OPTIMIZING VISUAL GENERATIVE MODELS WITH DISTRIBUTION-WISE REWARDS

Anonymous authors

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) for visual generative models often relies on samplewise reward functions, which can incentivize reward hacking, leading to visual artifacts and reduced diversity. In this work, we propose a novel approach that utilizes distribution-wise rewards to guide visual generative models in learning the real-world image distribution more accurately. Unlike rewards that evaluate samples individually, distribution-wise reward accounts for the data distribution of the samples, mitigating the mode collapse problem that occurs when all samples optimize towards the same direction independently. To overcome the prohibitive computational cost of estimating these rewards, we introduce a subset-replace strategy that efficiently provides reward signals by updating only a small subset of a generated reference set. Additionally, we apply RL to optimize post-hoc model merging coefficients, potentially mitigating the train-inference inconsistency caused by introducing stochastic differential equation (SDE) in regular RL practices. Extensive experiments show our approach significantly improves FID-50K across various base models, from 8.30 to 5.77 for SiT and from 3.74 to 3.52 for EDM2. Qualitative evaluation also confirms that our method enhances perceptual quality while preserving sample diversity.

1 Introduction

Visual generative models are designed to approximate the complex probability distribution of real-world images and videos. Existing studies have advanced this objective by improving network architectures (Karras et al., 2022; 2024; Chang et al., 2026; Crowson et al., 2024; Wang et al., 2024) and training strategies (Yu et al., 2024b; Huang et al., 2024; Hang et al., 2024). In the post-training stage, reinforcement learning (RL) with sample-wise reward models (Fan et al., 2023; Wu et al., 2023b; Kirstain et al., 2023; Xu et al., 2023; Wang et al., 2025) is employed to align model outputs with human preferences. Nevertheless, reinforcement fine-tuning driven by sample-wise rewards is prone to reward hacking (Weng, 2024; Amodei et al., 2016; Everitt et al., 2017; Gao et al., 2023; Wen et al., 2024; Liu et al., 2025; Li et al., 2025a), often introducing visual artifacts and diminishing the diversity of generated images (Ku et al., 2024; Xue et al., 2025; Miao et al., 2024; Liu et al., 2025), as shown in Figure 1. In contrast, distribution-wise metrics quantify diversity and mode coverage, penalizing generators that miss modes or exhibit low diversity (Borji, 2022; Ku et al., 2024; Cai et al., 2025). Early studies also confirmed their consistency with human judgment and their sensitivity to subtle shifts in the real distribution (Heusel et al., 2017; Borji, 2022), indicating greater robustness compared to sample-wise metrics.

In this work, we propose a RL approach based on distribution-wise rewards to improve coverage of the real-world data distribution, achieving both high visual fidelity in samples and broad generation diversity. Quantifying the discrepancy between two distributions is a well-studied problem, with established metrics like KL divergence (Joyce, 2011), MMD (Gretton et al., 2006) and Wasserstein distance (Villani, 2009). In the field of image generation, Fréchet Inception Distance (FID) (Heusel et al., 2017; Jayasumana et al., 2024; Chong & Forsyth, 2020) is a widely used metric for assessing the degree of fit between the learned and real image distribution (Karras et al., 2022; 2024; Chang et al., 2026; Crowson et al., 2024; Wang et al., 2024; Yu et al., 2024b; Huang et al., 2024; Hang et al., 2024). Compared to sample-wise metrics like CLIP Score (Hessel et al., 2021) and HPS (Wu et al., 2023b;a), distribution-based metrics provide a better evaluation of how well the generative model covers the real distribution and can identify incorrect fits (Heusel et al., 2017; Gretton et al., 2006;

Figure 1: Visualization of class-conditional image generation using varied initial noises. The base-line model (without RL, first row) frequently produces visual artifacts. Applying a sample-wise RL reward leads to severe reward hacking (second row), causing a collapse in sample diversity and introducing artifacts like bizarre rainbow patterns. In contrast, our **distribution-wise reward (third row)** significantly mitigates these defects, enhancing overall generation quality and better aligning the learned distribution with the real data.

Villani, 2009). As a widely used metric in image generation, FID has been validated to correlate well with human perception of visual quality, while also providing a balanced assessment of both fidelity and diversity (Heusel et al., 2017; Salimans et al., 2016; Barratt & Sharma, 2018). Given these advantages, we choose FID as the distribution-wise metric to measure the generative model's fitting capability and use it as the reward signal for reinforcement fine-tuning.

Training with distribution-wise rewards remains underexplored. Existing RL approaches for image generation (Black et al., 2023; Fan et al., 2023; Xue et al., 2025; Liu et al., 2025; Li et al., 2025a) generally treat the denoising process as a Markov Decision Process (MDP) in a stochastic environment (Fan et al., 2023; Liu et al., 2025), employing sample-wise reward models (Fan et al., 2023; Wu et al., 2023b; Kirstain et al., 2023; Xu et al., 2023; Wang et al., 2025) to obtain reward signals for each denoising trajectory, and utilize Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) to optimize the entire state-action sequence. However, directly optimizing with distribution-wise rewards requires computing statistical metrics on a huge set of images (e.g., 50K samples for FID), incurring significant computational cost. Besides, such distribution-wise metrics can't provide reward signals for each individual denoising trajectories that is necessary for RL training. Moreover, we observed that performance improvements from RL fine-tuning in a SDEbased stochastic environment (Fan et al., 2023; Liu et al., 2025; He et al., 2025; Wang & Yu, 2025) for exploration do not fully translate to the faster, ODE-based deterministic sampling used during inference process. This discrepancy highlights a significant train-inference inconsistency and motivates the search for alternative optimization methods that avoids the performance gap between SDE-based training and ODE-based inference.

In this work, we propose distribution-wise reward for RL training. Specifically, we use a novel *subset-replace strategy* to obtain dense distribution-wise reward signals at a low compute cost. First, we generate a reference set of images and compute its FID against the target distribution as a starting point. During rollouts, a small subset of this reference set is replaced by newly generated samples, and the FID of the updated set is used as a dense reward signal. While this signal can be used to directly fine-tune the entire model, and indeed shows promise on models like SiT (Ma et al., 2024), such an approach still requires an SDE-based training formulation (Fan et al., 2023; Liu et al., 2025; Xue et al., 2025; He et al., 2025), inheriting the train-inference inconsistency issue. Inspired by EDM2 (Karras et al., 2024), we explore a more effective optimization strategy: applying our reward signal to search for optimal post-hoc model merging coefficients, instead of fine-tuning all parameters directly. This paradigm decouples the RL optimization from the denoising process, thereby eliminating the potential train-inference gap caused by SDE.

Specifically, the *subset-replace strategy* first computes a base FID on a class-balanced reference set of moderately-sized generated images. During the rollout phase, a small subset $(0.01 \times \text{ of the reference set})$ of images in the reference set are randomly replaced with newly generated samples of the same corresponding classes. The FID of this partially updated set (replaced FID) is then computed, and its negative value serves as the reward signal for the related subset of images. Experiments on SiT (Ma et al., 2024) demonstrate that our method significantly reduces the FID from 8.30 to 5.77. For post-hoc model merging coefficient optimization, our strategy improves the FID-50K from 3.74

to 3.52 on the EDM2 (Karras et al., 2024) model, highlighting its power as a lightweight, plug-and-play module for enhancing pretrained models.

Our contributions are summarized as follows:

- 1. We analyze the limitations of reinforcement learning with sample-wise reward functions, showing that they are susceptible to reward hacking, which degrades distributional fidelity and introduces artifacts while reducing diversity.
- 2. We propose a RL framework with distribution-wise rewards by the *subset-replace strategy*. This provides a robust alternative to conventional sample-wise rewards, which are vulnerable to reward hacking. Through extensive experiments, we derive an effective and optimal training recipe that reduces the FID-50K of SiT from 8.30 to 5.77 without requiring additional training data or architectural modifications.
- 3. To resolve the train-inference inconsistency of SDE-based RL, we propose a post-hoc optimization of model merging coefficients with distribution-wise reward signals using ODE-based denoising procedure. This training paradigm improves EDM2's FID-50K score from 3.74 to 3.52, validating a more consistent and effective approach to model refinement.

2 RELATED WORK

Reinforcement Learning in Image Generation. Early works adapted reinforcement learning to diffusion models by applying policy gradients to the score function (Song et al., 2020), enabling preference-aligned image generation (Black et al., 2023; Fan et al., 2023; Fan & Lee, 2023; Lee et al., 2023). Offline Direct Preference Optimization was later introduced for text-to-image tasks (Wallace et al., 2024), though distributional shift in pairwise data motivated online methods with step-aware preference models (Yuan et al., 2024; Liang et al., 2025). More recently, GRPObased approaches (Tong et al., 2025; Liu et al., 2025; Xue et al., 2025) have advanced RL-enhanced generation with sample-wise reward models, with (Liu et al., 2025; Xue et al., 2025) extending GRPO to flow matching via ODE-SDE reformulation. (Liu et al., 2025; Xue et al., 2025; Li et al., 2025a) found that reward hacking occurs in the RL process. In this work, we explore the potential to mitigate this issue with distribution-wise rewards. (He et al., 2025; Li et al., 2025a) further employ hybrid SDE-ODE to rollout denoising trajectories to accelerate training. (Wang & Yu, 2025) points out the SDE formulation in common RL practices is injecting greater level of noise than the original ODE, leading to a train-inference inconsistency. In this paper, we applies RL to optimize post-hoc model merging coefficients, eliminating the need for SDE-based rollouts and resolving the train-inference inconsistency of SDE-based RL.

Distribution-wise Metrics. Distribution-wise metrics are widely used in training and evaluating neural networks. KL Divergence (Joyce, 2011), which is often included as a regularization term in RL (Fan et al., 2023; Liu et al., 2025; He et al., 2025; Shao et al., 2024; Guo et al., 2025), measures the difference between distributions but can be unstable when one distribution assigns zero probability to regions where the other has non-zero probability. Maximum Mean Discrepancy (MMD) (Gretton et al., 2006) compares distributions by their means in a Reproducing Kernel Hilbert Space. While non-parametric and robust, MMD can struggle with high-dimensional data and is sensitive to outliers (Lerasle et al., 2019). Frechet Inception Distance (FID) (Heusel et al., 2017), on the other hand, has become the preferred metric to evaluate image generation models (Karras et al., 2022; 2024; Chang et al., 2026; Crowson et al., 2024; Wang et al., 2024; Yu et al., 2024b; Huang et al., 2024; Hang et al., 2024). By comparing feature distributions of real and generated data using a pre-trained Inception network (Szegedy et al., 2016; Heusel et al., 2017), FID reflects how well a generative model fits the real image distribution with lower computational cost and greater statistical robustness. In this work, we introduce a tractable online formulation of the FID, allowing it to be effectively used as a direct distribution-wise reward signal to guide RL in image generation.

Model Merging. Model averaging Izmailov et al. (2018); Polyak & Juditsky (1992); Tarvainen & Valpola (2017); Yaz et al. (2018) has become an widely-adopted techniques in the pre-training of state-of-the-art image synthesis models Balaji et al. (2022); Dhariwal & Nichol (2021); Ho et al. (2022); Karras et al. (2019); Nichol & Dhariwal (2021); Peebles & Xie (2023); Ma et al. (2024); Karras et al. (2022). In the domain of large language models, several studies have similarly explored

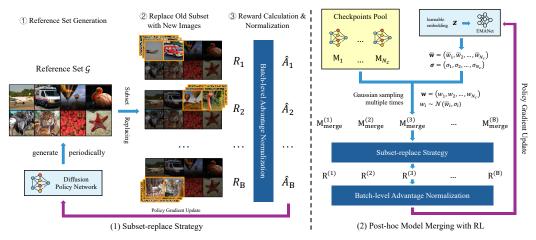


Figure 2: Illustration of our proposed RL framework with distribution-wise rewards. (1) *Subset-replace Strategy*: Initially, a reference set is generated using the diffusion policy. During rollout, a random subset is replaced with newly generated samples in the same classes. The distribution-wise metric of the resulting set acts as a reward, which is then normalized into an advantage signal to update the model via policy gradient. The reference set is regenerated periodically. (2) *Post-hoc Model Merging with RL*: The distribution-wise reward signal can guide a lightweight policy to learn the optimal weights for merging a pool of model checkpoints. This efficiently creates an improved model, while allowing the rollout process to utilize ODE-based inference.

the use of model averaging during both pre-training (Li et al., 2025; 2022; Sanyal et al., 2023; Liu et al., 2024; Yang et al., 2023; Dubey et al., 2024; Tian et al., 2025) and post-training (Ilharco et al., 2022; Yu et al., 2024a; Zhou et al., 2024) to improve overall performance and enhance training stability. However, existing approaches such as exponential moving average (EMA) (Morales-Brotons et al., 2024) perform model merging during training, which makes tuning their hyperparameters computationally expensive. (Karras et al., 2024) addresses this limitation by introducing a post-hoc EMA strategy, where the optimal averaging profile is determined through grid search after training. Building on this idea, we propose to optimize the model merging hyperparameters with reinforcement learning, guided by reward signals rather than exhaustive search.

3 Method

3.1 PRELIMINARIES

Flow Matching. Let $\mathbf{x}_0 \sim \mathcal{X}_0$ be drawn from the real data distribution and $\mathbf{x}_1 \sim \mathcal{X}_1$ from a noise distribution. Following the rectified flow framework (Liu et al., 2022), linear interpolations between the two samples are defined as

$$\mathbf{x}_t = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1, \quad t \in [0, 1].$$
 (1)

A time-dependent velocity field $\mathbf{v}_{\theta}(\mathbf{x}_{t},t)$ is then learned by minimizing the flow-matching objective (Lipman et al., 2022), given by

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t, \mathbf{x}_0, \mathbf{x}_1} [\|\mathbf{v} - \mathbf{v}_{\theta}(\mathbf{x}_t, t)\|_2^2], \quad \mathbf{v} = \mathbf{x}_1 - \mathbf{x}_0.$$
 (2)

Denoising as a MDP. (Black et al., 2023; Liu et al., 2025) cast the iterative denoising procedure in flow matching models as a Markov Decision Process (MDP) $(\mathcal{S}, \mathcal{A}, \rho_0, P, R)$, where R is the reward of this denoising trajectory. Given a class label $c \in \mathcal{C}$, at step t, the state is written as $s_t \triangleq (c, t, x_t)$, the action corresponds to the model's prediction $a_t \triangleq x_{t-1}$, and the policy is defined by $\pi(a_t \mid s_t) \triangleq p_{\theta}(x_{t-1} \mid x_t, c)$. The transition is deterministic, i.e., $P(s_{t+1} \mid s_t, a_t) \triangleq (\delta_c, \delta_{t-1}, \delta_{x_{t-1}})$, and the initial distribution is specified as $\rho_0(s_0) \triangleq (p(c), \delta_T, \mathcal{N}(\mathbf{0}, \mathbf{I}))$, where δ_y denotes the Dirac delta distribution centered at y.

Table 1: FID results on ImageNet 256×256. Our results demonstrate that fine-tuning pretrained visual generative models with a distribution-wise reward function is highly effective. This approach significantly enhances the visual quality of generated images within a minimal number of training steps while preserving generative diversity. We validate that the proposed *subset-replace strategy* provides a robust distribution-wise reward signal for both Rejection Sampling (RS) and Policy Gradient Reinforcement Training (RL). Applying our method to a pretrained SiT model reduces the FID-50K score from 8.30 to 6.98 (RS) and 5.77 (RL), confirming the efficacy of our proposed approach.

Model	Params(M)	Training Steps	FID↓
ADM (Dhariwal & Nichol, 2021)	554	1.98M	10.94
ADM-U	608	1.98M	7.49
LDM-8 (Rombach et al., 2022)	395	4.8M	15.51
LDM-4	400	178K	10.56
DiT-XL/2 (Peebles & Xie, 2023)	675	400K	19.50
DiT-XL/2	675	7M	9.60
SiT-XL/2 (Ma et al., 2024)	675	400K	17.20
SiT-XL/2	675	7M	8.30
+ Ours (RS)	675	+ 120	6.98
+ Ours (RL)	675	+ 450	5.77

3.2 Subset-Replace Strategy

Existing RL approaches in diffusion models generally formulate the denoising process as a MDP in a stochastic environment (Fan et al., 2023; Liu et al., 2025; Xue et al., 2025; Li et al., 2025a), where a sample-wise reward (Xu et al., 2023; Wang et al., 2025; Wu et al., 2023b; Kirstain et al., 2023) is used as the optimization signal for each denoising trajectory. Directly replacing this with a distribution-wise reward is infeasible: computing such reward typically requires a very large number of trajectories (about 50k images and their denoising trajectories for FID), and assigning the same scalar reward to all trajectories leads to overly sparse feedback, providing little guidance for optimization.

To address these limitations, we propose a **subset-replace strategy** for computing distribution-wise rewards, as demonstrated in Figure 2. Specifically, we first construct a class-balanced moderately-sized reference set $\mathcal G$ of N generated images with the initial pretrained model. During rollout, a small subset of n images $g\subseteq \mathcal G$ is randomly replaced with newly generated samples g' of the same classes. We then compute the FID of the partially updated set $(\mathcal G\setminus g)\cup g'$, denoted as $replaced\ FID$, whose negative value is used as the reward signal for the associated n denoising trajectories, as shown in Equation 4. To mitigate discrepancies between the reference set and the current model distribution, the reference set is periodically regenerated using the latest model during training. Compared with directly using FID-50K as the reward signal, this strategy substantially reduces computational cost while yielding denser and more informative rewards for model optimization.

We apply the subset-replace strategy to obtain distribution-wise reward signals, and perform direct reinforcement fine-tuning of diffusion models based on them. Following (Fan et al., 2023; Liu et al., 2025), we learn a policy π_{θ} that maximizes the expected cumulative reward, typically formulated as:

$$\max_{\theta} \mathbb{E}_{(\boldsymbol{s}_0, \boldsymbol{a}_0, \dots, \boldsymbol{s}_T, \boldsymbol{a}_T) \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \left(R(\boldsymbol{s}_t, \boldsymbol{a}_t) - \beta D_{\text{KL}}(\pi_{\theta}(\cdot \mid \boldsymbol{s}_t) || \pi_{\text{ref}}(\cdot \mid \boldsymbol{s}_t)) \right) \right], \tag{3}$$

where the KL-divergence $D_{\rm KL}$ from a reference policy $\pi_{\rm ref}$, scaled by β , serves as a regularization penalty. We adopt a lightweight variant (Shao et al., 2024; Hu, 2025) of traditional policy gradient methods (Schulman et al., 2015; 2017), which estimates the advantage without requiring a value function. Our early experiments presented in Section A.3 found that batch-level normalization outperforms group-level normalization under our setting, as also observed in (Hu, 2025; Xie et al., 2025).

To formalize the above process, let the reference set \mathcal{G} consist of N generated images. At each iteration, a subset g of n randomly selected images is replaced. Considering rollouts with batch

 size B, the replaced subset is denoted by $\{g_i\}_{i=1}^B$, with the corresponding class labels $\{\mathbf{c_i}\}_{i=1}^B$. We substitute $\{g_i\}_{i=1}^B$ with a new subset $\{g_i'\}_{i=1}^B$ that preserves the same class distribution, and calculate the reward R as:

$$R(g_i') = -\text{FID}[(\mathcal{G} \setminus g_i) \cup g_i', \overline{\mathcal{G}}], \tag{4}$$

where $\overline{\mathcal{G}}$ denotes the ground-truth image set of the same size as \mathcal{G} . Then, the advantage of i-th subset is calculated by:

$$\hat{A}_i = \frac{R(g_i') - \text{mean}(\{R(g_i')\}_{i=1}^B)}{\text{std}(\{R(g_i')\}_{i=1}^B)}.$$
 (5)

Considering the complete denoising trajectory $(x_T^{i,j}, x_{T-1}^{i,j}, \dots, x_0^{i,j})$ of the j-th image in the i-th subset, the resulting image subset is given by $g_i' = \{x_0^{i,1}, x_0^{i,2}, \dots, x_0^{i,n}\}$. Reinforcement fine-tuning then optimizes the policy model θ by maximizing the following objective as Liu et al. (2025):

$$\mathcal{J}_{\text{Flow-RL}}(\theta) = \mathbb{E}_{\boldsymbol{c} \sim \mathcal{C}, \{\boldsymbol{x}^i\}_{i=1}^G \sim \pi_{\theta, \omega}(\cdot | \boldsymbol{c})} f(r, \hat{A}, \theta, \varepsilon, \beta), \tag{6}$$

where $\pi_{\theta_{\text{old}}}$ is the initial pretrained policy, and

$$\begin{split} f(r, \hat{A}, \theta, \varepsilon, \beta) &= \frac{1}{B} \sum_{i=1}^{B} \frac{1}{n} \sum_{j=1}^{n} \frac{1}{T} \sum_{t=0}^{T-1} \Bigg(\min \Big(r_t^{i,j}(\theta) \, \hat{A}_i, \, \operatorname{clip} \Big(r_t^{i,j}(\theta), 1 - \varepsilon, 1 + \varepsilon \Big) \, \hat{A}_i \Big) \\ &- \beta \, D_{\mathrm{KL}} \big(\pi_\theta \, || \, \pi_{\mathrm{ref}} \big) \Bigg), \end{split}$$

$$r_t^{i,j}(\theta) = \frac{p_{\theta}(\boldsymbol{x}_{t-1}^{i,j} \mid \boldsymbol{x}_t^{i,j}, \boldsymbol{c})}{p_{\theta_{\text{old}}}(\boldsymbol{x}_{t-1}^{i,j} \mid \boldsymbol{x}_t^{i,j}, \boldsymbol{c})}.$$

3.3 Post-hoc Model Merging with Distribution-wise Reward

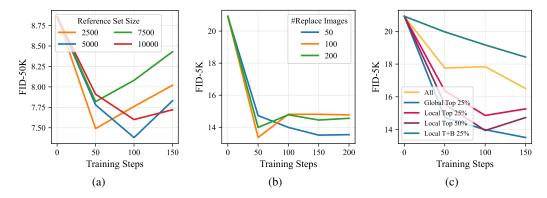
While directly applying our distribution-wise reward signal for fine-tuning with *subset-replace strat- egy* is a straightforward approach, our experiments in Section 4.3 expose an issue of train-inference inconsistency. Specifically, we observe that performance gains from the SDE-based stochastic training environment fail to transfer robustly to the ODE-based deterministic samplers used for standard inference. To bridge this gap, we introduce a post-hoc optimization strategy inspired by EDM2 (Karras et al., 2024). Our method uses RL with distribution-wise rewards to find optimal model merging coefficients, thereby eliminating the dependence on complex SDE solvers (Fan et al., 2023; Liu et al., 2025; Xue et al., 2025) during RL training.

Model merging is a widely used technique in deep learning, and early works in large language models (Li et al., 2025b; Yu et al., 2024a; Zhou et al., 2024) and visual generation models (Balaji et al., 2022; Dhariwal & Nichol, 2021; Ho et al., 2022; Karras et al., 2019; Nichol & Dhariwal, 2021; Peebles & Xie, 2023; Ma et al., 2024; Karras et al., 2022) has demonstrated its effectiveness in stabilizing training and improving model performance. The most common approach is *Exponential Moving Average* (EMA) (Morales-Brotons et al., 2024), which maintains a separate EMA copy of the model and updates it throughout training. However, this requires fixing the merging hyperparameters in advance, often resulting in suboptimal choices. (Karras et al., 2024) shows that by carefully designing the averaging formulation of model replicas during training, it is possible to approximate the EMA version after training. This allows the merging hyperparameters to be adjusted retrospectively based on downstream performance metrics.

To formulate it, let N_c sequential checkpoints along the training trajectory be denoted as $\{M_i\}_{i=1}^{N_c}$, where M_i represents the parameters of the *i*-th model. These checkpoints are then merged into a single final model M_{merge} , where each checkpoint is assigned a weighting coefficient w_i . The merged model is computed as:

$$M_{\text{merge}} = \sum_{i=1}^{N_c} w_i M_i \tag{7}$$

Figure 3: Ablation studies on hyperparameters in RL with *subset-replace strategy*. (a) Reference set size. The relationship between set size and FID-50K is non-monotonic. While performance generally improves as the size increases from 2,500 to 10,000, the 7,500-sample set exhibits significant degradation, performing worse than even smaller sets. (b) Number of images to replace. We evaluate replacing 50, 100, and 200 images in the subset-replace strategy. A smaller replacement size of 50 images yields the best FID-5K performance after 100 training steps. (c) Impact of rollout sample selection strategies. Selecting the global top 25% of samples is optimal. Per-process selection methods are inferior, and retaining low-quality samples hinders training.



We optimize the model merging coefficients w_i using RL. To introduce the stochasticity and related probabilities required for the RL procedure, we employ a simple MLP policy network $\pi_{\theta_{\rm ema}}$ (EMANet) to generate the mean \bar{w}_i and standard deviation σ_i of each coefficient from a learnable input embedding z. The final values w_i are then sampled from a Gaussian distribution

$$w_i \sim \mathcal{N}(\bar{w}_i(z; \pi_{\theta_{ema}}), \ \sigma_i(z; \pi_{\theta_{ema}}))$$
 (8)

and their corresponding probabilities p_{w_i} are computed as:

$$p_{w_i} = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(w_i - \bar{w}_i)^2}{2\sigma_i^2}\right). \tag{9}$$

We regard the coefficients involved in constructing the merged model M_{merge} as a vector $\mathbf{w} = (w_1, w_2, \dots, w_{N_c})$. The reward corresponding to each \mathbf{w} is computed using the *subset-replace strategy*. During rollouts, we generate a batch of B such coefficient vectors $\{\mathbf{w}^{(j)}\}_{j=1}^{B}$, with the corresponding merged models denoted as $\{M_{\text{merge}}^{(j)}\}_{j=1}^{B}$. For each model $M_{\text{avg}}^{(j)}$, we first construct a reference set G_j , from which N_s subsets $\{g_k\}_{k=1}^{N_s}$ are selected. For each subset g_k , we replace it with N_r newly generated sets of images $\{g'_{k,p}\}_{p=1}^{N_r}$, obtaining a reward collection $\{R_{k,p}^{(j)}\}_{k=1,p=1}^{N_s,N_r}$.

Finally, the overall reward for coefficient vector $\mathbf{w}^{(j)}$ is defined as the simple average:

$$R^{(j)} = \frac{1}{N_s N_r} \sum_{k=1}^{N_s} \sum_{p=1}^{N_r} R_{k,p}^{(j)}.$$
 (10)

We compute the advantages at the batch level (Hu, 2025) across B reward values and use them to update parameters $\theta_{\rm ema}$ of the policy model. Since the stochasticity in the RL process originates from the coefficient vectors \mathbf{w} generated by $\pi_{\theta_{\rm ema}}$, it is unnecessary to introduce additional randomness in the diffusion denoising process. Therefore, we employ efficient ODE sampling (Karras et al., 2022; 2024) throughout the image generation process.

4 EXPERIMENTS

4.1 Reinforcement Fine-tuning with Distribution-wise Reward

We use ImageNet (Deng et al., 2009) in 256×256 resolution as our main dataset, and perform full parameter reinforcement fine-tuning on SiT (Ma et al., 2024). To lower the training cost, we adopt

 the denoising reduction technique introduced in (Liu et al., 2025): the number of denoising steps is set to 50 during training and 250 steps during evaluation, following the optimal inference settings in (Ma et al., 2024). We first validated the feasibility of the subset-replace strategy as well as the distribution-wise reward signal under the rejection sampling fine-tuning (RS) setting, and then applied it to the standard RL setting. During RS training, we only use the samples with the highest distribution-wise reward values. Table 1 summarizes FID-50K results of our methods as well as several earlier pretrained models on the ImageNet dataset, following the widely-used evaluation protocol (Karras et al., 2024; Peebles & Xie, 2023; Ma et al., 2024).

For batch-level advantage normalization, we compute the mean and standard deviation across all processes. In the RL practice, we found that optimization becomes challenging when training on the entire set of rollout samples. To mitigate this, we retain only the top 25% of samples ranked by advantage for parameter update, and further perform detailed ablation experiments in Section 4.3. We adopt an on-policy RL setting in which each rollout sample is used only once for updating the model. Besides, we parallelize reference set generation by distributing tasks across processes and synchronizing the full set to all workers. To balance efficiency and quality, we refresh the reference set with the current model every 10 steps. We performed experiments on 16 NVIDIA H20 GPUs.

Experimental results in Table 1 demonstrate that a simple subset-replace strategy provides an effective distribution-wise reward signal for model optimization. Under the simple RS setting, SiT-XL reduces the FID-50K from **8.30 to 6.98** without requiring any additional curated training data or architectural modifications. Further incorporating RL, SiT-XL achieves an FID-50K of **5.77** with a small amount of additional training, substantially improving the ability to model image distribution.

4.2 POST-HOC MODEL MERGING WITH DISTRIBUTION-WISE REWARD

Following prior settings (Karras et al., 2024), we perform experiments on ImageNet (Deng et al., 2009) (512×512) with models of various sizes to demonstrate the generality of our method. The results are presented in Table 2.

We set $N_c=8$ to compose the final model M_{avg} . Starting from latest official checkpoints 1 , we select checkpoints for every 192×2^{20} training images, resulting in a checkpoint pool of $N_c=8$ checkpoints. A simple 3-layer MLP is employed as the policy network to obtain the model merging coefficients ${\bf w}$, with the sampling standard deviation fixed to 1.

As shown in Table 2, by optimizing several parameters ($N_c=8$ in our setting), our method reduces FID from 3.74 to 3.52 on EDM2-XS and from 2.57

Table 2: FID results on ImageNet 512×512. Results show that using RL to obtain better model merging coefficients is an effective method to boost the performance of pretrained models.

Model	FID↓
ADM (Dhariwal & Nichol, 2021)	23.24
ADM-U	9.96
DiT-XL/2 (Peebles & Xie, 2023)	12.03
EDM2-XS (Karras et al., 2024)	3.74
+ RL-EMA	3.52
EDM2-S	2.57
+ RL-EMA	2.52

to 2.52 on EDM2-S. These results demonstrate that reinforcement learning can effectively optimize model-merging coefficients, yielding further improvements to pretrained models without resorting to complex SDE solvers or training techniques such as denoising reduction (Liu et al., 2025), which has been observed to cause model collapse issues at certain denoising steps.

4.3 ABLATION STUDY

In this section, we perform a comprehensive ablation analysis to systematically evaluate the influence of crucial hyperparameters and components within our proposed *subset-replace strategy*. Our experimental protocol maintains the settings detailed in Section 4.1, with the exception of the single element being ablated in each trial.

Size of the reference set. The size of the reference set directly governs the trade-off between reward signal fidelity and computational overhead. To quantitatively assess this relationship, we conducted an ablation study with reference set sizes of 2,500, 5,000, 7,500, and 10,000, and we

¹https://nvlabs-fi-cdn.nvidia.com/edm2/raw-snapshots/

report the FID-50K results at 250 denoising steps, aligning with our evaluation settings in the main experiments. As shown in Figure 3a, increasing the set size from 2,500 to 5,000, and again to 10,000, yields a progressive improvement in the final FID-50K score. Notably, a non-monotonic relationship is observed. The 7,500-sample configuration deviates from this trend; its performance degrades substantially after an initial optimization phase, converging to a final FID score worse than that of any other setting. This evidence demonstrates that while a sufficiently large reference set is a key determinant of final model quality, certain intermediate configurations can introduce training instabilities, having a detrimental impact on performance. Therefore, we choose 5,000 as the size of reference set in our main experiments.

Number of images to replace during rollout. The subset size for replacement in our distribution-wise reward calculation through subset-replace strategy presents a trade-off. A small subset risks a noisy and indiscriminative reward signal, whereas a large one increases computational overhead and assigns potentially inequitable rewards to extreme samples within the subset. To investigate its impact, we conducted an ablation study on subset sizes of 50, 100, and 200, with a fixed reference set size of 5,000. As shown in Figure 3b, a size of 50 achieves the optimal generation quality with the lowest computational cost. Therefore, we adopt this setting for our main experiments.

Select best samples during RL training. We investigated the impact of selecting different rollout samples for RL training on final performance. In addition to the final setting (retaining the top 25% of samples globally), we compared the following settings: using all samples, retaining only the top 25% from each local process, retaining both the top and bottom 25%, and retaining the top 50% from each process, as shown in Figure 3c. The global top 25% setting yielded the best performance, while retaining worse samples slowed convergence. Retaining the top 25% or 50% from each process showed similar performance, but both were inferior to the global top 25% setting.

Performance gap between SDE-based training and **ODE-based inference.** In Section 4.1, we employ an SDE for rollouts during RL training to introduce the stochasticity required for exploration, while also using it for inference to maintain training-

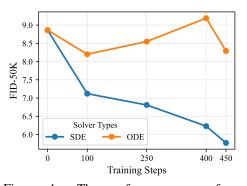


Figure 4: The performance gap from training-inference inconsistency. A model trained with SDE-based rollouts shows a steadily improving FID score when evaluated with an SDE solver while its performance stagnates when using an ODE solver at the same 250 denoising steps.

inference consistency. However, practical applications often favor high-order ODE-based solvers for inference to accelerate sampling and enhance generation quality. As shown in Figure 4, we find that models trained with an SDE exhibit negligible performance gains when evaluated with an ODE solver, revealing a significant performance gap between SDE-based training and ODE-based inference. While the underlying causes of this phenomenon remain under-explored and are left for future work, we propose to eliminate this inconsistency using RL to optimize model merging coefficients, which enables the use of ODE-based solvers for rollouts directly within the training process.

5 Conclusion

To address the limitations of sample-wise rewards in RL for visual generation, such as reward hacking and reduced diversity, we propose a novel framework using distribution-wise rewards enabled by an efficient *subset-replace strategy*. Our method demonstrates significant versatility and effectiveness across multiple scenarios. Through direct fine-tuning, it substantially improves the FID-50K score of SiT from 8.30 to 5.77. Furthermore, when applied to *post-hoc model merging optimization*, it reduces the FID of EDM2-XS from 3.74 to 3.52 and from 2.57 to 2.52 for EDM2-S, while resolving train-inference inconsistencies in SDE-based RL. These findings validate our approach as an effective method for enhancing the distributional fidelity and perceptual quality of modern generative models.

ETHICS STATEMENT

This work focuses on advancing the training methodologies for visual generative models on standard, publicly available benchmark datasets, and we did not use any private or sensitive data. We acknowledge that generative models can be misused and may amplify biases present in training data. While our research does not directly propose mitigation techniques for these issues, we advocate for the responsible development and application of this technology, including thorough analysis of potential biases before deployment. Our proposed subset-replace strategy also contributes to computational efficiency, promoting more sustainable research practices in a resource-intensive field.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided a detailed description of our methodology and experimental setup. The implementation details of our proposed subset-replace strategy and post-hoc model merging optimization with RL are described in Section 4. The hyperparameters for all experiments, including learning rates, batch sizes, and optimizer settings, are listed in Appendix A.2. We will make our source code publicly available upon publication.

REFERENCES

- Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.
- Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with an ensemble of expert denoisers. *arXiv preprint arXiv:2211.01324*, 2022.
- Shane Barratt and Rishi Sharma. A note on the inception score. *arXiv preprint arXiv:1801.01973*, 2018.
- Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models with reinforcement learning. *arXiv* preprint arXiv:2305.13301, 2023.
- Ali Borji. Pros and cons of gan evaluation measures: New developments. *Computer Vision and Image Understanding*, 215:103329, 2022.
- Yuting Cai, Shaohuai Liu, Chao Tian, and Le Xie. Fr\'{e} chet power-scenario distance: A metric for evaluating generative ai models across multiple time-scales in smart grids. *arXiv preprint arXiv:2505.08082*, 2025.
- Ziyi Chang, George A Koulieris, Hyung Jin Chang, and Hubert PH Shum. On the design fundamentals of diffusion models: A survey. *Pattern Recognition*, 169:111934, 2026.
- Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score and where to find them. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6070–6079, 2020.
- Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass diffusion transformers. In *Forty-first International Conference on Machine Learning*, 2024.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.

- Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement learning with a corrupted reward channel. *arXiv preprint arXiv:1705.08417*, 2017.
- Ying Fan and Kangwook Lee. Optimizing ddpm sampling with shortcut fine-tuning. *arXiv preprint arXiv:2301.13362*, 2023.
 - Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36:79858–79885, 2023.
 - Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.
 - Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel method for the two-sample-problem. *Advances in neural information processing systems*, 19, 2006.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv* preprint arXiv:2501.12948, 2025.
 - Tiankai Hang, Shuyang Gu, Xin Geng, and Baining Guo. Improved noise schedule for diffusion training. *arXiv preprint arXiv:2407.03297*, 2024.
 - Xiaoxuan He, Siming Fu, Yuke Zhao, Wanli Li, Jian Yang, Dacheng Yin, Fengyun Rao, and Bo Zhang. Tempflow-grpo: When timing matters for grpo in flow models. *arXiv preprint arXiv:2508.04324*, 2025.
 - Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation metric for image captioning. *arXiv* preprint arXiv:2104.08718, 2021.
 - Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
 - Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning Research*, 23(47):1–33, 2022.
 - Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv* preprint arXiv:2501.03262, 2025.
 - Xingchang Huang, Corentin Salaun, Cristina Vasconcelos, Christian Theobalt, Cengiz Oztireli, and Gurprit Singh. Blue noise for diffusion models. In *ACM SIGGRAPH 2024 conference papers*, pp. 1–11, 2024.
 - Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint arXiv:2212.04089*, 2022.
 - Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*, 2018.
 - Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9307–9315, 2024.
 - James M Joyce. Kullback-leibler divergence. In *International encyclopedia of statistical science*, pp. 720–722. Springer, 2011.

- Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019.
 - Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. *Advances in neural information processing systems*, 35:26565–26577, 2022.
 - Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.
 - Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Picka-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural Information Processing Systems*, 36:36652–36663, 2023.
 - Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhu Chen. Viescore: Towards explainable metrics for conditional image synthesis evaluation. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12268–12290, 2024.
 - Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human feedback. *arXiv preprint arXiv:2302.12192*, 2023.
 - Matthieu Lerasle, Zoltán Szabó, Timothée Mathieu, and Guillaume Lecué. Monk outlier-robust mean embedding estimation by median-of-means. In *International conference on machine learning*, pp. 3782–3793. PMLR, 2019.
 - Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, and Zhao Zhong. Mixgrpo: Unlocking flow-based grpo efficiency with mixed ode-sde. *arXiv preprint arXiv:2507.21802*, 2025a.
 - Tao Li, Zhehao Huang, Qinghua Tao, Yingwen Wu, and Xiaolin Huang. Trainable weight averaging: Efficient training by optimizing historical solutions. In *The Eleventh International Conference on Learning Representations*, 2022.
 - Yunshui Li, Yiyuan Ma, Shen Yan, Chaoyi Zhang, Jing Liu, Jianqiao Lu, Ziwen Xu, Mengzhao Chen, Minrui Wang, Shiyi Zhan, et al. Model merging in pre-training of large language models. *arXiv* preprint arXiv:2505.12082, 2025b.
 - Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Mingxi Cheng, Ji Li, and Liang Zheng. Aesthetic post-training diffusion models from generic preferences with step-by-step preference optimization. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 13199–13208, 2025.
 - Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
 - Deyuan Liu, Zecheng Wang, Bingning Wang, Weipeng Chen, Chunshan Li, Zhiying Tu, Dianhui Chu, Bo Li, and Dianbo Sui. Checkpoint merging via bayesian optimization in llm pretraining. *arXiv preprint arXiv:2403.19390*, 2024.
 - Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv* preprint arXiv:2505.05470, 2025.
- Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
- Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

- Zichen Miao, Jiang Wang, Ze Wang, Zhengyuan Yang, Lijuan Wang, Qiang Qiu, and Zicheng Liu. Training diffusion models towards diverse image generation with reinforcement learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10844–10853, 2024.
 - Daniel Morales-Brotons, Thijs Vogels, and Hadrien Hendrikx. Exponential moving average of weights in deep learning: Dynamics and benefits. *arXiv preprint arXiv:2411.18704*, 2024.
 - Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.
 - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 - Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. *SIAM journal on control and optimization*, 30(4):838–855, 1992.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. *Advances in neural information processing systems*, 29, 2016.
 - Sunny Sanyal, Atula Neerkaje, Jean Kaddour, Abhishek Kumar, and Sujay Sanghavi. Early weight averaging meets high learning rates for llm pre-training. *arXiv preprint arXiv:2306.03241*, 2023.
 - John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR, 2015.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv* preprint arXiv:2402.03300, 2024.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020.
 - Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2818–2826, 2016.
 - Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. *Advances in neural information processing systems*, 30, 2017.
 - Changxin Tian, Jiapeng Wang, Qian Zhao, Kunlong Chen, Jia Liu, Ziqi Liu, Jiaxin Mao, Wayne Xin Zhao, Zhiqiang Zhang, and Jun Zhou. Wsm: Decay-free learning rate schedule via checkpoint merging for llm pre-training. *arXiv preprint arXiv:2507.17634*, 2025.
 - Chengzhuo Tong, Ziyu Guo, Renrui Zhang, Wenyu Shan, Xinyu Wei, Zhenghao Xing, Hongsheng Li, and Pheng-Ann Heng. Delving into rl for image generation with cot: A study on dpo vs. grpo. *arXiv preprint arXiv:2505.17017*, 2025.
 - Cédric Villani. The wasserstein distances. In *Optimal transport: old and new*, pp. 93–111. Springer, 2009.

- Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8228–8238, 2024.
 - Feng Wang and Zihao Yu. Coefficients-preserving sampling for reinforcement learning with flow matching. *arXiv preprint arXiv:2509.05952*, 2025.
 - Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for multimodal understanding and generation. *arXiv preprint arXiv:2503.05236*, 2025.
 - Yuqing Wang, Ye He, and Molei Tao. Evaluating the design space of diffusion-based generative models. *Advances in Neural Information Processing Systems*, 37:19307–19352, 2024.
 - Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf. *arXiv* preprint arXiv:2409.12822, 2024.
 - Lilian Weng. Reward hacking in reinforcement learning. *lilianweng.github.io*, Nov 2024. URL https://lilianweng.github.io/posts/2024-11-28-reward-hacking/.
 - Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv preprint arXiv:2306.09341*, 2023a.
 - Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score: Better aligning text-to-image models with human preference. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2096–2105, 2023b.
 - Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement learning. *arXiv preprint arXiv:2502.14768*, 2025.
 - Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.
 - Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv* preprint arXiv:2505.07818, 2025.
 - Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. *arXiv preprint arXiv:2309.10305*, 2023.
 - Yasin Yaz, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, Vijay Chandrasekhar, et al. The unusual effectiveness of averaging in gan training. In *International Conference on Learning Representations*, 2018.
 - Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference on Machine Learning*, 2024a.
 - Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie. Representation alignment for generation: Training diffusion transformers is easier than you think. *arXiv preprint arXiv:2410.06940*, 2024b.
 - Huizhuo Yuan, Zixiang Chen, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning of diffusion models for text-to-image generation. *Advances in Neural Information Processing Systems*, 37: 73366–73398, 2024.
 - Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng Chen. Metagpt: Merging large language models using model exclusive task arithmetic. *arXiv preprint arXiv:2406.11385*, 2024.

A APPENDIX

A.1 USE OF LLMS

We utilized LLMs as a writing and editing assistant to improve grammar and clarity.

A.2 Hyperparameter Details

Our model is fine-tuned using the Adam optimizer ($\beta_1 = 0.9, \beta_2 = 0.999$, no weight decay) with a constant learning rate of 1×10^{-5} . During policy gradient updates, rollouts are performed with global batch size of 128, and the KL-divergence regularization scaler β is set to 0. The policy network is updated once per rollout step with a global batch size of 128.

A.3 MORE ABLATION STUDIES

Reference Set Refresh Interval. In training with the subset-replace strategy, the reference set is periodically regenerated by the current model after a fixed number of steps. Large intervals cause the reference set to lag behind, reducing reward representativeness, while small intervals incur unnecessary overhead. We conduct ablation experiments with intervals of 5, 10, and 20, using the FID-5K of the reference set as the evaluation metric. As shown in Figure 5, an interval of 10 achieves the best final generation performance while maintaining a balanced computational cost.

Pure RL is better than RS-then-RL. Following common practices in LLMs, we applied the pretrain-SFT-RL paradigm for RL training with distribution-wise reward, where SFT is replaced by reject sampling fine-tuning (RS) in our case. However, the results in Figure 6 indicate that further RL training on the model after RS does not improve performance, likely due to overfitting from the RS phase. Therefore, in the final experiments, we adopted a pure RL setting.

Advantages normalization. We compare batch-level and group-level normalization for advantage calculation under two settings: one using all rollout samples for RL training, and another using only the top 25% of samples with the highest global advantages (identical to our main experiments in Section 4.1). As shown in Figure 8, batch-level normalization yields faster convergence in both settings. Therefore, we adopt batch-level normalization for computing advantages in our final experiments.

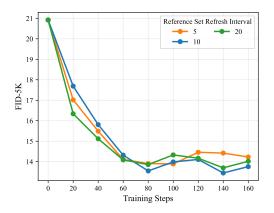
On-policy vs. Off-policy. We analyzed the impact of off-policy steps on RL training stability, comparing 0 (on-policy), 1, 2, and 4 off-policy steps, as shown in Figure 7. Results show that on-policy training is the most stable, while any off-policy steps lead to model collapse after a certain number of steps, with collapse rate proportional to the off-policy steps. Thus, we selected the strictly on-policy setting.

Adaptation bias toward the training denoising schedule. We observed that after the model reaches its optimal performance, its performance gradually deteriorates as RL training continues. Our experiments suggest that this phenomenon is not due to general overfitting, but rather an adaptation bias toward the specific denoising schedule used during training under the denoising reduction paradigm (Liu et al., 2025). In the setup described in Section 4.1,

Denoising Steps		50		250	
FID-#img		5K	50K	5K	50K
Training Steps	0	20.92	13.78	14.54	8.86
	50	14.80	8.34	12.13	6.56
	100	13.55	7. 57	13.09	7.12
	250	13.30	7.73	12.57	6.81
ai.	400	13.60	7.79	12.13	6.23
Ξ	450	14.15	7.93	11.48	5.77
<u></u>	500	14.50	8.24	11.63	6.04

Table 3: The model exhibits an adaptation bias toward the training denoising schedule while training under denoising reduction paradigm. With 50 denoising steps for training and 250 for evaluation, performance with 50 steps saturated and worsened after 100 training steps, while 250-step performance remained improving.

the model adopts 50 denoising steps during training to generate a reference set of 5k images for FID-5K@50, while evaluation uses 250 denoising steps on 50k images for FID-50K@250. We also measured FID-5K@250 and FID-50K@50 for comparison. As shown in Table 3, performance under the 50-step training schedule quickly saturates around 250 training steps and then steadily declines,



21 - RS RL after RS

19 - RL only

18 - RL only

17 - RS RL only

18 - RL only

17 - RS RL only

18 - RL only

18 - RL only

17 - RS RL only

18 - RL only

19 - RL only

18 - RL only

19 - RL only

18 - RL only

18 - RL only

18 - RL only

18 - RL only

19 - RL only

18 - RL only

19 - RL only

19 - RL only

10 - RL only

Figure 5: Ablation results on reference set refresh interval. We compare intervals of 5, 10, and 20 training steps, finding that 10 steps achieves the best FID-5K score by providing a good balance between reward representativeness and computational overhead.

Figure 6: RL training after Rejection Sampling fine-tuning (RS) provided no performance gain, likely due to overfitting from the RS phase. We therefore adopted a pure RL approach.



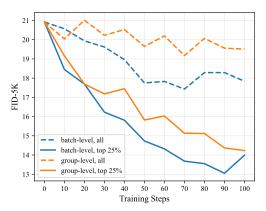


Figure 7: We compare the on-policy setting against settings with 1, 2, and 4 off-policy steps. The results indicate that beyond 300 training steps, performance degrades as the number of off-policy steps increases.

Figure 8: Batch-level advantage normalization for advantages outperforms group-level constantly, yielding faster convergence regardless of whether all or only the top 25% of rollout samples are used for training.

whereas performance under the 250-step inference schedule continues to improve for another 200 training steps. This divergence highlights an adaptation bias toward the training denoising schedule, pointing to a underexplored characteristic of the denoising reduction paradigm that requires further investigation.

A.4 QUALITATIVE RESULTS

We visualize the image generation results of the pretrained SiT-XL/2 model and the model fine-tuned with distribution-wise reward RL from Section 4.1, as shown in Figures 9 to 13.

 Ours

Ours

Without RL Ours Without RL Ours

Figure 9: Uncurated samples of class label "airliner" (404)

Figure 10: Uncurated samples of class label "balloon" (417)

Figure 11: Uncurated samples of class label "giant panda" (388)



Figure 12: Uncurated samples of class label "lion" (291)