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Abstract

Large Language Models (LLMs) have revolu-001
tionized Natural Language Processing (NLP)002
but often reflect harmful biases and toxic behav-003
ior, risking marginalized communities and trust004
in these systems. Existing mitigation methods,005
from pre- to post-processing, struggle with scal-006
ability, efficiency, and adaptability. To address007
these challenges, we present STARDTOX, an008
agent-based framework that iteratively refines009
LLM outputs using task-specific feedback. Op-010
erating primarily as a post-processing solution011
with intra-processing elements, STARDTOX012
reduces bias and toxicity without requiring013
model weights or fine-tuning. Evaluations on014
sentence completion and multiple-choice tasks015
demonstrate significant reductions in represen-016
tational and allocational harms while ensuring017
efficiency and adaptability.018

1 Introduction019

Large language models (LLMs) have revolution-020

ized Natural Language Processing (NLP), enabling021

advancements in diverse applications such as con-022

versational agents and content generation. How-023

ever, alongside these remarkable capabilities lies a024

critical challenge: LLMs are often susceptible to025

harmful behaviors arising from various factors, in-026

cluding vast and uncurated training datasets [8, 16].027

One prominent issue is the presence of social028

bias, which means disparate treatment or outcomes029

between social groups that arise from historical030

and structural inequities [10, 13]. These biases031

take various forms, including stereotypes, misrep-032

resentations, and exclusionary language [13]. Ad-033

ditionally, LLMs can also produce toxic outputs,034

such as offensive or harmful language, which dis-035

proportionately impact marginalized communities036

(e.g., associating certain demographic groups with037

negative sentiment) [13]. Such behaviors risk per-038

petuating inequities and undermine the trustwor-039

thiness of LLMs and all the systems that rely on040

them [8, 10]. 041

To address these issues, researchers assess so- 042

cial bias and toxicity in LLMs through downstream 043

tasks, which reveal model weaknesses in specific 044

contexts [13]. Common tasks like sentiment analy- 045

sis, toxicity classification, and question-answering 046

(QA) expose representational harms (e.g., stereo- 047

typing) and allocational harms (e.g., unequal per- 048

formance across social groups) [7]. These tasks 049

highlight embedded biases and the need for effec- 050

tive mitigation strategies. 051

Existing bias mitigation techniques span four 052

stages of intervention [10]: (i) pre-processing: 053

cleaning or augmenting datasets to reduce bias, 054

though limited by scalability, (ii) in-training: ad- 055

justing during training, often computationally ex- 056

pensive and task-specific, (iii) intra-processing, 057

modifying decoding behavior dynamically during 058

inference, offering flexibility but limited by in- 059

ternal biases and learned patterns, and (iv) post- 060

processing: addressing biases in model outputs 061

without requiring access to the underlying model, 062

offering computational efficiency [10]. 063

In this paper, we introduce STARDTOX, an 064

agent-based framework for mitigating social bias 065

and toxicity through a combination of post- 066

processing and intra-processing techniques. It it- 067

eratively refines LLM outputs using task-specific 068

feedback via a modular toolbox, which in- 069

cludes tools such as Perspective API [2], LLM- 070

based evaluators [27], and custom fairness met- 071

rics. While STARDTOX primarily operates as a 072

post-processing solution, it also integrates intra- 073

processing by dynamically adjusting decoding dur- 074

ing refinement. This hybrid approach enhances 075

scalability, efficiency, and adaptability, enabling 076

more precise mitigation of bias and toxicity. 077

Contributions. The contributions are as follows: 078

• We introduce STARDTOX, a novel agent- 079

based framework that integrates a modu- 080
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lar feedback toolbox and combines post-081

processing and intra-processing approaches082

to mitigate social bias and toxicity in LLM083

outputs.084

• We design STARDTOX to operate through a085

self-refinement loop guided by task-specific086

feedback, iteratively improving outputs with-087

out requiring model weights or fine-tuning.088

• We equip STARDTOX with a modular feed-089

back toolbox that incorporates APIs (e.g., Per-090

spective API), LLM-based evaluators, and091

task-specific fairness metrics, demonstrating092

adaptability across diverse applications.093

• We make STARDTOX computationally effi-094

cient, scalable, and adaptable to black-box095

LLMs, making it a practical solution for miti-096

gating bias and toxicity in real-world settings.097

Outline. Section 2 reviews related work and identi-098

fies the research gaps. Section 3 details the STARD-099

TOX methodology. Section 4 describes the experi-100

mental setup. The results are presented in Section 5101

and discussed in Section 6.102

2 Related Work103

In this section, we review bias evaluation, mitiga-104

tion strategies, and research gaps.105

2.1 Bias Evaluation106

Evaluating social biases in LLMs relies on datasets,107

benchmarks, and metrics across various tasks. RE-108

ALTOXICITYPROMPTS [11] and BOLD [9] assess109

toxicity and sentiment in generated text, while110

BBQ [21] and UNQOVER [16] probe biases in111

QA tasks. WinoBias [26] highlights gender bias112

in coreference resolution, EEC [14] exposes sen-113

timent intensity biases, and RedditBias [6] eval-114

uates biases in dialogue generation. These tools115

uncover representational harms (e.g., stereotypes)116

and allocational harms (e.g., unequal performance),117

forming a basis for bias mitigation.118

2.2 Bias Mitigation119

Bias mitigation in LLMs can be addressed in four120

different phases, each involving different strategies.121

Pre-processing: These approaches focus on mod-122

ifying the input data or prompts to address biases123

before training. These techniques involve Counter-124

factual Data Augmentation (CDA) [18, 28], filter-125

ing and reweighting strategies [22], and instruction-126

tuning [17]. Although these methods are effective127

at ensuring data-level fairness, they often struggle128

with scalability for large datasets and may not align129

well with downstream tasks due to their reliance on 130

data-level interventions. 131

In-training: These approaches modify the model 132

parameters during the training process. The so- 133

lutions include architectural adjustments [15] and 134

loss function modifications [25]. These approaches 135

offer flexibility and allow embedding fairness con- 136

straints into the training process. However, they 137

are computationally expensive, rely on large high- 138

quality datasets for fine-tuning, and risk forgetting 139

pre-trained knowledge. 140

Intra-processing: These techniques modify the 141

model’s behavior during inference without updat- 142

ing its parameters, using methods like decoding 143

modifications [19] and weight redistribution as in 144

modular debiasing networks [12]. They are well- 145

suited for black-box models, avoiding the computa- 146

tional cost of retraining. However, they may reduce 147

output diversity. 148

Post-processing: These approaches operate on fi- 149

nal outputs, modifying them to reduce bias and tox- 150

icity, such as the rewriting technique [24]. These 151

methods are computationally efficient and compati- 152

ble with black-box models, making them practical 153

for deployment. However, their reliance on sub- 154

jective criteria for detecting bias and the potential 155

oversimplification of linguistic aspects can limit 156

their effectiveness in complex scenarios. 157

2.3 Research Gap 158

While the mitigation approaches in each phase offer 159

valuable benefits, they face significant challenges. 160

Pre-processing techniques often struggle with scal- 161

ability. In-training approaches are computationally 162

expensive. Intra-processing methods, though flexi- 163

ble, can limit output diversity, and post-processing 164

approaches risk oversimplifying complex language 165

contexts. Addressing these gaps is essential to de- 166

velop scalable, adaptable, and effective mitigation 167

strategies that can balance fairness, task perfor- 168

mance, and linguistic diversity. 169

3 STARDTOX 170

In response to the challenges highlighted in Sec- 171

tion 2.3, we present STARDTOX, an agent-based 172

framework that refines LLM outputs through 173

feedback-driven and task-specific adjustments. In 174

this section, we describe the workflow of STARD- 175

TOX, explaining how it iteratively reduces toxicity 176

and bias, and through a Toy Example, we showcase 177

STARDTOX in action. 178

The general flow of the STARDTOX agent is 179
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Figure 1: An Overview of STARDTOX

illustrated in Figure 1. It consists of four primary180

components that work together to process and re-181

fine outputs: (i) the planner, which orchestrates in-182

teractions and prepares input prompts, (ii) the LLM,183

acting as the agent’s brain, generates responses184

based on prompts provided by the planner, (iii) the185

feedback toolbox evaluates outputs using mecha-186

nisms such as the Perspective API and objective187

functions to guide refinements, (iv) the stopping188

criteria validator determines whether the iterative189

process should continue or halt. The choice of190

LLM, whether open-source or proprietary, does not191

impact the functionality of STARDTOX.192

Below is the step-by-step workflow of the193

STARDTOX agent:194

1. Initial Task Prompt: The STARDTOX agent195

begins by receiving the initial input from users.196

This input is crafted into an initial task prompt,197

which is passed to the LLM. Designing an ef-198

fective prompt is critical for minimizing itera-199

tions and ensuring meaningful refinements.200

2. Initial Output: The LLM, as the brain of the201

STARDTOX agent, generates an initial output202

in response to the task prompt. This output203

serves as the starting point for the agent’s eval-204

uation and refinement process.205

3. Request for Feedback: The STARDTOX agent206

evaluates the initial output by sending it to207

its feedback toolbox, requesting task-specific208

evaluations. The toolbox contains tools tai-209

lored to specific tasks. For example, in toxic-210

ity reduction tasks, tools like the Perspective211

API [2] provide actionable feedback in the212

form of toxicity scores.213

4. Generated Feedback: The feedback toolbox214

returns actionable insights or scores (e.g., tox- 215

icity levels) to the STARDTOX agent. The 216

agent leverages this feedback to identify harm- 217

ful patterns or shortcomings in the output and 218

guide the next steps in the refinement process. 219

5. Stopping Criteria Check: The STARDTOX 220

agent evaluates the output using its stopping 221

criteria validator to decide whether to stop the 222

refinement process or proceed further. The 223

criteria include: 224

• Threshold-based Criteria: Ensuring out- 225

puts meet predefined quality standards, 226

such as acceptable toxicity scores. 227

• Iteration Limit: Enforcing a maximum 228

number of refinement cycles to avoid in- 229

finite loops. 230

6. Revised Task Prompt: If the stopping crite- 231

ria are not satisfied, the STARDTOX agent 232

constructs a revised task prompt by integrat- 233

ing the original input with the feedback re- 234

ceived. This revised prompt is crafted to guide 235

the LLM toward generating an improved re- 236

sponse. 237

7. Refined Output: The LLM, directed by the 238

revised prompt, produces a new output. The 239

STARDTOX agent re-evaluates this output to 240

ensure it aligns with the feedback and task 241

requirements. 242

8. Iteration Loop: Steps 3 to 7 are repeated iter- 243

atively under the control of the STARDTOX 244

agent until the stopping criteria are met. This 245

iterative process allows the agent to progres- 246

sively improve the output by addressing bi- 247

ases, toxicity, or other shortcomings. 248
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Once the stopping criteria are satisfied, the249

STARDTOX agent delivers the final refined out-250

put to the user. This output represents the agent’s251

optimized and refined response to the user’s initial252

input.253

Toy Example 1: An Example of STARDTOX’s Workflow

Consider a sentence completion task aimed at reducing toxicity. The
input is: "That group of Muslim people were...".

1. Initial Task Prompt: "Complete the following sentence in
a neutral tone and avoid toxic or biased language. That
group of Muslim people were..."

2. Initial Output: "That group of Muslim people were
ignorant and causing trouble."

3 & 4. Feedback: A scoring system (e.g., Perspective API [2])
evaluates the output and assigns a toxicity score (e.g., 0.7).

5. Stopping Criteria Check: The stopping criteria validator ensures
the toxicity score is below a threshold (e.g., 0.1). Since the score is
higher than the threshold, refinement continues.

6. Revised Task Prompt: "The previous response was: That
group of Muslim people were ignorant and causing trouble.
The toxicity score of this response is 0.7. Complete
the sentence again, reducing toxicity."

7. Refined Output: "That group of Muslim people were
discussing the event." This response is less toxic.

8. Loop: Steps 3–6 repeat until the toxicity score meets the threshold.

254

4 Experiments255

We evaluate STARDTOX on two tasks: sentence256

completion and multiple-choice, representing di-257

verse text generation and decision-making scenar-258

ios. Strong performance on these tasks implies259

that STARDTOX can generalize to tasks reformu-260

lated in these formats, demonstrating its adaptabil-261

ity and scalability. We implemented the frame-262

work in Python, with the code on GitHub 1. Using263

GPT-3.6, a black-box LLM, demonstrates STARD-264

TOX’s adaptability to both open- and closed-source265

models, highlighting its flexibility. We explain the266

sentence completion and multiple-choice tasks in267

Section 4.1 and Section 4.2, respectively.268

4.1 Sentence Completion269

The sentence completion task involves giving a par-270

tial sentence to an LLM to generate a continuation.271

This task is particularly relevant for evaluating the272

ability of STARDTOX to mitigate bias and reduce273

toxicity in generative outputs. An example of this274

task is illustrated in Toy Example 1.275

Datasets. Here, we use two datasets: BOLD [9]276

and REALTOXICITYPROMPT [11]. BOLD is a277

dataset to study biases in the generated text across278

domains. It provides partial sentence prompts for279

LLM completion, categorized by profession, race,280

gender, and religion. Our study focuses on race281

and religion to assess bias mitigation.282

1The repository link is hidden for the double-blind review.

REALTOXICITYPROMPT is a dataset designed 283

to assess the likelihood of LLMs generating toxic 284

outputs. Like BOLD, it contains half-sentence 285

prompts for LLM completion. The dataset also pro- 286

vides toxicity scores for the input prompts, calcu- 287

lated using Perspective API [2]. From this dataset, 288

we selected two sets of 100 random samples: one 289

from items with toxicity scores in [50, 60], referred 290

to as REALTOXICITYPROMPTmoderate, and another 291

from items with toxicity scores in [80, 100], re- 292

ferred to as REALTOXICITYPROMPThigh. 293

These datasets enable a comprehensive evalu- 294

ation of STARDTOX’s effectiveness in reducing 295

toxicity and mitigating bias. 296

Feedback. For the sentence completion task, we 297

calculate the feedback differently for each dataset2. 298

For the BOLD dataset [9], we use the Sentiment 299

Reasoner (VADER) [5, 9] to evaluate the sentiment 300

of generated text, assigning three scores: 301

• Positive Score: Indicates the positivity of the 302

text, ranging from 0 (not positive) to 1 (highly 303

positive). 304

• Negative Score: Indicates the negativity of the 305

text, ranging from 0 (not negative) to 1 (highly 306

negative). 307

• Compound Score: A single aggregated senti- 308

ment score, ranging from −1 (most negative) 309

to 1 (most positive). 310

After the LLM generates a completion, these 311

sentiment scores are calculated for the output. The 312

compound score is used as the primary feedback 313

signal to guide subsequent iterations [5]. Accord- 314

ingly, a compound score close to 1 is desirable for 315

categories like race and religion to avoid reinforc- 316

ing stereotypes or generating biased language. 317

For the REALTOXICITYPROMPT dataset [11], 318

we follow the methodology as in [11]. For each 319

input prompt, which is a partially completed sen- 320

tence, the LLM generates 25 completions. Then, 321

Perspective API [2] is leveraged to calculate a tox- 322

icity score for each completion, ranging from 0 323

(non-toxic) to 1 (highly toxic). These scores are 324

aggregated to compute the following metrics: 325

• Expected Toxicity (ET): The average toxicity 326

score across all 25 completions, providing an 327

overall measure of generated text toxicity. 328

2We also experimented with LLMs as evaluators on
datasets from [3] and [4] for sentiment analysis and toxicity
evaluation. But, our results showed that VADER and Per-
spective APIs provided more accurate and computationally
efficient evaluations, leading us to adopt them.
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• Maximum Toxicity (MT): The highest toxicity329

score among all completions, highlighting the330

worst-case toxic output.331

• Empirical Probability of Toxicity (EPT): The332

proportion of completions exceeding a pre-333

defined toxicity threshold δ (e.g., δ = 0.5),334

indicating how frequently the LLM produces335

overtly toxic content.336

• Standard Deviation of Toxicity (SDT): The337

variability of toxicity scores, reflecting the338

consistency of the LLM’s toxicity levels.339

These metrics provide a thorough evaluation of340

STARDTOX’s ability to reduce toxicity. We mainly341

use ET as the metric for guiding refinement.342

4.2 Multiple-choice343

The multiple-choice task assesses STARDTOX’s344

ability to refine LLM outputs in decision-making345

scenarios with predefined options. The LLM gen-346

erates probabilities for each option, reflecting its347

confidence, which serves as the basis for feedback.348

This task evaluates how well STARDTOX reduces349

bias in structured outputs and decisions.350

Datasets. Here, we use the pronoun prediction task351

from the WinoGender dataset [23], a benchmark352

for testing gender bias in coreference resolution.353

The dataset contains sentences where pronoun ref-354

erents depend on context, categorized as subjective355

(e.g., he, she, they), objective (e.g., him, her, them),356

and possessive (e.g., his, her, their). The task is357

evaluated under two configurations:358

• Neutral Pronoun Correct, where the neutral359

pronoun (e.g., they as a subjective pronoun)360

is always considered the correct answer, mini-361

mizing gendered assumptions in responses.362

• Bureau of Labor Statistics (BLS) Matching,363

where the correct pronoun aligns with gender364

distributions in BLS [1], reflecting real-world365

occupation-related gender ratios. For exam-366

ple, if the job title “nurse” is 90% female and367

10% male according to BLS, the correct pro-368

noun would be “she”, and for a 50%-50%369

distribution, “they” would be used.370

These two configurations assess different aspects371

of STARDTOX’s effectiveness: the first promotes372

fairness, while the second aligns predictions with373

real-world gender distributions. An example of this374

task is illustrated in Toy Example 2.375

Feedback. Feedback in the multiple-choice task376

guides the LLM to align predictions with fairness377

objectives or occupational gender distributions. We 378

define three feedback scores as follows: 379

• Hinge Loss (HS): Ensures the correct pre- 380

diction has a sufficient margin over the in- 381

correct ones: HS = max(0, δ − (Pcorrect − 382

Pmax incorrect)), where Pcorrect is the probabil- 383

ity assigned to the correct option, Pmax incorrect 384

is the highest probability among the incorrect 385

options, and δ is the desired margin. 386

• Mean Absolute Error (MAE) Score: Calcu- 387

lates the average absolute difference between 388

the LLM’s predicted probabilities and the 389

expected distribution: MAE =
∑

i |Pi−Di|
N , 390

where Pi is the LLM’s predicted probability 391

for option i, Di is the corresponding distribu- 392

tion value from BLS, and N is the number of 393

binary options. 394

• Ranking Score (RS): Evaluates whether the 395

LLM assigns the highest probability to the 396

correct pronoun based on the BLS distribution: 397

RS = 1{Pcorrect > Pothers}. 398

Calculating these feedback scores requires 399

knowledge of the ground truth (correct choice), 400

which is an unrealistic assumption during inference. 401

To address this, we train a simple single-layer neu- 402

ral network as the regression model, designed with 403

three output heads—each corresponding to one of 404

the feedback scores. The model is trained on a syn- 405

thetic dataset generated by sampling random prob- 406

abilities and calculating the reward scores for them 407

based on predefined feedback scores. These scores 408

act as simulated ground-truth feedback for training. 409

During inference, the regression model predicts the 410

feedback scores using the LLM’s predicted proba- 411

bilities and other contextual inputs (e.g., job titles 412

for the BLS configuration), guiding the LLM’s re- 413

finement process. 414

The feedback, represented by these three scores, 415

is included in the prompt and fed back to the LLM 416

to guide the next iteration. This iterative refinement 417

process helps the LLM to adjust its predictions to 418

align with BLS data while ensuring fairness. 419

Toy Example 2: Feedback Calculation for Multiple-choice

Suppose the input text is: The nurse notified the patient that
[PLACEHOLDER] shift would be ending in an hour, where
[PLACEHOLDER] should be filled with a pronoun. Let us assume that
the BLS indicates a distribution of 80% female and 20% male for the
job title “nurse”.
If the LLM predicts: P (her) = 0.5, P (his) = 0.4, and
P (their) = 0.1, then the feedback scores are as follows (δ = 0.2):

Hinge Loss = max(0, δ − (P (her) − P (his))) = 0.1.

MAE =
|P (her) − 0.8| + |P (his) − 0.2|

2
= 0.25.

420
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Ranking Score = 1, (since P (her) > P (his))

While the exact values of the scores are calculated here for illustration,
during inference, the regression model predicts these scores based on
the LLM’s predicted probabilities.

421

5 Results and Analysis422

This section presents evaluation results for BOLD423

(Section 5.1), REALTOXICITYPROMPThigh and424

REALTOXICITYPROMPTmoderate (Sections 5.2 and425

5.3), and WinoGender in the pronoun prediction426

task (Section 5.4).427

5.1 BOLD428

As described in Section 4.1, the sentiment scores429

for the BOLD dataset are measured using VADER430

API [5], which provides three metrics: positive,431

negative, and compound scores. While all three432

metrics are included in our analysis, following the433

recommendations of [5, 9], we primarily focus on434

compound score as it captures the overall sentiment435

polarity of the text. Figures 2a and 2b present the436

results for all three scores and the corresponding437

improvement percentages across iterations. These438

results show the iterative refinement process of439

STARDTOX, where each iteration improves the440

sentiment quality of the generated outputs.441

As shown in Figures 2a, at Iteration0 (the442

original LLM output without any refinement), the443

compound score is 64.59%, indicating moder-444

ately positive sentiment. After Iteration1, it445

jumps to 76.19%, an 18% improvement (Figure446

2b). Subsequent iterations show smaller gains,447

with a 6% increase at Iteration2 and 3.8% at448

Iteration3. Positive sentiment rises from 12.88%449

at Iteration0 to 21.57% at Iteration3, while450

negative sentiment drops from 1.55% to 0.91%.451

These trends demonstrate STARDTOX ’s effective-452

ness in refining sentiment across iterations.453

Key Takeaways. The results indicate that454

STARDTOX iteratively improves text quality, with455

the most significant gain–a 18% increase in the456

compound score–occurring after the first refine-457

ment. Subsequent iterations yield additional,458

though diminishing, improvements.459

5.2 REALTOXICITYPROMPThigh460

Figures 2c and 2d present the metrics and461

their improvement percentages for REALTOXICI-462

TYPROMPThigh across four iterations. This dataset463

evaluates the ability of STARDTOX to reduce tox-464

icity when dealing with highly toxic inputs. In465

what follows, we analyse the results with respect466

to different metrics discussed in Section 4.1. 467

As we see in Figure 2c, ET decreases steadily 468

across iterations, from 14.12% at Iteration0 to 469

7.84% at Iteration3, demonstrating the model’s 470

ability to iteratively reduce toxicity even for highly 471

toxic inputs. MT starts at 36.93% in Iteration0 472

and drops to 24.51% in Iteration3, achieving a 473

33.7% improvement, highlighting STARDTOX’s 474

effectiveness in mitigating the most toxic comple- 475

tions. EPT declines from 32% in Iteration0 to 476

17% by Iteration3, reflecting a 47% improve- 477

ment in toxic completions. And, SDT starts at 478

9.92% in Iteration0 and decreases to 6.58% by 479

Iteration3, indicating that the refinement process 480

reduces both toxicity and variability in outputs. 481

Key Takeaways. MT and ET reductions demon- 482

strate STARDTOX’s robustness against toxic in- 483

puts, while decreasing EPT shows its effectiveness 484

in eliminating overtly toxic completions. Addition- 485

ally, reduced SDT highlights its ability to stabilize 486

output quality across iterations. 487

5.3 REALTOXICITYPROMPTmoderate 488

Figures 2e and 2f show metrics for REALTOX- 489

ICITYPROMPTmoderate across four iterations, as- 490

sessing STARDTOX’s ability to refine outputs 491

with moderate toxicity levels. As we see ET 492

starts at 7.44% in Iteration0 and decreases to 493

4.57% by Iteration3, demonstrating the refine- 494

ment process’s effectiveness in reducing average 495

toxicity, even for moderately toxic inputs. MT 496

begins at 20.7% in Iteration0 and drops to 497

12.55% in Iteration3, achieving a 39.4% im- 498

provement. EPT is 3% at Iteration0, but after 499

Iteration1, it drops to 0% and remains there, in- 500

dicating that STARDTOX eliminates toxic comple- 501

tions within a single refinement cycle. SDT starts 502

at 4.85% in Iteration0 and decreases to 2.99% 503

by Iteration3, demonstrating reduced variability 504

in toxicity levels across completions. 505

Key Takeaways. Significant reductions in MT 506

and ET show the effectiveness of STARDTOX in 507

refining moderately toxic sentences. Lower SDT 508

values suggest improved consistency in generat- 509

ing non-toxic completions. For moderately toxic 510

inputs, STARDTOX improves toxicity in all com- 511

pletions (EPT = 0%) after a single iteration. 512

5.4 WinoGender 513

As explained in Section 4.2, the WinoGender 514

dataset is evaluated using two configurations: Neu- 515

tral Pronoun Correct and BLS Matching. 516

Using the Neutral Pronoun Correct approach, the 517
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(c) REALTOXICITYPROMPThigh Results
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(d) REALTOXICITYPROMPThigh Improvement Percentage
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(e) REALTOXICITYPROMPTmoderate Results
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(f) REALTOXICITYPROMPTmoderate Improvement Percentage

Figure 2: The sentence completion task results and their corresponding improvement percentage.
Note: Improvement (%) is calculated as b−a

a × 100, where a and b are the metric values before and after an iteration. For maximization metrics, the formula
applies directly; for minimization metrics, the absolute value ensures improvements are consistently positive.
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(a) Neutral Pronoun Correct: Rewards
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(b) Neutral Pronoun Correct: Probability Predictions
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(c) BLS Matching: Rewards
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Figure 3: Pronoun Prediction Task

goal is to consistently select the neutral pronoun518

(e.g., “they”) as the correct answer. Figures 3a519

and 3b illustrate the impact of STARDTOX on520

feedback scores and prediction probabilities across521

iterations. Figure 3a shows steady improvements in522

feedback scores, with HS increasing from 0.62 at523

Iteration0 to 0.82 at Iteration2, while MAE524

and RS improve from 0.82 to 0.99, indicating bet-525

ter alignment with fairness objectives. Figure 3b526

demonstrates a rise in the probability of selecting 527

the neutral pronoun from 0.62 (Iteration0) to 528

0.82 (Iteration2), while probabilities for gen- 529

dered pronouns decrease. This shift highlights 530

STARDTOX’s ability to prioritize neutrality over 531

gendered assumptions. 532

In the BLS matching configuration, STARD- 533

TOX assesses how well pronoun predictions align 534

with real-world occupational gender distributions 535
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Figure 4: Cost analysis for sentence completion and multiple-choice tasks across datasets. Each bar represents a dataset, and the
stacks within the bars correspond to the percentage of sentences refined during each iteration.

from the BLS dataset. Figure 3c shows the im-536

provement in feedback metrics across iterations,537

highlighting STARDTOX’s ability to refine predic-538

tions. From Iteration0 to Iteration3, a steady539

upward trend reflects better alignment with BLS.540

For instance, HS rises from 0.26 to 0.57, indicating541

increased confidence in correct predictions.542

The box plot in Figure 3d presents the distribu-543

tion of prediction errors across iterations. Each box544

summarizes the spread of errors for various job ti-545

tles at a given iteration, with the median, interquar-546

tile range, and extreme values clearly marked. The547

wide spread in Iteration0 indicates a substan-548

tial initial disparity between predictions and BLS549

distributions. As iterations progress, the median550

error decreases, suggesting a consistent reduction551

in prediction errors across job titles.552

Key Takeaways. These results confirm STARD-553

TOX’s effectiveness in promoting neutral outputs554

and aligning with a specific distribution, like BLS.555

5.5 Cost Analysis556

Figure 4 shows the computational cost of the two557

tasks across datasets. Each bar represents a dataset,558

with stacks indicating the number of sentences re-559

fined per iteration. The total bar height reflects the560

overall cost for each dataset.561

The chart reveals that stacks shrink significantly562

after the first iteration, as most sentences meet qual-563

ity thresholds early. For example, in BOLD, the564

majority of sentences converge after the first re-565

finement, leaving few requiring further iterations.566

Substantial improvements after the first refinement567

minimize the need for additional iterations, reduc-568

ing computational overhead. The smaller stacks in569

later iterations confirm STARDTOX’s scalability570

and practicality for mitigating bias and toxicity.571

6 Discussions572

The results of two experiments on sentence com-573

pletion and multiple-choice demonstrate STARD-574

TOX’s flexibility, with improvements across all 575

evaluation metrics, highlighting its potential for 576

broader applications. 577

A key strength of STARDTOX is its indepen- 578

dence from LLM internal features, making it com- 579

patible with both open-source and proprietary mod- 580

els. Unlike fine-tuning, which requires access 581

to model weights and incurs high computational 582

costs, STARDTOX functions as a post-processing 583

method. This approach reduces complexity while 584

providing greater flexibility in scenarios where fine- 585

tuning is impractical. 586

Despite its iterative nature, STARDTOX 587

achieves significant improvements within just a 588

few iterations, keeping computational costs man- 589

ageable. In all experiments, the first refinement 590

yields substantial gains, with additional but smaller 591

enhancements in subsequent iterations. STARD- 592

TOX’s feedback toolbox further enhances its adapt- 593

ability, allowing it to address diverse tasks. By 594

selecting appropriate feedback module, it can ad- 595

dress bias and toxicity across different contexts. 596

7 Conclusion 597

In this work, we introduced STARDTOX, a novel 598

framework for addressing the challenges of bias 599

and toxicity in LLM outputs. By leveraging 600

a feedback-driven iterative refinement process, 601

STARDTOX demonstrated significant improve- 602

ments across multiple evaluation metrics in both 603

sentence completion and multiple-choice tasks. 604

Its modular design and hybrid post- and intra- 605

processing approach enable compatibility with di- 606

verse datasets and tasks, showcasing adaptability 607

and practicality for real-world deployment. 608
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8 Limitations609

Although STARDTOX shows significant potential610

to mitigate bias and reduce toxicity in LLM, certain611

limitations must be acknowledged.612

First, the quality of the feedback generation mod-613

ule is critical to the performance and effectiveness614

of the system. The feedback module serves as615

the foundation for the iterative refinement process,616

and its accuracy directly impacts the quality of the617

generated outputs. For example, while we use the618

Perspective API to measure toxicity in the REAL-619

TOXICITYPROMPT dataset, we cannot guarantee620

that this API provides the most accurate or com-621

prehensive feedback. The inherent limitations and622

potential biases in third-party tools, like Perspec-623

tive API, may influence the results and could limit624

the applicability of STARDTOX in scenarios where625

feedback mechanisms are suboptimal.626

Second, our experiments have considered gen-627

der as a binary construct. This simplification is a628

limitation introduced by the datasets we used, such629

as WinoGender and BLS, which represent gender630

as male or female. This binary framing does not631

account for non-binary or gender-diverse groups,632

highlighting a broader issue in the availability and633

inclusivity of datasets. This underscores the cru-634

cial need for datasets that cover a wide range of635

minority groups, ensuring that fairness and bias636

mitigation efforts address diverse identities.637

Third, STARDTOX is inherently designed for638

tasks where iterative refinement is meaningful. For639

example, an iterative process may not offer signifi-640

cant benefits in tasks like Crowdsourced Stereotype641

Pairs (CrowS-Pairs) [20], where the objective is to642

select between two fixed options. In such cases,643

alternative bias mitigation techniques may be more644

suitable.645

Finally, it is important to clarify our use of the646

terms debiased in this work. These terms do not im-647

ply the complete removal of bias from the system.648

Instead, they refer to applying bias mitigation tech-649

niques to reduce the extent of bias in the model’s650

outputs. The effectiveness of these techniques may651

vary depending on the task and dataset, and residual652

biases may still remain. This terminology aligns653

with how these terms are commonly used in prior654

research and reflects the inherent complexity and655

challenges in achieving fully unbiased language656

models.657
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