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Abstract

Unsupervised bilingual lexicon induction (BLI)001
task aims to find word translations between002
languages and has achieved great success in003
similar language pairs. However, related works004
mostly rely on a single linear mapping for lan-005
guage alignment and fail on distant or low-006
resource language pairs, achieving less than007
half the performance observed in rich-resource008
language pairs. In this paper, we introduce DM-009
BLI, a Dynamic Multiple subspaces alignment010
framework for unsupervised BLI. DM-BLI im-011
proves language alignment by utilizing mul-012
tiple subspace alignments instead of a single013
mapping. We begin via unsupervised clustering014
to discover these subspaces in source embed-015
ding space. Then we identify and align corre-016
sponding subspaces in the target space using a017
rough global alignment. DM-BLI further em-018
ploys intra-cluster and inter-cluster contrastive019
learning to refine precise alignment for each020
subspace pair. Experiments conducted on stan-021
dard BLI datasets for 12 language pairs (6 rich-022
resource and 6 low-resource) demonstrate sub-023
stantial gains achieved by our framework. We024
release our code to facilitate the community.025

1 Introduction026

Unsupervised bilingual lexicon induction (BLI) has027

shown to be a key multilingual NLP task to align028

cross-lingual word embeddings (CLWE) (Mikolov029

et al., 2013a; Ruder et al., 2019) and bridge lexical030

gap between low-resource languages (Eder et al.,031

2021; Marchisio et al., 2022).032

Existing BLI approaches can be roughly divided033

into two categories: mapping-based methods (Con-034

neau et al., 2017; Artetxe et al., 2018; Ren et al.,035

2020; Li et al., 2022) and generation-based meth-036

ods (Gonen et al., 2020; Ghazvininejad et al., 2023;037

Li et al., 2023). Mapping-based methods aim to038

align monolingual embeddings from various lan-039

guages into a shared CLWE space via linear or040

non-linear projections. Generation-based methods041

Figure 1. t-SNE visualization of the clustered mono-
lingual word embedding in a distant language pair of
English (left) and Japanese (right). Different colors rep-
resent different subspaces. With a global orthogonal
mapping from English to Japanese, BLI accuracies for
subspaces 0-5 are 54.3%, 48.7%, 40.1%, 19.4%, 18.9%
and 6.9%, respectively.

leverage the machine translation capacities of large 042

language models (LLMs) (Briakou et al., 2023) to 043

directly generate word translations via zero-shot 044

or few-shot prompting. Mapping-based methods 045

are superior to generation-based methods in un- 046

supervised settings, especially are far superior on 047

low-resource languages (Li et al., 2023), primarily 048

due to the unbalanced training corpus size of each 049

language supported by LLMs (Zhu et al., 2023a). 050

The existing fully unsupervised mapping-based 051

approaches still need to carefully address two is- 052

sues. First, these approaches rely on the strong as- 053

sumption that monolingual word embedding spaces 054

are isomorphic and the mapping matrix should be 055

under orthogonal constraint, but this assumption 056

does not hold true for all languages (Søgaard et al., 057

2018; Glavaš et al., 2019), especially for distant 058

language pairs (Ormazabal et al., 2019; Vulić et al., 059

2019). Therefore, weak orthogonal constraints 060

have been proposed to tackle this issue (Mohiuddin 061

et al., 2020; Glavaš and Vulić, 2020). 062

Second, a global mapping matrix does not con- 063

sistently perform optimally across all subspaces 064

(Nakashole, 2018; Wang et al., 2020). As shown 065

in Figure 1, subspaces exhibit inconsistent struc- 066

tural similarity. With a global orthogonal mapping, 067
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BLI accuracy varies among different subspaces:068

the highest accuracy is 54.3% in subspace 0 and069

the lowest accuracy is 6.89% in subspace 5. To al-070

leviate the issue, recent research proposed a multi-071

adversarial learning method (Wang et al., 2020)072

and a graph-based paradigm (Ren et al., 2020) to073

learn or refine a specific mapping for each subspace.074

However, in these approaches, multiple subspaces075

assigned by initial mappings are static. Once initial076

solutions of these mappings are not good enough,077

they may get stuck in poor local optima.078

Different from previous methods, we propose a079

Dynamic Multiple subspaces cross-lingual align-080

ment framework for fully unsupervised Bilingual081

Lexicon Induction, named DM-BLI. It leverages082

intra-cluster and inter-cluster contrastive learning083

to achieve precise alignment at subspace level for084

both source and target languages, along with dy-085

namically updating the subspace assignment of086

each word. DM-BLI starts by clustering the embed-087

dings of source language to establish multiple valid088

subspaces. Then, we induce an initial solution to089

discover corresponding multiple subspaces in the090

target language. Finally, we iteratively refine a pair091

of specific mappings for each subspace pair until092

convergence is reached.093

In summary, we make the following contribu-094

tions:095

• We propose a dynamic multiple subspaces096

cross-lingual alignment framework for the097

BLI task, which achieves customized map-098

pings for each subspace pair.099

• To boost the performance of our model, we de-100

sign a contrastive learning framework includ-101

ing intra-cluster and inter-cluster level based102

on unsupervised clustering to dynamically up-103

date the subspace assignment, avoiding falling104

into local optima.105

• We conduct extensive experiments to demon-106

strate the effectiveness of our method on107

twelve language pairs including six rich-108

resource and six low-resource language pairs,109

and DM-BLI achieves significant improve-110

ments especially for distant and low-resource111

language pairs.112

2 Related Work113

2.1 Cross-lingual Word Embedding114

Bilingual lexicons can be induced via nearest neigh-115

bour retrieval on CLWE, which represent lexical116

words from two or more languages in a shared 117

space. 118

Based on whether parallel corpora are used 119

or not, CLWE approaches can be categorized 120

into three groups: supervised (Faruqui M, 2014; 121

Zou W Y, 2013; Vulić I, 2015), semi-supervised 122

(Artetxe M, 2017; Patra et al., 2019), and unsuper- 123

vised approaches (Conneau et al., 2017; Artetxe 124

et al., 2018). Because parallel corpora are not avail- 125

able for many languages, unsupervised approaches 126

gain much more attention. 127

But unsupervised methods do not require any 128

seed dictionary at all, it is more difficult to induce 129

a reliable initial solution which plays a crucial role 130

in alignment. Therefore, GAN-based adversarial 131

training (Zhang et al., 2017), optimal transport so- 132

lution (Alvarez-Melis and Jaakkola, 2018), Auto- 133

encoder (Mohiuddin and Joty, 2019), and graph- 134

based alignment (Ren et al., 2020) were utilized 135

to better match embedding distribution and find a 136

better initial solution in a fully unsupervised way. 137

Based on the type of pre-trained monolingual 138

embeddings, CLWE can be divided into two 139

groups: static CLWE and contextual CLWE. Most 140

works focused on static word embeddings (Ruder 141

et al., 2019), which can be derived by Word2Vec 142

(Mikolov et al., 2013b) or fastText (Bojanowski 143

et al., 2016). However, static embeddings lack con- 144

textual information to capture polysemy. Therefore, 145

contextual embeddings, generated from monolin- 146

gual and multilingual pre-trained language models 147

(Devlin et al., 2019; Lample and Conneau, 2019), 148

were utilized as input monolingual embeddings. 149

However, they cannot surpass static embedding 150

in the BLI task based on the same mapping tech- 151

nologies even with much more training time (Vulić 152

et al., 2020; Liu et al., 2021). 153

2.2 Bilingual Lexicon Induction 154

Bilingual lexicon induction is the task of inducing 155

word translations from monolingual corpora of two 156

languages. 157

Existing BLI approaches achieved promising 158

performance on semantically similar and rich- 159

resource language pairs, but were still far from 160

satisfied on distant and low-resource language 161

pairs. For example, unsupervised BLI accuracy 162

on English-Spanish exceeded 80%, while under 163

40% on English-Chinese (e.g. Conneau et al., 164

2017; Wang et al., 2020; Ren et al., 2020). In low- 165

resource language pairs like Bulgarian-Hungarian, 166
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LLaMA13B achieved 23.61% accuracy, whereas167

VecMap (Artetxe et al., 2018) achieved 39.24% (Li168

et al., 2023).169

To address this issue, Taitelbaum et al. (2019)170

suggested leveraging auxiliary languages to bridge171

the gap between semantically distant and low-172

resource language pairs. Based on the observation173

that words are naturally grouped into different se-174

mantic subspaces and the BLI accuracies of differ-175

ent subspaces are not uniform, Wang et al. (2020)176

proposed a multi-adversarial learning method to177

learn a specific mapping for each subspace. How-178

ever, this GAN-based method was less robust and179

its assignment of subspaces was fixed initially180

which would bring the noise of initial solution.181

Different from previous work, we propose a dy-182

namic multiple subspaces alignment framework for183

unsupervised BLI to achieve more robust and pre-184

cise alignment at subspace level for both source and185

target languages, along with dynamically updating186

the subspace assignment of each word.187

3 Methodology188

3.1 Formulation189

Given the source and target languages, let X and Y190

be the normalized pre-trained monolingual embed-191

dings for source and target languages, respectively.192

Our goal is to find the optimal mapping matrices193

W ∗
X and W ∗

Y , with which XW ∗
X and YW ∗

Y are194

projected in a shared CLWE space, where seman-195

tically similar words across languages are close to196

each other.197

Figure 2 illustrates the four procedural steps of198

our BLI method: multiple subspaces clustering199

on the source language, initial alignment, intra-200

cluster and inter-cluster contrastive refinement, and201

bilingual lexicon induction.202

3.2 Multiple Subspaces Discovery203

Multiple subspaces discovery contains the first two204

steps in Figure 2: multiple subspaces clustering and205

initial alignment. It aims to find pairs of subspaces206

{Csi , Cti} from the source and target languages,207

where i = 1, 2...K and K is the number of sub-208

spaces.209

Multiple subspaces clustering is only carried on210

source language embedding to obtain K subspaces.211

Let Csi = {v
si
1 , vsi2 , ..., vsin } be the i-th subspace,212

where vsik is the k-th word in source subspace Csi213

and n is the number of words in Csi . A major214

challenge in multiple subspaces clustering is to215

determine the optimal number of subspaces in ad- 216

vance. To tackle this issue, we use a parameter-free 217

hierarchical clustering called First Integer Neigh- 218

bor Clustering Hierarchy (FINCH) (Sarfraz et al., 219

2019) to provide a reference number K. Then, K- 220

means algorithm (MacQueen et al., 1967) is used 221

to cluster X into K subspaces. 222

Then, an initial alignment is conducted for iden- 223

tifying corresponding Ksubspaces in the target lan- 224

guage, denoted as Cti =
{
vti1 , v

ti
2 , ..., v

ti
m

}
, where 225

i = 1, 2, . . . ,K and vtij is the j-th word in target 226

subspace Cti . Specifically, we operate the initial 227

alignment following (Artetxe et al., 2018) to get 228

a pair of global initial mapping matrices WX and 229

WY , with which we can retrieve the translation of 230

each target word in the source language. Subse- 231

quently, the subspace index of the target word is 232

set to be the subspace index of its translation. 233

3.3 Multiple Subspaces Contrastive 234

Refinement 235

A single global mapping does not consistently per- 236

form optimally across all subspaces (Nakashole, 237

2018; Wang et al., 2020). Therefore, the proposed 238

framework will dynamically refine matrices for 239

each subspace pair. This framework contains both 240

inter-cluster and intra-cluster contrastive learning. 241

Inter-cluster contrastive learning ensures the distin- 242

guishability of features from different subspaces, 243

thereby facilitating more effective customized map- 244

ping. Intra-cluster contrastive learning brings trans- 245

lation pairs within the subspace closer together, 246

while push non-translation pairs further apart, thus 247

achieving finer-grained alignment. The whole re- 248

finement process will be completed subspace by 249

subspace. 250

3.3.1 Inter-cluster Contrastive Learning 251

Given the subspace pair {Csi , Cti}, inter-cluster 252

contrastive learning aims to bring the whole sub- 253

spaces Csi closer to Cti , while pushing it away 254

from other non-corresponding subspaces Ctj ,i ̸=j . 255

We introduce optimal transport distance as the 256

metric to evaluate distance of two subspaces dis- 257

tribution, in our work Wasserstein distance (Han 258

et al., 2022) has been applied. The Wasserstein dis- 259

tance between the distributions of two subspaces 260

can be calculated as: 261

Dw(Csi , Cti) = min
T∈π(Csi ,Cti )

n∑
j=1

m∑
k=1

T jkc(v
ti
j , v

si
k )

(1) 262
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Figure 2. An illustration of the proposed DM-BLI framework. ❶ represents the monolingual word embedding
spaces of source and target language, where English is the source language denoted by circles while French is
target language denoted by triangles. Multiple subspaces clustering is only applied to source language(English)
and different colors represent different subspaces. ❷ represents a cross-lingual word embedding space via an
initial alignment. ❸ is a multiple subspaces contrastive learning refinement block aiming to push away words from
different clusters and pull closer the words being translation for each other closer within the cluster. ❹ represents
refined cross-lingual word embedding space, where words being translation for each other stay closer.

where c(vtij , v
si
k ) is the transport cost between263

words vtij ∈ Cti and vsik ∈ Csi , and T jk repre-264

sents the transport plan between vtij and vsik .265

Based on the K pairs of subspaces, we calculate266

a bi-direction inter-cluster contrastive learning loss267

as follows:268

Ls2t = −
1

K

{
log (e−Dw(Csi ,Cti )/τ )

+
∑
j ̸=i

log (1− e−Dw(Csi ,Cti )/τ )

}269

Lt2s = −
1

K

{
log (e−Dw(Cti ,Csi )/τ )

+
∑
j ̸=i

log (1− e−Dw(Cti ,Csi )/τ )

} (2)270

271

where τ is a temperature parameter. To be specific,272

the aforementioned process is applied to the sam-273

pled distribution of subspace, where the proportion274

of samples is determined by a preset threshold.275

Finally, we obtain the final inter-cluster con-276

trastive loss Linter as below, where λ is the trade-277

off set to be 0.5 between two directions:278

Linter = λ ∗ Ls2t + (1− λ) ∗ Lt2s (3)279

3.3.2 Intra-cluster Contrastive Learning 280

Given the subspace pair {Csi , Cti}, intra-cluster 281

contrastive learning is to ensure word pair (vsij , vtik ) 282

are closer, which are translations to each other in 283

Csi and Cti . 284

Based on the mapping matrices WX and WY , 285

we can initially construct a bilingual dictio- 286

nary D by retrieving the translation of each tar- 287

get word in the source language, where D = 288{
(vti1 , v

si
1 ), (vti2 , v

si
2 ), ..., (vtin , v

si
n )

}
and n is the 289

number of words in D. 290

However, the quality of D depends on the qual- 291

ity of mapping matrices. To alleviate the noise 292

brought by the current solution, we selectively sam- 293

ple high-confidence word translation pairs from D, 294

where confidence is determined by the similarity 295

gap between the selected translation and the second 296

candidate translation with the source word. 297

Based on the sampled translation pairs, the intra- 298

cluster contrastive learning loss can be defined as: 299

Lintra = −
s∑

i=1

log
esim(vsi ,v

t
i)/τ∑s

j=1
esim(vsi ,v

t
j)/τ

(4) 300

Where s is the number of sampled translation 301

pairs and τ is a temperature parameter. Ultimately, 302

the loss of the whole contrastive refinement can be 303
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defined as follows:304

L = Linter + Lintra (5)305

3.4 Multiple Subspaces Dynamic Updating306

A single round of subspace assignment may in-307

troduce noise from the initial solution, potentially308

causing CLWEs to fall into local optima. Therefore,309

we propose to dynamically adjust the subspace as-310

signment of each word in target language during311

the process of updating WX and WY .312

To clarify, the assignment of multiple subspaces313

in source language Cs = {Cs1 , Cs2 , ..., CsK} is314

fixed once the clustering process is completed. For315

word vti in target language, its translation from316

source language vsi is retrieved based on XWX317

and YWY . The subspace index of vsi will be as-318

signed to vti . Upon updating WX and WY , the319

subspace assignment of vti will be adjusted accord-320

ingly to maintain consistency whenever its transla-321

tion changes.322

As we mentioned before, the whole refinement323

process will be operated subspace by subspace. For324

each subspace Cti in target language, the whole dy-325

namic updating procedure stops until convergence326

is reached. Convergence can be determined by327

measuring the overlap of target words within Cti328

between the current and previous rounds. Besides,329

once a subspace has achieved convergence, its as-330

signments are finalized, ensuring that the words331

within it remain unchanged in their respective sub-332

spaces. The whole methodology is summarised in333

Algorithm 1.334

Algorithm 1: Dynamic Multiple Subspaces
Alignment for Unsupervised BLI

Input: Monolingual word embedding
spaces X , Y

Output:
{
W ∗

xi

}K

i=1
,
{
W ∗

yi

}K

i=1

1 {Csi}
K
i=1 ← Apply Clustering on X;

2 WX ,WX ← Initial Alignment ;
3 {Cti}

K
i=1 ← Calculate XWX , Y W Y ;

4 for i ≤ K do
5 Initialize Wxi ,Wyi with WX ,WY ;
6 while not convergence do
7 Wxi ,Wyi ← Optimise loss

Csi ← Keep Csi fixed
Cti ← Update Cti with Wxi ,Wyi

8 return
{
W ∗

xi

}K

i=1
,
{
W ∗

yi

}K

i=1
;

4 Experiment Setup 335

We evaluate our framework in both supervised 336

and unsupervised BLI tasks on 12 language pairs, 337

which contain 6 rich-resource language pairs: Span- 338

ish (ES), German (DE), Russian (RU), Arabic (AR), 339

Japanese (JA) and Chinese (ZH), all cross-lingual 340

to English (EN) and six low-resource language 341

pairs: Finnish (FI), Hindi (HI), Turkish (TR), In- 342

donesian (ID), Bulgarian (BG) and Catalan (CA), 343

all cross-lingual to English (EN). 344

4.1 Dataset 345

We use fastText vectors trained on full Wikipedias 346

for each language (Bojanowski et al., 2016) as 347

monolingual word embeddings. We use the widely 348

used MUSE bilingual lexicon (Conneau et al., 349

2017), released by Facebook, as ground truth lex- 350

icon. MUSE provides 110 bilingual lexicons and 351

each lexicon contains the 6,500 most frequently 352

used words in each language, split in a test set of 353

1,500 words and a training set of 5,000. 354

4.2 Baselines 355

Baselines are divided into supervised and unsuper- 356

vised two lines as described below. We run the 357

released code of each baseline in our experiments. 358

Supervised BLI 359

MUSE: Conneau et al. (2017) learned an orthog- 360

onal map by minimizing the Euclidean distance 361

between the supervised translation pairs. 362

VecMap: Artetxe et al. (2018) used a multi-step 363

framework consisting of several steps: whitening, 364

orthogonal mapping, re-weighting, de-whitening, 365

and dimensionality reduction. 366

BLISS: Patra et al. (2019) proposed a semi- 367

supervised approach with a weak orthogonality 368

constraint in the form of a back-translation loss. 369

CL-BLI: Li et al. (2023) proposed a robust and 370

effective two-stage contrastive learning framework 371

to combine static and contextual embeddings. 372

Unsupervised BLI 373

MUSE: Unsupervised MUSE (Conneau et al., 374

2017) used adversarial training and iterative Pro- 375

crustes refinement. 376

VecMap: Unsupervised VecMap (Artetxe et al., 377

2018) used intra-linguistic word similarity informa- 378

tion to induce initial solution. 379

Ad. : Mohiuddin and Joty (2019) proposed a adver- 380

sarial auto-encoder framework, where adversarial 381

mapping was done at the latent embedding space. 382
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Method
Precision@1 Precision@5

Avg.
FI-∗ HI-∗ TR-∗ ID-∗ BG-∗ CA-∗ FI-∗ HI-∗ TR-∗ ID-∗ BG-∗ CA-∗

Supervised
MUSE 46.50 25.65 39.82 35.56 39.28 46.19 66.07 39.17 57.56 50.92 56.62 60.52 46.99
BLISS 49.94 28.17 41.45 38.49 42.21 47.26 68.97 42.43 59.39 54.05 59.51 61.94 49.48

VecMap 58.12 34.07 49.37 44.72 49.13 54.35 75.43 48.40 66.24 59.52 64.62 66.84 55.90
CL-BLI 57.78 32.62 48.52 43.43 47.34 53.89 75.97 47.02 59.93 58.63 64.20 67.09 54.70
DM-BLI 60.29 35.57 53.09 48.24 50.80 56.47 77.08 49.24 69.11 62.09 66.16 68.57 58.06

Unsupervised
MUSE 0.05 0.00 36.82 36.35 38.31 46.07 0.05 0.05 54.76 51.65 55.05 60.51 31.64

VecMap 54.71 28.19 48.92 45.65 45.69 53.52 71.72 41.54 65.25 59.76 61.24 65.63 53.49
Ad. 0.45 0.01 46.69 0.09 0.03 53.06 1.47 0.03 63.08 0.31 0.11 65.55 19.24

BLOOM7B 23.43 28.30 30.82 45.45 16.75 43.89 25.75 28.54 34.08 49.77 16.94 48.01 32.64
Llama13B 40.98 30.68 44.90 48.63 56.86 48.83 41.64 30.69 45.24 48.95 57.16 49.19 45.31
GPT-3.5 60.37 56.11 54.49 48.37 67.51 45.15 64.33 57.40 55.99 49.35 69.53 45.78 56.19
DM-BLI 57.48 30.80 51.98 48.81 47.63 56.15 74.10 43.75 67.95 62.46 63.36 67.61 56.00

Table 1. Precision@1 and Precision@5 for the BLI task on six low-resource language pairs, where ∗ represents
EN(English). The best score is shown in bold, and the suboptimal score is shown in underlined.

BLOOM7B (Workshop et al., 2022): It is a383

decoder-only Transformer language model that sup-384

ports 46 natural languages. 7B parameters version385

was used in our experiment.386

Llama13B (Touvron et al., 2023): It is a decoder-387

only LLM which supports 20 languages. 13B pa-388

rameters version was used in our experiment.389

GPT-3.5 (Brown et al., 2020): It is a decoder-only390

LLM with 175B parameters, supported by 38 lan-391

guages. GPT-3.5-turbo was used in our experiment.392

4.3 Implementation details393

We choose the most 7,500 frequent vocabularies394

of each language. The normalization procedure395

for pre-trained embedding contains three steps:396

length normalizes the embeddings, then mean cen-397

ters each dimension, and then length normalizes398

them again.399

For multiple subspaces discovery, the number400

of subspaces is set to be 9 and we will discuss the401

impact of this setting later. For inter-cluster con-402

trastive learning, only words with weight above403

0.45 are sampled to represent the subspace distri-404

bution. For intra-cluster contrastive learning, we405

only sample the top 20% of word translation pairs406

sorted descending by confidence.407

Following the previous research (Patra et al.,408

2019), the prompt template for Llama13B is de-409

fined as: "Translate from Lx to Ly: wx=>"; the410

prompt template for GPT-3.5 is defined as: "Trans-411

late the Lx word wx into Ly:". Both of them are412

provided as the best template for each of them in413

Li et al. (2023). 414

The evaluation for BLI is done by comparing 415

the bilingual lexicon constructed by each model 416

with the benchmark lexicon MUSE (Conneau et al., 417

2017) and reporting precision Precision@N for 418

N = 1, 5. Precision@N accounts for accuracy for 419

which the correct translation of the source words 420

is in the N -th nearest neighbors based on CSLS 421

(Conneau et al., 2017). 422

5 Result and Discussion 423

5.1 Results in Low-resource Languages 424

Table 1 summarizes the results of the supervised 425

and unsupervised BLI tasks in low-resource lan- 426

guage pairs. In both tasks, our proposed method 427

shows significant improvements, particularly in 428

Precision@5, with an average of 2.16 points higher 429

than the strongest baseline VecMap in the super- 430

vised task. In the unsupervised task, our method 431

performs nearly as well as the strong baseline GPT- 432

3.5. 433

In the supervised task, DM-BLI outperforms all 434

the baseline methods on all language pairs, demon- 435

strating the robustness and effectiveness of our 436

framework on low-resource language pairs. In 437

the unsupervised task, DM-BLI outperforms all 438

the baseline methods on four out of six language 439

pairs and archives suboptimal scores in the remain- 440

ing pairs at Precision@5. It demonstrates that 441

our method is competitive even compared with 442

GPT-3.5, which has 175B parameters and sup- 443

ports 38 languages. The unsatisfied performance 444
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Method
Precision@1 Precision@5

Avg.
ES-∗ DE-∗ RU-∗ AR-∗ JA-∗ ZH-∗ ES-∗ DE-∗ RU-∗ AR-∗ JA-∗ ZH-∗

Supervised
MUSE 67.80 63.14 53.23 44.33 0.14 8.29 78.13 75.86 70.19 61.16 0.41 18.87 45.13
BLISS 68.46 63.49 54.88 45.70 0.01 6.43 78.86 76.69 71.28 62.47 0.04 14.00 45.19

VecMap 71.70 66.46 59.58 51.54 37.14 42.50 80.43 78.22 74.69 67.00 53.65 62.23 62.10
CL-BLI 73.02 69.00 61.31 53.14 35.07 42.44 81.71 80.28 77.10 68.95 50.68 62.26 62.91
DM-BLI 72.87 68.28 61.61 52.33 41.03 44.83 81.16 79.35 76.35 67.80 56.94 64.13 63.89

Unsupervised
MUSE 67.89 63.27 50.49 0.03 0.09 0.01 78.37 75.87 67.10 0.08 0.37 0.04 33.63

VecMap 72.00 67.17 56.42 47.43 26.62 33.39 79.91 77.77 71.45 63.53 40.62 51.86 57.35
Ad. 71.93 66.63 55.50 0.00 0.00 0.00 79.99 77.59 70.56 0.00 0.01 0.01 35.19

BLOOM7B 52.50 38.34 26.06 32.67 21.34 34.35 56.19 41.49 26.27 32.80 21.38 34.53 34.83
Llama13B 60.58 57.80 64.44 22.13 38.56 32.28 61.09 58.51 65.10 22.14 38.57 32.29 46.12
GPT-3.5 68.17 63.07 74.15 65.94 71.80 65.12 70.72 66.08 76.84 69.88 74.95 68.69 69.62
DM-BLI 72.94 68.67 58.91 48.58 32.42 37.34 80.65 78.92 73.45 64.70 47.98 56.45 60.08

Table 2. Precision@1 and Precision@5 for the BLI task on six rich-resource language pairs, where ∗ represents
EN(English). The best score for is shown in bold, and the suboptimal score is shown in underlined.

of BLOOM7B and Llama13B also suggests that the445

generalization of LLMs to low-resource languages446

remains an open challenge.447

5.2 Results in Rich-resource Languages448

Table 2 summarizes the main results of the su-449

pervised and the unsupervised BLI tasks on rich-450

resource language pairs.451

In supervised tasks, our proposed method452

achieves significant improvements, with average453

nearly 1 point higher than the strongest baseline454

CL-BLI. We achieve the optimal or sub-optimal455

performance on all the language pairs. Notably,456

our method achieves a 6.26% improvement over457

CL-BLI on distant language pairs Japanese to En-458

glish, demonstrating advantages of multiple sub-459

space alignment on distant language pairs.460

In unsupervised tasks, DM-BLI achieves the461

sub-optimal result on rich-resource language pairs.462

While it outperforms the previous mapping-based463

SOTA method VecMap but underperforms GPT-3.5.464

The outstanding performance of GPT-3.5 verifies465

the potential of the latest generation of LLMs for466

developing bilingual lexicons with sufficient train-467

ing and a large amount of parameters. However,468

BLOOM7B and Llama13B are still far lagging be-469

hind the traditional mapping-based method even on470

rich-resource language pairs, which verifies that it471

is difficult to extract lexical information from large472

language models (Liu et al., 2021).473

5.3 Influence of Translation Direction 474

In this subsection, we examine how the transla- 475

tion direction affects BLI results in unsupervised 476

setup. The language pairs we choose as examples 477

are Japanese (JA), Chinese (ZH), Finish (FI), In- 478

donesian (ID) from and to English (EN), as shown 479

in Table 3. 480

Method EN-JA EN-ZH EN-FI EN-TR
→ ← → ← → ← → ←

MUSE 0.01 0.37 0.01 0.04 0.06 0.05 30.73 54.76
VecMap 35.63 40.62 32.62 56.45 43.08 71.72 40.10 65.29
GPT-3.5 57.06 74.98 42.56 68.69 58.97 64.33 52.63 55.99
DM-BLI 39.43 47.98 34.69 56.45 44.30 74.10 41.90 67.95

Table 3. Precision@5 for the bi-direction unsupervised
BLI task on four language pairs. The best score is shown
in bold, the suboptimal score is shown in underlined.

From Table 3, we observe the performance dif- 481

ferences in the two directions of the language pair. 482

Specifically, the results from English to other lan- 483

guages significantly lag behind those from other 484

languages to English. A part of the reason is that 485

there are more unique English words than non- 486

English words in the evaluation set (Xu et al., 2018). 487

It also proves that LLMs exhibit unbalanced capac- 488

ities across languages, performing better at translat- 489

ing into English than translating into non-English 490

(Zhu et al., 2023b). 491

5.4 Influence of the Number of Subspaces 492

In this section, we discuss the impact of the number 493

of subspaces on performance of DM-BLI, taking 494

distant language pair JA2EN as an example. 495

7



Figure 3. t-SNE visualization of sampled CLWEs derived from VecMap and DM-BLI, where visualization of CLWE
derived from DM-BLI is based on different numbers of multiple subspaces.

As shown in Figure 3, compared with VecMap496

who only use a global mapping, our method lets497

word with same meaning from different languages498

get much closer in a shared CLWEs space via mul-499

tiple subspace-level alignments.500

Notably, from Figure 3, we can find that even501

using different numbers of subspaces, DM-BLI still502

achieved nearly the same results, which shows that503

it is not sensitive to the number of subspaces and504

further proves the robustness of our method.505

5.5 Effect of Multiple Subspaces Alignment506

Notice that our method focuses on leveraging mul-507

tiple subspace alignments to achieve better perfor-508

mance for BLI. In this subsection, we discuss the509

advantages of multiple subspaces alignment from510

our method DM-BLI, taking low-resource language511

pair CA2EN as an example.512

Figure 4. Precision@1 for unsupervised BLI from Cata-
lan to English in different English subspaces.

As shown in Figure 4, on low-resource language513

pair like CA2EN, we can find that BLI accura-514

cies for all subspaces based on DM-BLI are higher515

than the strongest mapping-based baseline VecMap.516

Notably, we also find that unbalanced alignments517

occur in a generative way via GPT-3.5 as well. Fur-518

thermore, LLM’s capability on BLI is still far lag-519

ging behind mapping-based approach.520

In order to show effect of DM-BLI more intu-521

itively, we sample 2 subspaces for visualization. 522

As shown in Figure 5, via multiple subspaces align- 523

ment, translation pairs within the subspace stay 524

closer together than applying a global mapping. 525

Figure 5. t-SNE visualization of two sampled subspaces
in CLWE space derived from VecMap and DM-BLI on
CA2EN. Within the subspace, dots denoted by the same
color but different transparency are translation pairs.

6 Conclusion 526

In this paper, we propose a Dynamic Multiple 527

subspaces alignment framework for unsupervised 528

BLI, called DM-BLI. Our method utilizes multiple 529

subspaces alignment instead of a single mapping 530

alignment to achieve more accurate alignment on 531

the subspace level. The experiments show that 532

our method can significantly improve the bilin- 533

gual word induction performance compared with 534

strong baselines even including GPT-3.5, especially 535

for distant and low-resource language pairs. At 536

the same time, the unsatisfied performances of 537

BLOOM7B and Llama13B on all language pairs 538

also suggest that it is difficult to extract lexical 539

information from large language models and the 540

generalization of LLMs to low-resource languages 541

remains an open challenge. In the future, we will 542

consider combining our method with multilingual 543

LLMs to take advantage of these two paradigms. 544
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Limitations545

First, due to our limited computing resources, we546

did not conduct a comprehensive evaluation of the547

BLI capabilities of multilingual LLMs. For open-548

source LLMs, LLMs exceeding 13B parameters549

were not evaluated in the experiment. For close-550

source LLMs, experiments were mainly conducted551

on GPT-3.5-turbo which is not the latest and best.552

Second, public BLI datasets are not enough to553

support a comprehensive evaluation. In the evalua-554

tion standard dictionary, the proportion of ground-555

truth translations in different categories is uneven.556

As also discussed in (Li et al., 2023), current evalu-557

ation will not work for words that are not included558

in the gold translations.559
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