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ABSTRACT

We identify critical challenges with normalisation layers commonly used in fully
supervised learning when applied to semi-supervised settings. Specifically, batch
normalisation (BN) can experience severe performance degradation when labelled
and unlabelled data have mismatched label distributions, due to biased statistical
estimation. This results in unstable gradients, hindering the model’s ability to con-
verge effectively. While group/layer normalisation (GN/LN) avoids these issues,
it lacks the stochastic regularisation provided by BN, leading to weaker general-
isation. Poor generalisation, in turn, produces low-quality pseudo-labels, exacer-
bating confirmation bias. To address these limitations, we propose novel normali-
sation techniques termed Shuffle Layer normalisation and Shuffle Group normal-
isation (SLN/SGN) that introduce controllable randomness into LN/GN without
increasing model parameters, thus making semi-supervised learning more robust
and effective. Through experiments across diverse datasets, including image, text,
and audio modalities, we demonstrate that SLN/SGN significantly enhances the
performance of state-of-the-art semi-supervised learning algorithms.

1 INTRODUCTION

Semi-supervised learning aims to design a training scheme that enables deep learning models to
achieve superior performance with minimal reliance on large amounts of labelled data. Typically,
research on training schemes is model-agnostic, meaning we often use mainstream models from
fully supervised learning to investigate the training scheme. However, are the modules of these
models, originally proposed for fully supervised learning, truly suitable for semi-supervised learn-
ing? In this paper, we start by exploring the normalisation layers within models to answer this
question.

Normalisation layers, which stabilise model training and accelerate convergence, are widely used in
deep neural networks. For instance, in convolutional neural networks (CNNs), batch normalisation
(BN) (loffe & Szegedy, [2015) is the most popular choice. However, these default normalisation
layers are not necessarily optimal for semi-supervised learning, as our findings suggest.

In semi-supervised learning, a consistent label distribution for labelled and unlabelled subsets cannot
be guaranteed, especially in real-world applications. We discovered that BN is highly susceptible to
performance degradation when the label distribution of unlabelled data significantly deviates from
that of labelled data. As shown in Fig. |l the accuracy of an image classification model drops
significantly as the label inconsistency ratio r increases. One reason for this decline is that as r
increases, the amount of in-distribution data in the unlabelled subset decreases, while the proportion
of noisy data increases. This inevitably leads to a performance drop. However, we found that
this is not the only reason; another important factor is the increased upper bound of the gradient’s
difference due to biased statistical estimates in BN, i.e., unsteady gradients. Therefore, the stable
and efficient convergence of the model is no longer guaranteed. Group Normalisation (GN) (Wu
& Hel 2018)) was proposed to solve the problem of small minibatch issues in BN initially. We
found that GN and its special case, i.e., Layer Normalisation (LN), inherently avoid this issue as
the statistics used for normalising a data sample are independent of other samples. However, they
have yet to surpass BN in many cases, especially when the batch size is sufficiently large (Wu & He,
2018). By analysing the operations of BN and GN/LN, we believe the performance gap stems from
the missing stochastic regularisation in GN/LN. The absence of stochastic regularisation leads to
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Figure 1: Performance drops as the label inconsistency ratio increases. r is the label inconsistency
ratio. If » = 0, there is no out-of-distribution data in the unlabelled subset. If » = 1, all data in the
unlabelled subset are out-of-distribution.

inadequate model generalisation, causing the model to produce less accurate pseudo-labels in semi-
supervised learning. Training with incorrect pseudo-labels inevitably exacerbates the confirmation
bias problem (Arazo et al., [2020).

Therefore, we introduce controlled randomness into these normalisation layers, allowing them to
retain their strengths while incorporating controllable stochastic regularisation. Our modification
makes GN/LN a more effective choice for semi-supervised learning in CNNs and Transformers.
Notably, our modifications do not add any additional learnable parameters, meaning pre-trained
model parameters can still be used for initialisation. Moreover, the extra computational overhead
introduced by our method is negligible. The proposed cost-free normalisation layers termed Shuf-
fle GN (SGN) and Shuffle LN (SLN) solved the aforementioned performance degradation issue in
the inconsistent label distribution scenario. Most importantly, they significantly improve the per-
formance of state-of-the-art models with GN/LN in semi-supervised tasks across three modalities
including image, text, and audio. For example, on the STL10 dataset, our normalisation layers
increase the baseline performance by 3.7%.

In summary, our contributions are as follows:

* We identify the performance drop risk of BN in semi-supervised learning.

* By comparing the operation of BN and GN/LN, we propose a simple yet effective mod-
ification to GN/LN that introduces more randomness, which significantly improves the
performance of the baseline models with GN/LN in semi-supervised learning.

* Our proposed SGN and SLN are fully compatible with existing pre-trained weights, allow-
ing them to be applied to downstream tasks without retraining the backbone, with minimal
computational overhead.

* We demonstrate the effectiveness of our method in semi-supervised learning tasks on im-
age, text, and audio modalities.

2 RELATED WORKS

Semi-supervised Learning is targeting to optimise a model using a combination of low numbers of
labelled and large amounts of unlabelled data. It alleviates the data-hungry problem in supervised
training of deep learning models, and most importantly, it significantly contributes to the data en-
gine of large-scale AI models such as SAM (Kirillov et al., 2023). Effectively learning recognition
patterns with limited labels and leveraging the unlabeled data is essential to solving this problem.
The main categories of algorithms in semi-supervised learning include: a) generative models, b)
graph-based methods, and c¢) pseudo-labelling models. |Kingma et al.| (2014) introduced a stacked
semi-supervised generative model, which combines a generative classifier with the latent repre-
sentation generated by the encoder. Generative Adversarial Networks (GANs) (Goodfellow et al.,
2020) have also been explored for semi-supervised learning (Odena, 2016)). Besides generative mod-
els, graph-based methods have been developed to model data relationships, aiding semi-supervised
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learning (Luo et al., 2018)). The pseudo-labelling method (Leel 2013)), which trains a model on the
labelled data and then uses the model to predict the labels of unlabelled data, has been widely ver-
ified in semi-supervised learning for many downstream tasks (Chen et al.| [2024} [Liu et al., 2022;
Chen et al.,|2023b)). The basic idea is to use the model’s predictions as pseudo-labels for unlabelled
data to train the model with labelled data. MeanTeacher (Tarvainen & Valpola, [2017) introduced
a consistency loss to enforce the model to be stable under small perturbations of the input data.
FixMatch (Sohn et al.l [2020) used strong data augmentations as the perturbation and introduced a
threshold to filter out low-confidence pseudo labels. Based on the FixMatch framework, the follow-
ing works such as FlexMatch (Zhang et al.| 2021) and SoftMatch (Chen et al., |2023a) focused on
improving the filtering mechanism of pseudo labels. [Li et al.| (2024) proposed a reward estimation
algorithm to improve the quality of pseudo labels.

Normalisation techniques improve the training stability and convergence of deep learning mod-
els. BN (loffe & Szegedy} 2015)) dominates the choice of normalisation techniques in convolutional
neural networks. To solve the biased statistics estimation issue of BN with small batch sizes, [Wu &
He| (2018)) proposed GN which divides the channels into groups to calculate the mean and variance
without the dependency on batch size. Transformers (Vaswani et al.,[2017)) demonstrated significant
enhancements to neural language processing and computer vision. Transformers adopt LN which
calculates the mean and variance of each data sample. In semi-supervised learning, most methods
adopt the normalisation layer which is used in the corresponding fully-supervised models. [Zajac
et al.[{(2019) proposes to split the statistics calculation for data in different domains. EMANorm (Cai
et al.| 2021) replaced the BN in the teacher model of a teacher-student framework with an exponen-
tial moving average normalisation layer by calculating the mean and variance based on the student’s
statistics.

In real-world semi-supervised learning scenarios, the distribution of the unlabelled data subset is
often uncertain. Without labels, it is difficult to effectively separate data from different distributions.
This paper finds that the commonly used BN carries a significant risk of performance degradation in
such a case.

3 METHOD

In this section, we first introduce two groups of widely adopted normalisation operations — batch-
dependent normalisation such as BN, and batch-independent normalisation such as GN and LN. We
use normalisation layers in image processing as an example in this section. The description of our
proposed enhancement follows.

3.1 PRELIMINARIES

Two data subsets D!, and D are given for model optimisation in semi-supervised learning, where
D! = { X!, V') is the subset with available ground truth label Y!. D% = {&X* Y“} is the unlabelled
subset, but Y is unavailable during training.

3.2 NORMALISATION FORMULATION

The initial operation of most normalisation layers is shifting and scaling the input tensor to make it
have zero mean and unit standard deviation:
T M
0= ; 1
g
RB XCxXHxW

where z € REXCOXHXW iq the input tensor, o € is the normalised tensor, i and o are

the two statistics, i.e., the mean and standard deviation, calculated from 2. With the learnable affine
transformation parameters ~y and (3, the output tensor o can be further scaled and shifted:

o=2"F.ri8 )
g

The statistics calculation formulas are:

§= Zies xi’ o= EieS(Ii - N)27 3)
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where S is the set of indices of the elements for calculating the statistics, and ||S||o is the number of
elements in S. When normalising an element xj, in the input tensor, the difference between various
normalisation layer types lies in which elements of the input z are involved when calculating the
statistics uy and oy, for x5. The batch-dependent normalisation means that the elements of different
images in the minibatch are involved in the statistics calculation. For example, in BN, the statistics
are calculated over the minibatch dimension (B), and additional shape dimensions such as height
and width (H x W). In this case, the shape of x and o is the same as the channel number C' of the
input tensor x. Thus, uj and oy, are calculated with all the elements in the same channel as the zy.

In contrast, batch-independent normalisation means that only the elements of the same image are
involved. For example, in GN, the feature channels are divided into several groups, and the statistics
are calculated over the group dimension. In such a way, the statistics of each data sample in GN are
independent, which is more suitable for training with a small batch size. LN is a special case of GN,
where the number of groups is equal to the number of feature channels.

3.3 DOES BATCH-INDEPENDENT NORMALISATION OUTPERFORM BATCH-DEPENDENT
NORMALISATION?

The answer is YES and NO.

First, we find that GN is more robust when the distributions of V! and Y* are different. We con-
duct experiments in semi-supervised image classification with the state-of-the-art SoftMatch (Chen
et al., [2023a)). The backbone is two ResNet-50s (He et al., 2016) with BN and GN respectively.
The training data is CIFAR-100 (Krizhevskyl 2009). We follow the setting in RobustSSL (Jia et al.,
2024)) to manually split the categories in CIFAR-100 into two groups — in-distribution and out-of-
distribution. D" is constructed by images from the in-distribution and out-of-distribution categories
with different ratios r. The larger r is, the more different the distributions of V! and V¥ are. As
shown in Fig.2] when r increases, the performance of BN declines significantly. One of the reasons
is that with a large r, there are less in-distribution samples that can be used for model training. How-
ever, comparing the performance of BN with GN indicates that less in-distribution data is not the
only reason. The performance of BN decreases more sharply. Such a phenomenon is attributed to a
biased estimation of i and o with out-of-distribution data. The biased estimation leads to an unsta-
ble upper bound of the gradient’s difference between the two steps, which makes the optimisation
unstable. More details are provided in the supplementary material (Appendix[A]). The calculation of
the statistics in GN is independent of the batch data, which naturally alleviates this issue.

Secondly, we find that BN can be regained straightforwardly
by calculating i and o separately within different distribu-
tions. Each minibatch is divided into several parts according 60 os
to the ground truth category labels and the image augmenta- 17

tions. The statistics in Eq. (2)) are calculated separately foreach ¢ 50 “‘2\‘\\‘\
part. For example, we split the training data into three parts: < -

weakly-augmented in-distribution data, strong-augmented in- 40: o Zi,pBN \"]'3'.1
distribution data, and out-of-distribution data. Notably, we BN

only use the real ground truth Y* for analysis, we do not use 0 02 04 06 08 1

it in our proposed method which will be introduced later. The r

baseline model with the regained BN (SepBN) sees a signifi-

cant improvement, as shown in Fig. 2] Notably, SepBN sur- Figure 2: Performance on CI-
passes GN when r is small. We believe that the reason is FAR100 of different normalisation
that the randomness to a certain extent in the batch-dependent with various 7.

statistics calculation is a good regularisation to the model train-

ing, especially for semi-supervised learning which requires a

good generalisation ability to produce high-quality pseudo labels. For a certain image x, the other
images in the minibatch at different iteration steps are different. Consequently, the statistics © and
o calculated from different minibatch are different in BN. However, GN calculates the statistics
independently for each image, which is less random.

Thus, inspired by the above analysis, we propose a new normalisation layer called Shuffle
Group/Layer Normalisation (SGN/SLN) to combine the advantages of BN and GN/LN without
introducing additional parameters and computing overload.
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Figure 3: Demonstration of the proposed SGN/SLN.

3.4 SHUFFLE GROUP/LAYER NORMALISATION

We introduce more randomness into the statistics calculation of GN/LN to construct the SGN/SLN.
The key operation is a shuffling after calculating the statistics:

p=uplll, &¢=o[I], I=shuffle({0,1,---,B—1}), 4)
where I is the shuffled index, B is the batch size, and & and & are the shuffled statistics. The
shuffling operation is performed on the batch dimension. The shuffled statistics are then used as a
perturbation to the original statistics with a factor a:

W=0-a)p+aip, o =(1-a)s+as. (5)

The perturbed statistics ¢’ and ¢’ are then used to normalise the input tensor . Fig. [3| shows the
workflow of the proposed SGN/SLN. The pseudo-code is described in Algorithm|[T}

During the inference stage, the statistics are perturbed with the moving average 7z and & of the
statistics calculated during the training stage to stabilise the inference:

W=0-a)u+ang, o =(1-a)s+ao. (6)

By performing the shuffling operation in the calculation of the statistics, we introduce more random-
ness into the normalisation layer. It can be regarded as a controllable regularisation to improve the
generalisation ability of the model. Consequently, the confirmation bias issue in semi-supervised
learning is alleviated. Notably, this is not a simple linear combination of BN and GN/LN. Firstly,
the randomness for different samples in a minibatch varies, as i and & are distinct for each sample.
The shuffled index I also differs across layers. Most importantly, the GN/LN in pretrained founda-
tion models can be directly replaced by SGN/SLN and initialised using the pretrained parameters,
as no additional learnable parameters are introduced in our method. There is no pretrained model
containing both BN and LN/GN that can be used for such a linear combination.

4 EXPERIMENTS

In this section, experiments are conducted to evaluate the proposed SGN/SLN in semi-supervised
learning. The proposed method is implemented with the PyTorch framework (Paszke et al.,[2019).
The code can be found in the public repository after publishing.

4.1 ROBUST SEMI-SUPERVISED LEARNING SETTING

We first evaluate different normalisation layers in semi-supervised learning with the inconsistency
label distributions setting to demonstrate that the proposed SLN/SGN can make semi-supervised
algorithms more robust.

4.1.1 DATASETS AND IMPLEMENTATION DETAILS

The dataset and baseline source code used in this subsection are published by [Jia et al.| (2024). We
conduct experiments on CIFAR10 (Krizhevskyl, [2009), CIFAR100 (Krizhevsky, [2009), and Semi-
Supervised [Naturalist-Aves (SemiAves) (Su & Maji,2021). Here, we use CIFAR100 as an example
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Algorithm 1 The operation of the SGN.

x: Tensor (BxCxHxW), input tensor

group_num: int, the number of groups, if group_num equals to the channel numbers, it is
equivalent to LN

alpha: float, the factor of perturbation,

gamma: Tensor (Optional), the scaling factor

beta: Tensor (Optional), the shifting factor

m: float, the moving average momentum
win
s ShuffleGN (nn.Module) :
ef __init_ (self, group_num, alpha, gamma=None, beta=None, m=0.1):

uper (ShuffleGN, self)._ _init__ ()
self.alpha = alpha
self.gamma = gamma

self.beta = beta

self.m = m

self.eps = le-5

self.register_buffer (' running_mu’, torch.zeros (group_num))
self.register_buffer (' running_var’, torch.zeros (group_num))

def forward(self, x):
groups = torch.chunk(x, group_num, dim=1)

grouped_x = torch.stack (groups, dim=1) # B * group_num = C/group_num * H = W

mu = torch.mean (grouped_x, dim=[2, 3, 4], keepdim=True) # B % group_num = 1 » 1 x 1

var = torch.var (grouped_x, dim=[2, 3, 4], keepdim=True, unbiased=False) # B =«
group_num * 1 x 1 * 1

# update the running statistics

self.running_mu = (1 - self.m) x self.running_mu + self.m * mu.mean (dim=0) .squeeze ()

self.running var = (1 - self.m) x self.running_var + self.m * var.mean(dim=0).squeeze

()
if self.training:
# shuffle the batch dimension
batch_size = x.size (0)
shuffle_index = torch.randperm(batch_size)
shuffle_mu = mu[shuffle_index]
shuffle_var = var[shuffle_index]
# perturb the statistics

perturbed_mu = (1 - alpha) * mu + alpha * shuffle_mu
perturbed_var = (1 - alpha) » var + alpha x shuffle_var
else:
perturbed_mu = (1 - alpha) % mu + alpha * self.running_mu
perturbed_var = (1 - alpha) * var + alpha x self.running_var
# normalise the input tensor
x = (x - perturbed_mu) / torch.sqgrt (perturbed_var + eps)
# scale and shift if needed
if gamma is not None and beta is not None:
X = X x gamma + beta
return x

to explain this setting. CIFAR100 contains 60,000 32 %32 colour images in 100 classes, with 50000
training images and 10000 test images. The predefined categories are divided into two groups —
50 categories for in-distribution data, and the other 50 categories for out-of-distribution data. The
unlabelled set is mixed with in-distribution and out-of-distribution data with different ratios . r = 0
means that there is no out-of-distribution data. The model is trained to conduct 50 in-distribution
data classifications. The SOTA semi-supervised learning algorithm SoftMatch (Chen et al., [2023a)
serves as the baseline in this setting.

4.1.2 PERFORMANCE

We evaluate BN, GN, and SGN. The results are shown in Tabs. |I|to @ The performance of the naive
BN drops significantly when the ratio of out-of-distribution data increases. For example in Tab.[T} as
the ratio r increases from 0.0 to 1.0, the accuracy of BN sees a drop of 14.46%. GN performs well
in this scenario. The accuracy of GN drops by only 12.55%. Our SGN outperforms all the other
normalisation layers in the inconsistency label distribution setting as it resolves the biased statistic
estimation problem in BN (only drops 11.46%), and introduces the randomness regularisation from
GN/LN.

4.2 SEMI-SUPERVISED LEARNING SETTING

In addition to the robust semi-supervised learning setting, we conduct extensive traditional semi-
supervised learning experiments on datasets from three modalities including image, text, and audio.
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Table 1: The performance on CIFAR-100 with  Table 2: The performance on CIFAR-10 with

different robust ratios r. different robust ratios r.
r | 00 0.2 0.4 0.6 0.8 1.0 r | 00 0.2 0.4 0.6 0.8 1.0
BN | 56.11 5398 5149 4843 4433 41.65 BN | 89.86 88.09 8645 84.86 81.80 78.23
GN 5733 55.13 5240 49.73 4629 4478 GN 89.11 88.06 8649 84.88 82.72 81.33
SGN ‘ 59.52 57.64 5456 51.56 49.40 48.06 SGN ‘ 9043 89.27 87.71 86.02 83.78 82.49

Table 3: The performance on SemiAves with

. . Table 4: The performance on semantic segmen-
different robust ratio r. P £

tation (the metric is mloU).

r | 00 0.2 0.4 0.6 0.8 1.0

BN | 28.82 28.08 2572 2421 22.17 20.65 -
GN | 34.66 32.02 29.80 2847 26.63 26.40 Cityscapes (1/30) | 67.00 68.10

PascalVOC (1/16) | 74.91 7554
SGN | 37.69 3556 33.09 3113 2898 27.62 ascalVOC (1/16) | 7491 755

Norm. Layer | GN  SGN

The experiments in this subsection show that the proposed normalisation layer is a better option for
normalisation layers in semi-supervised learning.

4.2.1 DATASETS AND IMPLEMENTATION DETAILS

The datasets used in this setting include:

Image Datasets: CIFAR100, as described in Sec. SemiAves (Su & Maji,[2021) contains 1000
species of birds sampled from the iNat-2018 dataset (Horn et al., [2018) for a total of nearly 150k
images. The STL10 dataset is for the unsupervised learning research. In particular, fewer labelled
training examples and a very large set of unlabeled examples are available for training.

Text Datasets: Amazon Review dataset (Majumder et al., 2020) is a sentiment classification
dataset which contains 600k reviews for training and 130k reviews for testing. Yahoo Answer
dataset (Zhang et al., 2015) contains 140k training samples and 6k testing samples from 10 classes,
which is for the topic classification. The Yelp Review dataset is a sentiment classification dataset
which contains 650k training samples and 500k testing samples. In this paper, we use the subsets
drawn by the USB framework for the experiments.

Audio Datasets: ESC-50 (Piczak, 2015) is a dataset for environmental sound classification, which
contains 2000 samples from 50 classes. UrbanSound8K dataset (Salamon et al.,2014) contains 8732
labelled sound clips (j=4s) from ten classes. FSDNoisy dataset (Fonseca et al., 2019 is a dataset for
sound event classification, which contains 17k samples from 20 classes. GTZAN dataset (Tzane-
takis, 2001)) is a dataset for music genre classification. We use the dataset resampled by the USB
framework which contains 7k samples for training, 1.5k for validation/testing in our experiment.

SoftMatch still serves as the baseline in this setting. We use the proposed SLN/SGN to replace the
original normalisation layers in the backbone. All results are averaged accuracy produced with 3
different random seeds (0/1/2).

4.2.2 PERFORMANCE

Semi-supervised Image Classification: We use the abovementioned three image datasets to
evaluate SLN in the image modality. The backbone of the baseline model is the Vision Trans-
former (Dosovitskiy et al., [2021) with LN. The results of the semi-supervised image classification
experiments are shown in Tab. [5] The proposed SLN boosts the performance of the baseline Soft-
Match on all three datasets significantly. On the STL10 dataset, our method boosts the accuracy by
3.72% compared to the baseline.

Semi-supervised Text Classification: We replace the layer normalisation in the BeRT (Devlin
et al., 2019) backbone with the proposed SLN and conduct experiments on three text datasets. The
results are shown in Tab. 6] The proposed SLN consistently outperforms the baseline SoftMatch on
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Table 5: The performance on the image modality. The number in the bracket is the number of
labelled data.

Methods \ CIFAR100 (200)  SemiAves (1000)  STL10 (40)
Labelled-Only 64.12 - 81.00
Pseudo Label (Lee, |2013) 66.01 35.40 80.86
MeanTeacher (Tarvainen & Valpolal 2017) 64.53 39.30 81.33
MixMatch (Berthelot et al.,[2019) 61.78 34.73 41.23
FixMatch (Sohn et al.,|2020) 70.40 46.20 83.85
FlexMatch (Zhang et al., 2021) 73.24 - 85.60
CoMatch (L1 et al.;|2021) 64.92 - 84.88
SoftMatch (Chen et al.,[2023a) 77.55 46.05 87.67
SoftMatch (w/ ours) 78.55 47.10 91.39

Table 6: The performance on the text modality. The number in the bracket is the number of labelled
data.

Methods \ Amazon Review (250)  Yahoo Answers (500)  Yelp Review (250)
Labelled-Only 47.69 62.57 48.78
Pseudo Label (Lee,2013) 46.55 62.30 45.49
MeanTeacher (Tarvainen & Valpola,[2017) 47.86 62.91 49.40
MixMatch (Berthelot et al./[2019) 40.46 64.25 46.02
FixMatch (Sohn et al.|2020) 52.39 66.97 53.48
FlexMatch (Zhang et al.||2021) 54.27 64.39 56.65
CoMatch (Li et al.||2021) 51.24 66.52 54.60
SoftMatch (Chen et al.|[2023a) 55.23 67.30 56.65
SoftMatch (w/ ours) 55.90 68.51 57.31

Table 7: The performance on the audio modality. The number in the bracket is the number of
labelled data.

Methods \ ESC50 (250) GTZAN (100) FSDNoisy (1773)  Urbansound8K (400)
Labelled-Only 50.17 47.27 65.26 72.40
Pseudo Label (Lee/[2013) 49.92 46.53 62.16 70.17
MeanTeacher (Tarvainen & Valpola.[2017) 48.17 49.84 66.56 70.97
MixMatch (Berthelot et al.{[2019) 40.00 25.36 46.85 58.62
FixMatch (Sohn et al.[|2020) 56.40 58.50 69.00 79.17
FlexMatch (Zhang et al.|[2021) 60.67 49.29 72.65 76.30
CoMatch (L1 et al.||2021) 59.33 59.51 71.88 79.81
SoftMatch (Chen et al.|2023a) 67.00 68.71 72.22 77.18
SoftMatch (w/ ours) 67.42 69.73 72.93 80.25

all three datasets. For example, on the Yahoo Answers dataset, we achieve a 1.21% improvement in
accuracy compared to the baseline.

Semi-supervised Audio Classification: On the audio modality, the baseline model with the back-
bone HuBert (Hsu et al.}2021) armed with the proposed SLN achieves state-of-the-art performance
on all four datasets as shown in Tab.[/} The proposed SLN also outperforms the baseline SoftMatch
on all datasets. Notably, on the Urbansound8K dataset, the model with the SLN achieves a 3.07 %
improvement in accuracy compared to the baseline.

4.3 MORE TASKS

To demonstrate the generalisation of SLN/SGN, we conduct experiments in semi-supervised se-
mantic segmentation first. The state-of-the-art semi-supervised semantic segmentation algorithm,
PrevMatch (Shin et al.| [2024), serves as the baseline model. All normalisation layers in the back-
bone ResNet-50 (GN) are replaced by the proposed SGN, and the results are reported in Tab. [4]
The proposed SGN consistently improves performance. As the normalisation layers in object de-
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Table 8: The performance on ImageNet of

fully supervised image classification. Table 9: Ablation study of the .
Norm. Layer | GN/LN SGN/SLN a | 0.0 (baseline) 0.1 0.3 0.4 0.5 0.7 0.9
ResNet 50 76.0 (GN) 76.3 (SGN) Acc. ‘ 77.55 7823 79.02 7855 7733 7483 66.31
Swin-T 80.8 (LN)  81.1 (SLN)

tection models (Liu et al.l [2021)) are usually frozen, it is not compatible to evaluate the proposed
normalisation layer in it.

In addition, we evaluate the proposed SGN/SLN in fully-supervised image classification on Ima-
geNet dataset (Deng et all 2009). As shown in Tab. @ both convolutional neural networks and
vision transformers benefit from SGN/SLN.

5 ABLATION STUDY

Comparing the performance of the model w/ and w/o the proposed SLN/SGN in Tabs. [5|to[7]suggests
that SLN/SGN is effective in improving the performance of semi-supervised learning models.

In addition, we use the CIFAR100 (200) as an example to ablate the « used in the shuffle normal-
isation layer and report the results in Tab.[9] The baseline model without our method is equivalent
to a = 0. We observe a peek in performance at « = 0.3. With the increase of «, the performance
of the model decreases. This suggests that the randomness introduced by the shuffle normalisation
layer is important for the model, but too much randomness can hurt the performance of the model.

We also discuss using the proposed shuffle operation only during inference in Appendix [C] and the
results indicate that it is not effective.

6 ANALYSIS

In this section, we first discuss the randomness in the normalisation layer. Then we analyse the
model w/ and w/o the proposed SLN as an example to reveal the reasons why the proposed normal-
isation benefits models.

6.1 RANDOMNESS IN NORMALISATION

In addition to Fig. 2] we show the performance of SepBN in CIFAR10 on Fig.[d] SepBN performs
better than GN when the ratio 7 is small, and the accuracy drop is smaller than BN. Comparing
the results of GN and SepBN with BN reveals that the biased estimation of the statistics in BN is
harmful to semi-supervised learning. Comparing the results of SepBN with GN indicates that the
randomness regularisation in BN is helpful to semi-supervised learning.

6.2 HESSIAN EIGENVALUE ANALYSIS

The definition of the Hessian matrix is a square matrix of second-order partial derivatives of a scalar-
valued function. In this paper, we use the Hessian matrix to analyze the curvature of the loss func-
tion. We calculate the Hessian matrix of the loss function with respect to the model’s input. By
analysing such a Hessian, we can analyse whether the loss function landscape is sharp or smooth
around the data point in the input space. As the calculation of the Hessian is computationally expen-
sive, we use the Lanczosn algorithm (Lanczos} [1950) to estimate the top eigenvalues of the Hessian
matrix. The top eigenvalues of the Hessian matrix can be used to estimate the curvature of the loss
function:

Amax = maXA(HLE), (N

where H is the Hessian matrix of the loss function £. A calculates the set of eigenvalues of
the Hessian matrix. We compare the ASLN and AWSSIN and report Adpax = ASLN — \W/oSLN,

which is averaged over all the data points in the test set, in Tab. [@ The results show that all
Amax are negative, which suggests that the loss function landscape is smoother when SLN is used.
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Table 10: a) Analysis with the maximum eigenvalue difference A\, for models w/ and w/o our
method. The model’s parameter is the best checkpoint on the test set. b) Analysis of AXp, at
different training epochs.

(@) (b

| CIFAR100  SemiAves STLI0 Epochs | 20 40 60 80 100
AMmax ‘ -132.5 -14.9 -3.7 AAXmax ‘ -258.5 -168.3 -148.7 -1583 -160.5
79 1
o4 4 78

- \\\ 78 1
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Figure 4: Performance on CI- Figure 5: left) The accuracy of the baseline model and the
FAR10 of different normalisa- model with our method on the validation set. right) The accu-
tion with various 7. racy of the pseudo-labels during training.

Consequently, the model with a smoother loss function landscape is more robust to different data
points in the input space, leading to better pseudo-label quality and superior performance. We also
show the A\« of a model at different training epochs in Tab. The model with SLN has a
consistently smaller A\« than the model without SLN.

6.3 PSEUDO-LABEL QUALITY ANALYSIS

A better pseudo-label quality can lead to a better model performance. We plot the accuracy of the
pseudo labels generated by the model w/ and w/o the SLN in Fig.[5] The results show that the model
with the SLN has a higher pseudo-label accuracy than the model without the SLN. This suggests
that the SLN can improve the pseudo-label quality, which leads to better model performance.

6.4 COMPARING PERFORMANCE IN FULLY SUPERVISED LEARNING AND SEMI-SUPERVISED
LEARNING

We report the performance of SLN in fully supervised learning in Tab. [§] Compared with semi-
supervised learning, the performance gain in fully supervised learning is relatively limited. The
reason is that the large number of labels in fully supervised learning provides strong supervision
and vivid data points, reducing the reliance on stochastic regularisation in the model. In contrast,
semi-supervised learning only uses very few labelled data. In the early stages of training, the model
quickly fits the small amount of labelled data, leading to a sharp loss landscape. The absence of ran-
domness regularisation in LN/GN exacerbates this problem. SLN/SGN introduce some controllable
randomness into the model’s optimisation which benefits the optimisation of the model.

7 CONCLUSION

In this paper, we studied the normalisation layers in semi-supervised learning. We found that the
widely used normalisation layers, such as BN, GN, and LN are suboptimal in semi-supervised learn-
ing. By modifying GN and LN to introduce additional randomness, SLN/SGN were proposed to im-
prove models’ robustness and performance without adding extra parameters. Extensive experiments
on various modalities suggest it is a better option for normalisation layers in semi-supervised learn-
ing tasks. Inspired by our findings on the importance of stochastic regularisation in the normalisation
layers to semi-supervised learning, in future work, we could analyse more modules within neural
networks to explore whether the discoveries in this paper can further improve the performance of
semi-supervised learning algorithms.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’ Connor, and Kevin McGuinness. Pseudo-
Labeling and Confirmation Bias in Deep Semi-Supervised Learning. In IEEE International Joint
Conference on Neural Network (IJCNN), pp. 1-8, 2020.

David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. Mixmatch: A Holistic Approach to Semi-Supervised Learning. In Conference on Neural
Information Processing Systems (NeurlPS), pp. 5050-5060, 2019.

Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless C. Fowlkes, Zhuowen Tu, and
Stefano Soatto. Exponential Moving Average Normalization for Self-Supervised and Semi-
Supervised Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 194-203, 2021.

Changrui Chen, Jungong Han, and Kurt Debattista. Virtual Category Learning: A Semi-Supervised
Learning Method for Dense Prediction with Extremely Limited Labels. IEEE Transactions on
Pattern Analysis and Machine Intelligence (T-PAMI), pp. 1-17, 2024.

Hao Chen, R. Tao, Yue Fan, Yidong Wang, Jindong Wang, B. Schiele, Xingxu Xie, B. Raj, and
M. Savvides. Softmatch: Addressing the Quantity-Quality Trade-off in Semi-supervised Learn-
ing. In International Conference on Learning Representations (ICLR), volume abs/2301.10921,
2023a.

Jingkun Chen, Jianguo Zhang, Kurt Debattista, and Jungong Han. Semi-Supervised Unpaired Med-
ical Image Segmentation Through Task-Affinity Consistency. IEEE Transactions on Medical
Imaging, 42(3):594-605, 2023b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, undefined Kai Li, and undefined Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 248-255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In North American Chapter of the As-
sociation for Computational Linguistics (NAACL), pp. 4171-4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations (ICLR), 2021.

Eduardo Fonseca, Manoj Plakal, Daniel P. W. Ellis, Frederic Font, Xavier Favory, and Xavier Serra.
Learning Sound Event Classifiers from Web Audio with Noisy Labels. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 21-25, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770-778, 2016.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard, Hartwig
Adam, Pietro Perona, and Serge J. Belongie. The INaturalist Species Classification and Detection
Dataset. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
8769-8778, 2018.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdi-
nov, and Abdelrahman Mohamed. Hubert: Self-Supervised Speech Representation Learning by
Masked Prediction of Hidden Units. IEEE/ACM Transactions on Audio, Speech and Language
Processing, 29:3451-3460, 2021.

11



Under review as a conference paper at ICLR 2025

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In International Conference on Machine Learning (ICML),
pp. 448-456, 2015.

Lin-Han Jia, Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. A Benchmark on Robust Semi-Supervised
Learning in Open Environments. In International Conference on Learning Representations
(ICLR), 2024.

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised Learning with Deep Generative Models. In Conference on Neural Information Pro-
cessing Systems (NeurlPS), pp. 3581-3589, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment Anything. In IEEE/CVF International Conference on Computer Vision (ICCV), volume
abs/2304.02643, pp. 4015-4026, 2023.

A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf, 2009.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. Journal of Research of the National Bureau of Standards, 45(4):255, 1950.

Dong-Hyun Lee. Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for
Deep Neural Networks. International Conference on Machine Learning workshop (ICMLw), 3
(2):896, 2013.

Junnan Li, Caiming Xiong, and Steven C. H. Hoi. Comatch: Semi-supervised Learning with
Contrastive Graph Regularization. In IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 9455-9464, 2021.

Siyuan Li, Weiyang Jin, Zedong Wang, Fang Wu, Zicheng Liu, Cheng Tan, and Stan Z. Li. Semire-
ward: A General Reward Model for Semi-supervised Learning. In International Conference on
Learning Representations (ICLR), 2024.

Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu,
Zsolt Kira, and Peter Vajda. Unbiased Teacher for Semi-Supervised Object Detection. In Inter-
national Conference on Learning Representations (ICLR), 2021.

Yen-Cheng Liu, Chih-Yao Ma, and Zsolt Kira. Unbiased Teacher v2: Semi-Supervised Object
Detection for Anchor-Free and Anchor-Based Detectors. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9819-9828, 2022.

Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. Smooth Neighbors on Teacher Graphs
for Semi-Supervised Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 8896-8905. IEEE, 2018.

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian J. McAuley. Interview: Large-
scale Modeling of Media Dialog with Discourse Patterns and Knowledge Grounding. In Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pp. 8129-8141, 2020.

Augustus Odena. Semi-Supervised Learning with Generative Adversarial Networks. International
Conference on Learning Representations workshop (ICLRw), 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An Imperative Style, High-
Performance Deep Learning Library. In Conference on Neural Information Processing Systems
(NeurIPS), volume 32, pp. 8024—-8035, 2019.

Karol J. Piczak. Esc: Dataset for Environmental Sound Classification. In ACM International Con-
ference on Multimedia (MM), pp. 1015-1018, 2015.

12



Under review as a conference paper at ICLR 2025

Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A Dataset and Taxonomy for Urban
Sound Research. In ACM International Conference on Multimedia (MM), pp. 1041-1044, 2014.

Wooseok Shin, Hyun Joon Park, Jin Sob Kim, and Sung Won Han. Revisiting and Maximizing
Temporal Knowledge in Semi-supervised Semantic Segmentation. arXiv, abs/2405.20610, 2024.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying Semi-Supervised Learn-
ing with Consistency and Confidence. In Conference on Neural Information Processing Systems
(NeurlIPS), 2020.

Jianlin Su. Why Does Batch Normalization Work: A Brief Analysis. https://kexue.fm/archives/6992,
2019.

Jong-Chyi Su and Subhransu Maji. The Semi-Supervised iNaturalist-Aves Challenge at FGVC7
Workshop. arXiv, abs/2103.06937, 2021.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. In International Conference on
Learning Representations (ICLR), 2017.

George Tzanetakis. Automatic Musical Genre Classification of Audio Signals. In International
Society for Music Information Retrieval Conference (ISMIR), 2001.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Conference on Neural In-
formation Processing Systems (NeurIPS), volume 30, pp. 5998-6008, 2017.

Yuxin Wu and Kaiming He. Group Normalization. In European Conference on Computer Vision
(ECCV), pp. 3-19, 2018.

Michal Zajac, Konrad Zolna, and Stanislaw Jastrzebski. Split Batch Normalization: Improving
Semi-Supervised Learning under Domain Shift. In International Conference on Learning Repre-
sentations Workshop (ICLRw), volume abs/1904.03515, 2019.

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting Semi-Supervised Learning with Curriculum Pseudo
Labeling. In Conference on Neural Information Processing Systems (NeurIPS), pp. 18408-18419,
2021.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level Convolutional Networks for Text
Classification. In Conference on Neural Information Processing Systems (NeurIPS), pp. 649—657,
2015.

13



Under review as a conference paper at ICLR 2025

A DERIVATION: BIASED ESTIMATES LEAD TO AN UNSTABLE OPTIMISATION

In this section, we derive why biased estimates lead to an unstable optimisation.

Suppose we have a one-layer neural network consisting of a linear layer with a weight w and a bias
b:

o =wz + b, )

where z is the input and o is the output. To optimise this neural network, a loss function £ with a
non-linear activation function f should be minimised:

argmin,, , L(f(wx +b)). )

Considering a dataset p(z), we randomly draw samples from it to optimise the neural network with
Eq. (). The gradient of £ w.r.t. the weight w is:

oL of
Once the weight w is optimised for one step ¢, the gradient is:
oL of
Evap(gc) [Vw—i-EL] = Exwp(w) [W %x]v (11)
where o' = (w + €)x + b. The difference between the two gradients is:
oLof oL of
Eimp() Vol =Vt L] =B (75— — == == ). 12
Usually, g—?% is bounded. For example, in binary classification tasks, the cross entropy serves

as L and f is the sigmoid function. In this case, the range of oL of

af do
0 = %% — g—? gof, should be stable during training. For some loss functions with unbounded

gradients, good model initialisation techniques can usually ensure stability for this term (Sul [2019).
As aresult, the stability of the gradient is highly dependent on the input z.

With the Cauchy—Schwarz inequality and Eq. (I2Z)), the upper bound of Eq. (12) is:

is [-1,1]. Consequently,

By B2l < /B [82] X /gy 2 @ 2. (13)

To get a stable gradient, i.e., a smaller ||E,., ;) [0z]|
a feasible way.

2, normalise = to minimise the upper bound is

With BN, the input 2 is shifted by the mean y = E,,(,)[x] and scaled by the standard deviation
0 = VEop[(z — 1) @ (& = p]:

T —p
—.

(14)

j‘/‘:

Thus,

o1 Banpo[(z — ) @ (2 — )]
Eenp(o [t ® 3] = 2 ey

=1. (15)

As a result, BN normalise the input z to eliminate /E, ., (,)[z ® x] in Eq. l| thereby assuring a
small upper bound of the gradient difference to stabilise the optimisation. Although the 1 and o are
estimated within each minibatch in practice, a small bias won’t significantly change the upper bound.
However, If there are too many out-of-distribution data 2’ ~ g(x) in a minibatch, the estimated 1’
and o' are significantly biased, therefore yielding an unstable /E,,)[z ® z] in Eq. l) It
inevitably hurts the optimisation of the neural network. For LN/GN, the upper bound is stable as the
estimated ' and ¢’ are independent of the other samples in the same minibatch.
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B IMPLEMENTATION DETAILS

For each backbone model in the main text, we replace all the normalisation layers with the corre-
sponding normalisation layers we proposed. If the original normalisation layer is LN, we replace
it with SLN; if it is GN, we replace it with SGN. As for CNNs, many baseline models use BN, so
we replace the backbone with one pre—trainecﬂ using GN as the baseline model to compare with our
method.

The main hyperparameter of our method is «. For the experiments in the robust semi-supervised
learning setting (Sec. 1), o = 0.4. For the experiments in the semi-supervised setting(Sec. §.2)),
we use 0.4 for CIFAR-100, ESC50, GTZAN, FSDNoisy and Urbansound8K; 0.1 for SemiAves,
STL10, Amazon Review, Yahoo Answers, and Yelp Review.

C CAN WE SHUFFLE THE STATISTIC VALUES DURING ONLY INFERENCE
RATHER THAN TRAINING?

The conclusion is negative. The performance of the model can only be improved by incorporating
the randomness regularisation proposed in this paper during training. Adding it only in the infer-
ence phase does not allow an untrained model to adapt well to such random perturbations, which
may result in a performance drop. For example, when we evaluated the model (LN) trained on
the CIFAR100 (200) dataset and introduced perturbations during testing, the model’s performance
dropped from 77.55 to 77.36.

'https://github.com/ppwwyyxx/GroupNorm-reproduce/releases
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