolean func-
tion requires boolean circuits of size 2n/n, for sufficiently
big n.

We will discuss open questions related to Theorem 4.1 in
Section 7.

5. A ReLU Lower Bound that Matches
Shannon: The New ReLU Size Definition

In this section, we show in a combinatorial way that under
Definition 2.2, ReLU networks have the same computational
power as regular models, i.e., boolean circuits. We know
from Lemma 3.3 that functions computed by boolean cir-
cuits can efficiently translate to ReLU networks. Combined
with Lupanov’s construction (Rus, 1958), every function
can be computed by ReLU networks of p-SIZE O(2n/n).
To show the other direction, we prove a matching lower
bound in Theorem 5.1.

Let Sf denote the minimal p-SIZE of a ReLU network com-
puting a boolean function f . We obtain that

Theorem 5.1 (restatement of Theorem 2). For any suffi-
ciently large n,

max
f :{0,1}n→{0,1}

Sf > 2n/n

In fact, we prove a stronger proposition: for any sufficiently
large n, almost every boolean function requires ReLU net-
works of size greater than 2n/n.

Proof. We proceed with a counting argument.

• Count the number of different ReLU networks over n
variables and of p-SIZE at most 2n/n.
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• Compare it with the total number 22
n

of boolean func-
tions on n variables.

As we saw in Definition 2.2, the p-SIZE of a network is the
total number of bits to store numerators and denominators
of the rational-valued weights. Let t = 2n/n. To fully
characterize a ReLU network we need the following: the
number of neurons m, the edge set E, how many bits we
allocate to each numerator and denominator, whether or not
each weight is positive, and the 2t possible values of the t
bits. Together, all the conditions above determine a unique
ReLU network.

Denote by Ct the number of different ReLU networks within
p-SIZE t, Ct is at most

2t ·
t∑

m=1

t∑
i=m

2i ·
((m+n

2

)
i

)
·
(
t+ 2i

2i

)
where i is the size of the edge set, and

(
t+2i
2i

)
is the number

of different ways to allocate t bits to i numerators and i
denominators. Here i is bounded by t because each edge
at least costs 1 bit (the lowest p-SIZE of an edge is 1, cor-
responds to the weight 0/1). The number of neurons m is
no more than t as well because otherwise the network is not
connected.

Besides, we can assume that no two neurons in the ReLU
network compute the same function, or there will be another
network of smaller size computing the same function, by
eliminating repeated neurons. Thus, permuting the labels
of the t neurons gives us a different description of a ReLU
network computing the same boolean function. Therefore,
we can update and bound the number of different ReLU
networks:

Ct ≤2t ·
t∑

m=1

t∑
i=m

2i

m!
·
((m+n

2

)
i

)
·
(
t+ 2i

2i

)

≤2t ·
t∑

m=1

t∑
i=m

2i · em

mm
·

(
e(m+ n)2

i

)i

·
(
e(t+ 2i)

2i

)2i

=2t ·
t∑

m=1

t∑
i=m

2i · em+3i · (m+ n)2i

ii ·mm
·
(
1 +

t

2i

)2i

≤(2e)t ·
t∑

m=1

t∑
i=m

2i · em+3i · (m+ n)2i

ii ·mm

≤t2 · 24t · e5t · max
1≤m≤i≤t

m2i−mi−i

≤t2 · 24t · e5t · max
1≤m≤t

m2t−mt−t

≤t2 · 24t · e5t · 24t−2t/ ln t · (ln t)2t/ ln t−2t · tt−2t/ ln t

where the second inequality comes from the inequalities

m! ≥ mm

em and
(
n
k

)
≤ ( enk )k, the third inequality comes

from (1 + 1
x )

x ≤ e, and the fifth and sixth inequality comes
from the observation that m2i−mi−i takes its maximum at
i = t and m somewhere in the range (2t/ ln t, 4t/ ln t).

As t = 2n/n, we have

Ct ≤ tt · (t−2t/ ln t+2 · (ln t)2t/ ln t−2t · 28t−2t/ ln t · e5t)
= 22

n(1−logn/n) · o(1) = o(22
n

)

which implies that there exist n-ary boolean functions that
can not be computed by ReLU networks of p-SIZE at most
2n/n when n is large enough.

Therefore, the lower bound under our new size definition
matches Shannon’s 2n/n boolean circuit lower bound.

6. ReLU Networks whose Description is
Computed in Polynomial Time Decide
Exactly Problems in Polynomial Time

We formally state and prove Theorem 3. We will show that
when the description of the networks can be printed in poly-
nomial time, then these ReLU networks can exactly compute
problems in P (the set of polynomial-time computable prob-
lems). This is done by showing that we can simulate the
arithmetic in executing the ReLU networks efficiently, in
which the intermediate values could be exponentially large.

A family of networks {Cn : n ∈ N} is polynomial time
printable1 if there is a polynomial-time Turing machine that
outputs the description of Cn giving 1n as input.

We consider only rational-valued ReLU networks, which
have finite input descriptions. In this case, we encode all the
information (e.g., the connection of the network, the weights
in binary) of a ReLU network in binary strings. We let the
description of the ReLU network be the concatenation of
the binary strings.

Theorem 6.1 (restatement of Theorem 3). For every lan-
guage L ⊆ {0, 1}n, L is decided by a family of ReLU net-
works {Cn} whose description is computable in polynomial
time if and only if L ∈ P.

The easy direction is that polynomial time printable ReLU
networks contain P. This follows by the Cook-Levin
Theorem (Cook, 1971), where every function in P that
can be decided in time t(n) has a boolean circuit of size
O(t(n)2), and the fact that ReLU nodes can simulate the
AND/OR/NOT boolean operators with a constant-size con-
struction.

1In classical computational complexity theory we say that “the
circuit is P-uniform”.
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To show the other direction, we first bound the magnitude
of all the weights and intermediate values. Fix an arbitrary
network Cn with an underlying graph G = (V,E). Let
pe/qe = we the weight of an edge e ∈ E, and p′x/q

′
x =

val(x) to be the value of vertex x, where all the fractions
are irreducible.

We first bound the length of the intermediate variables p′xs
(numerators) and q′xs (denominators).
Lemma 6.2. For every ReLU network Cn, the value of
every vertex x has q′x

∣∣∏
e∈E qe.

Proof. Define

conn(x) =def {e|∃path begins from edge e to vertex x}
prev(x) =def {y|(y, x) ∈ E}

We prove a stronger proposition:

q′x
∣∣ ∏
e∈conn(x)

qe

by induction on the depth of x.

This is to say that the denominator of the value of a vertex
x can divide the product of denominators of the weights of
edges above x (recall that Cn is a directed acyclic graph).

For the base case, x is a source and q′x = 1
∣∣1.

Suppose for all the vertices y of depth less than i it holds:
q′y
∣∣∏

e∈conn(y) qe. For any vertex x at depth i, we know that

val(x) =
p′x
q′x

= σ

 ∑
y∈prev(x)

w(y,x) · val(y)


= σ

 ∑
y∈prev(x)

p(y,x) · p′y
q(y,x) · q′y


Now we show that q′x divides the product of qe.

q′x

∣∣∣∣∣LCMy∈prev(x)

(
q(y,x) · q′y

)
∣∣∣∣∣LCMy∈prev(x)

q(y,x) ·
∏

e∈conn(y)

qe


∣∣∣∣∣LCMy∈prev(x)

q(y,x) ·
∏

e∈conn(x)∧e/∈{(z,x)}

qe


∣∣∣∣∣
 ∏

e∈conn(x)∧e/∈{(z,x)}

qe

 · LCMy∈prev(x)

(
q(y,x)

)
∣∣∣∣∣ ∏
e∈conn(x)

qe

Lemma 6.2 implies that the length of q′x (denominators) will
not be longer than the description of the ReLU network, as
qes are all included in the description.

To bound the length of p′x (numerators), it suffices to bound
the magnitude of val(x), while p′x = q′x · val(x).

Lemma 6.3. For a ReLU network Cn whose length of de-
scription is T , the value of any neuron x has

|val(x)| ≤ TT · (2T )T

Proof. We still prove it by induction on depth, that is, for
any vertex x at depth i we have |val(x)| ≤ T i · (2T )i.

For the base case where x is a source, obviously, we have∣∣val(x)
∣∣ ≤ 1 = T 0 · (2T )0

By the inductive hypothesis, all the depth-(i− 1) vertices y
have |val(y)| ≤ T i−1 · (2T )i−1. Since all the weights have
|we| ≤ 2T , and the size of edge set |E| ≤ T , we have

∣∣val(x)
∣∣ =

∣∣∣∣∣∣σ
 ∑

y∈prev(x)

w(y,x) · val(y)

∣∣∣∣∣∣
≤

∑
y∈prev(x)

2T · T i−1 · (2T )i−1

≤ T i · (2T )i

As a result, we get

∣∣p′x∣∣ = ∣∣q′x · val(x)
∣∣ ≤

∏
e∈E

qe

 · TT ·
(
2T
)T

(1)

Now, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. For any boolean language L decided
by a polynomial time printable family of ReLU circuits
{Cn}, there exists a polynomial-time Turing machine M
printing {Cn}. Suppose the running time of M is T (n)
polynomial in n, then we know that the length of the de-
scription is bounded by T (n). We have the length of all the
parameters∑

e∈E

(
log(|pe|+ 1) + log(|qe|+ 1)

)
≤ T (n)

7
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which means that∏
e∈E

qe = 2Σe∈E log2 qe

≤ 2Σe∈E(log2(|pe|+1)+log2(|qe|+1))

≤ 2T (n)

(2)

Here we give the polynomial-time simulator of Cn, it goes
by executing the network in topological order. For each ver-
tex x, we compute val(x) = p′

x

q′x
in the following procedure:

• For each y ∈ prev(x), respectively multiply p′y and

p(y,x), q′y and q(y,x), then val(y) · w(y,x) =
p′
y·p(y,x)

q′y·q(y,x)
.

• Amplify each fraction
p′
y·p(y,x)

q′y·q(y,x)
to

p′′
(y,x)∏
e∈E qe

, where

p′′(y,x) =
p′
y·p(y,x)

q′y·q(y,x)
·
∏

e∈E qe is an integer.

• Add all the p′′(y,x)s together, we get val(x) =

σ

(∑
y p′′

(y,x)∏
e∈E qe

)
.

• Run Euclid’s algorithm on val(x) to its irreducible
form val(x) = p′

x

q′x
.

Notice that we amplify the fractions in step two for the
convenience of summing them up.

It remains to show that the running time of the above pro-
cedure is polynomial in T (n). Equivalently, we bound the
length of the numbers involved instead, since integer multi-
plication, division, addition, and Euclid’s algorithm are all
running in time polynomial to the length of the numbers:

• For the length of
∏

e∈E qe, by (2),

log(
∏
e∈E

qe) ≤ T (n)

• For q′x, by Lemma 6.2,

log2(|q′x|) ≤ log(
∏
e∈E

qe) ≤ T (n)

• For p′x, by (1),

log(|p′x|+1) ≤ T (n) log(T (n))+T (n)2 +T (n)+ 1

• For p(y,x) and q(y,x), they are included in the descrip-
tion and of course have length no more than T (n).

7. Open Questions
This work explores the computational capabilities of very
high weight precision deep ReLU networks, as well as their
limits given restrictions in the precision and/or the running
time of the pre-processing algorithm. There are still impor-
tant questions we have not answered.

1. Perhaps the most important open question is whether
there is a training algorithm (maybe one that takes a
lot of time to train), which takes advantage of higher
weight precision.

2. If one focuses only on the number of neurons we do
not know of any non-trivial lower bound on the neuron
count when the ReLU network is of unrestricted pre-
cision. The upper bound we obtained is O(

√
2n). It

is interesting to close the gap. Can we obtain a better
upper bound? Can we obtain any lower bound?

3. Our construction in Theorem 4.1 involves networks
depth similar to the neuron count (of order O(

√
2n)).

Is there a construction of smaller depth?

4. This work focuses on neural networks with ReLU acti-
vation, a standard activation function. It remains open
if a similar result can be obtained for neural networks
with other activation functions. We note that our result
takes advantage of the magnitude of the weights. It is
not clear if the same idea can be applied to networks
with softmax or sigmoid activation.
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This paper aims to advance the field of Machine Learning.
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our work, we do not believe any specific impact needs to be
highlighted at this time.
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