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Abstract

Large Language Models (LLMs) have revolu-
tionized Natural Language Processing (NLP)
but often reflect harmful biases and toxic behav-
ior, risking marginalized communities and trust
in these systems. Existing mitigation methods,
from pre- to post-processing, struggle with scal-
ability, efficiency, and adaptability. To address
these challenges, we present STARDTOX, an
agent-based framework that iteratively refines
LLM outputs using task-specific feedback. Op-
erating primarily as a post-processing solution
with intra-processing elements, STARDTOX
reduces bias and toxicity without requiring
model weights or fine-tuning. Evaluations on
sentence completion and multiple-choice tasks
demonstrate significant reductions in represen-
tational and allocational harms while ensuring
efficiency and adaptability.

1 Introduction

Large language models (LLMs) have revolution-
ized Natural Language Processing (NLP), enabling
advancements in diverse applications such as con-
versational agents and content generation. How-
ever, alongside these remarkable capabilities lies a
critical challenge: LLMs are often susceptible to
harmful behaviors arising from various factors, in-
cluding vast and uncurated training datasets [8, 16].

One prominent issue is the presence of social
bias, which means disparate treatment or outcomes
between social groups that arise from historical
and structural inequities [10, 13]. These biases
take various forms, including stereotypes, misrep-
resentations, and exclusionary language [13]. Ad-
ditionally, LLMs can also produce toxic outputs,
such as offensive or harmful language, which dis-
proportionately impact marginalized communities
(e.g., associating certain demographic groups with
negative sentiment) [13]. Such behaviors risk per-
petuating inequities and undermine the trustwor-
thiness of LLMs and all the systems that rely on

them [8, 10].

To address these issues, researchers assess So-
cial bias and toxicity in LLMs through downstream
tasks, which reveal model weaknesses in specific
contexts [13]. Common tasks like sentiment analy-
sis, toxicity classification, and question-answering
(QA) expose representational harms (e.g., stereo-
typing) and allocational harms (e.g., unequal per-
formance across social groups) [7]. These tasks
highlight embedded biases and the need for effec-
tive mitigation strategies.

Existing bias mitigation techniques span four
stages of intervention [10]: (i) pre-processing:
cleaning or augmenting datasets to reduce bias,
though limited by scalability, (ii) in-training: ad-
justing during training, often computationally ex-
pensive and task-specific, (iii) intra-processing,
modifying decoding behavior dynamically during
inference, offering flexibility but limited by in-
ternal biases and learned patterns, and (iv) post-
processing: addressing biases in model outputs
without requiring access to the underlying model,
offering computational efficiency [10].

In this paper, we introduce STARDTOX, an
agent-based framework for mitigating social bias
and toxicity through a combination of post-
processing and intra-processing techniques. It it-
eratively refines LLM outputs using task-specific
feedback via a modular toolbox, which in-
cludes tools such as Perspective API [2], LLM-
based evaluators [27], and custom fairness met-
rics. While STARDTOX primarily operates as a
post-processing solution, it also integrates intra-
processing by dynamically adjusting decoding dur-
ing refinement. This hybrid approach enhances
scalability, efficiency, and adaptability, enabling
more precise mitigation of bias and toxicity.

Contributions. The contributions are as follows:

* We introduce STARDTOX, a novel agent-
based framework that integrates a modu-



lar feedback toolbox and combines post-
processing and intra-processing approaches
to mitigate social bias and toxicity in LLM
outputs.

* We design STARDTOX to operate through a
self-refinement loop guided by task-specific
feedback, iteratively improving outputs with-
out requiring model weights or fine-tuning.

* We equip STARDTOX with a modular feed-
back toolbox that incorporates APIs (e.g., Per-
spective API), LLM-based evaluators, and
task-specific fairness metrics, demonstrating
adaptability across diverse applications.

* We make STARDTOX computationally effi-
cient, scalable, and adaptable to black-box
LLMs, making it a practical solution for miti-
gating bias and toxicity in real-world settings.

Outline. Section 2 reviews related work and identi-
fies the research gaps. Section 3 details the STARD-
ToOX methodology. Section 4 describes the experi-
mental setup. The results are presented in Section 5
and discussed in Section 6.

2 Related Work

In this section, we review bias evaluation, mitiga-
tion strategies, and research gaps.

2.1 Bias Evaluation

Evaluating social biases in LLMs relies on datasets,
benchmarks, and metrics across various tasks. RE-
ALTOXICITYPROMPTS [11] and BOLD [9] assess
toxicity and sentiment in generated text, while
BBQ [21] and UNQOVER [16] probe biases in
QA tasks. WinoBias [26] highlights gender bias
in coreference resolution, EEC [14] exposes sen-
timent intensity biases, and RedditBias [6] eval-
uates biases in dialogue generation. These tools
uncover representational harms (e.g., stereotypes)
and allocational harms (e.g., unequal performance),
forming a basis for bias mitigation.

2.2 Bias Mitigation
Bias mitigation in LLMs can be addressed in four
different phases, each involving different strategies.
Pre-processing: These approaches focus on mod-
ifying the input data or prompts to address biases
before training. These techniques involve Counter-
factual Data Augmentation (CDA) [18, 28], filter-
ing and reweighting strategies [22], and instruction-
tuning [17]. Although these methods are effective
at ensuring data-level fairness, they often struggle
with scalability for large datasets and may not align

well with downstream tasks due to their reliance on
data-level interventions.

In-training: These approaches modify the model
parameters during the training process. The so-
lutions include architectural adjustments [15] and
loss function modifications [25]. These approaches
offer flexibility and allow embedding fairness con-
straints into the training process. However, they
are computationally expensive, rely on large high-
quality datasets for fine-tuning, and risk forgetting
pre-trained knowledge.

Intra-processing: These techniques modify the
model’s behavior during inference without updat-
ing its parameters, using methods like decoding
modifications [19] and weight redistribution as in
modular debiasing networks [12]. They are well-
suited for black-box models, avoiding the computa-
tional cost of retraining. However, they may reduce
output diversity.

Post-processing: These approaches operate on fi-
nal outputs, modifying them to reduce bias and tox-
icity, such as the rewriting technique [24]. These
methods are computationally efficient and compati-
ble with black-box models, making them practical
for deployment. However, their reliance on sub-
jective criteria for detecting bias and the potential
oversimplification of linguistic aspects can limit
their effectiveness in complex scenarios.

2.3 Research Gap

While the mitigation approaches in each phase offer
valuable benefits, they face significant challenges.
Pre-processing techniques often struggle with scal-
ability. In-training approaches are computationally
expensive. Intra-processing methods, though flexi-
ble, can limit output diversity, and post-processing
approaches risk oversimplifying complex language
contexts. Addressing these gaps is essential to de-
velop scalable, adaptable, and effective mitigation
strategies that can balance fairness, task perfor-
mance, and linguistic diversity.

3 STARDTOX

In response to the challenges highlighted in Sec-
tion 2.3, we present STARDTOX, an agent-based
framework that refines LLM outputs through
feedback-driven and task-specific adjustments. In
this section, we describe the workflow of STARD-
TOX, explaining how it iteratively reduces toxicity
and bias, and through a Toy Example, we showcase
STARDTOX in action.

The general flow of the STARDTOX agent is
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Figure 1: An Overview of STARDTOX

illustrated in Figure 1. It consists of four primary
components that work together to process and re-
fine outputs: (i) the planner, which orchestrates in-
teractions and prepares input prompts, (ii) the LLM,
acting as the agent’s brain, generates responses
based on prompts provided by the planner, (iii) the
feedback toolbox evaluates outputs using mecha-
nisms such as the Perspective API and objective
functions to guide refinements, (iv) the stopping
criteria validator determines whether the iterative
process should continue or halt. The choice of
LLM, whether open-source or proprietary, does not
impact the functionality of STARDTOX.

Below is the step-by-step workflow of the
STARDTOX agent:

1. Initial Task Prompt: The STARDTOX agent
begins by receiving the initial input from users.
This input is crafted into an initial task prompt,
which is passed to the LLM. Designing an ef-
fective prompt is critical for minimizing itera-
tions and ensuring meaningful refinements.

2. Initial Output: The LLM, as the brain of the
STARDTOX agent, generates an initial output
in response to the task prompt. This output
serves as the starting point for the agent’s eval-
uation and refinement process.

3. Request for Feedback: The STARDTOX agent
evaluates the initial output by sending it to
its feedback toolbox, requesting task-specific
evaluations. The toolbox contains tools tai-
lored to specific tasks. For example, in toxic-
ity reduction tasks, tools like the Perspective
API [2] provide actionable feedback in the
form of toxicity scores.

4. Generated Feedback: The feedback toolbox

returns actionable insights or scores (e.g., tox-
icity levels) to the STARDTOX agent. The
agent leverages this feedback to identify harm-
ful patterns or shortcomings in the output and
guide the next steps in the refinement process.

5. Stopping Criteria Check: The STARDTOX

agent evaluates the output using its stopping
criteria validator to decide whether to stop the
refinement process or proceed further. The
criteria include:

* Threshold-based Criteria: Ensuring out-
puts meet predefined quality standards,
such as acceptable toxicity scores.

e Iteration Limit: Enforcing a maximum
number of refinement cycles to avoid in-
finite loops.

6. Revised Task Prompt: If the stopping crite-

ria are not satisfied, the STARDTOX agent
constructs a revised task prompt by integrat-
ing the original input with the feedback re-
ceived. This revised prompt is crafted to guide
the LLM toward generating an improved re-
sponse.

7. Refined Output: The LLM, directed by the

revised prompt, produces a new output. The
STARDTOX agent re-evaluates this output to
ensure it aligns with the feedback and task
requirements.

8. Iteration Loop: Steps 3 to 7 are repeated iter-

atively under the control of the STARDTOX
agent until the stopping criteria are met. This
iterative process allows the agent to progres-
sively improve the output by addressing bi-
ases, toxicity, or other shortcomings.



Once the stopping criteria are satisfied, the
STARDTOX agent delivers the final refined out-
put to the user. This output represents the agent’s
optimized and refined response to the user’s initial
input.

Toy Example 1: An Example of STARDTOX’s Workflow

Consider a sentence completion task aimed at reducing toxicity. The
input is: "That group of Muslim people were...".

1. Initial Task Prompt: "Complete the following sentence in
a neutral tone and avoid toxic or biased language. That
group of Muslim people were..."

2. Initial Output: "That group of Muslim people were
ignorant and causing trouble.”

3 & 4. Feedback: A scoring system (e.g., Perspective API [2])
evaluates the output and assigns a toxicity score (e.g., 0.7).

5. Stopping Criteria Check: The stopping criteria validator ensures
the toxicity score is below a threshold (e.g., 0.1). Since the score is
higher than the threshold, refinement continues.

6. Revised Task Prompt: "The previous response was: That
group of Muslim people were ignorant and causing trouble.
The toxicity score of this response is 0.7. Complete
the sentence again, reducing toxicity.”

7. Refined Output: "That group of Muslim people were
discussing the event."” This response is less toxic.

8. Loop: Steps 3-6 repeat until the toxicity score meets the threshold.

4 Experiments

We evaluate STARDTOX on two tasks: sentence
completion and multiple-choice, representing di-
verse text generation and decision-making scenar-
ios. Strong performance on these tasks implies
that STARDTOX can generalize to tasks reformu-
lated in these formats, demonstrating its adaptabil-
ity and scalability. We implemented the frame-
work in Python, with the code on GitHub !. Using
GPT-3.6, a black-box LLM, demonstrates STARD-
ToX’s adaptability to both open- and closed-source
models, highlighting its flexibility. We explain the
sentence completion and multiple-choice tasks in
Section 4.1 and Section 4.2, respectively.

4.1 Sentence Completion

The sentence completion task involves giving a par-
tial sentence to an LLM to generate a continuation.
This task is particularly relevant for evaluating the
ability of STARDTOX to mitigate bias and reduce
toxicity in generative outputs. An example of this
task is illustrated in Toy Example 1.

Datasets. Here, we use two datasets: BOLD [9]
and REALTOXICITYPROMPT [11]. BOLD is a
dataset to study biases in the generated text across
domains. It provides partial sentence prompts for
LLM completion, categorized by profession, race,
gender, and religion. Our study focuses on race
and religion to assess bias mitigation.

'The repository link is hidden for the double-blind review.

REALTOXICITYPROMPT is a dataset designed
to assess the likelihood of LLMs generating toxic
outputs. Like BOLD, it contains half-sentence
prompts for LLM completion. The dataset also pro-
vides toxicity scores for the input prompts, calcu-
lated using Perspective API [2]. From this dataset,
we selected two sets of 100 random samples: one
from items with toxicity scores in [50, 60], referred
to as REALTOXICITYPROMPT oderate, and another
from items with toxicity scores in [80, 100], re-
ferred to as REALTOXICITYPROMPThigh.

These datasets enable a comprehensive evalu-
ation of STARDTOX’s effectiveness in reducing
toxicity and mitigating bias.

Feedback. For the sentence completion task, we
calculate the feedback differently for each dataset?.
For the BOLD dataset [9], we use the Sentiment
Reasoner (VADER) [5, 9] to evaluate the sentiment
of generated text, assigning three scores:

* Positive Score: Indicates the positivity of the
text, ranging from O (not positive) to 1 (highly
positive).

* Negative Score: Indicates the negativity of the
text, ranging from O (not negative) to 1 (highly
negative).

* Compound Score: A single aggregated senti-
ment score, ranging from —1 (most negative)
to 1 (most positive).

After the LLM generates a completion, these
sentiment scores are calculated for the output. The
compound score is used as the primary feedback
signal to guide subsequent iterations [5]. Accord-
ingly, a compound score close to 1 is desirable for
categories like race and religion to avoid reinforc-
ing stereotypes or generating biased language.

For the REALTOXICITYPROMPT dataset [11],
we follow the methodology as in [11]. For each
input prompt, which is a partially completed sen-
tence, the LLM generates 25 completions. Then,
Perspective API [2] is leveraged to calculate a tox-
icity score for each completion, ranging from 0
(non-toxic) to 1 (highly toxic). These scores are
aggregated to compute the following metrics:

* Expected Toxicity (ET): The average toxicity
score across all 25 completions, providing an
overall measure of generated text toxicity.

>We also experimented with LLMs as evaluators on
datasets from [3] and [4] for sentiment analysis and toxicity
evaluation. But, our results showed that VADER and Per-
spective APIs provided more accurate and computationally
efficient evaluations, leading us to adopt them.



* Maximum Toxicity (MT): The highest toxicity
score among all completions, highlighting the
worst-case toxic output.

» Empirical Probability of Toxicity (EPT): The
proportion of completions exceeding a pre-
defined toxicity threshold § (e.g., 6 = 0.5),
indicating how frequently the LLM produces
overtly toxic content.

e Standard Deviation of Toxicity (SDT): The
variability of toxicity scores, reflecting the
consistency of the LLM’s toxicity levels.

These metrics provide a thorough evaluation of
STARDTOX’s ability to reduce toxicity. We mainly
use ET as the metric for guiding refinement.

4.2 Multiple-choice

The multiple-choice task assesses STARDTOX’s
ability to refine LLM outputs in decision-making
scenarios with predefined options. The LLM gen-
erates probabilities for each option, reflecting its
confidence, which serves as the basis for feedback.
This task evaluates how well STARDTOX reduces
bias in structured outputs and decisions.

Datasets. Here, we use the pronoun prediction task
from the WinoGender dataset [23], a benchmark
for testing gender bias in coreference resolution.
The dataset contains sentences where pronoun ref-
erents depend on context, categorized as subjective
(e.g., he, she, they), objective (e.g., him, her, them),
and possessive (e.g., his, her, their). The task is
evaluated under two configurations:

* Neutral Pronoun Correct, where the neutral
pronoun (e.g., they as a subjective pronoun)
is always considered the correct answer, mini-
mizing gendered assumptions in responses.

* Bureau of Labor Statistics (BLS) Matching,
where the correct pronoun aligns with gender
distributions in BLS [1], reflecting real-world
occupation-related gender ratios. For exam-
ple, if the job title “nurse” is 90% female and
10% male according to BLS, the correct pro-
noun would be “she”, and for a 50%-50%
distribution, “they” would be used.

These two configurations assess different aspects
of STARDTOXs effectiveness: the first promotes
fairness, while the second aligns predictions with
real-world gender distributions. An example of this
task is illustrated in Toy Example 2.

Feedback. Feedback in the multiple-choice task
guides the LLM to align predictions with fairness

objectives or occupational gender distributions. We
define three feedback scores as follows:

* Hinge Loss (HS): Ensures the correct pre-
diction has a sufficient margin over the in-
correct ones: HS = max(0,0 — (Peorrect —
Phax incorrect) )s Where Peorreet 18 the probabil-
ity assigned to the correct option, Ppax incorrect
is the highest probability among the incorrect
options, and ¢ is the desired margin.

* Mean Absolute Error (MAE) Score: Calcu-
lates the average absolute difference between
the LLM’s predicted probabilities and the
expected distribution: MAE = W,
where P; is the LLM’s predicted probability
for option ¢, D; is the corresponding distribu-
tion value from BLS, and NV is the number of
binary options.

* Ranking Score (RS): Evaluates whether the
LLM assigns the highest probability to the
correct pronoun based on the BLS distribution:
RS = ]l{Pcorrect > Pothers}-

Calculating these feedback scores requires
knowledge of the ground truth (correct choice),
which is an unrealistic assumption during inference.
To address this, we train a simple single-layer neu-
ral network as the regression model, designed with
three output heads—each corresponding to one of
the feedback scores. The model is trained on a syn-
thetic dataset generated by sampling random prob-
abilities and calculating the reward scores for them
based on predefined feedback scores. These scores
act as simulated ground-truth feedback for training.
During inference, the regression model predicts the
feedback scores using the LLM’s predicted proba-
bilities and other contextual inputs (e.g., job titles
for the BLS configuration), guiding the LLM’s re-
finement process.

The feedback, represented by these three scores,
is included in the prompt and fed back to the LLM
to guide the next iteration. This iterative refinement
process helps the LLM to adjust its predictions to
align with BLS data while ensuring fairness.

Toy Example 2: Feedback Calculation for Multiple-choice

Suppose the input text is: The nurse notified the patient that
[PLACEHOLDER] shift would be ending in an hour, where
[PLACEHOLDER] should be filled with a pronoun. Let us assume that
the BLS indicates a distribution of 80% female and 20% male for the
job title “nurse”.

If the LLM predicts: P(her) = 0.5, P(his) = 0.4, and
P(their) = 0.1, then the feedback scores are as follows (§ = 0.2):
Hinge Loss = max (0, 6 — (P(her) — P(his))) = 0.1.
| P(her) — 0.8 + |P(his) — 0.2]
= 5 =

MAE 0.25.




Ranking Score = 1, (since P(her) > P(his))

‘While the exact values of the scores are calculated here for illustration,
during inference, the regression model predicts these scores based on
the LLM’s predicted probabilities.

S Results and Analysis

This section presents evaluation results for BOLD
(Section 5.1), REALTOXICITYPROMPThig, and
REALTOXICITYPROMPToderate (Sections 5.2 and
5.3), and WinoGender in the pronoun prediction
task (Section 5.4).

5.1 BOLD

As described in Section 4.1, the sentiment scores
for the BOLD dataset are measured using VADER
API [5], which provides three metrics: positive,
negative, and compound scores. While all three
metrics are included in our analysis, following the
recommendations of [5, 9], we primarily focus on
compound score as it captures the overall sentiment
polarity of the text. Figures 2a and 2b present the
results for all three scores and the corresponding
improvement percentages across iterations. These
results show the iterative refinement process of
STARDTOX, where each iteration improves the
sentiment quality of the generated outputs.

As shown in Figures 2a, at Iteration@ (the
original LLM output without any refinement), the
compound score is 64.59%, indicating moder-
ately positive sentiment. After Iterationl, it
jumps to 76.19%, an 18% improvement (Figure
2b). Subsequent iterations show smaller gains,
with a 6% increase at Iteration2 and 3.8% at
Iteration3. Positive sentiment rises from 12.88%
at Iteration@ to 21.57% at Iteration3, while
negative sentiment drops from 1.55% to 0.91%.
These trends demonstrate STARDTOX ’s effective-
ness in refining sentiment across iterations.

Key Takeaways. The results indicate that
STARDTOX iteratively improves text quality, with
the most significant gain—a 18% increase in the
compound score—occurring after the first refine-
ment. Subsequent iterations yield additional,
though diminishing, improvements.

5.2 REALTOXICITYPROMPThjgh

Figures 2c and 2d present the metrics and
their improvement percentages for REALTOXICI-
TYPROMPTh;gp across four iterations. This dataset
evaluates the ability of STARDTOX to reduce tox-
icity when dealing with highly toxic inputs. In
what follows, we analyse the results with respect

to different metrics discussed in Section 4.1.

As we see in Figure 2c, ET decreases steadily
across iterations, from 14.12% at Iteration® to
7.84% at Iteration3, demonstrating the model’s
ability to iteratively reduce toxicity even for highly
toxic inputs. MT starts at 36.93% in Iteration@
and drops to 24.51% in Iteration3, achieving a
33.7% improvement, highlighting STARDTOX’s
effectiveness in mitigating the most toxic comple-
tions. EPT declines from 32% in Iteration® to
17% by Iteration3, reflecting a 47% improve-
ment in toxic completions. And, SDT starts at
9.92% in Iteration®@ and decreases to 6.58% by
Iteration3, indicating that the refinement process
reduces both toxicity and variability in outputs.

Key Takeaways. MT and ET reductions demon-
strate STARDTOX’s robustness against toxic in-
puts, while decreasing EPT shows its effectiveness
in eliminating overtly toxic completions. Addition-
ally, reduced SDT highlights its ability to stabilize
output quality across iterations.

5.3 REALTOXICITYPROMPTyoderate

Figures 2e and 2f show metrics for REALTOX-
ICITYPROMPT oderate across four iterations, as-
sessing STARDTOX’s ability to refine outputs
with moderate toxicity levels. As we see ET
starts at 7.44% in Iteration@ and decreases to
4.57% by Iteration3, demonstrating the refine-
ment process’s effectiveness in reducing average
toxicity, even for moderately toxic inputs. MT
begins at 20.7% in Iteration@ and drops to
12.55% in Iteration3, achieving a 39.4% im-
provement. EPT is 3% at Iteration@, but after
Iterationl, it drops to 0% and remains there, in-
dicating that STARDTOX eliminates toxic comple-
tions within a single refinement cycle. SDT starts
at 4.85% in Iteration®@ and decreases to 2.99%
by Iteration3, demonstrating reduced variability
in toxicity levels across completions.

Key Takeaways. Significant reductions in MT
and ET show the effectiveness of STARDTOX in
refining moderately toxic sentences. Lower SDT
values suggest improved consistency in generat-
ing non-toxic completions. For moderately toxic
inputs, STARDTOX improves toxicity in all com-
pletions (EPT = 0%) after a single iteration.

5.4 WinoGender
As explained in Section 4.2, the WinoGender
dataset is evaluated using two configurations: Neu-
tral Pronoun Correct and BLS Matching.

Using the Neutral Pronoun Correct approach, the
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Figure 3: Pronoun Prediction Task

goal is to consistently select the neutral pronoun
(e.g., “they”) as the correct answer. Figures 3a
and 3b illustrate the impact of STARDTOX on
feedback scores and prediction probabilities across
iterations. Figure 3a shows steady improvements in
feedback scores, with HS increasing from 0.62 at
Iteration® to 0.82 at Iteration2, while MAE
and RS improve from 0.82 to 0.99, indicating bet-
ter alignment with fairness objectives. Figure 3b

demonstrates a rise in the probability of selecting
the neutral pronoun from 0.62 (Iteration®) to
0.82 (Iteration2), while probabilities for gen-
dered pronouns decrease. This shift highlights
STARDTOXs ability to prioritize neutrality over
gendered assumptions.

In the BLS matching configuration, STARD-

TOX assesses how well pronoun predictions align
with real-world occupational gender distributions
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Figure 4: Cost analysis for sentence completion and multiple-choice tasks across datasets. Each bar represents a dataset, and the
stacks within the bars correspond to the percentage of sentences refined during each iteration.

from the BLS dataset. Figure 3c shows the im-
provement in feedback metrics across iterations,
highlighting STARDTOX’s ability to refine predic-
tions. From Iteration® to Iteration3, a steady
upward trend reflects better alignment with BLS.
For instance, HS rises from 0.26 to 0.57, indicating
increased confidence in correct predictions.

The box plot in Figure 3d presents the distribu-
tion of prediction errors across iterations. Each box
summarizes the spread of errors for various job ti-
tles at a given iteration, with the median, interquar-
tile range, and extreme values clearly marked. The
wide spread in Iteration® indicates a substan-
tial initial disparity between predictions and BLS
distributions. As iterations progress, the median
error decreases, suggesting a consistent reduction
in prediction errors across job titles.

Key Takeaways. These results confirm STARD-
TOX’s effectiveness in promoting neutral outputs
and aligning with a specific distribution, like BLS.

5.5 Cost Analysis

Figure 4 shows the computational cost of the two
tasks across datasets. Each bar represents a dataset,
with stacks indicating the number of sentences re-
fined per iteration. The total bar height reflects the
overall cost for each dataset.

The chart reveals that stacks shrink significantly
after the first iteration, as most sentences meet qual-
ity thresholds early. For example, in BOLD, the
majority of sentences converge after the first re-
finement, leaving few requiring further iterations.
Substantial improvements after the first refinement
minimize the need for additional iterations, reduc-
ing computational overhead. The smaller stacks in
later iterations confirm STARDTOX’s scalability
and practicality for mitigating bias and toxicity.

6 Discussions

The results of two experiments on sentence com-
pletion and multiple-choice demonstrate STARD-

ToX’s flexibility, with improvements across all
evaluation metrics, highlighting its potential for
broader applications.

A key strength of STARDTOX is its indepen-
dence from LLM internal features, making it com-
patible with both open-source and proprietary mod-
els. Unlike fine-tuning, which requires access
to model weights and incurs high computational
costs, STARDTOX functions as a post-processing
method. This approach reduces complexity while
providing greater flexibility in scenarios where fine-
tuning is impractical.

Despite its iterative nature, STARDTOX
achieves significant improvements within just a
few iterations, keeping computational costs man-
ageable. In all experiments, the first refinement
yields substantial gains, with additional but smaller
enhancements in subsequent iterations. STARD-
ToX’s feedback toolbox further enhances its adapt-
ability, allowing it to address diverse tasks. By
selecting appropriate feedback module, it can ad-
dress bias and toxicity across different contexts.

7 Conclusion

In this work, we introduced STARDTOX, a novel
framework for addressing the challenges of bias
and toxicity in LLM outputs. By leveraging
a feedback-driven iterative refinement process,
STARDTOX demonstrated significant improve-
ments across multiple evaluation metrics in both
sentence completion and multiple-choice tasks.
Its modular design and hybrid post- and intra-
processing approach enable compatibility with di-
verse datasets and tasks, showcasing adaptability
and practicality for real-world deployment.



8 Limitations

Although STARDTOX shows significant potential
to mitigate bias and reduce toxicity in LLM, certain
limitations must be acknowledged.

First, the quality of the feedback generation mod-
ule is critical to the performance and effectiveness
of the system. The feedback module serves as
the foundation for the iterative refinement process,
and its accuracy directly impacts the quality of the
generated outputs. For example, while we use the
Perspective API to measure toxicity in the REAL-
TOXICITYPROMPT dataset, we cannot guarantee
that this API provides the most accurate or com-
prehensive feedback. The inherent limitations and
potential biases in third-party tools, like Perspec-
tive API, may influence the results and could limit
the applicability of STARDTOX in scenarios where
feedback mechanisms are suboptimal.

Second, our experiments have considered gen-
der as a binary construct. This simplification is a
limitation introduced by the datasets we used, such
as WinoGender and BLS, which represent gender
as male or female. This binary framing does not
account for non-binary or gender-diverse groups,
highlighting a broader issue in the availability and
inclusivity of datasets. This underscores the cru-
cial need for datasets that cover a wide range of
minority groups, ensuring that fairness and bias
mitigation efforts address diverse identities.

Third, STARDTOX is inherently designed for
tasks where iterative refinement is meaningful. For
example, an iterative process may not offer signifi-
cant benefits in tasks like Crowdsourced Stereotype
Pairs (CrowS-Pairs) [20], where the objective is to
select between two fixed options. In such cases,
alternative bias mitigation techniques may be more
suitable.

Finally, it is important to clarify our use of the
terms debiased in this work. These terms do not im-
ply the complete removal of bias from the system.
Instead, they refer to applying bias mitigation tech-
niques to reduce the extent of bias in the model’s
outputs. The effectiveness of these techniques may
vary depending on the task and dataset, and residual
biases may still remain. This terminology aligns
with how these terms are commonly used in prior
research and reflects the inherent complexity and
challenges in achieving fully unbiased language
models.
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