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Abstract1

Sparse rewards pose a significant challenge for many reinforcement learning algorithms,2

which struggle in the absence of a dense, well-shaped reward function. Drawing inspira-3

tion from the curiosity exhibited in animals, intrinsically-driven methods overcome this4

drawback by incentivizing agents to explore novel states. Yet, in the absence of domain-5

specific priors, sample efficiency is hindered as most discovered novelty has little relevance6

to the true task reward. We present iLLM, a curiosity-driven approach that leverages the7

inductive bias of foundation models — Large Language Models, as a source of information8

about plausibly useful behaviors. Two tasks are introduced for shaping exploration: 1)9

action generation and 2) history compression, where the language model is prompted with10

a description of the state-action trajectory. We further propose a technique for mapping11

state-action pairs to pretrained token embeddings of the language model in order to al-12

leviate the need for explicit textual descriptions of the environment. By distilling prior13

knowledge from large language models, iLLM encourages agents to discover diverse and14

human-meaningful behaviors without requiring direct human intervention. We evaluate15

the proposed method on BabyAI-Text, MiniHack, Atari games, and Crafter tasks, demon-16

strating higher sample efficiency compared to prior curiosity-driven approaches.17

Keywords: deep reinforcement learning; curiosity-driven exploration; curiosity18

1. Introduction19

Given an agent without prior knowledge of the environment, a long-standing problem is:20

what should the agent learn first? In reward-dense environments, the agent receives a21

continuous gradient signal that guides learning through interactions. When rewards are22

sparse or delayed, standard reinforcement learning (RL) algorithms struggle because of23

reliance on simple action entropy maximization as a source of exploration behavior. As a24

result, sample efficiency remains a major bottleneck in applying RL to real-world problems.25

Various techniques were proposed to achieve better explorative policies. Intrinsically mo-26

tivated RL methods answer this question by augmenting extrinsic rewards with auxiliary27

objectives based on novelty, surprise, or progress Burda et al. (2019a,b); Bougie and Ichise28

(2020a). Agents may also be rewarded in proportion to the prediction errors or information29

gains of a predictive world model Pathak et al. (2017). Such formulations take inspiration30

from cognitive sciences, with several psychological studies showcasing the role of novelty in31

children’s curious exploration. However, they suffer from a number of pitfalls Burda et al.32

(2019a). A notable issue is the lack of human supervision for solving the task, encouraging33
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the discovery of behaviors that are unlikely to correspond to any human-meaningful behav-34

iors Du et al. (2023). In other words, it is not sufficient for intrinsically-driven agents to35

optimize for novelty alone — learned behaviors must also be useful.36

In this study, we explore the potential of large language models (LLMs) to overcome37

these barriers by encouraging the discovery of behaviors that are both novel and pragmat-38

ically useful. Our hypothesis is that LLMs, by distilling prior knowledge about the task,39

can direct agents toward more valuable behaviors. Combining RL and language models has40

been employed in a few recent studies. A strategy involves rewarding an agent for achieving41

goals suggested by a language model Du et al. (2023). LLM may also be used to predict42

future text and image representations, and learn to act from imagined model rollouts Lin43

et al. (2023). Most language-conditioned RL methods primarily learn to generate actions44

from task-specific instructions — taking a goal description such as “pick up the red key”45

as an input and outputting a sequence of motor controls Klissarov et al. (2023). However,46

LLMs are prone to incorrect assumptions and thus suffer from brittle, degraded perfor-47

mance. Unlike most prior studies that directly perform actions/instructions recommended48

by a language model, we rely on language-driven rewards as a drive to explore, which is49

critical to better-than-expert performance.50

We present, intrinsic exploration driven by Large Language Models (iLLM), an ap-51

proach that leverages pretrained language models as a novelty signal, encouraging explo-52

ration of diverse and human-meaningful behaviors. LLMs are probabilistic models of text53

trained on extensive text corpora, their predictions encode rich information about human54

common-sense knowledge and cultural conventions. Concretely, our method prompts an55

LLM with an action generation task given a description of a short state-action trajectory56

and rewards the agent when its actions align with the LLM’s predictions. We also incorpo-57

rate a history compression task, designed to capture long-term meaningful behaviors, and58

help the acquisition of a robust representation of the environment by discarding irrelevant59

details from state-action pairs. We further propose a technique based on Hopfield networks60

Ramsauer et al. (2020) to align state-action pairs from any modality with the input space61

of the LLM — token embeddings, bypassing the need for explicit textual description of62

the environment. We evaluate iLLM on challenging sparse-reward RL problems, including63

BabyAI-Text, MiniHack, Atari games, and Crafter. Experimental results show that iLLM64

outperforms state-of-the-art exploration methods, demonstrating the benefits of considering65

LLM-driven exploration compared to prior curiosity-driven methods.66

2. Related Work67

2.1. Language Models in Reinforcement Learning68

Several studies have attempted to combine language models and RL. In language-conditioned69

RL, an instruction-following agent learns a policy that executes actions in an environment70

in order to follow a language instruction Luketina et al. (2019). A line of work aims to shape71

the agent’s exploration through the utilization of LLMs. LLMs trained on huge datasets72

were shown to exhibit impressive abilities along with fast adaptation to a wide range of73

downstream tasks from vision Yuan et al. (2021) to cross-modalities Ramesh et al. (2021);74

Alayrac et al. (2022). Such abilities have been utilized to provide rewards to RL agents,75

such as done by Gupta et al. Gupta et al. (2022) and Fan et al. Fan et al. (2022), where76
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CLIP is employed to generate a novelty signal. In contrast with those methods, iLLM can77

utilize any LLM and environment, as it learns a mapping between observations and the78

embedding space of the LLM.79

In a different spirit, an LLM may serve as a high-level supervisor, providing guidance80

when needed. For instance, in SayCan Ahn et al. (2022) and Inner Monologue Huang et al.81

(2022), an LLM provides natural language actions that are both feasible and contextually82

appropriate, supplying high-level semantic knowledge about the task. Nevertheless, those83

techniques do not have a way to directly take actions in embodied environments, or of84

knowing what is happening in an environment. To solve this issue, a recent study Dasgupta85

et al. (2023) has grafted novel components onto the agent model referred to as a reporter86

observing the environment and reporting useful information to the planner.87

In the absence of grounding, the discrepancy between the actions/observations and88

internal representation of the LLM may limit its performance. Thus, several works have89

proposed to first finetune LLMs on expert trajectories before using them in the environment.90

A recent work Wang et al. (2022) has demonstrated that agents that learn interactively in a91

grounded environment are more sample and parameter-efficient than LLMs that learn offline92

by reading text from static sources. Similarly, ChibiT Reid et al. (2022) overcomes the need93

for symbol grounding with an extension of positional embeddings, embedding similarity94

encouragement. In our study, state-action alignment with the LLM’s embedding space is95

performed during the policy training phase via a Hopfield module. Hopfield networks have96

been employed in HELM for state history aggregation Paischer et al. (2022), but they apply97

these to state representation learning rather than as intrinsic rewards for RL. Notably, iLLM98

seeks to align state-action pairs via a Hopfield module, and then feeds into a pretrained LLM99

the aligned representation in order to bias exploration towards plausibly useful behaviors.100

An alternative strategy is text pretraining, where LLMs can help learners automatically101

recognize sub-goals and learn modular sub-policies from unlabelled demonstrations Sharma102

et al. (2021). LLMs have also served as proxy reward functions when prompted with desired103

behaviors Kwon et al. (2023). In ChibiT Reid et al. (2022), the agent is trained with an104

objective that maximizes the similarity between language embeddings and observation em-105

beddings. In contrast, iLLM leverages pretrained LLMs to constrain exploration towards106

meaningful behaviors in a task-agnostic manner. It does not assume demonstrations or107

task-specific prompts. Instead of directly generating actions or sub-goals, one could poten-108

tially craft a proxy reward by querying a language model to rank observations based on109

their relevance to achieving the final goal Klissarov et al. (2023). Nonetheless, it remains110

unclear how to generalize such approaches to more complex tasks without a clear skill de-111

composition. A similar study to our work is ELLM Du et al. (2023), which rewards an112

agent for achieving goals suggested by a language model prompted with a description of the113

agent’s current state. However, the authors assume access to a text-based representation114

of the environment and the ability to measure if a goal was achieved.115

2.2. Curiosity-Driven Exploration116

Drawing inspiration from animal curiosity, intrinsic motivation encourages agents to learn117

about their environments even with sparse or delayed extrinsic feedback. In recent years,118

several model-based approaches have been proposed. The well-known ICM algorithm119
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(a) iLLM(obs) (b) iLLM(hop)

Figure 1: Architecture of iLLM using text observations (left), and iLLM employing a Hop-
field module to align state-action pairs with the LLM’s token embeddings (right). The
latter feeds the current observation and previous action into a Hopfield module, followed by
the LLM. The aligned representation of state-action pairs Zh is then used: 1) as input of
the policy, and 2) along with the embedded representation of a prompt Zp into the frozen

LLM for action generation and history compression tasks. Intrinsic rewards r
a
and r

hc
are

computed based on the distance between the LLM output and the prediction of an action
head f

a
and history compression head f

hc
, respectively.

Pathak et al. (2017) relies on predicting environment dynamics using an inverse-forward120

dynamic model. To deal with the undesirable stochasticity issue Burda et al. (2019a), RND121

Burda et al. (2019b) introduces an exploration reward using a prediction problem where122

the answer is a deterministic function of its inputs. Another class of exploration methods123

seeks to maximize the diversity of skills mastered by the agent Bougie and Ichise (2020b).124

Nevertheless, maximizing state diversity also drives learning towards behaviors that lack125

relevance to downstream tasks Du et al. (2023). Humans do not explore solution spaces126

uniformly, but instead rely on their common sense to explore plausibly relevant behaviors127

first. iLLM addresses these shortcomings by constraining the exploration space based on128

prior assumptions derived from a pretrained LLM, imitating the way humans explore.129

3. Method130

Our approach, iLLM, distills a pretrained LLM to guide exploration. Specifically, we131

consider partially observable Markov decision processes (POMDPs) defined by a tuple132

(S,A,O,Ω, T , γ,R), in which an observation o ∈ O derives from environment state s ∈ S133

and an action a ∈ A via O(o∣s, a). T (s′∣s, a) describes the dynamics of the environment134

while R and γ refer to the environment’s reward function and discount factor, respectively.135

iLLM agents optimize for an intrinsic reward Rint alongside of R. At each time step t,136

our method produces an intrinsic reward bt, which is further summed up with the extrinsic137

reward rt to give an augmented reward r
∗
t = rt + bt. As the intrinsic reward function Rint138

is designed to be more dense and well aligned with R, it accelerates the agent’s learning.139

One key question is how should we choose Rint to drive the agent’s learning? As140

mentioned above, the intrinsic reward function should prioritize the exploration of plausibly141
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useful behaviors first while maintaining some degree of diversity. Here, we leverage language-142

based action generation and history compression as a measure of curiosity. Similar to143

how next-token prediction allows language models to form internal representations of world144

knowledge Devlin et al. (2018), we postulate that generating the next action and a summary145

of the agent’s history provides a rich learning signal for agents to understand language and146

how it relates to the world.147

3.1. LLM-driven Curiosity148

LLMs broadly fall into three categories: autoregressive, masked, and encoder-decoder mod-149

els. Autoregressive models such as GPT are trained to maximize the log-likelihood of the150

next word given the previous words, in a step-by-step, or autoregressive, fashion. In our151

work, we employ a frozen autoregressive LLM as a proxy reward function that takes in a152

prompt and outputs a string. The prompt is a concatenation of two components includ-153

ing a description of recent state-action pairs and a user-specified question to the LLM. As154

user-specified questions, we introduce two types of prompts: action generation, and history155

compression. In the latter, the LLM is prompted to summarize state-action pairs (see Fig-156

ure 1). Using the generated string, the agent derives its own intrinsic motivation, guiding157

it toward human-meaningful and diverse regions of the environment.158

Namely, the input to the LLM is the concatenated multimodal tokens [Zh, Zp], where Zp159

are the text embeddings, tokenized from text prompts (e.g., select the next action). Given160

[Zh, Zp], the LLM computes the (log) probability of each answer token in an autoregressive161

fashion as shown below:162

p(Za∣Zh, Zp) =
L

∏
i=1

pθ(zi∣Zh, Zp, Za,<i), (1)

where θ is the set of the LLM’s parameters, Za is the generated answer, Za,<i are the answer163

tokens before the current prediction token zi, and L is the sequence length. In this study,164

we explore two strategies for obtaining state-action tokens Zh: 1) directly using (tokenized)165

text-based environmental observations, 2) translating observations/actions into embedding166

features via a Hopfield module (Sec 3.2) — the problem of finding a suitable translation167

from environment observations to the language domain.168

3.1.1. Action Generation169

At each timestep t, we acquire the next action āt by prompting the frozen LLM with a list170

of the K available actions Zp and a description of recent states and actions Zh. We rely on171

closed-form generation, in which a list of K possible actions is given to the LLM, and the172

action with the highest log-probability is returned:173

āt = max
ai∈{1,...,K}

LLM(ai∣Zh, Zp), (2)

where Zp are the tokens of the tokenized action generation prompt (see Appendix B).174

Instead of directly performing the LLM-recommended action ā that may be suboptimal,175

we leverage it to drive exploration through an intrinsic reward. The action intrinsic reward176

r
a
is computed as the similarity between the LLM-generated action ā and the action that177
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was predicted by an action head f
a
. Specifically, the action head f

a
that is attached to the178

policy (Figure 1) predicts the next action given the internal representation ϕ(o) learned by179

the policy. We compute the intrinsic reward r
a
in the following manner:180

r
a
t =

1

2

ÂÂÂÂÂÂÂ
f
a(ϕ(ot)) − ā

′

t

ÂÂÂÂÂÂÂ
2

2
, (3)

where ā
′

t is an indicator vector containing 1 for the action ā and 0 otherwise. f
a
is trained181

with respect to its parameters θA to minimize the following prediction-error loss:182

Lact(ā, ϕ(o)) = −
∣A∣
∑
i=1

ā
i
log(pi∣ϕ(o)), (4)

where ā
i
is a binary indicator (0 or 1) if action ā is the correct action for observation ϕ(o),183

and pi is the predicted probability of action i by f
a
.184

3.1.2. History Compression185

The second language task being used is history compression, also referred to as summariza-186

tion. The LLM is prompted to compress the agent’s history into a short text. We rely on187

open-ended generation, in which the LLM outputs a summary of past state-action tuples188

Zh.189

Assuming a history compression head f
hc

(Figure 1) parametrized by θHC , the history190

compression intrinsic reward r
hc

is proportional to the Euclidean distance between the191

mean-pooled representation of the summary generated by the LLM and the logits produced192

by f
hc
:193

r
hc
t =

1

2
∣∣σ(LLM(Zh, Zp)) − f

hc(ϕ(ot))∣∣22, (5)

where, for the brevity of method description, σ(LLM(Zh, Zp)) refers to the mean-pooled194

representation of the LLM, and Zp is the summarization prompt. f
hc

is trained to min-195

imize the L2 loss with the LLM’s mean-pooled representation, Lhc. Since f
hc

gradients196

can backpropagate to the policy, this task encourages the model to focus on task-relevant197

information — noise is discarded by the pretrained LLM during history compression. In198

addition, we hypothesize that predicting information from a temporally extended horizon199

improves exploration in POMDPs and guards against premature vanishing of intrinsic re-200

wards. Namely, unlike next action generation, history compression considers a broader201

context and the cumulative effects of actions rather than isolated steps.202

The overall optimization problem that is solved for learning the agent can be written203

as,204

min
θP ,θA,θHC

[−λEπ(s;θP )[∑
t

r
∗
t ] + (1 − β)Lact + βLhc] , (6)

where 0 ≤ β ≤ 1 is a scalar that weighs the action-generation loss against summarization loss,205

λ is a scalar that weighs the importance of the policy gradient loss against the importance of206

learning the intrinsic signal, and the augmented reward is defined as r
∗
t = rt+bt = rt+r

a
t+r

hc
t .207

θP , θA, θHC are the parameters of π, f
a
and f

hc
respectively.208
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3.2. Translating State-Action Pairs into Embedding Features209

So far, we have seen how to guide the agent’s exploration by querying an LLM with a210

prompt Zp and a description of state-action pairs Zh. Although a text-based description211

may be available in some tasks, we cannot always expect to have access to such type of212

observations. Therefore, we argue that it is necessary to design a mechanism that, given213

any type of observations and actions, can map them to the token embedding space of the214

LLM.215

To overcome this challenge, we present a method to align environment pairs of observations216

ot ∈ Rn
and past actions at−1 ∈ Rd

to the LLM’s embedding space, which does not require217

back-propagating gradients through the entire language model. It relies on a Hopfield218

module that performs a randomized attention over pretrained token embeddings of the219

LLM E = (e1, ..., en)⊤ ∈ Rk×m
, where k is the vocabulary size and m the embedding size.220

Assuming P ∈ Rm×(n+d)
to be a random matrix with entries sampled independently221

from a Gaussian distribution N (0, (n + d)/m), let xt to be the output of the Hopfield:222

xt = E
⊤
softmax(βEP(ot ⋅ at−1)), (7)

where ⋅ denotes the concatenation and β is a hyperparameter that controls the dispersion223

of xt within the convex hull of the token embeddings. This corresponds to a spatial com-224

pression of observations and actions to a mixture of tokens in the LLM embedding space.225

At time t, the aligned representation Zh of a state-action pair is expressed as:226

Zh = LLM(ct−1, xt), (8)

where ct is the context cached in the memory register of the LLM up to timestep t.227

4. Experiments228

Environments. The experimental evaluation aims to test our central hypothesis: LLMs229

improve the exploration efficiency for RL algorithms in sparse reward environments. We230

conduct a serie of experiments on nine BabyAI-Text tasks Chevalier-Boisvert et al. (2018),231

including KeyCorrS4R3, KeyCorrS5R3, ObstrMaze2D1HB, ObstrMaze1Q, GoToObj, Pick-232

upLoc, PutNextS7N4Carrying, PutNextLocal, and OpenRedDoor. To demonstrate iLLM’s233

scalability, we extend the evaluation to more challenging MiniHack tasks Samvelyan et al.234

(2021), including LavaCrossing-Ring, LavaCross-Potion, LavaCross-Full, MultiRoom-N4-235

Monster, and River-Monster. We also demonstrate the importance of translating state-236

action pairs into the LLM’s embedding space by evaluating iLLM on five Atari games237

Bellemare et al. (2013), featuring image-based observations and long-term exploration. Fi-238

nally, we demonstrate that iLLM can be used in tasks that require skill acquisition, such as239

in the Crafter environment Hafner (2021).240

Baselines. We compare our method against a number of baselines: RND Burda et al.241

(2019b) and NGU Badia et al. (2020) that employ prediction errors to motivate exploration,242

APT Liu and Abbeel (2021) that exposes task-specific rewards after an unsupervised pre-243

training phase, and ELLM Du et al. (2023) that rewards the agent for achieving any goal244

suggested by an LLM. As highlighted in a recent survey Hao et al. (2023), RND, NGU, and245

APT were selected since they operate in the low data regime, unlike some other methods246
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Key Corridor Tasks Obstructed Maze Tasks Go To Task Pickup Task Put Next Tasks Open Door Task

Method KeyCorrS4R3 KeyCorrS5R3 ObstrMaze2D1HB ObstrMaze1Q GoToObj PickupLoc PutNextS7N4Carrying PutNextLocal OpenRedDoor

RND
0.0±0.00
> 60M

0.0±0.00
> 200M

0.0±0.00
> 200M

0.0±0.00
> 300M

0.51±0.22
> 100M

0.18±0.11
> 100M

0.22±0.09
> 100M

0.0±0.00
> 100M

0.34±0.13
> 100M

NGU
0.34±0.25
> 60M

0.0±0.00
> 200M

0.0±0.00
> 200M

0.0±0.00
> 300M

0.42±0.25
> 100M

0.25±0.20
> 100M

0.28±0.14
> 100M

0.01±0.01
> 100M

0.34±0.16
> 100M

ELLM
0.89±0.01

60M
0.90±0.01
190M

0.17±0.08
> 200M

0.33±0.06
> 300M

0.88±0.01
80M

0.66±0.17
> 100M

0.45±0.17
> 100M

0.06±0.08
> 100M

0.65±0.10
60M

APT
0.12±0.06
> 60M

0.5±0.14
> 200M

0.0±0.00
> 200M

0.0±0.00
> 300M

0.48±0.17
> 100M

0.30±0.08
> 100M

0.41±0.25
> 100M

0.14±0.08
> 100M

0.98±0.01
47M

Pangu
0.90±0.01
> 60M

0.92±0.01
168M

0.86±0.08
> 200M

0.45±0.12
> 300M

0.92±0.01
65M

0.60±0.09
> 100M

0.68±0.21
> 100M

0.01±0.02
> 100M

0.90±0.01
33M

ChibiT
0.88±0.04
> 60M

0.90±0.01
193M

0.77±0.10
> 200M

0.74±0.13
> 300M

0.76±0.09
> 100M

0.70±0.12
> 100M

0.62±0.11
> 100M

0.33±0.07
> 100M

0.89±0.03
27M

PAE
0.93±0.00

30M
0.92±0.01

90M
0.88±0.01
150M

0.89±0.01
150M

0.94±0.01
53M

0.77±0.22
89M

0.71±0.22
> 100M

0.28±0.03
> 100M

0.89±0.01
28M

iLLM(obs)
0.93±0.01

30M
0.92±0.02

76M
0.89±0.00
130M

0.91±0.01
132M

0.94±0.00
39M

0.80±0.06
77M

0.76±0.01
100M

0.38±0.14
> 100M

0.96±0.01
22M

iLLM(hop)
0.94±0.01

33M
0.90±0.02

81M
0.92±0.02

128M
0.93±0.01

130
0.92±0.01

45M
0.85±0.01

68M
0.78±0.11
> 100M

0.49±0.12
> 100M

0.96±0.03
25M

Table 1: Comparison of iLLM and baseline approaches in BabyAI environments. Averages
over 10 runs. Each entry consists of two rows of results, with the top row being the average
extrinsic reward at the end of training and the bottom row being the minimal stable steps
to attain that reward. Smaller bottom row values signify faster convergence, and “> n”
indicates the absence of convergence within the maximum training steps “n”.

that require billions of training steps. When available, we also report results of Pangu247

Christianos et al. (2023), ChibiT Reid et al. (2022), and PAE Anonymous (2023) agents, two248

approaches built upon LLM-driven exploration. Our comparisons involve two variations of249

iLLM: iLLM(obs), which utilizes textual descriptions provided by the environment for action250

generation and history compression, and iLLM(hop), which leverages translated state-action251

pairs as inputs for the language tasks.252

Implementation Details. As our policy learning method, we rely on PPO Schulman253

et al. (2017) with Generalized Advantage Estimation and clipping parameter ϵ = 0.2. The254

actor and critic networks consist of three fully-connected layers with 128 hidden units. Tanh255

is used as the activation function, and the output value of the actor network is scaled to the256

range of each action dimension. Training is carried out with a fixed learning rate of 0.0007257

using the AdamW optimizer, with a batch size of 128. The policy is trained for 4 epochs258

after each episode. As for the LLM choice, we compared several models (see Section 4.5.1),259

and selected Transfo-XL 280M with the temperature = 0. The intrinsic reward bt = r
a
t +r

hc
t260

is normalized and then scaled by a factor 0.3 before being summed up with rt. The prompts,261

pseudo-code, and more implementation details of iLLM are shown in Appendix B.262

4.1. BabyAI-Text Tasks263

iLLM was evaluated on nine BabyAI-text tasks. BabyAI-text is a suitable evaluation en-264

vironment as it provides both image-based and text-based representations of observations.265

We report the mean and standard deviation of the success rate over 10 seeds in Table 1. We266

can draw a couple of observations from the results. iLLM achieves higher convergence speed267

than most prior studies. In comparison, in PickUpLoc, both RND and NGU are still under268

0.25 after 100 million steps, while iLLM(hop) reaches ≈ 0.85 after 68 million steps. Notably,269

our method exhibits a significantly higher final performance compared to ELLM, due to the270

difficulty of assessing when a goal was achieved and its tendency to select suboptimal goals.271
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Method LavaCrossing-Ring LavaCross-Potion LavaCross-Full MultiRoom-N4-Monster River-Monster

RND
0.0±0.00
> 40M

0.0±0.00
> 40M

0.0±0.00
> 40M

0.0±0.00
> 40M

0.0±0.00
> 20M

NGU
0.0±0.00
> 40M

0.09±0.02
> 40M

0.0±0.00
> 40M

0.14±0.11
> 40M

0.06±0.07
> 20M

ELLM
0.29±0.11
> 40M

0.51±0.10
> 40M

0.44±0.15
> 40M

0.28±0.20
> 40M

0.22±0.03
> 20M

APT
0.11±0.08
> 40M

0.32±0.13
> 40M

0.40±0.06
> 40M

0.31±0.02
> 40M

0.08±0.00
> 20M

Pangu
0.98±0.10

35M
0.88±0.01

40M
0.50±0.07
> 40M

0.70±0.16
> 40M

0.16±0.02
> 20M

ChibiT
0.78±0.11
> 40M

0.86±0.04
> 40M

0.39±0.10
> 40M

0.46±0.12
> 40M

0.13±0.04
> 20M

PAE
1.0±0.00
22M

0.99±0.00
35M

1.0±0.00
24M

0.72±0.00
> 40M

0.13±0.01
> 20M

iLLM(obs)
1.0±0.00

20M
0.99±0.01

32M
0.99±0.01

22M
0.69±0.04
> 40M

0.13±0.01
> 20M

iLLM(hop)
0.97±0.02

28M
1.0±0.02
39M

0.98±0.03
26M

0.75±0.07
> 40M

0.38±0.12
> 20M

Table 2: Results against exploration algorithm baselines in MiniHack environments. Aver-
ages over 10 runs.

The results demonstrate how language-driven rewards can be used as a tool to scaffold272

learning by leveraging their prior knowledge. As expected, iLLM(hop) has a slightly slower273

convergence, although it ends up reaching the same or higher final performance if run long274

enough. This might be attributed to the richer representation captured by the Hopfield275

module, surpassing the simplicity of human-crafted text-based observations.276

4.2. MiniHack Environment277

Table 2 gives the quantitative results in the MiniHack environment Samvelyan et al. (2021),278

and shows the average extrinsic reward as well as the number of steps required for each model279

to converge. Utilizing an LLM as done by ELLM, PAE, SFT-RL, and iLLM outperforms280

pure curiosity-driven approaches, including RND and NGU. Additionally, we notice that281

iLLM(hop) reaches similar performance with iLLM(obs), demonstrating the relevance of282

the proposed state-action alignment technique. Nevertheless, LLMs are prone to mistakes283

in the MiniHack domain, capping the score of ELLM. This highlights the significance of284

exploration driven by intrinsic rewards as opposed to plain “imitation learning”. Moreover,285

in River-Monster, iLLM(hop) achieves state-of-the-art performance by leveraging the Hop-286

field module’s ability to capture temporal information into the learned representations of287

states and actions.288

4.3. Atari Games289

We also evaluate iLLM on five difficult exploration Atari 2600 games from the Arcade Learn-290

ing Environment (ALE) Bellemare et al. (2013): Montezuma’s Revenge (MR), PrivateEye,291

Gravitar, Pitfall, and Seaquest. In the selected games, training an agent with a poor explo-292

ration strategy often results in a suboptimal policy. Note that some baselines such as ELLM293
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Method MR PrivateEye Gravitar Pitfall Seaquest

RND 456±55 598±110 192±34 -11±3 2,612±315
NGU 512 ±39 1,872±128 1,630±111 -6±2 15,616±3,838
ELLM - - - - -
APT 711±66 2,982±322 1,420±245 -12±3 19,989±2,873
ChibiT 1,231±187 3,633±334 2,983±302 -10±2 16,441±2,462

iLLM (obs) - - - - -
iLLM (hop) 2,632±277 4,422±376 4,044±559 125±24 18,851±2,930

Table 3: Performance of curiosity-driven learning algorithms and iLLM on Atari tasks. All
methods are tested with 10 random seeds. Averages over 10 runs for 100 million steps.

Figure 2: Ground truth achievements unlocked per episode, mean±std across 10 seeds.

and iLLM(obs) could not be evaluated on those tasks due to the lack of textual represen-294

tation of the environments. The results are presented in Table 3. It is observed that RND295

and NGU obtained a score close to zero and could not solve most of the tasks. Besides, on296

Montezuma’s Revenge, PrivateEye, Gravitar, and Pitfall, our technique outperforms other297

approaches that do not graft world knowledge onto the agent’s framework. These results298

suggests that LLMs play an important role in exploring complex environments. We noticed299

that in those tasks where language models have satisfactory knowledge, leveraging their300

prior assumptions significantly boosts sample efficiency at the onset of the training phase.301

4.4. Crafter Environment302

In this section, we evaluate the agents on the Crafter environment, a 2D version of Minecraft303

Hafner (2021). An optimal exploration method would unlock all Crafter achievements in304

every episode. Therefore, we report in Figure 2 the average number of unique achievements305

per episode. Even without access to Crafter’s achievement tree, iLLM was able to unlock306

about 7 achievements every episode, against 6 for the best baseline. Notably, iLLM out-307

performs all exploration methods that primarily focus on generating novel behaviors such308
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Model Translated observations # parameters Avg Return

Transfo-XL ✗ 280M 0.83
Transfo-XL ✓ 280M 0.85

Flan-T5 ✗ 780M 0.75
Flan-T5 ✓ 780M 0.79

Llama-2 ✗ 7B 0.87
Llama-2 ✓ 7B 0.88

Table 4: Ablation study of the choice of backbone language model. We choose three ad-
vanced models with different numbers of parameters and architectures. We report the
average return across the nine BabyAI-text tasks (10 seeds).

as RND, APT, and NGU. Those methods encourage exploration of diverse behaviors with-309

out considering the relevance of the learned behaviors. In contrast, both iLLM(obs) and310

iLLM(hop) reduce the exploration space by biasing exploration towards plausibly useful311

behaviors. Furthermore, appending f
a
and f

hc
to the policy and training them to match312

the pretrained LLM’s outputs enables our agent to leverage world knowledge through their313

respective gradients.314

4.5. Ablation Studies315

4.5.1. Choice of the Backbone316

In Table 4, we conduct experiments to analyze the effect of different LLM backbones on317

iLLM. We report the average return across the nine BabyAI-text tasks. From the table, it318

can be observed that (1) iLLM using large backbones such as Llama-2 would benefit the319

exploration efficiency while bringing more memory and computation cost; (2) Transfo-XL320

model achieved the best trade-off between sample efficiency and time efficiency. In addi-321

tion, we notice that using translated observations leads to slightly increased performance322

compared to text observations.323

4.5.2. Randomized Environment324

It was shown by several authors that Savinov et al. (2019); Burda et al. (2019b) agents325

that maximize the “surprise”, tend to suffer from the TV noise problem — when the agent326

finds a way to instantly gratify itself by exploiting actions that lead to hardly predictable327

consequences. In other words, an agent maximizing this prediction error may seek out328

stochasticity (e.g., randomized transitions, high-frequency images) in the environment to329

maximize the error. We now evaluate iLLM trained on randomized environments that are330

based on GoToObj with added sources of stochasticity:331

• “Original”: the original GoToObj environment.332

• “Noise”: if the agent selects the action go forward, a noise pattern (32×32) is displayed333

on the lower right of the observation - TV screen. The noise is sampled from [0,255]334

independently for each pixel.335
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Success rate

Method Original Noise Noise action ϱ = 0.05 Noise action ϱ = 0.1

RND 0.51± 0.22 0.24± 0.26 0.44± 0.18 0.39± 0.19
NGU 0.42± 0.25 0.16± 0.19 0.27± 0.24 0.19± 0.20
ELLM 0.66± 0.01 0.45± 0.09 0.58± 0.04 0.55± 0.06
APT 0.48± 0.17 0.22± 0.20 0.41± 0.15 0.37± 0.17
ChibiT 0.56± 0.23 0.41± 0.28 0.55± 0.21 0.66± 0.15

iLLM(obs) 0.94± 0.00 0.65± 0.08 0.91± 0.06 0.87± 0.08
iLLM(hop) 0.92± 0.01 0.59± 0.05 0.91± 0.07 0.85± 0.11

Table 5: Average success rate over 10 seeds in the randomized-TV versions of GoToObj
task (mean±std).

Method MR PrivateEye Gravitar Pitfall Seaquest

PPO 2.11±0.18 1.84±0.21 2.26±0.22 2.70±0.36 1.45±0.22
RND 2.07±0.21 2.12±0.25 2.09±0.33 1.87±0.27 0.98±0.25
iLLM(hop) -1.76±0.17 -1.65±0.20 -1.44±0.18 0.06±0.04 -1.61±0.21
iLLM(hop)(no reward) -1.15±0.20 -1.18±0.16 -0.99±0.08 0.34±0.12 -1.47±0.18

Table 6: Normalized Euclidean distances (± std) of agent trajectories from human demon-
strations.

• “Noise Action”: if the agent selects the action go forward, with a probability ϱ ∈336

{0.05, 0.10}, the action performed by the agent is uniformly sampled among the pos-337

sible actions.338

We observe in Table 5 a decrease in the performance of most approaches. However, our339

formulation turns out to be more robust than NGU’s prediction error in this scenario i.e.,340

noise action ϱ = 0.05 and noise action ϱ = 0.10. While NGU is trapped in local optima, since341

iLLM does not directly rely on next action prediction or observation, it is less impacted342

by stochasticity in the world. iLLM(obs) and iLLM(hop) scores are significantly higher343

compared to the baselines as indicated by paired t-tests at 95% confidence level (p < 0.002).344

When adding visual noise to the environment, the performance of iLLM(hop) appears to345

deteriorate more than iLLM(obs). Visiting a state with a noise pattern produces a more346

noisy representation of the world, making the alignment tasks harder. Nevertheless, the347

proposed formulation of curiosity is reasonably robust to the TV noise problem by leveraging348

the LLM’s ability to abstract away irrelevant details.349

4.5.3. Human-Meaningful Exploration350

An appealing aspect of using a foundation model to guide exploration is that it allows us to351

implicitly incorporate prior beliefs about human-meaningful behaviors through the neural352

network architecture and exploration bonus. To assess how human-meaningful the agent’s353

exploration is, we report in Table 6 the average Euclidean distance between the agent’s state354
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Percentage of goals achieved

Method GoToObj PutNextLocal KeyCorrS5R3 PutNextS7N4Carrying

PPO 0.12± 0.02 0.0± 0.01 0.16± 0.09 0.0± 0.06

iLLM(obs) 0.91± 0.01 0.46± 0.08 0.90± 0.01 0.72± 0.09
iLLM(hop) 0.90± 0.02 0.52± 0.11 0.90± 0.02 0.75± 0.09

Table 7: Success rate of iLLM and baseline agents on BabyAI tasks in the “dense” reward
case. Results are averaged over 10 random seeds (±std). No seed tuning is performed.

and the nearest state in the demonstration data at each time step. The demonstration data355

consists of one trajectory for each of the five games. Agent trajectories were collected during356

the first 20 million training steps. To normalize these distance values across different scales357

and scenarios, we apply a z-score normalization method. This normalization adjusts for358

the mean and standard deviation of the distances observed across all sampled trajectories,359

thereby enabling a more consistent comparison.360

Experimental results indicate that, generally, iLLM exhibits larger positive distances361

compared to PPO. Specifically, PPO results show a significant deviation from human362

demonstrations across all games, particularly in more complex games like Pitfall. Our363

method outperformed RND by consistently achieving negative distances, which demon-364

strates a closer alignment to human trajectories. Notably, even in Pitfall iLLM(hop)365

achieves a small positive deviation, highlighting an exploration more aligned with the hu-366

man demonstrator than vanilla PPO and RND as they uniformly explore the environment.367

These findings suggest that the present architecture yields human-meaningful exploration368

by incorporating inductive bias of foundation models.369

4.5.4. Dense Rewards370

A desirable property of the present study is to avoid hurting performance in tasks where371

rewards are dense and well-defined. We report results on four BabyAI tasks Chevalier-372

Boisvert et al. (2018) in Table 7, including plain PPO trained only with extrinsic rewards.373

In the standard sparse setting, the agent is only provided a sparse terminal reward of +1374

if it finds the target and 0 otherwise. In the dense setting, the agent is rewarded (+0.3)375

when selecting the correct action (e.g., collecting keys, opening doors). The table indicates376

that the performance of our method does not deteriorate drastically in dense reward tasks.377

Even though iLLM(obs) and iLLM(hop) perform slightly worse in the dense setting, they378

still perform substantially better compared to plain PPO.379

5. Conclusion380

In this work, we introduce a novel approach for language-driven exploration in reinforce-381

ment learning (RL), leveraging LLMs to guide exploration towards diverse and human-382

meaningful regions of the state space. Namely, short-term curiosity is captured by querying383

a frozen LLM with an action generation task. In addition, we compress state-action his-384

tory via a summarization task, discarding irrelevant details and encouraging the policy to385
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extract task-relevant information. We further present a novel alignment technique that386

facilitates the integration of state-action pairs from any modalities into the language do-387

main, obviating the necessity for textual environmental descriptions. We have empirically388

demonstrated the effectiveness of our approach across diverse and challenging domains, in-389

cluding BabyAI-Text, MiniHack, Atari, and Crafter, showcasing substantial improvements390

in sample efficiency and performance. Interesting directions for future work include im-391

proving state-action pairs alignment and evaluating additional language tasks such as goal392

generation.393
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