
iTool: Boosting Tool Use of Large Language Models via Iterative
Reinforced Fine-Tuning

Anonymous ACL submission

Abstract001

Augmenting large language models (LLMs)002
with external tools is known as a promising003
approach to enhancing their capabilities, espe-004
cially for complex tasks. It hinges crucially on005
improving their ability to use tools. Synthe-006
sizing tool-use data through real-world simula-007
tions is an effective way to enhance this ability.008
Nevertheless, our investigation reveals that (1)009
training gains significantly decay as synthetic010
data increases. The model struggles to benefit011
from more synthetic data due to potential data012
diversity issues, resulting in poor performance013
in complex scenarios. Moreover, we find that014
(2) this challenge primarily manifests as mi-015
nor discrepancies between the model’s output016
and the ground truth response (termed as defi-017
ciency), such as errors in parameter values that018
require complex reasoning from the context to019
resolve. To this end, we propose an iterative020
reinforced fine-tuning strategy designed to alle-021
viate these challenges. This strategy involves:022
(1) enhancing the diversity of synthetic data023
through path exploration of Monte Carlo Tree024
Search. (2) iteratively identifying deficiency-025
related data, constructing fine-grained prefer-026
ence pairs to pinpoint deficiencies, and then027
applying preference optimization to optimize028
these deficiencies. Our experiments show that029
models trained using our method achieve about030
3% better performance than same-size models,031
outperforming larger open-source and closed-032
source models.033

1 Introduction034

Tool use is one of the key features of LLMs. In-035

tegrating LLMs with external tools significantly036

enhances their capability to tackle complex tasks037

in real-world scenarios (Qin et al., 2023; Qu et al.,038

2024). The tool use capability allows LLMs to039

access up-to-date information, perform precise cal-040

culations, and reduce the likelihood of hallucina-041

tions (Schick et al., 2023). This unlocks a wide042

range of potential applications in various domains,043

Figure 1: The pipeline of tool use conducts SFT with
synthetic data (a). However, as shown in (b), their train-
ing gains decay significantly as the synthetic data in-
creases. Live and Non-Live respectively denote complex
and simple tool-use scenarios.

such as the automation of complex tasks (Zhong 044

et al., 2023) (e.g., long context reasoning (Man- 045

duzio et al., 2024)), and the scheduling of applica- 046

tions on devices (Gunter et al., 2024; Chen et al., 047

2024b). In essence, tool use involves the following 048

process: Given one or more tools, a user presents a 049

question, and the LLM selects the appropriate tools 050

from the candidate tools and performs the tool call 051

to fulfill the user’s question. In this paper, tools 052

are used interchangeably with APIs, functions, and 053

plugins. 054

Recent advancements have found that LLMs can 055

handle simple tool use scenarios through prompt 056

engineering (Tang et al., 2023), but they encounter 057

difficulties with more complex, real-world applica- 058

tions (e.g., long contexts or extensive toolsets) (Yan 059

et al., 2024). To address this, some studies simulate 060

real-world scenarios, such as ticketing systems, to 061

mimic more realistic use cases (Lin et al., 2024) for 062

collecting synthetic data. The synthetic data is used 063

in supervised fine-tuning (SFT) to enhance tool use 064

in complex scenarios, as shown in Figure 1 (a). De- 065

spite these solution strides in the development of 066

tool-use models, our investigation reveals a critical 067

weakness: there is a training gains decay as the 068

data scale increases when training with synthetic 069

tool-use data. 070

1

As shown in Figure 1 (b), the model struggles071

to benefit from more synthetic data with normal072

SFT, which may be due to insufficient data diversity073

(internal factor). Our study analysis indicates that074

this challenge leads to the model’s failure to extract075

a few parameters from the user query. This issue076

typically affects only a small portion of the answer,077

differing from the ground truth response, which078

we refer to as a deficiency (external factor). This079

problem will be examined in detail in Section 2.2.080

Therefore, we attempt to overcome this chal-081

lenge by alleviating both internal and external fac-082

tors. It is not easy to overcome it in complex083

scenarios. Fortunately, the success of OpenA o11084

provides a compelling illustration of complex rea-085

soning through step-by-step slow thinking (e.g.,086

Monte Carlo Tree Search (MCTS) (Coulom, 2006)087

) and Reinforced Fine-Tuning (ReFT) (Luong et al.,088

2024). This approach, which includes reinforce-089

ment learning tailored to specific tasks, efficiently090

aligns the model with user intentions (Trung et al.,091

2024).092

To this end, we propose a novel learning method093

to help models bridge the gap in complex scenar-094

ios: MCTS path exploration ensures data diversity,095

while ReFT progressively enhances the model’s096

capabilities in facing deficiency. Specifically, we097

propose an iterative reinforced fine-tuning strat-098

egy for Tool use, named iTool. It first iteratively099

identifies deficiency-related data based on feedback100

from a policy model. It then performs MCTS to101

collect fine-grained preference pairs, which helps102

explore data diversity and pinpoint deficiencies.103

Finally, a reinforcement learning policy (i.e., di-104

rect preference optimization (Rafailov et al., 2024))105

is applied to align the model’s response with the106

ground-truth response and misalign it with flawed107

responses. Moreover, before iterative ReFT, we108

propose an easy-to-hard warm-up SFT strategy for109

learning from complex scenarios. Following these110

advancements, iTool demonstrates approximately111

3% better performance than same-size models. De-112

spite having only 7B parameters, it outperforms113

larger open-source models and competes with top-114

tier closed-source models, such as the GPT series.115

2 Problem Statement and Analysis116

2.1 Task Overview117

In tool use, the LLM receives a user query q along118

with a set of candidate tools, represented as T =119

1https://openai.com/index/learning-to-reason-with-llms/

Figure 2: An illustration of tool-use. Given a set of
tools including "required" parameters. After receiving a
user query, LLMs select tool(s) from candidates, then
execute the API call operation, finally reply a response
to user. In this case, LLM correctly answered the first
query, but failed in the second query due to the inability
to identify ’sunny’ for ’weather’.

{t0, t1, . . . , t|T |}. The purpose of LLM is to fulfill 120

the user’s intent by executing a specific sequence 121

of tools. The decision process can be described 122

as y ∼ π(y | s0, q, T), where π(·) represents the 123

policy model, s0 denotes the initial task state, and 124

y represents the actions taken by the model, such 125

as selecting or executing a specific tool call from 126

T . A case is illustrated in Figure 2. 127

2.2 Preliminary Study 128

This section seeks to present the challenges faced 129

by tool-use models during fine-tuning with syn- 130

thetic data. We aim to identify methods to enhance 131

the model’s ability to use tools in practice. 132

We fine-tune the model using synthetic tool- 133

use data of varying proportions. Specifically, the 134

following data is used for training: ToolACE 135

(Liu et al., 2024) is created through a novel self- 136

evolution synthesis process to curate APIs, result- 137

ing in a comprehensive set of tool-use data with up 138

to 10K samples. The following benchmark is used 139

for evaluation: Berkeley Function-Calling Leader- 140

board (BFCL) (Yan et al., 2024) provides a com- 141

prehensive dataset comprising 4k+ instances (up- 142

dating), consisting of Non-live (with expert-curated 143

simple tools), Live (with user-contributed complex 144

tools), Multi-turn (with multi-turn & multi-step 145

tool use) and Hallucination (i.e., relevance and ir- 146

relevance detection) samples. Here, Non-live de- 147

notes simple tool use scenarios (e.g., single tool), 148

while Live represents more complex tool use sce- 149

narios (e.g., multiple parallel tools). For convenient 150

analysis, we evaluated Non-live and Live in here. 151

2

Figure 3: Error type distribution in bad cases. The left
pie chart (a) shows the percentage of each error type.
The right bar chart (b) shows the exact number of each
error type.

The results are depicted in Figure 1. We observe152

that as the proportion of training data increases, the153

model’s performance gain declines significantly.154

Specifically, the model’s overall performance gain155

declines after reaching 30% of the data, aligning156

with its performance on Live scenarios. From the157

results, we can conclude that the model struggles to158

benefit from more synthetic data due to insufficient159

data diversity. This issue is particularly pronounced160

in Live, a more complex scenario.161

To take a step to explore this issue, we conduct162

a bad case analysis. We have counted all error163

types in Live and Non-live of BFCL, and catego-164

rized the error types as shown in Figure 3. Here,165

Parameter Value denotes the value or type of the166

parameter that does not match the ground truth.167

Parameter Name denotes unable to identify the168

parameter value from the user query. For more de-169

tails see Appendix A. From Figure 3, we observed170

that errors are highly concentrated in Parameter171

Value & Name errors. In tool calls, parameter val-172

ues and names constitute only a small portion of173

the model’s response text. In other words, in the174

model’s incorrect responses, most parts are actually175

correct, with only a small portion being inaccurate.176

We refer to this as the model’s deficiency.177

An illustration is displayed in Figure 2. The178

LLMs correctly answered single tool-use queries179

but failed in multiple tool-use queries due to the180

inability to identify the required parameter from181

context. Identifying the correct parameters from182

context and converting them into the required for-183

mat demands that the model possess robust contex-184

tual understanding and reasoning capabilities.185

In summary, our analysis indicates that insuf-186

ficient data diversity diminishes the benefits of187

model training with more synthetic data (internal 188

factors). This, in turn, leads to the model’s defi- 189

ciency in complex scenarios (external factors). To 190

overcome internal factors, we utilize MCTS path 191

exploration to ensure data diversity. To address 192

external factors, we explore a strategy that progres- 193

sively pinpoints and optimizes the model’s deficien- 194

cies in its responses via an iterative ReFT. We will 195

detail it in the following section. 196

3 Method 197

In this section, we provide a detailed introduction to 198

our method. Figure 4 shows the overall architecture 199

of our proposed iTool. It consists of a warm-up 200

training and an iterative reinforcement learning. 201

3.1 Warm-up training 202

In real-world applications, the tool-use model 203

should select multiple tools from complex candi- 204

date toolset and schedule them correctly (a.k.a., 205

hard mode), instead of directly using a single can- 206

didate tool to response (a.k.a., easy mode). Similar 207

to human learning procedures, tool learning models 208

can benefit from an easy-to-hard curriculum during 209

model training (Xu et al., 2020). Therefore, we 210

propose an easy-to-hard SFT for warm-up training. 211

In the warm-up stage, we first divide the dataset 212

evenly into three subsets (i.e., easy, medium, hard) 213

based on difficulty levels. We follow the criteria: 1) 214

the candidate toolset number, 2) the string length of 215

the toolset, and 3) the number of tool calls needed 216

in response to split the dataset. 217

D = Deasy

⋃
Dmedium

⋃
Dhard. (1) 218

Subsequently, we fine-tune the LLMM sequen- 219

tially on each subset Di using the supervised loss: 220

Li = −
∑

(q,y)∈Di

logPM(y | q, T), (2) 221

with D1 (easy), D2 (medium) and D3 (hard). 222

The total warm-up loss is: 223

Lwarm-up =

N=3∑
i=1

Li. (3) 224

3.2 MCTS-Based Iterative Reinforcement 225

Learning 226

In order to alleviate training gains decreases using 227

synthetic tool-use data for LLM, in this module, 228

we propose an Iterative Reinforcement Learning 229

3

Figure 4: The overall architecture of iTool consists of warm-up training and iterative reinforcement learning.
Specifically, after warm-up training ①, policy model refreshes the replay buffer by feedback ② and actively sample
hard data ③. Then, step-wise MCTS is performed to obtain step-level preference pairs ④. Finally, the models are
updated via direct preference optimization ⑤. Note: red indicates a higher feedback, gray indicates a medium
one, while green indicates a lower one. The subscripts of policy models, fire and frozen , indicate that the
parameters are dynamically updated and fixed, respectively.

scheme to continuously remedy this deficiency. As230

shown in Figure 4, it iteratively refreshes replay231

buffer to sample complex data and generates pref-232

erence data for preference optimization.233

Sampling complex data. Given a warm-up234

model from the previous stage, it is used to re-235

fresh the replay buffer by feeding back the com-236

plexity of samples. The replay buffer is initial-237

ized with a random 50% sample from the tool-use238

dataset. Each example in the buffer is represented239

as: xbuff = ⟨q, T , c⟩, where c is denote the com-240

plexity of sample. In practice, model generation241

perplexity h is used to measure the complexity of242

the samples, i.e., c = h. The generation perplexity243

of the target response can be factorized as follows:244

h = n

√
1

PM(y | q, T)
, (4)245

where the PM(y | q, T) is the generation proba-246

bility. Since perplexity h represents the degree of247

generation uncertainty (Gao et al., 2024), we sam-248

ples top 10% highest h data for subsequent step in249

each iteration.250

MCTS for Step-Level Preference. The suc-251

cess of OpenAI o1 provides a compelling illustra-252

tion of the effectiveness of step-by-step thinking.253

As a key algorithm, MCTS path exploration can254

fully traverse the search space and provide greater255

data diversity (Grill et al., 2020). Inspired by these,256

we propose to integrate MCTS to collecting step-257

level preference data.258

The step-wise MCTS is achieved by breaking259

down the expand step. To transform instance-level260

rewards into granular, step-level signals, we break 261

down the action into discrete steps, each repre- 262

sented by a tool call or sentence. This process 263

begins from a root node s0, as the sentence start or 264

incomplete response, and unfolds in three iterative 265

stages: selection, expansion, and backup. 266

(1) Select. It is guided by two key variables: 267

Q(st, a), the value of taking action a in state st, 268

and N(st) is the visitation frequency of state st. To 269

navigate the trade-off between exploring new nodes 270

and exploiting visited ones, we employ the Predic- 271

tor+ Upper Confidence bounds applied to Trees 272

(PUCT) (Rosin, 2011). At node st, the choice of 273

the subsequent node follows the formula: 274

st+1 = argmax
st

[
Q(st, a) + c · p(a | st)

√
N(st)

1 +N(st+1)

]
,

(5) 275

where p(a | st) = πθ(a | q, T , st) denotes the 276

policy πθ(·)’s probability distribution for generat- 277

ing a step a, and c is a hyperparameter denotes the 278

degree of exploration. 279

(2) Expand. It occurs at a leaf node during the 280

selection process to integrate new nodes and assess 281

rewards. The reward r(st, a) for executing step a 282

in state st is quantified by the reward difference 283

between states R(st) and R(st+1), showing the 284

benefit of action a in state st. As defined in Eq.6, 285

reward computation merges outcome correctnessO 286

with self-evaluation C. Following Xie et al. (2024), 287

we define self-evaluation with Eval Prompt 7 as 288

Eq.7. 289

R(st) = O(st) + C(st), (6) 290
291

C(st) = πθ(c | prompteval, q, a, T , st), (7) 292

4

where c denotes the confidence score in token-293

level probability for correctness. Future rewards294

are anticipated by simulating upcoming scenarios295

through roll-outs, following the selection and ex-296

pansion process until reaching a terminal state (i.e.,297

the response is complete or exceeds the maximum298

length).299

(3) Backup. Once a terminal state is reached, we300

carry out a bottom-up update from the terminal301

node back to the root. We update the visit count N ,302

the state value V , and the transition value Q:303

Q(st, a)← r(st, a) + γV (st+1), (8)304
305

V (st)←
∑
a

N(st+1)Q(st, a)/
∑
a

N(st+1)), (9)306

where γ is the discount for future state values.307

We use the transition value Q to indicate the308

preference for candidate steps, with higher values309

showing more preferred next steps. For each node310

in the search tree, we choose the steps with the311

highest and lowest Q as the preferred and dispre-312

ferred responses, respectively, and consider the pre-313

fix path as the question. See Appendix C.2 for an314

example.315

Iterative preference optimization. Given the316

step-level preferences collected via MCTS, we tune317

the policy model via SimPO, a variant of DPO. Be-318

cause it reduces computational overhead by elim-319

inating the need for a reference model. After op-320

timization, we obtain the updated policy πθ(i) and321

repeat sampling the complex data process to itera-322

tively update the policy model.323

As a variant of DPO, it eliminates the need for a324

reference model and introduces a simple reference-325

free reward aligned with generation, i.e., length-326

normalized reward:327

rSimPO(x, y) =
β

|y|

|y|∑
i=1

log πθ(yi | x, y<i), (10)328

where β is a constant that controls the scaling of329

the reward difference. Using the shorthand hywπθ =330
β

|yw| log πθ(yw|x), h
yl
πθ = β

|yl| log πθ(yl|x), at the i-331

th iteration, given a batch of preference data Di332

sampled with the latest policy πθ(i−1), we denote333

the policy objective ℓi(θ) as follows:334

ℓi(πθ) = −E(x,yw,yl)∼Di

[
log σ

(
hyw
πθ
− hyl

πθ
− γ

)]
, (11)335

where γ > 0 represents the target reward mar-336

gin, ensuring that the preferred response’s reward337

exceeds that of the dispreferred one; yw and yl338

represent the step-level preferred and dispreferred339

responses, respectively.340

4 Experiments 341

4.1 Experimental Setup 342

We take the widely used open-source LLM, 343

LLaMA3.1-8B-Instruct as our base model. We 344

use synthetic data from ToolACE for experiments, 345

90% for warm-up training, and 50% for reinforce- 346

ment learning to to balance performance and cost. 347

For warm-up training, we adopt the parameter- 348

efficient training strategy LoRA (Hu et al., 2022). 349

For reinforcement learning, we employ SimPO, a 350

variant of DPO, for preference optimization, utiliz- 351

ing the QLora parameter-efficient training strategy 352

(Dettmers et al., 2024). For more implementation 353

details and preferences optimization analysis, see 354

Appendix B. 355

Evaluation Dataset. In addition to BFCL, we use 356

API-Bank (Li et al., 2023), which consists of 314 357

tool-use dialogues and 753 API calls. This dataset 358

evaluates models’ abilities to correctly invoke a 359

known API (L-1) based on a query and to retrieve 360

and call APIs from a tool list (L-2). 361

Baselines We compare the overall performance 362

with the state-of-the-art closed-source models (e.g., 363

GPT-series2, Gemini 3) and open-source models 364

(e.g., Llama-3.1-8B-Instruct, Qwen2.5-7B (Team, 365

2024)), as well as fine-tuned open-source models 366

with tool-use dataset, including ToolACE-8B (fine- 367

tuning Llama-3.1-8B-Instruct on ToolACE) model, 368

xLAM-series (Zhang et al., 2024) and Hammer- 369

series (Lin et al., 2024). 370

4.2 Overall Performance 371

The overall performance of iTool-8B and various 372

representative models are shown in Table 1 and 373

Table 2. The results indicate that our model con- 374

sistently achieves corresponding sota performance 375

at comparable scales (∼ 8B). Our model demon- 376

strated its superiority in challenging scenarios (e.g., 377

Live and Multi-turn). This demonstrates that our 378

method can more effectively learn advanced tool- 379

use capabilities from synthetic data. This is primar- 380

ily due to our iterative ReFT strategy, which con- 381

tinuously pinpoints and optimizes the model’s defi- 382

ciencies. Furthermore, our model shows consistent 383

advantageous performance on API-Bank compared 384

with open-source models. Moreover, our model 385

outperforms most closed-source and open-source 386

models in BFCL, and demonstrate comparable per- 387

formance with GPT-4-series models. 388

2https://chatgpt.com/
3https://gemini.google.com/

5

Figure 5: The performance comparison across different
ablation settings.

4.3 Ablation Analysis389

4.3.1 Module Ablation390

To evaluate the effectiveness of two components391

in our method, we conduct an ablation study by392

removing (1) warm-up training (w/o warm-up). (2)393

Iterative Reinforcement Learning (w/o IRT). We394

also include Llama-3.1-8B-Instruct as a base model395

for comparison. From Figure 5, we find that all396

components are essential within our method. The397

warm-up training demonstrated a greater impact398

compared to IRT in our method, which proves its399

indispensability before reinforcement learning.400

4.3.2 Deeper Ablation401

(1) In warn-up training, we conducted a study402

on the easy2hard SFT strategy. We present the403

performance progression from easy to hard and404

compare it with the normal mixed SFT strategy405

and base model. To make a fair comparison, we406

used the same amount of data from ToolACE for407

all the strategies. The experimental results are sum-408

marized in Figure 6. From the results, we observe409

that our strategy shows a gradual improvement and410

surpasses the mixed SFT. There is a significant411

leap from base to easy, and the second largest im-412

provement occurs from the medium to hard. This413

indicates that the model benefits from the curricu-414

lum learning process that goes from easy to hard.415

In the synthetic data, the model can quickly learn416

the task patterns of tool use from the easier stages,417

which in turn benefits the harder scenario.418

(2) In iterative reinforcement learning, we con-419

ducted a study on MCTS and iteration counts.420

The results are illustrated in Figure 7 and 8 respec-421

tively. To replace MCTS, we sample four responses422

from the policy model and select the responses with423

the highest and lowest probabilities as preference424

pairs. These pairs are then used for subsequent425

preference optimization (w/o MCTS). From Figure426

Figure 6: The performance progression of easy to hard
SFT, along with compared models.

Figure 7: The result of ablation study on MCTS in iTool.

7, we observe that the model’s performance deteri- 427

orates when MCTS is replaced. From Figure 8, we 428

observe that as iterations increase, our method ini- 429

tially shows an upward trend before declining. The 430

model performs best around 3 iterations, especially 431

in the Multi-turn and Live scenarios. This indicates 432

that MCTS can effectively mitigate the issue of 433

insufficient data diversity with a small number of it- 434

erations. However, excessive iterations can lead to 435

overfitting, resulting in a decrease in data diversity. 436

iTool performs poorly in Non-live. This suggests 437

that it focuses on enhancing performance in com- 438

plex tool-use cases, potentially at the expense of 439

simpler tool-use cases. 440

4.3.3 Base Model Analysis. 441

To further validate the effectiveness of base mod- 442

els, we applied our method to other base models. 443

Due to computational resource constraints, we com- 444

pared the following base models (< 10B): (1) 445

Llama-3.2-3B-Instruct, (2) Qwen2.5-7B-Instruct 446

(Team, 2024). From Table 3, our method exhibits 447

remarkably stable performance across different 448

base models. This highlights the robustness of our 449

method in various base models. On Llama-3.2-3B, 450

our method improved performance by 18% over 451

the base model. On Qwen2.5-7B, it achieved the 452

best performance at 63.22%. 453

6

Rank Overall Acc Model Non-live Live Multi turn Rel / Irrel

1 62.92 ♣ iTool-8B(FC) 88.82 76.82 23.84 84.90/80.72
2 62.19 ♠ GPT-4o-2024-08-06 (FC) 86.15 75.43 25.00 63.41/82.93
3 61.89 ♠ GPT-4-turbo-2024-04-09 (FC) 88.80 76.23 24.88 73.17/79.76
4 60.47 ♠ GPT-4o-mini-2024-07-18 (FC) 83.72 70.19 27.50 80.49/71.77
5 60.44 ♣ ToolACE-8B (FC) 88.94 74.99 17.38 80.49/85.71
6 58.15 ♠ GPT-4o-mini-2024-07-18 (Prompt) 88.69 74.63 11.13 75.61/81.00
7 57.99 ♣ xLAM-8x22b-r (FC) 87.51 71.97 14.50 85.37/67.29
8 57.92 ♠ Gemini-1.5-Flash-002 (Prompt) 87.60 76.28 9.88 85.37/78.54
9 57.69 ♣ Hammer2.0-7b (FC) 88.54 69.79 14.75 95.12/68.46

10 57.45 ♠ o1-mini-2024-09-12 (Prompt) 83.84 75.39 13.12 48.78/88.04
11 56.80 ♡ mistral-large-2407 (FC) 81.41 68.37 20.62 75.61/49.44
12 56.51 ♠ Gemini-1.5-Pro-002 (Prompt) 89.63 74.41 5.50 65.85/77.30
13 55.86 ♠ Gemini-1.5-Flash-001 (Prompt) 85.74 69.21 12.62 82.93/67.84
14 55.78 ♠ GPT-4-turbo-2024-04-09 (Prompt) 88.80 69.04 9.50 82.93/58.95
15 55.10 ♠ Gemini-1.5-Pro-001 (Prompt) 86.17 73.12 6.00 56.10/85.00
16 54.41 ♣ xLAM-7b-r (FC) 80.86 67.88 14.50 97.56/64.05
17 54.27 ♡ Qwen2.5-7B-Instruct (Prompt) 85.58 65.97 11.25 92.68/64.95
18 53.67 ♡ Llama-3.1-70B-Instruct (Prompt) 87.50 61.13 12.38 92.68/58.38
19 53.66 ♡ Gemma-2-27b-it (Prompt) 87.39 69.48 4.12 87.80/68.76
20 53.00 ♠ GPT-3.5-Turbo-0125 (FC) 78.52 61.22 19.25 97.56/35.16
21 52.50 ♡ Gemma-2-9b-it (Prompt) 84.52 69.21 3.75 87.80/72.45
22 51.59 ♣ Hammer2.0-1.5b (FC) 84.44 63.22 7.13 92.68/60.64
23 51.50 ♡Meta-Llama-3-70B-Instruct (Prompt) 85.10 66.15 3.25 92.68/52.78
27 50.15 ♡ Llama-3.1-8B-Instruct (Prompt) 81.15 57.93 11.38 78.05/41.62
28 49.02 ♣ xLAM-8x7b-r (FC) 73.93 69.12 4.00 87.80/68.12
29 48.82 ♡ Qwen2.5-1.5B-Instruct (Prompt) 53.99 61.71 6.62 75.61/67.17
42 42.98 ♡ Llama-3.2-3B-Instruct (Prompt) 11.11 50.91 4.00 63.41/68.81

Table 1: The different models about four tool use styles on BFCL leaderboard(updated on 10/21/2024). The top 20
models and baselines are listed for comparison. FC denotes the model is tailored for functional calling. Rel and
Irrel denote relevance and irrelevance detection, respectively, indicating whether to call a tool or not. ♠ denotes
closed-source model, ♡ denotes open-source base model, ♣ denotes open-source fine-tuned model.

Model API-Bank API-Bank
L1 L2

♠ GPT-3.5-turbo-0125 70.43 52.59
♠ GPT-4-0613 75.94 48.89
♠ GPT-4-turbo-2024-04-09 72.43 39.26
♠ GPT-4o-mini-2024-07-18 74.69 45.93
♠ GPT-4o-2024-05-13 76.19 42.96

♡ Alpaca-7B 24.06 5.19
♡ ChatGLM-6B 23.62 13.33
♣ Lynx-7B 49.87 30.37
♣ xLAM-7b-fc-r 32.83 21.48
♡ LLaMA-3.1-8B-Instruct 71.18 37.04
♡ Qwen2.5-7B-Instruct 72.83 41.98
♣ ToolACE-8B 75.94 47.41
♣ iTool-8B 77.34 51.83

Table 2: Accuracy performance comparison on API-
Bank evaluation system. Bold values represent the high-
est performance.

4.4 Training Gains Analysis454

To analyze the training gains of our method, as de-455

tailed in Section 2.2, we experiment on full BFCL.456

From Figure 9, our method shows greater train-457

ing gains as the data scale increases in Live and458

Multi-turn. It maintains good training gains with459

up to 70% of the data, unlike SFT, which struggles460

Figure 8: The performance variation of our model with
the increase of iterations.

beyond 30%. It is consistent with the baseline in 461

Non-live. The reason is that our method excels 462

at continuously optimizing difficult cases, which 463

the baseline cannot achieve. This indicates that 464

our model can mitigate the internal training gain 465

decay issue in complex scenarios and enhance per- 466

formance when facing model deficiencies. 467

7

Base Model Method Oveall Non-live Live Multi-turn Rel / Irrel

Llama-3.1-8B-Instruct
Source 50.15 81.15 57.93 11.38 78.05 / 41.62

SFT 60.44 88.94 74.99 17.38 80.49 / 85.71
Our 62.92 88.82 76.82 23.84 84.90 / 80.72

Llama-3.2-3B-Instruct
Source 42.98 11.11 50.91 4.00 63.41 / 68.81

SFT 58.22 89.27 73.90 11.50 84.37 / 78.20
Our 60.41 90.45 75.39 13.88 83.93 / 87.00

Qwen2.5-7B-Instruct
Source 54.27 85.58 65.97 11.25 92.68 / 64.95

SFT 60.69 90.02 76.23 15.92 73.47 / 86.98
Our 63.22 91.29 81.30 20.38 80.28 / 85.12

Table 3: The accuracy performance comparison of base models with different methods on BFCL leaderboard(updated
on 10/21/2024). Source denotes source base model, SFT denotes fine-tuned base model, Our denotes iTool.

Figure 9: The training gains of models as the data scale
increases.

5 Related Work468

5.1 Tool use of LLMs469

Pioneering works like Toolformer (Schick et al.,470

2023) and ToolAlpaca (Tang et al., 2023) have ex-471

plored the potential of LLMs in tool use. Previ-472

ously, several tuning-free methods were proposed,473

which involves manipulating prompts (e.g., (Xu474

et al., 2023; Shi et al., 2024; Qiao et al., 2024))475

or enhancing execution frameworks (e.g., ReAct476

(Yao et al., 2023), RestGPT (Song et al., 2023)) to477

unlock inherent capabilities.478

Due to the limitation of user-defined tools in479

prompts of the above methods, tuning-based meth-480

ods with synthetic data have been focused. ToolL-481

lama (Qin et al., 2023) notably expanded the toolset482

and investigated the impact of data scaling on per-483

formance. More efficient data synthesis techniques484

have been proposed for tool use (e.g., ToolACE485

(Liu et al., 2024), BUTTON (Chen et al., 2024a),486

and xLAM (Zhang et al., 2024)).487

5.2 Reinforcement Learning 488

Learning from human feedback is crucial in align- 489

ing LLMs with human intentions (Leike et al., 490

2018), which is known as reinforcement learning. 491

ReFT enhances this process by combining rein- 492

forcement learning with SFT to optimize model 493

performance using reward signals. Online rein- 494

forcement learning algorithms (Schulman et al., 495

2017; Zheng et al., 2023) are complex and diffi- 496

cult to optimize. Recently, Direct Preference Opti- 497

mization (DPO) (Rafailov et al., 2024), a simpler 498

offline algorithm, reparameterizes the reward func- 499

tion to learn a policy model from preference data 500

directly, enhancing simplicity and training stabil- 501

ity. Besides, a variety of preference optimization 502

objectives have been proposed, e.g., SimPo (Meng 503

et al., 2024), IPO (Azar et al., 2024), ORPO (Hong 504

et al., 2024) and KTO (Ethayarajh et al., 2024). 505

Further studies have extended this approach to an 506

iterative training setup, by continuously updating 507

the reference model with the most recent policy 508

model or generating new preference pairs at each 509

iteration (Dong et al., 2024; Yuan et al., 2024; Kim 510

et al., 2024; Xiong et al., 2024) 511

6 Conclusion 512

Equipping LLMs with external tools is becoming 513

a viable method to enhance their capabilities. In 514

this paper, we study boosting tool use of LLMs. 515

Given the training decay and model’s deficiencies 516

issues associated with synthesized tool-use data, 517

we propose an iterative reinforced fine-tuning strat- 518

egy to continually guide the model in overcoming 519

this challenge. Experimental results demonstrate 520

the effectiveness of the proposed method. 521

8

7 Limitaiton522

While our study has achieved notable advance-523

ments, it is important to acknowledge several limi-524

tations that could be addressed in future work. First,525

the iterative reinforcement learning process (par-526

ticularly the Monte Carlo Tree Search) requires527

substantial computational resources to generate528

fine-grained preference data. Although it is dif-529

ficult to solve, we have effectively implemented pa-530

rameter constraints to manage computational costs531

efficiently (e.g., 7 hours on 8 V100 GPUs per itera-532

tion), achieving a balance between computational533

feasibility and model performance. Although pa-534

rameter constraints can help control computational535

costs (e.g., 7 hours on 8 V100 GPUs per itera-536

tion), this approach may compromise performance.537

Additionally, due to limited computing resources,538

we are not able to validate our method on larger539

30B or 70B base models. However, our current540

results on smaller models demonstrate promising541

performance and scalability potential. We believe542

that extending our method to larger models would543

further enhance its applicability. Finally, when an-544

alyzing the synthetic tool-use data, only a single545

dataset was tested. Testing more publicly available546

datasets would strengthen the validity and persua-547

siveness of the conclusions. We will address these548

limitations in our future work.549

References550

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-551
lal Piot, Remi Munos, Mark Rowland, Michal Valko,552
and Daniele Calandriello. 2024. A general theoret-553
ical paradigm to understand learning from human554
preferences. In International Conference on Arti-555
ficial Intelligence and Statistics, pages 4447–4455.556
PMLR.557

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang,558
Hao Liang, Keer Lu, Bin Cui, Wentao Zhang, Zenan559
Zhou, and Weipeng Chen. 2024a. Facilitating multi-560
turn function calling for llms via compositional in-561
struction tuning. arXiv preprint arXiv:2410.12952.562

Wei Chen, Zhiyuan Li, and Mingyuan Ma. 2024b. Octo-563
pus: On-device language model for function calling564
of software apis. arXiv preprint arXiv:2404.01549.565

Rémi Coulom. 2006. Efficient selectivity and backup566
operators in monte-carlo tree search. In International567
conference on computers and games, pages 72–83.568
Springer.569

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and570
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning571

of quantized llms. Advances in Neural Information 572
Processing Systems, 36. 573

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, 574
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, 575
Caiming Xiong, and Tong Zhang. 2024. Rlhf work- 576
flow: From reward modeling to online rlhf. arXiv 577
preprint arXiv:2405.07863. 578

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, 579
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model 580
alignment as prospect theoretic optimization. arXiv 581
preprint arXiv:2402.01306. 582

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, 583
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and 584
Zhaochun Ren. 2024. Confucius: Iterative tool learn- 585
ing from introspection feedback by easy-to-difficult 586
curriculum. In Proceedings of the AAAI Conference 587
on Artificial Intelligence, volume 38, pages 18030– 588
18038. 589

Jean-Bastien Grill, Florent Altché, Yunhao Tang, 590
Thomas Hubert, Michal Valko, Ioannis Antonoglou, 591
and Rémi Munos. 2020. Monte-carlo tree search 592
as regularized policy optimization. In International 593
Conference on Machine Learning, pages 3769–3778. 594
PMLR. 595

Tom Gunter, Zirui Wang, Chong Wang, Ruoming 596
Pang, Andy Narayanan, Aonan Zhang, Bowen Zhang, 597
Chen Chen, Chung-Cheng Chiu, David Qiu, et al. 598
2024. Apple intelligence foundation language mod- 599
els. arXiv preprint arXiv:2407.21075. 600

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: 601
Monolithic preference optimization without refer- 602
ence model. In Proceedings of the 2024 Conference 603
on Empirical Methods in Natural Language Process- 604
ing, pages 11170–11189. 605

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, 606
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 607
et al. 2022. Lora: Low-rank adaptation of large lan- 608
guage models. In International Conference on Learn- 609
ing Representations. 610

Dahyun Kim, Yungi Kim, Wonho Song, Hyeonwoo 611
Kim, Yunsu Kim, Sanghoon Kim, and Chanjun Park. 612
2024. sdpo: Don’t use your data all at once. arXiv 613
preprint arXiv:2403.19270. 614

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, 615
Vishal Maini, and Shane Legg. 2018. Scalable agent 616
alignment via reward modeling: a research direction. 617
arXiv preprint arXiv:1811.07871. 618

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 619
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 620
and Yongbin Li. 2023. Api-bank: A comprehensive 621
benchmark for tool-augmented llms. In Proceedings 622
of the 2023 Conference on Empirical Methods in 623
Natural Language Processing, pages 3102–3116. 624

9

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu625
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu626
Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham-627
mer: Robust function-calling for on-device lan-628
guage models via function masking. arXiv preprint629
arXiv:2410.04587.630

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,631
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,632
Zhengying Liu, Yuanqing Yu, et al. 2024. Toolace:633
Winning the points of llm function calling. arXiv634
preprint arXiv:2409.00920.635

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie,636
Peng Sun, Xiaoran Jin, and Hang Li. 2024. Reft:637
Reasoning with reinforced fine-tuning. Preprint,638
arXiv:2401.08967.639

Graziano A Manduzio, Federico A Galatolo,640
Mario GCA Cimino, Enzo Pasquale Scilingo,641
and Lorenzo Cominelli. 2024. Improving small-642
scale large language models function calling for643
reasoning tasks. arXiv preprint arXiv:2410.18890.644

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.645
Simpo: Simple preference optimization with a646
reference-free reward. In Advances in Neural In-647
formation Processing Systems (NeurIPS).648

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,649
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun650
Chen, et al. 2024. Autoact: Automatic agent learning651
from scratch for qa via self-planning. In ICLR 2024652
Workshop on Large Language Model (LLM) Agents.653

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan654
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,655
Bill Qian, et al. 2023. Toolllm: Facilitating large656
language models to master 16000+ real-world apis.657
In The Twelfth International Conference on Learning658
Representations.659

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,660
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong661
Wen. 2024. Tool learning with large language mod-662
els: A survey. arXiv preprint arXiv:2405.17935.663

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-664
pher D Manning, Stefano Ermon, and Chelsea Finn.665
2024. Direct preference optimization: Your language666
model is secretly a reward model. Advances in Neu-667
ral Information Processing Systems, 36.668

Christopher D Rosin. 2011. Multi-armed bandits with669
episode context. Annals of Mathematics and Artifi-670
cial Intelligence, 61(3):203–230.671

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta672
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-673
moyer, Nicola Cancedda, and Thomas Scialom. 2023.674
Toolformer: Language models can teach themselves675
to use tools. Advances in Neural Information Pro-676
cessing Systems, 36:68539–68551.677

John Schulman, Filip Wolski, Prafulla Dhariwal, 678
Alec Radford, and Oleg Klimov. 2017. Proxi- 679
mal policy optimization algorithms. arXiv preprint 680
arXiv:1707.06347. 681

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng, 682
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren, 683
Suzan Verberne, and Zhaochun Ren. 2024. Learning 684
to use tools via cooperative and interactive agents. 685
In Findings of the Association for Computational 686
Linguistics: EMNLP 2024, pages 10642–10657, Mi- 687
ami, Florida, USA. Association for Computational 688
Linguistics. 689

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, 690
Han Qian, Mingbo Song, Hailiang Huang, Cheng 691
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con- 692
necting large language models with real-world restful 693
apis. arXiv preprint arXiv:2306.06624. 694

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei 695
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023. 696
Toolalpaca: Generalized tool learning for language 697
models with 3000 simulated cases. arXiv preprint 698
arXiv:2306.05301. 699

Qwen Team. 2024. Qwen2.5: A party of foundation 700
models. 701

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, 702
Xiaoran Jin, and Hang Li. 2024. Reft: Reasoning 703
with reinforced fine-tuning. In Proceedings of the 704
62nd Annual Meeting of the Association for Compu- 705
tational Linguistics (Volume 1: Long Papers), pages 706
7601–7614. 707

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 708
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 709
Michael Shieh. 2024. Monte carlo tree search boosts 710
reasoning via iterative preference learning. arXiv 711
preprint arXiv:2405.00451. 712

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen- 713
berg, Zhen Qin, Daniele Calandriello, Misha Khal- 714
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh, 715
Chi Jin, Tong Zhang, and Tianqi Liu. 2024. Build- 716
ing math agents with multi-turn iterative preference 717
learning. Preprint, arXiv:2409.02392. 718

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan 719
Wang, Hongtao Xie, and Yongdong Zhang. 2020. 720
Curriculum learning for natural language understand- 721
ing. In Proceedings of the 58th Annual Meeting of 722
the Association for Computational Linguistics, pages 723
6095–6104. 724

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, 725
Zhengyu Chen, and Jian Zhang. 2023. On the tool 726
manipulation capability of open-sourced large lan- 727
guage models. In NeurIPS 2023 Foundation Models 728
for Decision Making Workshop. 729

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun 730
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. 731
Gonzalez. 2024. Berkeley function calling leader- 732
board. 733

10

https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2409.02392

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak734
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.735
React: Synergizing reasoning and acting in language736
models. In The Eleventh International Conference737
on Learning Representations.738

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,739
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-740
son E Weston. 2024. Self-rewarding language mod-741
els. In Forty-first International Conference on Ma-742
chine Learning.743

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai744
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,745
Akshara Prabhakar, Haolin Chen, et al. 2024. xlam:746
A family of large action models to empower ai agent747
systems. CoRR.748

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua,749
Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin750
Liu, Yuhao Zhou, et al. 2023. Secrets of rlhf in751
large language models part i: Ppo. arXiv preprint752
arXiv:2307.04964.753

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan754
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.755
2024. Llamafactory: Unified efficient fine-tuning756
of 100+ language models. In Proceedings of the757
62nd Annual Meeting of the Association for Compu-758
tational Linguistics (Volume 3: System Demonstra-759
tions), Bangkok, Thailand. Association for Computa-760
tional Linguistics.761

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao762
Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,763
Qiang Xu, Mingxuan Yuan, and Junchi Yan. 2023.764
Llm4eda: Emerging progress in large language mod-765
els for electronic design automation. arXiv preprint766
arXiv:2401.12224.767

A Details in Preliminary Study768

A.1 Descriptions of error types769

Here is the descriptions of all error types.770

• Parameter Value. The value or type of the771

parameter does not match the ground truth.772

• Parameter Name. Unable to identify the pa-773

rameter value from the user query.774

• Parameter Count. Incorrect number of pa-775

rameters; required parameters are missing.776

• Tools Count. The wrong number of tools was777

called.778

• Tool Name. There was an error when calling779

the tool name, such as calling a non-existent780

tool name or a tool name that does not match781

the ground truth.782

• Code Syntax. The tool call does not comply 783

with the syntax of Python, Java, or JavaScript. 784

• Other. Errors other than those mentioned 785

above. 786

B Complementary Experiments 787

B.1 More Implementation Details 788

The experiments were conducted using the pub- 789

licly available training repository, LLaMA-Factory 790

(Zheng et al., 2024). The training of our model 791

can be done within 28 hours with 8 NVIDIA Tesla 792

V100-SXM2-32GB GPUs. For the training model, 793

we take the best performance checkpoint on the 794

valid dataset. 795

The Implementation Settings. Due to resource 796

constraints, we employ a parameter-efficient train- 797

ing strategy using LoRA (with rank=16 and 798

alpha=32) during the SFT warm-up phase, and 799

QLoRA (a quantization method from the bitsand- 800

bytes 4 library with 4 bits) during the reinforcement 801

learning (RL) phase. We utilize a cosine learning 802

rate scheduler with a warm-up ratio of 0.1. More 803

detailed training settings are shown in Table 4.

Stage epoch lr batch size

SFT 3
easy: 5e-5

64medium: 2e-5
hard: 1e-5

RL 2 1e-6 64

Table 4: The detailed training settings in our method.
lr denotes learning rate. batch size denotes the total
batch size, equals 1 (per device) times 8 (accumulation
steps) times 8 (devices).

804
Implementation Settings in MCTS-base RL. 805

In Expand phase of MCTS, the prompt for self- 806

evaluation is shown in Table 7. When calculat- 807

ing the confidence score for correctness, we evalu- 808

ate the token-level probabilities of a policy model 809

across four options (A, B, C, D) with respective 810

weights of 1.0, 0.1, -1.0, and -2.0. We sample the 811

model’s responses four times and use the weighted 812

average of these samples as the final confidence 813

score. 814

To ensure the quality of the sampled preference 815

data, we exclude the following data: (1) pairs with 816

candidate step similarity above 95%, (2) pairs with 817

aQ-value difference less than 0.1, and (3) accepted 818

samples with a Q-value below 0.3. In MCTS, to 819

4https://github.com/TimDettmers/bitsandbytes

11

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

control algorithm overhead, we limit the following820

parameters: (1) depth, the maximum depth of the821

search tree, (2) width, the maximum number of822

child nodes per node, (3) simulation, the maxi-823

mum number of simulation steps in Expand phase,824

and (4) iterations, the maximum number of it-825

erations to construct the MCTS search tree. We826

summarize these parameters in Table 5.827

Parameters Value Parameters Value

depth 3 c 1.0
width 3 temperature 1.5
simulation 2 seed 42
iterations 5

Table 5: The parameters setting in MCTS. c denotes the
degree of exploration in the Select phase.

B.2 Preference Algorithm Analysis828

In iterative reinforcement learning, we also explore829

different preference optimization algorithms. Be-830

sides the widely used DPO (Rafailov et al., 2024),831

we also explored SimPO (Meng et al., 2024), IPO832

(Azar et al., 2024), and ORPO (Hong et al., 2024).833

DPO reparameterizes the reward function to learn834

a policy model from preference data directly. IPO835

is a theoretically grounded approach method that836

avoids DPO’s assumption that pairwise preferences837

can be replaced with pointwise rewards. ORPO838

introduces a reference-model-free odd ratio term839

to directly contrast winning and losing responses840

with the policy model and jointly trains with the841

SFT objective. SimPO aligns the reference-free842

reward function in the preference optimization ob-843

jective with the generation metric. For fair compar-844

isons, we start these algorithms from the same SFT845

checkpoints, the reference model is initialized as846

the policy model.847

For these algorithms, we conducted a thorough848

search for the optimal hyperparameter settings to849

ensure a fair comparison. The results of hyper-850

parameter settings are shown in Table 6. The re-851

sults of different preference optimization algorithm852

with optimal hyperparameter settings are shown853

in Figure 10. From the result, we find iTool with854

SimDPO achieved the best performance. Differ-855

ent preference algorithms do not create significant856

performance gaps except for ORPO.857

Figure 10: The performance iTool using different pref-
erence optimization algorithms on BFCL.

C Case Analysis 858

C.1 An Example of tool use 859

An example of tool-use data is shown in Table 8. 860

C.2 An Example of Preference Pair 861

Table 9 illustrates a preference pair example. The 862

chosen response correctly employs the "Get Trend- 863

ing Result" tool with suitable parameters for the 864

user’s request. Conversely, the rejected response 865

is improperly formatted, omits necessary paren- 866

theses, and incorrectly assigns the value 1 to the 867

timeframe parameter, showcasing an erroneous 868

application of the tool. 869

Table 10 presents another case of preference 870

pair, sampled during the MCTS research tree as 871

depicted in Figure 11. In this scenario, the user’s 872

query lacks the specific details necessary for the 873

functions mentioned (i.e., reviews for ’reviewAn- 874

alytics.extractSentiment’ and metrics for ’social- 875

Trends.fetchTrendingProducts’). The assistant’s 876

chosen response correctly identifies the need for 877

these parameter values, whereas the rejected re- 878

sponse incorrectly hallucinates when recognizing 879

these parameters. 880

12

Method Objective Hyperparameters Best Setting

DPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1] β = 0.1
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 3e− 7

IPO
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

− 1
2τ

)2 τ ∈ [0.01, 0.05, 0.1] τ = 0.1
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 1e− 6

ORPO − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
, λ ∈ [0.01, 0.05, 0.1] λ = 0.1

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 3e− 7

SimPO − log σ
(

β
|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x)− γ

) β ∈ [2.0, 2.5] β = 2.5
γ ∈ [0.5, 1.0, 1.4] γ = 0.5
lr ∈ [1e− 6, 5e− 7, 3e− 7] lr = 1e− 6

Table 6: The search for optimal hyperparameter settings of different preference optimization algorithms.

Prompt 1: Eval Prompt

Ground Truth Response: {gt_ans}
Generated Response by Model: {response}

User Instruction:
Please assess the quality of the generated response relative to the ground truth response.
Note: A generated response that is a fragment of the ground truth response is also excellent.

Evaluation Criteria:
1. Function Name: Is the name of all the function called correct?
2. Parameter Count: Is the number of parameters for all the function correct?
3. Parameter Names: Are the names of all the parameters for the function correct?
4. Parameter Value/Types: Are the value/types of all the parameters for the function correct?
5. Semantic Similarity: Is the generated response semantically close to the ground truth response?

Please directly choose from the following options to judge the overall quality:
(A) Excellent: The generated response meets all criteria and is almost identical to the ground truth response.
(B) Acceptable: The generated response meets most criteria but has minor discrepancies.
(C) Fair: The generated response meets some criteria but has significant issues.
(D) Poor: The generated response fails to meet most or all criteria.

ASSISTANT: The option of overall quality is
You are an AI specialized in tool use.
Your task is to assess the potential veracity of {placeholder}.

Table 7: The Eval Prompt for self-evaluation in Eq. 7 of Section 3.2.

Figure 11: The illustration of example 2 in Table 10 for preference pair derived from MCTS. The floating-point
values on the research tree nodes deontes the Q-value in MCTS.

13

Tool list [{
"name": "get_weather",
"description": "Get the current weather in a given location",
"input_schema": {

"type": "object",
"properties": {

"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"

},
"date": {

"type": "string",
"description": "The date for which to query the weather, in the format

yyyy-mm-dd by default"
}

},
"required": ["location","date"]

}
}]

User What will the weather be like in San Francisco on May 1, 2025?

Assistant get_weather(location="San Francisco", date="2025-05-01")

Table 8: A comprehensive illustration of tool use involves the following steps. First, the user presents a question
("What will the weather be like in San Francisco on May 1, 2025?"). Then, the assistant selects an appropriate
tool from a candidate tool list (which may comprise one or more potential tools). Finally, the assistant selects the
appropriate tool and parameters to complete the tool use.

Example 1

Tool list [{
"name": "Get Trending Result",
"description": "Retrieves trending search results from Google Trends for

the United States.",
"parameters": {

"type": "dict",
"properties": {

"category": {
"description": "The category of trending results (e.g., news, entertainment, etc.)",

"type": "string"
},
"timeframe": {

"description": "The timeframe for which to retrieve trending results (e.g., today,
this week, etc.)",

"type": "string"
}

},
"required": ["category"]

},
"required": null

},{
"name": "Get Server Time",
"description": "Returns the current server time in a standardized format",
"parameters": {

"type": "dict",
"properties": {},
"required": []

},
"required": null

}]

User Can you tell me the latest trending topics in entertainment today?

Assistant

chosen [Get Trending Result(category="entertainment", timeframe="today")]
rejected [Get Trending Result category="entertainment", timeframe="1"]

Table 9: The example 1 of preference pair derived from MCTS.

14

Example 2

Tool list [{
"name": "fetchTrendingProducts",
"description": "Fetches trending products based on reviews and engagement metrics.",
"parameters": {

"metrics": {
"type": "array",
"items": {

"productID": "string",
"engagementScore": {

"likes": "int",
"shares": "int"

} } } }
},{

"name": "extractSentiment",
"description": "Extracts sentiment scores from reviews.",
"parameters": {

"reviews": {
"type": "array",
"items": {

"reviewText": "string",
"reviewDate": {

"type": "string",
"pattern": "^\\w+ \\d{1,2}, \\d{4}$"

} } } }
}]

User I’m running a marketing campaign and need sentiment analysis from this month’s reviews of our main product.
We had 300 likes and 50 shares yesterday. Please analyze trends and sentiment for our competitor’s product
too; they had 450 likes and 75 shares.

Assistant
chosen You need to provide the reviews for the sentiment analysis of the flagship product and

the competitor’s product.
rejected [reviewAnalytics.extractSentiment(reviews={"reviewText": "product_name ticks the check

for everything."}),

Table 10: The example 2 of preference pair derived from MCTS.

15

	Introduction
	Problem Statement and Analysis
	Task Overview
	Preliminary Study

	Method
	Warm-up training
	MCTS-Based Iterative Reinforcement Learning

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Analysis
	Module Ablation
	Deeper Ablation
	Base Model Analysis.

	Training Gains Analysis

	Related Work
	Tool use of LLMs
	Reinforcement Learning

	Conclusion
	Limitaiton
	Details in Preliminary Study
	Descriptions of error types

	Complementary Experiments
	More Implementation Details
	Preference Algorithm Analysis

	Case Analysis
	An Example of tool use
	An Example of Preference Pair

