
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND SOFTMAX: A NATURAL PARAMETERIZATION
FOR CATEGORICAL RANDOM VARIABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Latent categorical variables are frequently found in deep learning architectures.
They can model actions in discrete reinforcement-learning environments, repre-
sent categories in latent-variable models, or express relations in graph neural net-
works. Despite their widespread use, their discrete nature poses significant chal-
lenges to gradient-descent learning algorithms. While a substantial body of work
has offered improved gradient estimation techniques, we take a complementary
approach. Specifically, we: 1) revisit the ubiquitous softmax function and demon-
strate its limitations from an information-geometric perspective; 2) replace the
softmax with the catnat function, a function composed of a sequence of hierarchi-
cal binary splits; we prove that this choice offers significant advantages to gradient
descent due to the resulting diagonal Fisher Information Matrix. A rich set of ex-
periments — including graph structure learning, variational autoencoders, and re-
inforcement learning — empirically show that the proposed function improves the
learning efficiency and yields models characterized by consistently higher test per-
formance. Catnat is simple to implement and seamlessly integrates into existing
codebases. Moreover, it remains compatible with standard training stabilization
techniques and, as such, offers a better alternative to the softmax function.

1 INTRODUCTION

Categorical random variables — random variables that take one of a fixed set of values — are ubiq-
uitous in machine learning. They are used to represent a wide range of concepts, including classes
in a classification problem (LeCun & Cortes, 2010), topics in a latent variable model (Miao et al.,
2017), discrete actions in a reinforcement learning environment (Mnih et al., 2013), the presence or
absence of connections in a graph (Franceschi et al., 2019) and clusters in mixture models (Jacobs
et al., 1991).

The use of samples from categorical variables may be a modeling necessity or a choice dictated by
scalability and efficiency. For instance, some problems are inherently discrete, such as selecting a
word token in a language model (Chen et al., 2018; Paulus et al., 2020) or choosing an action in a
reinforcement learning task (Mnih et al., 2013). In other cases, discretization is used for practical
reasons, such as scalability in sparse graph modeling (Cini et al., 2023) or information compression
using vector quantization in generative models (Van Den Oord et al., 2017).

In many of these settings, the categorical variables are latent, lacking a direct supervisory signal for
training. The training signal must therefore be derived from an auxiliary loss function on a down-
stream task. While low-variance unbiased gradient estimators can be constructed for some contin-
uous latent variables using techniques like the pathwise gradient estimator (Pflug, 1996; Kingma &
Welling, 2014), the same methods are often not applicable to the discrete case. Consequently, learn-
ing often suffers from high-variance or biased gradient estimates, which can lead to unstable training
runs that fail to converge to a satisfactory solution (Peters & Schaal, 2006). As a result, improving
the training stability of models with latent categorical random variables remains an active area of
research with potential for broad impact (Mohamed et al., 2020; Huijben et al., 2022).

Most techniques developed to stabilize the training of latent categorical distributions focus on re-
ducing the variance of the gradient estimator. This is typically achieved by introducing novel control
variates (Gu et al., 2016; Tucker et al., 2017), employing different sampling strategies (Kool et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2020), or designing new gradient estimators (Niepert et al., 2021). In this work we explore a comple-
mentary perspective: improving training effectiveness by changing the function that parameterizes
the categorical distributions within an information geometry-based framework. The modification we
propose is simple to implement, can be easily integrated into existing codebases and is compatible
with other training stabilization techniques.

To the best of our knowledge, this is the first work to use results from information geometry (Rao
et al., 1945; Amari, 1998) to study the softmax parameterization and replace it with a function
that has better theoretical properties. Specifically, we observe that the standard softmax function
has a dense Fisher Information Matrix (FIM), which induces geometric distortions in the parame-
ter space. We therefore propose replacing it with a function designed to produce an optimization
landscape more amenable to gradient-descent-based algorithms. We demonstrate that this new pa-
rameterization — a series of hierarchical binary decisions that we name catnat — yields a diagonal
FIM. This diagonal structure substantially reduces geometric distortions, allowing the optimizer to
follow a more direct and stable path to a solution. Through extensive experiments in diverse settings
− Graph Structure Learning (GSL), Variational Autoencoders (VAEs), and Reinforcement Learning
(RL) − we empirically show that the proposed modification enables models to converge to solutions
with superior final performance.

2 PROBLEM FORMULATION

We consider models that employ a set of latent categorical variables to solve a downstream task. A
pipeline general enough to include many deep learning models be described as follows. (a) Given
an input x ∈ X , a neural network gθ maps x to a vector of unnormalized scores s⃗ ∈ RS . (b) These
scores are transformed by a function π : RS →∆K−1 into a valid categorical probability vector p⃗
lying in the (K − 1)-dimensional probability simplex ∆K−1 := p⃗ ∈ RK≥0 :

∑K
k=1 pk = 1. (c) A

latent categorical variable C⃗ is then sampled according to Cat(p1, . . . , pK) and (d) used, together
with x, by a task-specific predictor fψ to produce the output y:

(a) s⃗ = gθ(x),

(b) p⃗ = π(s⃗) with p⃗ = [p1, . . . , pK],

(c) C⃗ ∼ Cat(p1, . . . , pK),

(d) y = fψ(x, C⃗), (1)

A training signal is derived from y using a task-dependent objective (e.g., a supervised loss or a
reinforcement-learning reward), and the model parameters (θ, ψ) are learned by gradient-based op-
timization of the corresponding expected objective. We present the overall architecture in Figure 1,
with results naturally extending to more sophisticated architectural variants.

Depending on the application, gθ, fψ , or both may be simple neural networks as in VAEs, or compo-
sitions of parametric and non-parametric components as in RL. While we focus on a single categori-
cal latent variable for clarity, the formulation and all subsequent results extend directly to collections
of categorical variables with potentially different cardinalities.

. . .

0
1

0

ENCODE
MAP TO

PROBABILITY SIMPLEX SAMPLE PREDICT
0.1
0.3

0.0

. . .

1.1
3.2

-1

. . .

Figure 1: Schematic depiction of a model with a single categorical latent random variable. For rigor,
we show C⃗ as a one-hot vector; however, in some cases (e.g., when using the standard version of
the Gumbel–Softmax trick) C⃗ may be a dense vector.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 RELATED WORKS AND PRELIMINARIES

Learning Categorical Variables The most common unbiased gradient estimator is the Score
Function, or REINFORCE, gradient estimator (Williams, 1992). While unbiased, it suffers from
high variance. This variance can be reduced using control variates (Ross, 2006) by subtracting a
baseline from the learning signal. Simple baselines can be constructed by sampling the random vari-
able multiple times, at the cost of introducing non-negligible computational overhead, or they can
be estimated as a moving average from previous computations (Kool et al., 2019). More advanced
control variates can be built efficiently using a neural network (Mnih & Gregor, 2014; Grathwohl
et al., 2018), by employing a Taylor expansion of the mean-field network’s loss function (Gu et al.,
2016), or by using a low-variance biased estimate of the loss (Tucker et al., 2017). Other gradi-
ent estimators can notably reduce variance at the expense of a biased gradient estimate by using a
continuous relaxation of one-hot vectors, as in the Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017; Huijben et al., 2022), or by directly using mean-field gradients as a surrogate (Bengio
et al., 2013). In the same class of biased estimators are MAP-based estimators (Niepert et al., 2021;
Minervini et al., 2023) that derive a gradient signal from the change in the MAP estimate in response
to perturbations of the distribution’s parameters.

Instead of changing the gradient estimator another interesting line of research focuses on sampling
techniques to reduce the variance of the estimator (Titsias & Lázaro-Gredilla, 2015). For example,
Liu et al. (2019) propose to exactly compute the contribution of high probability components and
to estimate the rest with an unbiased estimator while Kool et al. (2020) propose to sample without
replacement and then unbias the estimate to avoid duplicate samples. Often these techniques can be
shown to be a Rao-Blackwellization (Mood et al., 1974) of other more simple estimators.

Information Geometry & Natural Gradient Ordinary gradient descent assumes an Euclidean
geometry of the parameter space. In Amari (1998) and Amari & Douglas (1998) the authors rec-
ognized that the parameter space of many learning models is not Euclidean and equal changes1 in
the parameter space can have disproportional impacts on the model’s output distribution. To address
this, they proposed measuring the ’distance’ between parameter settings through the dissimilarity of
their induced distributions, assessed by their Kullback–Leibler divergence. For distributions p(x|θ)
and p(x|θ + dθ) close in the parameter space, the KL divergence can be approximated as:

DKL(p(x|θ)||p(x|θ + dθ) ≃ 1

2
dθTG(θ)dθ (2)

Where G(θ) is the Fisher Information Matrix (FIM):

G(θ) = Ep(x|θ)
[
(∇θlog p(x|θ)) (∇θlog p(x|θ))T

]
(3)

The FIM captures the local curvature of the statistical manifold (Amari, 2016) and the natural gradi-
ent is defined as the direction of steepest descent in this Riemannian manifold. The natural gradient
∇̃L(θ) can be obtained by pre-conditioning the ordinary gradient with the inverse of the FIM:

∇̃L(θ) = G(θ)−1∇L(θ) (4)

While theoretically advantageous, implementing natural gradient descent presents practical chal-
lenges. First, for each update step, computing Equation (4) requires calculating and inverting the
FIM, which entails cubic scaling and can easily become a computational bottleneck. For this reason,
different approximations have been proposed (Pascanu & Bengio, 2013; Grosse & Martens, 2016;
Amari et al., 2019) to speed up computation at the expense of precision. As a second problem,
Equations (2) and (4) hold true for infinitesimal parameter changes, so their approximation error
increases with larger, more practical step sizes commonly used during optimization. In Martens
(2020) natural gradient descent is analyzed from the perspective of a second-order optimization
method, demonstrating that designing a robust natural gradient optimizer necessitates the incorpo-
ration of techniques such as trust regions and Tikhonov regularization. Furthermore, the FIM can
be singular or create numerical instabilities during its inversion. In this work, we propose to tackle
both problems by choosing a suitable parameterization for the categorical latent random variable
that intrinsically produces a diagonal FIM.

1measured by some kind of Euclidean norm.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 CATEGORICAL RANDOM VARIABLES PARAMETERIZATIONS

4.1 THE SOFTMAX FUNCTION AND ITS PITFALLS

Let s⃗ ∈ R1×K be a set of scores, the softmax function is defined as:

pi =
esi∑K
k=1 e

sk
(5)

Originally introduced in statistical mechanics as the Boltzmann distribution (Jaynes, 1957), the soft-
max later appeared in statistics as the canonical link for categorical outcomes in Generalized Linear
Models (GLM) (Nelder & Wedderburn, 1972). In neural networks, the name softmax was popular-
ized by Bridle (1989), who also describes some of its appealing properties: it converts arbitrary real
vectors into non-negative probabilities, preserves rank order, and offers a smooth approximation to
the argmax. These features have made it the standard parameterization for categorical variables in
machine learning.

Despite its benefits, the softmax function has non-negligible drawbacks. It is overparameterized,
using K parameters to represent a (K − 1)-dimensional simplex, it can saturate, leading to van-
ishing gradients (Goodfellow et al., 2016) and, in highly nonlinear probabilistic models, the GLM
assumptions behind its usefulness (Nelder & Wedderburn, 1972) may not hold.

We argue that Information Geometry (Amari, 1998; 2016) provides a principled framework for
defining more suitable parameterizations. To this end, in Proposition 4.1 we analyze the geometric
properties induced by the softmax function.
Proposition 4.1. The Fisher Information Matrix for a categorical random variable parametrized by
the softmax function, as defined in (5), is

Gsoftmax(s) =


p1(1− p1) −p1p2 · · · −p1pK
−p2p1 p2(1− p2) · · · −p2pK

...
...

. . .
...

−pKp1 −pKp2 · · · pK(1− pK)

 . (6)

We provide a proof of the proposition in Appendix A.

The resulting Fisher Information Matrix is dense, with off-diagonal entries −pipj that couple all
scores. Consequently, the statistical manifold is curved, and, as discussed in Section 3 and by
Amari & Douglas (1998); Amari (2016), gradient-based optimization can suffer. To address this,
we introduce a class of parameterizations designed to induce a flatter statistical manifold.

4.2 CATNAT: A CLASS OF NATURAL PARAMETERIZATIONS

Figure 2: catnat param-
eterization for a cate-
gorical distribution with
K = 4 classes.

In this section, we propose a class of parameterizations for categorical
random variables that, as demonstrated in Theorem 4.2, yield a diag-
onal Fisher Information Matrix. We refer to this class as catnat, as it
parametrizes the categorical distribution in accordance with natural gra-
dient principles. By analyzing the general form of the FIM, we further
identify and select the parameterization with the minimal number of fac-
tors in the diagonal terms.

The proposed class models the categorical probability distribution as the
outcome of a sequence of binary decisions, structured as a hierarchical
tree. Each unnormalized score si corresponds to a unique node in this
tree. To ensure that the resulting probabilities lie in the interval [0, 1],
an activation function a : R → [0, 1] is applied to each score. Figure 3
illustrates this construction.

Each score si, its corresponding binary probability ai := a(si), and the
final categorical probabilities pk are associated with unique indices. To
ease the theoretical analysis, we express those indices in their binary representation that, for a cate-
gorical distribution over K classes, can be represented by a string of length H = log2(K) bits. See
Figure 2 for an example with K = 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

.

.

 .

 .

.

 .

 .

.

 .

 .

.

 .

 .

Figure 3: catnat parameterization for the categorical distribution. Given unnormalized scores si
and activation function a, blue nodes compute the probability of going left (a(si)) or right (1 −
a(si)). Final categorical probabilities are shown in purple. On the right side, the hierarchy level h is
indicated. Note that indices for p start from zero, while indices for s start from one.

For Bernoulli probabilities ai and scores si, we introduce a convenient notation by splitting the
binary string into two sequences: HRC and ID . Given the hierarchy level h of ai in the tree, HRC

consists of h − 1 zeros followed by a one, while ID specifies the position of the node at that level.
For example, in Figure 4, HRC shows that a9 is at hierarchy level h = 3, and ID = 010 identifies it
as the second node from the right.

HRC ID

HRC ID

bits

Figure 4: Example of a
binary representation of
a node for K = 64.

Since HRC is uniquely determined once ID and K are given, we drop
HRC and write, for a node at hierarchy h:

a HRC ID = a ID = a
b1, ..., bh−1

. (7)

The introduced notation allows for a compact representation of the cate-
gorical probabilities. Specifically, the probability pk of category k identi-
fied by the binary string b⃗ = [b1, ..., bH] is:

p⃗b = pb1,...,bH =

H∏
h=1

(
a

b1, ...,bh−1

)bh (
1− a

b1, ...,bh−1

)1−bh
(8)

At the root node (h = 1), the path represented by the set b1, . . . , bh−1 is empty, consistent with the
fact that the node is uniquely identified by its hierarchy level alone. By construction, the probability
of descending from the root to a node ai is:

P (ai) = P
(
a ID i

)
= P

(
a

b1, ..., bhi−1

)
=

hi−1∏
h=1

(
a

b1, ...,bh−1

)bh (
1− a

b1, ...,bh−1

)1−bh
(9)

This probability is also equivalent to the sum of the probabilities of all leaf nodes p⃗b that descend
from the node ai:

P (ai) =
∑
b⃗∈Di

p⃗b (10)

where Di is the set of all leaf nodes in the subtree rooted at ai.
Theorem 4.2. The Fisher Information Matrix Ga(s) for the catnat parameterization is:

Ga(s)ij =

{
0 if i ̸= j

P (ai)
(
∂ai
∂si

)2 (
1

ai(1−ai)

)
if i = j

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The proof is provided in Appendix B. Theorem 4.2 shows that this class of parameterizations yields
diagonal FIMs, thereby flattening the statistical manifold. The diagonal entries, Ga(s)ii, depend on
two components: the probability of reaching node i, P (ai), and a term involving the derivative of
the chosen activation function. Since P (ai) is determined by the scores of all ancestor nodes, each
diagonal entry depends on at most H = log2(K) scores. Furthermore, as the overall complexity of
the FIM is governed by the choice of a(s), we can further simplify Equation (11). We propose the
natural activation function ν(x) to render the second component constant:

ν(x) =


0 if x ≤ C − A

2
1+sin(π(x−C)

A)
2 if C − A

2 ≤ x ≤ C + A
2

1 if x ≥ C + A
2

(12)

C is a parameter that can be used to shift the function along the x axis and to modify the categorical
probabilities at initializations − when it is reasonable to expect the scores to be distributed around
zero. In the experiment we use C = 0. Parameter A can be changed to modify the slope of the
function around C. In the experiments, to have a fair comparison between the natural activation ν
with the sigmoid function σ we set A so that ∂ν

∂s

∣∣
s=0

= ∂σ
∂s

∣∣
s=0

resulting in A = 2π.

We term ν the natural activation function as it simplifies the FIM in a way that aligns with the
objectives of natural gradient methods, as demonstrated in Corollary 4.3.
Corollary 4.3. The Fisher Information Matrix Ga(s) for the catnat parameterization using the
natural activation function ν is:

Gν(s)ij =

{
0 if i ̸= j

P (ai)
(
π
A

)2
if i = j and |si − Ci| < A

2

(13)

with the value for i = j at |si − Ci| = A
2 defined by continuity.

The corollary is proved in Appendix C. The corollary shows that using the natural activation elimi-
nates the dependence of each diagonal entryGν(s)ii on the local score si, leaving only the ancestor-
dependent probability term P (ai).

5 EXPERIMENTS

We evaluate three parameterizations for categorical latent random variables: the softmax function,
the catnat parameterization with sigmoid activation, and the catnat parameterization with natu-
ral activation function. The evaluation spans three distinct domains that rely on such variables:
Graph Structure Learning (GSL), Variational Autoencoders (VAE), and Reinforcement Learning
(RL). These domains allow to assess the proposed method under diverse conditions, varying fac-
tors such as the gradient estimator employed for the latent distribution parameters, the number of
categories (K), the number of latent variables (N), the form of the loss or reward function and
the downstream task considered. Empirical results show that both hierarchical parameterizations
typically converge to better optima, with the proposed natural activation function yielding superior
performance in the majority of the cases.

5.1 GRAPH STRUCTURE LEARNING

Table 1: Different datasets are gener-
ated with different latent distributions.
The latent distribution is determined by
the Bernoulli probability θ∗ of sampling
edges from communities as in Figure 5.

True Bernoulli Binary entropy per
probability θ∗ edge (shannons)

0.1 0.47
0.25 0.81
0.5 1

0.75 0.81
0.9 0.47

Graph Neural Networks (GNNs) (Scarselli et al., 2008)
are a class of models that leverage relational informa-
tion, encoded in an adjacency matrix A, as an inductive
bias to improve performance on various predictive tasks
(Fout et al., 2017; Shlomi et al., 2020). Often, the optimal
graph structure is not available and must be inferred from
the data, a process known as Graph Structure Learning
(GSL) (Kipf et al., 2018; Franceschi et al., 2019; Fatemi
et al., 2021). In this context, the adjacency matrix A is
frequently treated as a collection of latent categorical ran-
dom variables C⃗, where a Bernoulli random variable typi-
cally models the existence of each edge (Franceschi et al.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Test metrics of models trained on datasets generated with different true latent parameters θ∗.
ES, PP-MAE, and PP-MSE measure predictive performance, while MAE in θ evaluates calibration
on the latent distribution parameters. For all metrics, lower values indicate better performance.
Bold numbers indicate the best-performing models. Optimal values are estimated using the true
data-generating model.

θ∗ Activation ES loss PP-MAE PP-MSE MAE on θ

sigmoid 7.445 ± 0.008 0.3843 ± 0.0006 0.621 ± 0.001 0.0077 ± 0.0002
0.1 natural 7.429± 0.011 0.3842± 0.0006 0.618± 0.002 0.0054± 0.0002

Optimal value 7.417± 0.008 0.3844 ± 0.0007 0.615 ± 0.001 0

sigmoid 10.892 ± 0.012 0.8228 ± 0.0009 1.312 ± 0.003 0.0080 ± 0.0001
0.25 natural 10.872± 0.017 0.8213± 0.0012 1.307± 0.004 0.0060± 0.0004

Optimal value 10.848 ± 0.009 0.8199 ± 0.0007 1.300 ± 0.002 0

sigmoid 14.955 ± 0.007 1.2536 ± 0.0006 2.469 ± 0.002 0.0191 ± 0.0005
0.5 natural 14.942± 0.028 1.2534± 0.0024 2.468± 0.009 0.0064± 0.0005

Optimal value 14.923 ± 0.015 1.2522 ± 0.0015 2.461 ± 0.005 0

sigmoid 10.716 ± 0.043 0.8017 ± 0.0032 1.273 ± 0.010 0.0181 ± 0.0007
0.75 natural 10.672± 0.012 0.7983± 0.0011 1.267± 0.003 0.0045± 0.0002

Optimal value 10.671 ± 0.014 0.7942 ± 0.0010 1.267 ± 0.003 0

sigmoid 7.377 ± 0.018 0.4265 ± 0.0015 0.614 ± 0.003 0.0145 ± 0.0003
0.9 natural 7.353± 0.013 0.4026± 0.0014 0.611± 0.002 0.0036± 0.0003

Optimal value 7.341 ± 0.011 0.3840 ± 0.0008 0.611 ± 0.002 0

2019; Elinas et al., 2020; Zambon et al., 2023; Cini et al., 2023; Manenti et al., 2025). We adopt
the experimental setup from Manenti et al. (2025), generating synthetic data with a Graph Neural
Network (GNN), fψ∗(x,A). This GNN computes an output y∗ from random input features x and a
latent graph A, which we sample from a multivariate Bernoulli distribution, Pθ∗(A). The ground-
truth parameters θ∗ij are set to the same non-zero value θ∗ for edges forming the community structure
depicted in Figure 5 and are zero otherwise. We use this dataset to train a model with an identical
architecture to recover the underlying graph structure and GNN parameters. We optimize the model
using the Energy Score (ES) (Gneiting & Raftery, 2007) loss for its calibration advantages (Manenti
et al., 2025). We use the score function gradient estimator (Williams, 1992) with the LOO baseline
to train the latent parameters. We provide additional details in Appendix D. As each categorical
random variable is bivariate, the resulting hierarchical parameterization has a depth of one. We
therefore compare the natural activation function proposed herein with the standard sigmoid.

To compare the score parameterizations under different entropy settings we generate five datasets
with different true latent parameters θ∗. Experiment configurations are detailed in Table 1. The task
in this setting is twofold: (i) to make optimal point predictions, measured for example by the Point
Prediction Mean Absolute Error (PP-MAE) and Mean Squared Error (PP-MSE), and (ii) to learn the
correct graph structure, i.e., to accurately estimate the true parameters θ∗. The latter is evaluated,
for example, by the mean absolute error on the distribution parameters (MAE on θ), ⟨|θij − θ∗ij |⟩.
The experimental results in Table 2 show that the natural activation ν consistently outperforms the
standard sigmoid σ across all metrics and data-generating conditions, with the largest gains in learn-
ing the underlying latent distribution. In particular, the natural parameterization recovers the true
data-generating parameters more accurately, as measured by the MAE on θ. This improvement is es-
pecially pronounced in the highest-entropy setting (θ∗ = 0.5), where the error is reduced by nearly a
factor of three. In terms of predictive performance, the natural parameterization also achieves lower
mean scores on the ES loss and both point prediction errors.

5.2 CATEGORICAL VAE

Variational autoencoders (VAEs) (Kingma & Welling, 2014) constitute a class of deep generative
models that learn compact latent representations of data via a probabilistic framework. The original
VAE framework employs a continuous latent distribution—typically Gaussian—which may not suit

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Test set negative log likelihood on the MNIST dataset. Negative log-likelihoods are es-
timated with 512 importance samples (Burda et al., 2016) (lower is better). Models are compared
across the number of categorical variablesN , categoriesK, and categorical parameterizations. Bold
denotes the best-performing model for each (N,K) setting, and underline the second best.

N Param. MNIST Binary MNIST

K = 8 K = 16 K = 32 K = 8 K = 16 K = 32

10
softmax 100.9± 0.5 98.1± 0.7 98.6± 0.7 84.9± 0.8 81.0± 1.2 79.9± 0.5
catnat σ 99.5± 0.2 97.7± 0.4 96.6± 0.2 83.0± 0.6 78.8± 0.6 76.9± 0.7
catnat ν 99.8± 0.4 97.6± 0.2 96.9± 0.4 83.2± 0.5 78.7± 0.3 77.3± 0.4

20
softmax 97.8± 0.2 97.5± 0.5 98.2± 0.8 78.3± 0.5 78.1± 0.4 79.2± 1.0
catnat σ 97.5± 0.3 96.9± 0.4 97.0± 0.3 77.5± 1.1 76.7± 0.7 76.2± 0.5
catnat ν 97.7± 0.2 97.0± 0.4 96.9± 0.4 77.1± 0.4 76.6± 0.3 76.8± 0.4

30
softmax 98.8± 0.7 98.8± 0.9 99.3± 0.7 79.0± 0.5 79.2± 0.9 80.6± 0.6
catnat σ 98.1± 0.4 97.6± 0.4 97.9± 0.5 77.9± 0.7 77.8± 0.6 77.9± 1.1
catnat ν 97.9± 0.3 97.6± 0.3 97.7± 0.8 77.9± 0.6 77.7± 0.5 78.0± 0.7

data with inherently discrete factors (Van Den Oord et al., 2017). To address this limitation, VAEs
have been extended to incorporate categorical variables C⃗, enabling more accurate modeling of
such structures (Jang et al., 2017; Maddison et al., 2017). In this configuration, the latent space is
parameterized by one or more categorical random variables.

We trained a variational autoencoder (VAE) with a discrete, categorical latent space2 on the MNIST
dataset (LeCun & Cortes, 2010) and on a binarized version of the same dataset, where pixels are
thresholded at 0.5 of their maximum intensity value (Akrami et al., 2022). Its encoder, a Convo-
lutional Neural Network, processes an input image x to produce a tensor of unnormalized scores,
s⃗ ∈ RN×K , which parameterize the approximate posterior distribution q(C⃗|x). The latent space
is structured as a composite of N independent categorical variables, where each variable can as-
sume one of K distinct classes. To enable gradient flow through the discrete sampling process, we
employ the Gumbel-Softmax trick (Jang et al., 2017), which generates differentiable sample tensors
C⃗ ∈ [0, 1]N×K . Note that the samples used by the Gumbel-Softmax trick are continuous relaxations
of one-hot vectors. The latent samples C⃗ are then fed into the decoder, a corresponding transposed
convolutional network (Zeiler et al., 2010), to generate a reconstructed image ŷ.

To form the categorical distributions from the encoder’s scores, we test three parameterization
schemes: the softmax function, the catnat function with sigmoid activation function and the catnat
function with natural activation. The model’s training objective is the minimization of the Evi-
dence Lower Bound (ELBO) (Kingma & Welling, 2014). We defer additional experimental details
to Appendix E.

The results in Table 3 show a clear performance advantage for both catnat parameterizations over the
softmax across all experiments. This indicates that the benefits of the proposed parameterization are
relevant in the probabilistic generative modeling case. Importantly, these improvements are observed
across a wide range of latent configurations (N ∈ {10, 20, 30},K ∈ {8, 16, 32}), underscoring the
robustness of the approach to changes in model capacity and latent space complexity. Within the
hierarchical methods, the natural activation function ν yields a slight improvement over the sigmoid
function σ in the majority of the settings, although the two are statistically equivalent on average.

Overall, these results demonstrate that in practical real-world scenarios, simply replacing the stan-
dard softmax with the proposed catnat parameterization facilitates training and consistently im-
proves downstream performance.

5.3 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a framework where an agent learns to make sequential decisions
by interacting with an environment in order to maximize a cumulative reward signal (Sutton et al.,

2Our implementation is based on the code available at https://github.com/jxmorris12/categorical-vae.

8

https://github.com/jxmorris12/categorical-vae

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1998). In policy-based approaches (Sutton et al., 1998), the agent’s strategy is directly parameterized
by a policy π, which maps observed states to actions. In many domains, such as board games or
classic Atari video games (Bellemare et al., 2013; Mnih et al., 2013; 2015), the action space is
discrete, requiring the agent to select from a finite set of choices at each step. In such settings, the
policy produces a categorical distribution over the available actions.

In this setting, we employ the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017)
on the discrete-action Atari environments Breakout and Seaquest (Mnih et al., 2013; 2015). We
adopt the PPO implementation from Huang et al. (2022) in which an agent uses a shared-parameter
actor-critic architecture, with a deep convolutional network processing stacked game frames to pro-
duce a latent state representation. This state is then fed into two separate heads: a value head that
estimates the state-value function, and a policy head that outputs scores for the action distribution.
Additional experimental details are provided in Appendix F

Due to the computational burden of these experiments, an exhaustive hyperparameter search was
not feasible. Instead, for each method and environment, we selected promising configurations by
sampling 160 trials with a Tree-structured Parzen Estimator (TPE) Bayesian sampler (Bergstra
et al., 2011). The top 10 resulting configurations were then re-evaluated across 10 independent
random seeds to gather performance statistics. Within this framework, we tested two methods to
convert the policy head’s scores into action probabilities: the standard softmax function and the
catnat using the natural activation function.

Table 4: Final episodic returns on Seaquest and
Breakout environments. The higher the better.

Parameterization RL Environment

Breakout Seaquest

softmax 398± 25 1875± 312
catnat ν 406± 34 2164± 533

Table 4 reports the final episodic returns on
Seaquest and Breakout environments. The cat-
nat parameterization yields better performance
w.r.t. the standard softmax function, with a mod-
est improvement in Breakout and a more substan-
tial gain in the more complex Seaquest environ-
ment. These results indicate that the information-
geometric properties of catnat translate into prac-
tical benefits even in high-dimensional, sequen-
tial decision-making tasks. A notable characteristic of these experiments is the high variance, re-
flected in the large standard deviations relative to the mean returns. This variance is typical in deep
RL due to sensitivity to initialization, stochasticity in exploration, and non-stationarity of training
dynamics. The fact that catnat maintains a consistent performance advantage despite this variance
suggests that its benefits are robust rather than artifacts of specific hyperparameter settings. In partic-
ular, the larger relative gains in Seaquest, where the action space is richer and exploration dynamics
more complex, point to potential advantages in environments with increased complexity. A more
exhaustive search could provide a clearer picture of the potential performance ceiling of catnat, with
future work investigating how the relative benefits of this parameterization scale with task difficulty,
action space size, or agent capacity.

6 CONCLUSIONS

We introduced a new perspective for improving training of models with latent categorical random
variables. Specifically, we showed that replacing the standard softmax parameterization with a cat-
nat function − a hierarchical sequence of binary decisions − yields favorable information-geometric
properties. Empirical results across diverse settings indicate that these properties facilitate gradient-
based optimization and provide better parameter configurations leading to improved final perfor-
mance. Two main directions for future work remain. First, although our study focused on categorical
distributions, the findings suggest that parameterizations that induce a diagonal Fisher Information
Matrix consistently improve performance. Extending this approach to other families of continu-
ous and discrete distributions is a promising avenue for future research. Second, our experiments
were not designed to engineer models for state-of-the-art performance, but rather to demonstrate the
broad applicability and effectiveness of the proposed approach. Nonetheless, application-specific
state-of-the-art methods that rely on categorical random variables are likely to benefit from the cat-
nat parameterization, and could thereby achieve new state-of-the-art results with minimal effort.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. The proposed catnat
parameterization is simple to implement, and its full construction is provided in Section 4.2. All
theoretical results are formally stated in the main text and rigorously proved in the appendices (see
Appendix A, B, and C). The experimental settings rely on publicly available codebases: Graph
Structure Learning builds on Manenti et al. (2025), the categorical VAE implementation follows
this open-source repository, and the reinforcement learning experiments use the high-quality PPO
implementation from Huang et al. (2022). For each experiment, the datasets used in our experiments
are all standard and publicly available: the GSL dataset is generated following the procedure in
Manenti et al. (2025), the VAE experiments use the MNIST and binarized MNIST datasets (LeCun
& Cortes, 2010; Akrami et al., 2022), and the RL tasks are based on Atari environments provided
by the Gymnasium library (Bellemare et al., 2013; Towers et al., 2024). Furthermore, we provide
detailed descriptions of the model architectures, hyperparameter searches, optimization strategies,
and evaluation metrics in Appendix D, Appendix E, and Appendix F, respectively. Together, these
elements provide sufficient information to fully reproduce our theoretical and empirical results.

REFERENCES

Haleh Akrami, Anand A Joshi, Jian Li, Sergül Aydöre, and Richard M Leahy. A robust variational
autoencoder using beta divergence. Knowledge-based systems, 238:107886, 2022.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.

Shun-ichi Amari and Scott C Douglas. Why natural gradient? In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), volume 2, pp. 1213–1216. IEEE, 1998.

Shun-ichi Amari, Ryo Karakida, and Masafumi Oizumi. Fisher information and natural gradient
learning in random deep networks. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 694–702. PMLR, 2019.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Advances in neural information processing systems,
2, 1989.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In 4th
International Conference on Learning Representations (ICLR), 2016.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International conference on ma-
chine learning, pp. 883–892. PMLR, 2018.

Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning from spatiotemporal time
series. Journal of Machine Learning Research, 24:1–36, 2023.

Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. Advances in Neural Information
Processing Systems, 33:18648–18660, 2020.

10

https://github.com/jxmorris12/categorical-vae

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves struc-
ture learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667–22681, 2021.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International conference on machine learning, pp. 1972–1982.
PMLR, 2019.

Tilmann Gneiting and Adrian E. Raftery. Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007. ISSN 0162-1459.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations, 2018.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropagation
for stochastic neural networks. In 4th International Conference on Learning Representations
(ICLR), May 2016.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In ICLR
Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/03/25/
ppo-implementation-details/.

Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG Van Sloun. A review of the gumbel-
max trick and its extensions for discrete stochasticity in machine learning. IEEE transactions on
pattern analysis and machine intelligence, 45(2):1353–1371, 2022.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International conference on machine learning, pp. 2688–
2697. PMLR, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
free! In DeepRLStructPred@ICLR, 2019. URL https://api.semanticscholar.org/
CorpusID:198489118.

Wouter Kool, Herke van Hoof, and Max Welling. Estimating gradients for discrete random variables
by sampling without replacement. In International Conference on Learning Representations,
2020.

11

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://api.semanticscholar.org/CorpusID:198489118
https://api.semanticscholar.org/CorpusID:198489118

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael Jordan, and Jon Mcauliffe. Rao-
blackwellized stochastic gradients for discrete distributions. In International Conference on Ma-
chine Learning, pp. 4023–4031. PMLR, 2019.

C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
random variables. In Proceedings of the international conference on learning Representations.
International Conference on Learning Representations, 2017.

Alessandro Manenti, Daniele Zambon, and Cesare Alippi. Learning latent graph structures and
their uncertainty. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=TMRh3ScSCb.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management science, 22(10):1087–1096, 1976.

Yishu Miao, Edward Grefenstette, and Phil Blunsom. Discovering discrete latent topics with neural
variational inference. In International conference on machine learning, pp. 2410–2419. PMLR,
2017.

Pasquale Minervini, Luca Franceschi, and Mathias Niepert. Adaptive perturbation-based gradient
estimation for discrete latent variable models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 9200–9208, 2023.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning, pp. 1791–1799. PMLR, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient es-
timation in machine learning. The Journal of Machine Learning Research, 21(1):5183–5244,
2020.

AM Mood, FA Graybill, and DC Boes. Introduction to the theory of statistics. 1974.

John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. Journal of the
Royal Statistical Society Series A: Statistics in Society, 135(3):370–384, 1972.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: backpropagating through
discrete exponential family distributions. Advances in Neural Information Processing Systems,
34:14567–14579, 2021.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient estimation
with stochastic softmax tricks. Advances in Neural Information Processing Systems, 33:5691–
5704, 2020.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=TMRh3ScSCb

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In 2006 IEEE/RSJ international
conference on intelligent robots and systems, pp. 2219–2225. IEEE, 2006.

Georg Ch Pflug. Optimization of Stochastic Models: The Interface between Simulation and Opti-
mization. Springer Science & Business Media, 1996.

C Radhakrishna Rao et al. Information and the accuracy attainable in the estimation of statistical
parameters. Bull. Calcutta Math. Soc, 37(3):81–91, 1945.

Sheldon M Ross. Simulation. Academic Press, 2006.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Michalis K. Titsias and Miguel Lázaro-Gredilla. Local expectation gradients for black box varia-
tional inference. Advances in neural information processing systems, 28, 2015.

Mark Towers, Ariel Kwiatkowski, Jordan K Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. CoRR, 2024.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. Advances in Neural
Information Processing Systems, 30, 2017.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Daniele Zambon, Andrea Cini, Lorenzo Livi, and Cesare Alippi. Graph state-space models. arXiv
preprint arXiv:2301.01741, 2023.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pp.
2528–2535. IEEE, 2010.

APPENDIX

A PROOF OF PROPOSITION 4.1

Here we prove that the Fisher Information Matrix for a categorical distribution parametrized by a
softmax

(
i.e., pi = esi∑K

k=1 e
sk

)
is:

Gsoftmax(s) =


p1(1− p1) −p1p2 · · · −p1pK
−p2p1 p2(1− p2) · · · −p2pK

...
...

. . .
...

−pKp1 −pKp2 · · · pK(1− pK)


13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. For a single observation take C = (C1, . . . , CK) be a one-hot encoded vector with Ck̄ = 1
if the observed category is k̄ and zero elsewhere. The log-likelihood is:

log(p(C|s)) =
K∑
k=1

Cklog(pk) =

K∑
k=1

Ck

(
sk − log

(
K∑
k′=1

esk′

))
(14)

We have:
∂log(p(Ck = 1|s))

∂si
= δki − pi (15)

With δki being the Kronecker delta.

The Fisher Information Matrix is:

Gsoftmax(s)ij = EC∼p(C|s)

[
∂log(p(C|s))

∂si

∂log(p(C|s))
∂sj

]
(16)

=

K∑
k=1

pk(δki − pi)(δkj − pj) (17)

• For diagonal elements:

Gsoftmax(s)ii =

K∑
k=1

pk(δki − pi)
2 = pi(1− pi) (18)

• For off-diagonal elements:

Gsoftmax(s)ij =

K∑
k=1

pk(δki − pi)(δkj − pj) (19)

=

K∑
k=1

pk(δkiδkj − δkipj − δkjpi + pipj) (20)

= −pipj (21)

yielding the Fisher Information Matrix Gsoftmax(s) stated in the proposition.

B PROOF OF THEOREM 4.2

To prove Theorem 4.2, we use the following series of lemmas and propositions.
Lemma B.1. Given a set of bits [b1, ..., bH] then a ID is an ancestor of pb1,...,bH if and only if ID

= b1, ..., bh−1

Proof. By construction the binary number [b1, ..., bH] in pb1,...,bH represents the binary decisions
taken at each hierarchy level h. In particular, the first h − 1 terms [b1, ..., bh−1] represent, in order,
the first h− 1 binary decisions.

For each hierarchy level h, each node a ID is identified by ID . The numerical value represents its
position reading right to left by construction (i.e., bh = 1 corresponds to descending left). The first
bit in ID splits the 2h−1 numbers in half (i.e., for the left half the first bit is one, for the right half
is zero). The subsequent bits recursively split the selected group in half following the same logic.
Thus, each bit in ID can be viewed as a binary decision of moving left or right. Thus, a

b1, ..., bh−1
is

the node reached from the root following binary decisions b1, ..., bh−1. Since each p hasH ancestors
and the root is common the lemma is proved.

Lemma B.2. Given aα and pγ ,

if pγ is not a descendant of aα =⇒ ∂

∂aα
log(pγ) = 0. (22)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Consider the binary representation of aα. From Lemma B.1 a ID is not an ancestor of

pb1,...,bH then ID ̸= b1, ..., bh−1 . In that case a ID is not a term in (8) and thus ∂
∂aα

log(pγ) =
1
pγ

∂
∂aα

pγ = 0.

Corollary B.3. Given aα, aβ and pγ with α ̸= β,

If aα is neither a descendant nor an ancestor of aβ =⇒ ∂
∂aα

log(pγ)
∂
∂aβ

log(pγ) = 0.

Proof. If aα is neither a descendant nor an ancestor of aβ then they do not share any descendant and
thus for Lemma B.2 the Corollary is trivially proved.

Proposition B.4. The Fisher Information MatrixGa(s) for the catnat parameterization is diagonal.

Proof. To prove the Proposition we prove that all the off-diagonal terms of Ga(s) are zero. By
definition:

Ga(s)αβ = EC∼p(C|s)

[
∂

∂sα
log(p(C|s)) ∂

∂sβ
log(p(C|s))

]
= EC∼p(C|s)

[
∂aα
∂sα

∂

∂aα
log(p(C|s))∂aβ

∂sβ

∂

∂aβ
log(p(C|s))

]
=

∑
b⃗∈{0,1}H

p⃗b

[
∂aα
∂sα

∂

∂aα
log(p⃗b)

∂aβ
∂sβ

∂

∂aβ
log(p⃗b)

]
(23)

From Corollary B.3 if aα is neither a descendant nor an ancestor of aβ the term in the square
brackets is zero. We thus consider aα being an ancestor of aβ , since the FIM is symmetric this is
not restrictive. From Lemma B.2 the only terms that may produce nonzero addends are from the b⃗
that are descendant Dβ of aβ . Thus:

Ga(s)αβ =
∑
b⃗∈Dβ

p⃗b

[
∂aα
∂sα

∂

∂aα
log(p⃗b)

∂aβ
∂sβ

∂

∂aβ
log(p⃗b)

]
(24)

We call hα and hβ the hierarchies of aα and aβ and consider their binary representation a ID α
and

a ID β
. From Equation 8 we write the log-likelihood derivative as:

∂

∂a ID

log (pb1,...,bH) = 1
[
[b1, ..., bh−1] = ID

] 2bh − 1

abh
ID
(1− a ID)(1−bh)

(25)

where 1[·] is the indicator function, which evaluates to 1 if the given condition is true and 0 if it is
false. The b⃗ ∈ Dβ share the same first hβ − 1 bits. Since aα is an ancestor of aβ then hβ > hα and
thus bhα is the same for all b⃗ ∈ Dβ . Then:

Ga(s)αβ = K
∑
b⃗∈Dβ

p⃗b

[
∂

∂aβ
log(p⃗b)

]

= K
∑
b⃗∈Dβ

bhβ
=1

p⃗b

[
∂

∂aβ
log(p⃗b)

]
︸ ︷︷ ︸

a
ID

β

−1

+K
∑
b⃗∈Dβ

bhβ
=0

p⃗b

[
∂

∂aβ
log(p⃗b)

]
︸ ︷︷ ︸
−(1−a

ID
β

)−1

= K
∑
b⃗∈Dβ

bhβ
=1

p⃗b
a ID β

−K
∑
b⃗∈Dβ

bhβ
=0

p⃗b
1− a ID β

=
K

a ID β

∑
b⃗∈Dβ

bhβ
=1

p⃗b −
K

1− a ID β

∑
b⃗∈Dβ

bhβ
=0

p⃗b (26)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

By construction: ∑
b⃗∈Dβ

bhβ
=1

p⃗b = P
(

descend to node a ID β

)
· a ID β

∑
b⃗∈Dβ

bhβ
=0

p⃗b = P
(

descend to node a ID β

)
· (1− a ID β

)

Thus, Ga(s)αβ = 0 for off-diagonal terms.

Proposition B.5. The diagonal terms of the Fisher Information Matrix Ga(s) for the catnat param-
eterization are:

Ga(s)ii = P (ai)

(
∂ai
∂si

)2(
1

ai(1− ai)

)
(27)

Proof. Reusing arguments from the previous proofs we can write:

Ga(s)ii = EC∼p(C|s)

[(
∂

∂si
log(p(C|s))

)2
]

=
∑
b⃗∈Di

p⃗b

(
∂

∂si
log(p⃗b)

)2

=
∑
b⃗∈Di

p⃗b

(
∂ai
∂si

∂

∂ai
log(p⃗b)

)2

(28)

=

(
∂ai
∂si

)2 ∑
b⃗∈Di

p⃗b

(
∂

∂ai
log(p⃗b)

)2

=

(
∂ai
∂si

)2

 ∑
b⃗∈Di

bhi
=1

p⃗b

(
1

a ID i

)2

+
∑
b⃗∈Di

bhi
=0

p⃗b

(
−1

1− a ID i

)2


=

(
∂ai
∂si

)2
[
P (ai)

(
1

ai

) ̸2

��ai + P (ai)

(
1

1− ai

)̸2

����(1− ai)

]

= P (ai)

(
∂ai
∂si

)2(
1

ai(1− ai)

)

Theorem 4.2 follows naturally from Proposition B.4 and Proposition B.5.

C PROOF OF COROLLARY 4.3

Proof. To prove the corollary we start from Theorem 4.2 and substitute the definition in (12).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For the natural activation function ν:

(
∂νi
∂si

)2(
1

νi(1− νi)

)
=

 ∂

∂si

1 + sin
(
π(si−C)

A

)
2

2

 1(
1+sin

(
π(si−C)

A

)
2

)(
1−

1+sin
(

π(si−C)

A

)
2

)


=

(
π

2A
cos

(
π(si − C)

A

))2
 4(

1 + sin
(
π(si−C)

A

))(
1− sin

(
π(si−C)

A

))


=

(
π

2A
cos

(
π(si − C)

A

))2
 4(

1− sin2
(
π(si−C)

A

))


=

(
π

2A
cos

(
π(si − C)

A

))2
 4

cos2
(
π(si−C)

A

)


=
π2

A2

Thus,

Gν(s)ii = P (ai)
π2

A2
(29)

D EXPERIMENTAL DETAILS: GRAPH STRUCTURE LEARNING

This appendix summarizes the experimental setup for the Graph Structure Learning experiment,
adapted from Manenti et al. (2025).

D.1 DATA-GENERATING PROCESS

The dataset is generated from a system model comprising two components: a latent graph distribu-
tion P θ

∗

A that produces a random adjacency matrix A, and a Graph Neural Network fψ∗ that maps
an input feature matrix x and the graph A to an output y.

LATENT GRAPH DISTRIBUTION

The latent graph structure A is sampled from a multivariate Bernoulli distribution parameterized by
a matrix of probabilities θ∗ij :

Pθ∗(A) =
∏
i,j

(θ∗ij)
Aij (1− θ∗ij)

1−Aij (30)

Each entry Aij represents a potential edge, sampled independently with a success probability of
θ∗ij . The ground-truth parameters θ∗ij are set to the same non-zero value θ∗ for edges forming the
community structure depicted in Figure 5 and are zero otherwise. For the experiments we use a
graph with 4 communities.

GNN ARCHITECTURE

The GNN function fψ∗ used to processes the sampled graph A and a random input feature matrix
x ∈ RN×din is a GCN (Kipf & Welling, 2017). The input features are sampled from a normal
distribution, x ∼ N (0, σ2

xI) with σx = 1.

This generation process yielded a dataset of 10,000 input-output (x, y) pairs, partitioned into a
training set (80%), a validation set (10%), and a test set (10%). The learnable model we train has an
identical architecture to the one described above.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: The base graph structure used to generate adjacency matrices for the experiments in Sec-
tion 5.1. The matrices are sampled as subgraphs from this structure, where each orange edge is
included with an independent probability of θ∗ij , according to the distribution Pθ∗(A) in (30). Image
taken from Manenti et al. (2025)

D.2 LEARNABLE MODEL

For the learnable deep learning architecture, we employ the same class of latent graph distribution
and GNN architecture as in the data-generating model. We jointly learn the parameters of the latent
graph distribution, denoted by θ, and the parameters of the GNN, denoted by ψ.

We perform a two-stage grid search over learning rates. In all experiments, the learning rate for
the GNN parameters ψ and the latent graph parameters θ is chosen from the same grid. The search
procedure is:

1. Coarse grid: Test rates in {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

2. Refined grid: Centered around the best-performing coarse rate (selected by validation loss).
The refined grids used in our experiments were:

• Sigmoid parameterization: {0.025, 0.03, 0.037, 0.045, 0.055, 0.067, 0.082}.
• Natural parameterization: {0.012, 0.015, 0.018, 0.022, 0.027, 0.033, 0.041}.

The final learning rate for each run is the one that yields the lowest validation loss. Using this best
learning rate, we train 10 models to compute aggregate statistics.

D.3 SCORE FUNCTION GRADIENT ESTIMATOR

To compute gradients with respect to the parameters θij of the latent graph distribution, we use
the Score Function Gradient Estimator (SFGE), also known as REINFORCE (Williams, 1992; Mo-
hamed et al., 2020). The SFGE allows us to estimate the gradient of an expectation of a function
L(A) as follows:

∇θEA∼Pθ(A)[L(A)] = EA∼Pθ(A)[L(A)∇θ logPθ(A)]

A known issue with the SFGE is its high variance (Mohamed et al., 2020). To mitigate this, we incor-
porate a baseline term, which reduces variance without introducing bias into the gradient estimate.
The gradient is then computed as:

∇θEA∼Pθ(A)[(L(A)− b)∇θ logPθ(A)]

We use a multi-sample baseline where, for each sample in a batch ofM sampled graphs, the baseline
b is constructed using the estimate of the loss from the other M − 1 samples.

D.4 LOSS FUNCTION

The model is trained to learn both the GNN parameters ψ and the graph distribution parameters θ by
minimizing the Energy Score (ES) (Gneiting & Raftery, 2007). The ES is a multivariate extension
of the Continuous Ranked Probability Score (CRPS), a proper scoring rule (Matheson & Winkler,
1976) that quantifies the compatibility between the model’s predictive distribution and the ground-
truth observation y.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Given M adjacency matrices {Am}Mm=1 sampled from the latent graph distribution Pθ(A), the em-
pirical ES loss is defined as:

LES =
1

M

M∑
m=1

∥fψ(x,Am)− y∥2 −
1

2M(M − 1)

∑
m̸=n

∥fψ(x,Am)− fψ(x,An)∥2

D.5 ADDITIONAL TRAINING PARAMETERS

All models are implemented in PyTorch (Paszke et al., 2017) and trained with the Adam optimizer
(Kingma & Ba, 2015). We use a Weight decay of 0, a batch size of 64, M equal to 32 and 40 epochs
per run. Scores were initialized so that θij ∼ U(0, 0.1)).

E EXPERIMENTAL DETAILS: VAE

This appendix summarizes the setup for the experiments with Variational Autoencoders, which we
adopt from the code available at the following link: https://github.com/jxmorris12/categorical-vae.

E.1 MODEL ARCHITECTURE

The Variational Autoencoder (VAE) is composed of an encoder network qs⃗(C⃗|x) and a decoder
network fψ(ŷ|C⃗). Both networks are implemented with a convolutional structure.

ENCODER & CATEGORICAL LATENT DISTRIBUTION

The encoder processes an input image x ∈ R28×28, computes a tensor of scores s⃗ ∈ RN×K − where
N is the number of latent categorical variables, and K is the number of classes for each variable
− and outputs the latent probabilities qs⃗(C⃗|x). The default convolutional architecture consists of 3
convolutional layers with ReLU activations, followed by 2 fully-connected layers.

Thus, the latent space is defined by N independent categorical random variables, with each variable
taking one of K discrete states. The scores s⃗ ∈ RN×K computed by the encoder are transformed
into latent probabilities qs⃗(C⃗|x) with different parameterizations. We test three schemes for this
parameterization: the softmax function, the catnat parameterization with sigmoid activation function
and the catnat parameterization with natural activation function.

DECODER

The decoder takes a set of one-hot latent samples (one vector for each categorical distribution) C⃗ and
processes it through 2 fully-connected layers and 3 transposed convolutional layers to reconstruct
an image. A sigmoid activation function in the final layer ensures the output values are bounded
within [0, 1]. Thus, the decoder fψ(ŷ|C⃗) produces a reconstruction whose entries can be interpreted
as independent Bernoulli distributions over each pixel.

E.2 GUMBEL-SOFTMAX REPARAMETERIZATION

To maintain a differentiable computation graph, we use the Gumbel-Softmax trick (Jang et al., 2017)
to approximate sampling from qs⃗(C⃗|x). The temperature hyperparameter τ controls the smoothness
of the approximation; as τ → 0, the samples converge to discrete one-hot vectors. During training,
τ is annealed from an initial value of 1 to a minimum of 0.5 using an exponential decay rate of 3×
10−5. In the forward pass, we replace the dense C⃗ with its hard one-hot version while propagating
gradients through the relaxed sample using the Straight-Through estimator (Bengio et al., 2013).

E.3 LOSS FUNCTION

The model is trained by maximizing the Evidence Lower Bound (ELBO), which is bounded by the
loss LELBO = Lrecon + LKL.

19

https://github.com/jxmorris12/categorical-vae

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

RECONSTRUCTION LOSS Given the decoder’s output, the reconstruction loss Lrecon is the binary
cross-entropy (BCE) between the input and the output, averaged over the batch:

Lrecon = − 1

B

B∑
i=1

EC⃗∼qs⃗(C⃗|xi)
[log fψ(xi|C⃗)]

KL DIVERGENCE The term LKL is the Kullback-Leibler divergence between the approximate pos-
terior qs⃗(C⃗|x) and a fixed prior p(C⃗). The prior is a set of N independent, uniform categorical
distributions, i.e., p(C⃗n) = Categorical([1K , . . . ,

1
K]) for each latent variable n. The KL divergence

is calculated analytically, summed over the N variables, and averaged over the batch:

LKL =
1

B

B∑
i=1

DKL(qs⃗(C⃗i|xi)||p(C⃗)) =
1

B

B∑
i=1

N∑
n=1

DKL(qs⃗(C⃗i,n|xi)||p(C⃗n))

F EXPERIMENTAL DETAILS: REINFORCEMENT LEARNING

This appendix summarizes the experimental setup for the Reinforcement Learning experiments,
which assess policy learning in discrete-action Atari environments. The implementation is adapted
from the high-quality PPO implementation provided by Huang et al. (2022).

F.1 ENVIRONMENT

We use the Breakout and Seaquest environments from the Atari Learning Environment (Bellemare
et al., 2013), accessed via the Gymnasium library (Towers et al., 2024). The raw game frames
undergo a standard preprocessing pipeline using a series of wrappers that, for example:

• Convert images to grayscale and resize them to 84× 84 pixels.

• Stack 4 consecutive frames to capture temporal dynamics

• Clip the rewards to the range [−1, 1] to stabilize training.

This setup is standard for benchmarking performance on Atari games (Mnih et al., 2015).

F.2 MODEL ARCHITECTURE

The agent employs a shared-parameter actor-critic architecture with a convolutional network back-
bone:

• Shared Backbone: The network processes the stacked 4× 84× 84 input observations, first
normalizing pixel values by dividing by 255.0. It then passes through three convolutional
layers with ReLU activations. The network architecture is:

1. 32 filters of size 8× 8 with a stride of 4.
2. 64 filters of size 4× 4 with a stride of 2.
3. 64 filters of size 3× 3 with a stride of 1.

The output is flattened and passed through a fully-connected layer with 512 units (ReLU
activated). All layers are initialized using orthogonal initialization.

• Policy and Value Heads: The 512-dimensional latent representation is fed into two separate
linear heads:

– The policy head (actor) outputs a vector of scores, one for each possible action.
– The value head (critic) outputs a single scalar estimating the state-value.

We test two methods to convert the policy head’s scores into action probabilities: the standard
softmax function and the catnat parameterization using the natural activation function.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.3 PROXIMAL POLICY OPTIMIZATION

The model is trained using the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017). PPO is an on-policy algorithm that optimizes a clipped surrogate objective function. The
total loss is a combination of the policy loss, the value function loss, and an entropy bonus to
encourage exploration:

J(θ) = Êt
[
LCLIP
t (θ)− c1L

VF
t (θ) + c2H[πθ](st)

]
,

where the clipped surrogate is

LCLIP
t (θ) = min

(
rt(θ) Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)
,

Here, rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability ratio, and Ât is the advantage estimate. Advantages are
calculated using Generalized Advantage Estimation (GAE) (Schulman et al., 2015) with γ = 0.99
and λ = 0.95, and are normalized per mini-batch. The value loss is typically

LVF
t (θ) = 1

2

(
Vθ(st)− V̂t

)2
,

andH[πθ](st) denotes the policy entropy. The clipping ϵ and coefficients c1, c2 are hyperparameters.

F.4 HYPERPARAMETER OPTIMIZATION

Due to the high computational cost, we performed a targeted hyperparameter search instead of an
exhaustive grid search. For each parameterization method and environment, we ran 160 trials using
a Tree-structured Parzen Estimator (TPE) sampler (Bergstra et al., 2011) to find promising hyper-
parameter configurations. Table 5 summarizes each parameter’s type, sampling range, and any
non-default scale or step size. The top 10 configurations identified by this search were then trained
with 10 different random seeds to ensure more reliable performance statistics.

Table 5: Hyperparameter sweep: types, sampling ranges, and non-default scales/steps.

Parameter Type Range Scale / Step / Notes

learning rate float 5.0× 10−5 – 1.0× 10−2 log scale
num steps int 32 – 512 step = 32
update epochs int 1 – 16 step = 2
clip coef float 0.01 – 0.90 linear sampling
ent coef float 0.0 – 1.0 linear sampling
num envs int 8 – 16 step = 2
num minibatches int 2 – 16 step = 4
max grad norm float 0.1 – 10.0 step = 0.1

F.5 ADDITIONAL TRAINING PARAMETERS

We trained all models for a total of 8 million timesteps using the Adam optimizer (Kingma & Ba,
2015) with an ϵ of 10−5. The learning rate, identified via hyperparameter search, was linearly
annealed to zero over the course of training.

G LARGE LANGUAGE MODEL (LLM) USAGE

In accordance with the guideline requirements3, we acknowledge that LLMs were employed to
refine and rephrase portions of the text. The ideas, their development, the interpretation of the
results, and all scientific contributions were carried out solely by the authors.

3See ”The Use of Large Language Models (LLMs)” at https://iclr.cc/Conferences/2026/AuthorGuide

21

https://iclr.cc/Conferences/2026/AuthorGuide

	Introduction
	Problem Formulation
	Related Works and Preliminaries
	Categorical Random Variables Parameterizations
	The Softmax Function and its Pitfalls
	Catnat: A Class of Natural Parameterizations

	Experiments
	Graph Structure Learning
	Categorical VAE
	Reinforcement Learning

	Conclusions
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.3
	Experimental Details: Graph Structure Learning
	Data-Generating Process
	Learnable Model
	Score Function Gradient Estimator
	Loss Function
	Additional Training Parameters

	Experimental Details: VAE
	Model Architecture
	Gumbel-Softmax Reparameterization
	Loss Function

	Experimental Details: Reinforcement Learning
	Environment
	Model Architecture
	Proximal Policy Optimization
	Hyperparameter Optimization
	Additional Training Parameters

	Large Language Model (LLM) Usage

