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ABSTRACT

Reinforcement learning (RL) for visual generative models often relies on sample-
wise reward functions, which can incentivize reward hacking, leading to visual
artifacts and reduced diversity. In this work, we propose a novel approach that uti-
lizes distribution-wise rewards to guide visual generative models in learning the
real-world image distribution more accurately. Unlike rewards that evaluate sam-
ples individually, distribution-wise reward accounts for the data distribution of the
samples, mitigating the mode collapse problem that occurs when all samples opti-
mize towards the same direction independently. To overcome the prohibitive com-
putational cost of estimating these rewards, we introduce a subset-replace strategy
that efficiently provides reward signals by updating only a small subset of a gen-
erated reference set. Additionally, we apply RL to optimize post-hoc model merg-
ing coefficients, potentially mitigating the train-inference inconsistency caused by
introducing stochastic differential equation (SDE) in regular RL practices. Ex-
tensive experiments show our approach significantly improves FID-50K across
various base models, from 8.30 to 5.77 for SiT and from 3.74 to 3.52 for EDM2.
Qualitative evaluation also confirms that our method enhances perceptual quality
while preserving sample diversity.

1 INTRODUCTION

Visual generative models are designed to approximate the complex probability distribution of real-
world images and videos. Existing studies have advanced this objective by improving network
architectures (Karras et al., 2022; 2024; Chang et al., 2026; Crowson et al., 2024; Wang et al., 2024)
and training strategies (Yu et al., 2024b; Huang et al., 2024; Hang et al., 2024). In the post-training
stage, reinforcement learning (RL) with sample-wise reward models (Fan et al., 2023; Wu et al.,
2023b; Kirstain et al., 2023; Xu et al., 2023; Wang et al., 2025) is employed to align model outputs
with human preferences. Nevertheless, reinforcement fine-tuning driven by sample-wise rewards is
prone to reward hacking (Weng, 2024; Amodei et al., 2016; Everitt et al., 2017; Gao et al., 2023;
Wen et al., 2024; Liu et al., 2025; Li et al., 2025a), often introducing visual artifacts and diminishing
the diversity of generated images (Ku et al., 2024; Xue et al., 2025; Miao et al., 2024; Liu et al.,
2025), as shown in Figure 1. In contrast, distribution-wise metrics quantify diversity and mode
coverage, penalizing generators that miss modes or exhibit low diversity (Borji, 2022; Ku et al.,
2024; Cai et al., 2025). Early studies also confirmed their consistency with human judgment and
their sensitivity to subtle shifts in the real distribution (Heusel et al., 2017; Borji, 2022), indicating
greater robustness compared to sample-wise metrics.

In this work, we propose a RL approach based on distribution-wise rewards to improve coverage of
the real-world data distribution, achieving both high visual fidelity in samples and broad generation
diversity. Quantifying the discrepancy between two distributions is a well-studied problem, with
established metrics like KL divergence (Joyce, 2011), MMD (Gretton et al., 2006) and Wasserstein
distance (Villani, 2009). In the field of image generation, Fréchet Inception Distance (FID) (Heusel
et al., 2017; Jayasumana et al., 2024; Chong & Forsyth, 2020) is a widely used metric for assessing
the degree of fit between the learned and real image distribution (Karras et al., 2022; 2024; Chang
et al., 2026; Crowson et al., 2024; Wang et al., 2024; Yu et al., 2024b; Huang et al., 2024; Hang et al.,
2024). Compared to sample-wise metrics like CLIP Score (Hessel et al., 2021) and HPS (Wu et al.,
2023b;a), distribution-based metrics provide a better evaluation of how well the generative model
covers the real distribution and can identify incorrect fits (Heusel et al., 2017; Gretton et al., 2006;
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Without RL

Sample-wise RL

Distribution-wise RL

(Ours)

Figure 1: Visualization of class-conditional image generation using varied initial noises. The base-
line model (without RL, first row) frequently produces visual artifacts. Applying a sample-wise RL
reward leads to severe reward hacking (second row), causing a collapse in sample diversity and in-
troducing artifacts like bizarre rainbow patterns. In contrast, our distribution-wise reward (third
row) significantly mitigates these defects, enhancing overall generation quality and better aligning
the learned distribution with the real data.

Villani, 2009). As a widely used metric in image generation, FID has been validated to correlate
well with human perception of visual quality, while also providing a balanced assessment of both
fidelity and diversity (Heusel et al., 2017; Salimans et al., 2016; Barratt & Sharma, 2018). Given
these advantages, we choose FID as the distribution-wise metric to measure the generative model’s
fitting capability and use it as the reward signal for reinforcement fine-tuning.

Training with distribution-wise rewards remains underexplored. Existing RL approaches for image
generation (Black et al., 2023; Fan et al., 2023; Xue et al., 2025; Liu et al., 2025; Li et al., 2025a)
generally treat the denoising process as a Markov Decision Process (MDP) in a stochastic environ-
ment (Fan et al., 2023; Liu et al., 2025), employing sample-wise reward models (Fan et al., 2023;
Wu et al., 2023b; Kirstain et al., 2023; Xu et al., 2023; Wang et al., 2025) to obtain reward signals
for each denoising trajectory, and utilize Group Relative Policy Optimization (GRPO) (Shao et al.,
2024; Guo et al., 2025) to optimize the entire state–action sequence. However, directly optimizing
with distribution-wise rewards requires computing statistical metrics on a huge set of images (e.g.,
50K samples for FID), incurring significant computational cost. Besides, such distribution-wise
metrics can’t provide reward signals for each individual denoising trajectories that is necessary for
RL training. Moreover, we observed that performance improvements from RL fine-tuning in a SDE-
based stochastic environment (Fan et al., 2023; Liu et al., 2025; He et al., 2025; Wang & Yu, 2025)
for exploration do not fully translate to the faster, ODE-based deterministic sampling used during
inference process. This discrepancy highlights a significant train-inference inconsistency and mo-
tivates the search for alternative optimization methods that avoids the performance gap between
SDE-based training and ODE-based inference.

In this work, we propose distribution-wise reward for RL training. Specifically, we use a novel
subset-replace strategy to obtain dense distribution-wise reward signals at a low compute cost. First,
we generate a reference set of images and compute its FID against the target distribution as a starting
point. During rollouts, a small subset of this reference set is replaced by newly generated samples,
and the FID of the updated set is used as a dense reward signal. While this signal can be used to
directly fine-tune the entire model, and indeed shows promise on models like SiT (Ma et al., 2024),
such an approach still requires an SDE-based training formulation (Fan et al., 2023; Liu et al.,
2025; Xue et al., 2025; He et al., 2025), inheriting the train-inference inconsistency issue. Inspired
by EDM2 (Karras et al., 2024), we explore a more effective optimization strategy: applying our
reward signal to search for optimal post-hoc model merging coefficients, instead of fine-tuning all
parameters directly. This paradigm decouples the RL optimization from the denoising process,
thereby eliminating the potential train-inference gap caused by SDE.

Specifically, the subset-replace strategy first computes a base FID on a class-balanced reference set
of moderately-sized generated images. During the rollout phase, a small subset (0.01× of the refer-
ence set) of images in the reference set are randomly replaced with newly generated samples of the
same corresponding classes. The FID of this partially updated set (replaced FID) is then computed,
and its negative value serves as the reward signal for the related subset of images. Experiments on
SiT (Ma et al., 2024) demonstrate that our method significantly reduces the FID from 8.30 to 5.77.
For post-hoc model merging coefficient optimization, our strategy improves the FID-50K from 3.74
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to 3.52 on the EDM2 (Karras et al., 2024) model, highlighting its power as a lightweight, plug-and-
play module for enhancing pretrained models.

Our contributions are summarized as follows:

1. We analyze the limitations of reinforcement learning with sample-wise reward functions,
showing that they are susceptible to reward hacking, which degrades distributional fidelity
and introduces artifacts while reducing diversity.

2. We propose a RL framework with distribution-wise rewards by the subset-replace strat-
egy. This provides a robust alternative to conventional sample-wise rewards, which are
vulnerable to reward hacking. Through extensive experiments, we derive an effective and
optimal training recipe that reduces the FID-50K of SiT from 8.30 to 5.77 without requiring
additional training data or architectural modifications.

3. To resolve the train-inference inconsistency of SDE-based RL, we propose a post-hoc opti-
mization of model merging coefficients with distribution-wise reward signals using ODE-
based denoising procedure. This training paradigm improves EDM2’s FID-50K score from
3.74 to 3.52, validating a more consistent and effective approach to model refinement.

2 RELATED WORK

Reinforcement Learning in Image Generation. Early works adapted reinforcement learning
to diffusion models by applying policy gradients to the score function (Song et al., 2020), en-
abling preference-aligned image generation (Black et al., 2023; Fan et al., 2023; Fan & Lee, 2023;
Lee et al., 2023). Offline Direct Preference Optimization was later introduced for text-to-image
tasks (Wallace et al., 2024), though distributional shift in pairwise data motivated online methods
with step-aware preference models (Yuan et al., 2024; Liang et al., 2025). More recently, GRPO-
based approaches (Tong et al., 2025; Liu et al., 2025; Xue et al., 2025) have advanced RL-enhanced
generation with sample-wise reward models, with (Liu et al., 2025; Xue et al., 2025) extending
GRPO to flow matching via ODE–SDE reformulation. (Liu et al., 2025; Xue et al., 2025; Li et al.,
2025a) found that reward hacking occurs in the RL process. In this work, we explore the potential
to mitigate this issue with distribution-wise rewards. (He et al., 2025; Li et al., 2025a) further em-
ploy hybrid SDE–ODE to rollout denoising trajectories to accelerate training. (Wang & Yu, 2025)
points out the SDE formulation in common RL practices is injecting greater level of noise than the
original ODE, leading to a train-inference inconsistency. In this paper, we applies RL to optimize
post-hoc model merging coefficients, eliminating the need for SDE-based rollouts and resolving the
train-inference inconsistency of SDE-based RL.

Distribution-wise Metrics. Distribution-wise metrics are widely used in training and evaluating
neural networks. KL Divergence (Joyce, 2011), which is often included as a regularization term
in RL (Fan et al., 2023; Liu et al., 2025; He et al., 2025; Shao et al., 2024; Guo et al., 2025),
measures the difference between distributions but can be unstable when one distribution assigns
zero probability to regions where the other has non-zero probability. Maximum Mean Discrepancy
(MMD) (Gretton et al., 2006) compares distributions by their means in a Reproducing Kernel Hilbert
Space. While non-parametric and robust, MMD can struggle with high-dimensional data and is
sensitive to outliers (Lerasle et al., 2019). Frechet Inception Distance (FID) (Heusel et al., 2017), on
the other hand, has become the preferred metric to evaluate image generation models (Karras et al.,
2022; 2024; Chang et al., 2026; Crowson et al., 2024; Wang et al., 2024; Yu et al., 2024b; Huang
et al., 2024; Hang et al., 2024). By comparing feature distributions of real and generated data using
a pre-trained Inception network (Szegedy et al., 2016; Heusel et al., 2017), FID reflects how well a
generative model fits the real image distribution with lower computational cost and greater statistical
robustness. In this work, we introduce a tractable online formulation of the FID, allowing it to be
effectively used as a direct distribution-wise reward signal to guide RL in image generation.

Model Merging. Model averaging Izmailov et al. (2018); Polyak & Juditsky (1992); Tarvainen
& Valpola (2017); Yaz et al. (2018) has become an widely-adopted techniques in the pre-training
of state-of-the-art image synthesis models Balaji et al. (2022); Dhariwal & Nichol (2021); Ho et al.
(2022); Karras et al. (2019); Nichol & Dhariwal (2021); Peebles & Xie (2023); Ma et al. (2024);
Karras et al. (2022). In the domain of large language models, several studies have similarly explored
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Figure 2: Illustration of our proposed RL framework with distribution-wise rewards. (1) Subset-
replace Strategy: Initially, a reference set is generated using the diffusion policy. During rollout, a
random subset is replaced with newly generated samples in the same classes. The distribution-wise
metric of the resulting set acts as a reward, which is then normalized into an advantage signal to
update the model via policy gradient. The reference set is regenerated periodically. (2) Post-hoc
Model Merging with RL: The distribution-wise reward signal can guide a lightweight policy to learn
the optimal weights for merging a pool of model checkpoints. This efficiently creates an improved
model, while allowing the rollout process to utilize ODE-based inference.

the use of model averaging during both pre-training (Li et al., 2025b; 2022; Sanyal et al., 2023; Liu
et al., 2024; Yang et al., 2023; Dubey et al., 2024; Tian et al., 2025) and post-training (Ilharco et al.,
2022; Yu et al., 2024a; Zhou et al., 2024) to improve overall performance and enhance training sta-
bility. However, existing approaches such as exponential moving average (EMA) (Morales-Brotons
et al., 2024) perform model merging during training, which makes tuning their hyperparameters
computationally expensive. (Karras et al., 2024) addresses this limitation by introducing a post-hoc
EMA strategy, where the optimal averaging profile is determined through grid search after training.
Building on this idea, we propose to optimize the model merging hyperparameters with reinforce-
ment learning, guided by reward signals rather than exhaustive search.

3 METHOD

3.1 PRELIMINARIES

Flow Matching. Let x0 ∼ X0 be drawn from the real data distribution and x1 ∼ X1 from a noise
distribution. Following the rectified flow framework (Liu et al., 2022), linear interpolations between
the two samples are defined as

xt = (1− t)x0 + tx1, t ∈ [0, 1]. (1)

A time-dependent velocity field vθ(xt, t) is then learned by minimizing the flow-matching objec-
tive (Lipman et al., 2022), given by

LFM(θ) = Et,x0,x1

[
∥v − vθ(xt, t)∥22

]
, v = x1 − x0. (2)

Denoising as a MDP. (Black et al., 2023; Liu et al., 2025) cast the iterative denoising procedure in
flow matching models as a Markov Decision Process (MDP) (S,A, ρ0, P,R), where R is the reward
of this denoising trajectory. Given a class label c ∈ C, at step t, the state is written as st ≜ (c, t,xt),
the action corresponds to the model’s prediction at ≜ xt−1, and the policy is defined by π(at |
st) ≜ pθ(xt−1 | xt, c). The transition is deterministic, i.e., P (st+1 | st,at) ≜ (δc, δt−1, δxt−1

),
and the initial distribution is specified as ρ0(s0) ≜ (p(c), δT ,N (0, I)), where δy denotes the Dirac
delta distribution centered at y.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: FID results on ImageNet 256×256. Our results demonstrate that fine-tuning pretrained
visual generative models with a distribution-wise reward function is highly effective. This approach
significantly enhances the visual quality of generated images within a minimal number of training
steps while preserving generative diversity. We validate that the proposed subset-replace strategy
provides a robust distribution-wise reward signal for both Rejection Sampling (RS) and Policy Gra-
dient Reinforcement Training (RL). Applying our method to a pretrained SiT model reduces the
FID-50K score from 8.30 to 6.98 (RS) and 5.77 (RL), confirming the efficacy of our proposed ap-
proach.

Model Params(M) Training Steps FID ↓
ADM (Dhariwal & Nichol, 2021) 554 1.98M 10.94
ADM-U 608 1.98M 7.49
LDM-8 (Rombach et al., 2022) 395 4.8M 15.51
LDM-4 400 178K 10.56
DiT-XL/2 (Peebles & Xie, 2023) 675 400K 19.50
DiT-XL/2 675 7M 9.60

SiT-XL/2 (Ma et al., 2024) 675 400K 17.20
SiT-XL/2 675 7M 8.30

+ Ours (RS) 675 + 120 6.98
+ Ours (RL) 675 + 450 5.77

3.2 SUBSET-REPLACE STRATEGY

Existing RL approaches in diffusion models generally formulate the denoising process as a MDP
in a stochastic environment (Fan et al., 2023; Liu et al., 2025; Xue et al., 2025; Li et al., 2025a),
where a sample-wise reward (Xu et al., 2023; Wang et al., 2025; Wu et al., 2023b; Kirstain et al.,
2023) is used as the optimization signal for each denoising trajectory. Directly replacing this with a
distribution-wise reward is infeasible: computing such reward typically requires a very large num-
ber of trajectories (about 50k images and their denoising trajectories for FID), and assigning the
same scalar reward to all trajectories leads to overly sparse feedback, providing little guidance for
optimization.

To address these limitations, we propose a subset-replace strategy for computing distribution-wise
rewards, as demonstrated in Figure 2. Specifically, we first construct a class-balanced moderately-
sized reference set G of N generated images with the initial pretrained model. During rollout, a small
subset of n images g ⊆ G is randomly replaced with newly generated samples g′ of the same classes.
We then compute the FID of the partially updated set (G \ g) ∪ g′, denoted as replaced FID, whose
negative value is used as the reward signal for the associated n denoising trajectories, as shown in
Equation 4. To mitigate discrepancies between the reference set and the current model distribution,
the reference set is periodically regenerated using the latest model during training. Compared with
directly using FID-50K as the reward signal, this strategy substantially reduces computational cost
while yielding denser and more informative rewards for model optimization.

We apply the subset-replace strategy to obtain distribution-wise reward signals, and perform direct
reinforcement fine-tuning of diffusion models based on them. Following (Fan et al., 2023; Liu et al.,
2025), we learn a policy πθ that maximizes the expected cumulative reward, typically formulated
as:

max
θ

E(s0,a0,...,sT ,aT )∼πθ

[
T∑

t=0

(
R(st,at)− βDKL(πθ(· | st)||πref(· | st))

)]
, (3)

where the KL-divergence DKL from a reference policy πref, scaled by β, serves as a regularization
penalty. We adopt a lightweight variant (Shao et al., 2024; Hu, 2025) of traditional policy gradient
methods (Schulman et al., 2015; 2017), which estimates the advantage without requiring a value
function. Our early experiments presented in Section A.3 found that batch-level normalization out-
performs group-level normalization under our setting, as also observed in (Hu, 2025; Xie et al.,
2025).

To formalize the above process, let the reference set G consist of N generated images. At each
iteration, a subset g of n randomly selected images is replaced. Considering rollouts with batch
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size B, the replaced subset is denoted by {gi}Bi=1, with the corresponding class labels {ci}Bi=1. We
substitute {gi}Bi=1 with a new subset {g′i}Bi=1 that preserves the same class distribution, and calculate
the reward R as:

R(g′i) = −FID[(G \ gi) ∪ g′i, G], (4)

where G denotes the ground-truth image set of the same size as G. Then, the advantage of i-th subset
is calculated by:

Âi =
R(g′i)−mean({R(g′i)}Bi=1)

std({R(g′i)}Bi=1)
. (5)

Considering the complete denoising trajectory (xi,j
T , xi,j

T−1, . . . , x
i,j
0 ) of the j-th image in the i-th

subset, the resulting image subset is given by g′i = {x
i,1
0 , xi,2

0 , . . . , xi,n
0 }. Reinforcement fine-tuning

then optimizes the policy model θ by maximizing the following objective as Liu et al. (2025):

JFlow-RL(θ) = Ec∼C,{xi}G
i=1∼πθold (·|c)

f(r, Â, θ, ε, β), (6)

where πθold is the initial pretrained policy, and

f(r, Â, θ, ε, β) =
1

B

B∑
i=1

1

n

n∑
j=1

1

T

T−1∑
t=0

(
min

(
ri,jt (θ) Âi, clip

(
ri,jt (θ), 1− ε, 1 + ε

)
Âi

)

− β DKL(πθ ||πref)

)
,

ri,jt (θ) =
pθ(x

i,j
t−1 | x

i,j
t , c)

pθold(x
i,j
t−1 | x

i,j
t , c)

.

3.3 POST-HOC MODEL MERGING WITH DISTRIBUTION-WISE REWARD

While directly applying our distribution-wise reward signal for fine-tuning with subset-replace strat-
egy is a straightforward approach, our experiments in Section 4.3 expose an issue of train-inference
inconsistency. Specifically, we observe that performance gains from the SDE-based stochastic train-
ing environment fail to transfer robustly to the ODE-based deterministic samplers used for standard
inference. To bridge this gap, we introduce a post-hoc optimization strategy inspired by EDM2 (Kar-
ras et al., 2024). Our method uses RL with distribution-wise rewards to find optimal model merging
coefficients, thereby eliminating the dependence on complex SDE solvers (Fan et al., 2023; Liu
et al., 2025; Xue et al., 2025) during RL training.

Model merging is a widely used technique in deep learning, and early works in large language mod-
els (Li et al., 2025b; Yu et al., 2024a; Zhou et al., 2024) and visual generation models (Balaji et al.,
2022; Dhariwal & Nichol, 2021; Ho et al., 2022; Karras et al., 2019; Nichol & Dhariwal, 2021;
Peebles & Xie, 2023; Ma et al., 2024; Karras et al., 2022) has demonstrated its effectiveness in
stabilizing training and improving model performance. The most common approach is Exponen-
tial Moving Average (EMA) (Morales-Brotons et al., 2024), which maintains a separate EMA copy
of the model and updates it throughout training. However, this requires fixing the merging hyper-
parameters in advance, often resulting in suboptimal choices. (Karras et al., 2024) shows that by
carefully designing the averaging formulation of model replicas during training, it is possible to ap-
proximate the EMA version after training. This allows the merging hyperparameters to be adjusted
retrospectively based on downstream performance metrics.

To formulate it, let Nc sequential checkpoints along the training trajectory be denoted as {Mi}Nc
i=1,

where Mi represents the parameters of the i-th model. These checkpoints are then merged into
a single final model Mmerge, where each checkpoint is assigned a weighting coefficient wi. The
merged model is computed as:

Mmerge =

Nc∑
i=1

wiMi (7)
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Figure 3: Ablation studies on hyperparameters in RL with subset-replace strategy. (a) Reference set
size. The relationship between set size and FID-50K is non-monotonic. While performance gener-
ally improves as the size increases from 2,500 to 10,000, the 7,500-sample set exhibits significant
degradation, performing worse than even smaller sets. (b) Number of images to replace. We evalu-
ate replacing 50, 100, and 200 images in the subset-replace strategy. A smaller replacement size of
50 images yields the best FID-5K performance after 100 training steps. (c) Impact of rollout sam-
ple selection strategies. Selecting the global top 25% of samples is optimal. Per-process selection
methods are inferior, and retaining low-quality samples hinders training.
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We optimize the model merging coefficients wi using RL. To introduce the stochasticity and re-
lated probabilities required for the RL procedure, we employ a simple MLP policy network πθema

(EMANet) to generate the mean w̄i and standard deviation σi of each coefficient from a learnable
input embedding z. The final values wi are then sampled from a Gaussian distribution

wi ∼ N (w̄i(z;πθema), σi(z;πθema)) (8)

and their corresponding probabilities pwi are computed as:

pwi =
1√
2πσ2

i

exp

(
− (wi − w̄i)

2

2σ2
i

)
. (9)

We regard the coefficients involved in constructing the merged model Mmerge as a vector w =
(w1, w2, . . . , wNc). The reward corresponding to each w is computed using the subset-replace
strategy. During rollouts, we generate a batch of B such coefficient vectors {w(j)}Bj=1, with the

corresponding merged models denoted as {M (j)
merge}Bj=1. For each model M (j)

avg , we first construct a
reference set Gj , from which Ns subsets {gk}Ns

k=1 are selected. For each subset gk, we replace it
with Nr newly generated sets of images {g′k,p}

Nr
p=1, obtaining a reward collection {R(j)

k,p}
Ns, Nr

k=1,p=1.

Finally, the overall reward for coefficient vector w(j) is defined as the simple average:

R(j) =
1

NsNr

Ns∑
k=1

Nr∑
p=1

R
(j)
k,p. (10)

We compute the advantages at the batch level (Hu, 2025) across B reward values and use them to
update parameters θema of the policy model. Since the stochasticity in the RL process originates
from the coefficient vectors w generated by πθema

, it is unnecessary to introduce additional random-
ness in the diffusion denoising process. Therefore, we employ efficient ODE sampling (Karras et al.,
2022; 2024) throughout the image generation process.

4 EXPERIMENTS

4.1 REINFORCEMENT FINE-TUNING WITH DISTRIBUTION-WISE REWARD

We use ImageNet (Deng et al., 2009) in 256×256 resolution as our main dataset, and perform full
parameter reinforcement fine-tuning on SiT (Ma et al., 2024). To lower the training cost, we adopt
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the denoising reduction technique introduced in (Liu et al., 2025): the number of denoising steps is
set to 50 during training and 250 steps during evaluation, following the optimal inference settings
in (Ma et al., 2024). We first validated the feasibility of the subset-replace strategy as well as
the distribution-wise reward signal under the rejection sampling fine-tuning (RS) setting, and then
applied it to the standard RL setting. During RS training, we only use the samples with the highest
distribution-wise reward values. Table 1 summarizes FID-50K results of our methods as well as
several earlier pretrained models on the ImageNet dataset, following the widely-used evaluation
protocol (Karras et al., 2024; Peebles & Xie, 2023; Ma et al., 2024).

For batch-level advantage normalization, we compute the mean and standard deviation across all
processes. In the RL practice, we found that optimization becomes challenging when training on
the entire set of rollout samples. To mitigate this, we retain only the top 25% of samples ranked by
advantage for parameter update, and further perform detailed ablation experiments in Section 4.3.
We adopt an on-policy RL setting in which each rollout sample is used only once for updating the
model. Besides, we parallelize reference set generation by distributing tasks across processes and
synchronizing the full set to all workers. To balance efficiency and quality, we refresh the reference
set with the current model every 10 steps. We performed experiments on 16 NVIDIA H20 GPUs.

Experimental results in Table 1 demonstrate that a simple subset-replace strategy provides an effec-
tive distribution-wise reward signal for model optimization. Under the simple RS setting, SiT-XL
reduces the FID-50K from 8.30 to 6.98 without requiring any additional curated training data or
architectural modifications. Further incorporating RL, SiT-XL achieves an FID-50K of 5.77 with a
small amount of additional training, substantially improving the ability to model image distribution.

4.2 POST-HOC MODEL MERGING WITH DISTRIBUTION-WISE REWARD

Table 2: FID results on ImageNet 512×512.
Results show that using RL to obtain bet-
ter model merging coefficients is an effec-
tive method to boost the performance of pre-
trained models.

Model FID ↓
ADM (Dhariwal & Nichol, 2021) 23.24
ADM-U 9.96
DiT-XL/2 (Peebles & Xie, 2023) 12.03

EDM2-XS (Karras et al., 2024) 3.74
+ RL-EMA 3.52

EDM2-S 2.57
+ RL-EMA 2.52

Following prior settings (Karras et al., 2024), we per-
form experiments on ImageNet (Deng et al., 2009)
(512×512) with models of various sizes to demon-
strate the generality of our method. The results are
presented in Table 2.

We set Nc = 8 to compose the final model Mavg .
Starting from latest official checkpoints 1, we select
checkpoints for every 192 × 220 training images, re-
sulting in a checkpoint pool of Nc = 8 checkpoints.
A simple 3-layer MLP is employed as the policy net-
work to obtain the model merging coefficients w,
with the sampling standard deviation fixed to 1.

As shown in Table 2, by optimizing several param-
eters (Nc = 8 in our setting), our method reduces
FID from 3.74 to 3.52 on EDM2-XS and from 2.57
to 2.52 on EDM2-S. These results demonstrate that reinforcement learning can effectively optimize
model-merging coefficients, yielding further improvements to pretrained models without resorting
to complex SDE solvers or training techniques such as denoising reduction (Liu et al., 2025), which
has been observed to cause model collapse issues at certain denoising steps.

4.3 ABLATION STUDY

In this section, we perform a comprehensive ablation analysis to systematically evaluate the influ-
ence of crucial hyperparameters and components within our proposed subset-replace strategy. Our
experimental protocol maintains the settings detailed in Section 4.1, with the exception of the single
element being ablated in each trial.

Size of the reference set. The size of the reference set directly governs the trade-off between
reward signal fidelity and computational overhead. To quantitatively assess this relationship, we
conducted an ablation study with reference set sizes of 2,500, 5,000, 7,500, and 10,000, and we

1https://nvlabs-fi-cdn.nvidia.com/edm2/raw-snapshots/
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report the FID-50K results at 250 denoising steps, aligning with our evaluation settings in the main
experiments. As shown in Figure 3a, increasing the set size from 2,500 to 5,000, and again to
10,000, yields a progressive improvement in the final FID-50K score. Notably, a non-monotonic
relationship is observed. The 7,500-sample configuration deviates from this trend; its performance
degrades substantially after an initial optimization phase, converging to a final FID score worse than
that of any other setting. This evidence demonstrates that while a sufficiently large reference set is
a key determinant of final model quality, certain intermediate configurations can introduce training
instabilities, having a detrimental impact on performance. Therefore, we choose 5,000 as the size of
reference set in our main experiments.

Number of images to replace during rollout. The subset size for replacement in our distribution-
wise reward calculation through subset-replace strategy presents a trade-off. A small subset risks
a noisy and indiscriminative reward signal, whereas a large one increases computational overhead
and assigns potentially inequitable rewards to extreme samples within the subset. To investigate its
impact, we conducted an ablation study on subset sizes of 50, 100, and 200, with a fixed reference
set size of 5,000. As shown in Figure 3b, a size of 50 achieves the optimal generation quality with
the lowest computational cost. Therefore, we adopt this setting for our main experiments.

0 100 250 400 450
Training Steps

6.0

6.5

7.0

7.5

8.0

8.5

9.0

FI
D

-5
0K

Solver Types
SDE ODE

Figure 4: The performance gap from
training-inference inconsistency. A model
trained with SDE-based rollouts shows a
steadily improving FID score when evaluated
with an SDE solver while its performance
stagnates when using an ODE solver at the
same 250 denoising steps.

Select best samples during RL training. We in-
vestigated the impact of selecting different rollout
samples for RL training on final performance. In ad-
dition to the final setting (retaining the top 25% of
samples globally), we compared the following set-
tings: using all samples, retaining only the top 25%
from each local process, retaining both the top and
bottom 25%, and retaining the top 50% from each
process, as shown in Figure 3c. The global top 25%
setting yielded the best performance, while retaining
worse samples slowed convergence. Retaining the
top 25% or 50% from each process showed similar
performance, but both were inferior to the global top
25% setting.

Performance gap between SDE-based training
and ODE-based inference. In Section 4.1, we
employ an SDE for rollouts during RL training to
introduce the stochasticity required for exploration,
while also using it for inference to maintain training-
inference consistency. However, practical applications often favor high-order ODE-based solvers for
inference to accelerate sampling and enhance generation quality. As shown in Figure 4, we find that
models trained with an SDE exhibit negligible performance gains when evaluated with an ODE
solver, revealing a significant performance gap between SDE-based training and ODE-based infer-
ence. While the underlying causes of this phenomenon remain under-explored and are left for future
work, we propose to eliminate this inconsistency using RL to optimize model merging coefficients,
which enables the use of ODE-based solvers for rollouts directly within the training process.

5 CONCLUSION

To address the limitations of sample-wise rewards in RL for visual generation, such as reward hack-
ing and reduced diversity, we propose a novel framework using distribution-wise rewards enabled by
an efficient subset-replace strategy. Our method demonstrates significant versatility and effective-
ness across multiple scenarios. Through direct fine-tuning, it substantially improves the FID-50K
score of SiT from 8.30 to 5.77. Furthermore, when applied to post-hoc model merging optimiza-
tion, it reduces the FID of EDM2-XS from 3.74 to 3.52 and from 2.57 to 2.52 for EDM2-S, while
resolving train-inference inconsistencies in SDE-based RL. These findings validate our approach
as an effective method for enhancing the distributional fidelity and perceptual quality of modern
generative models.

9
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ETHICS STATEMENT

This work focuses on advancing the training methodologies for visual generative models on stan-
dard, publicly available benchmark datasets, and we did not use any private or sensitive data. We
acknowledge that generative models can be misused and may amplify biases present in training
data. While our research does not directly propose mitigation techniques for these issues, we advo-
cate for the responsible development and application of this technology, including thorough analysis
of potential biases before deployment. Our proposed subset-replace strategy also contributes to com-
putational efficiency, promoting more sustainable research practices in a resource-intensive field.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided a detailed description of our method-
ology and experimental setup. The implementation details of our proposed subset-replace strategy
and post-hoc model merging optimization with RL are described in Section 4. The hyperparame-
ters for all experiments, including learning rates, batch sizes, and optimizer settings, are listed in
Appendix A.2. We will make our source code publicly available upon publication.
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A APPENDIX

A.1 USE OF LLMS

We utilized LLMs as a writing and editing assistant to improve grammar and clarity.

A.2 HYPERPARAMETER DETAILS

Our model is fine-tuned using the Adam optimizer (β1 = 0.9, β2 = 0.999, no weight decay) with
a constant learning rate of 1 × 10−5. During policy gradient updates, rollouts are performed with
global batch size of 128, and the KL-divergence regularization scaler β is set to 0. The policy
network is updated once per rollout step with a global batch size of 128.

A.3 MORE ABLATION STUDIES

Reference Set Refresh Interval. In training with the subset-replace strategy, the reference set is
periodically regenerated by the current model after a fixed number of steps. Large intervals cause the
reference set to lag behind, reducing reward representativeness, while small intervals incur unneces-
sary overhead. We conduct ablation experiments with intervals of 5, 10, and 20, using the FID-5K
of the reference set as the evaluation metric. As shown in Figure 5, an interval of 10 achieves the
best final generation performance while maintaining a balanced computational cost.

Pure RL is better than RS-then-RL. Following common practices in LLMs, we applied the
pretrain-SFT-RL paradigm for RL training with distribution-wise reward, where SFT is replaced by
reject sampling fine-tuning (RS) in our case. However, the results in Figure 6 indicate that further
RL training on the model after RS does not improve performance, likely due to overfitting from the
RS phase. Therefore, in the final experiments, we adopted a pure RL setting.

Advantages normalization. We compare batch-level and group-level normalization for advantage
calculation under two settings: one using all rollout samples for RL training, and another using only
the top 25% of samples with the highest global advantages (identical to our main experiments in Sec-
tion 4.1). As shown in Figure 8, batch-level normalization yields faster convergence in both settings.
Therefore, we adopt batch-level normalization for computing advantages in our final experiments.

Denoising Steps 50 250

FID-#img 5K 50K 5K 50K

←
Tr

ai
ni

ng
St

ep
s 0 20.92 13.78 14.54 8.86

50 14.80 8.34 12.13 6.56
100 13.55 7.57 13.09 7.12
250 13.30 7.73 12.57 6.81
400 13.60 7.79 12.13 6.23
450 14.15 7.93 11.48 5.77
500 14.50 8.24 11.63 6.04

Table 3: The model exhibits an adaptation bias to-
ward the training denoising schedule while train-
ing under denoising reduction paradigm. With
50 denoising steps for training and 250 for eval-
uation, performance with 50 steps saturated and
worsened after 100 training steps, while 250-step
performance remained improving.

On-policy vs. Off-policy. We analyzed the
impact of off-policy steps on RL training sta-
bility, comparing 0 (on-policy), 1, 2, and 4 off-
policy steps, as shown in Figure 7. Results
show that on-policy training is the most stable,
while any off-policy steps lead to model col-
lapse after a certain number of steps, with col-
lapse rate proportional to the off-policy steps.
Thus, we selected the strictly on-policy setting.

Adaptation bias toward the training de-
noising schedule. We observed that after the
model reaches its optimal performance, its per-
formance gradually deteriorates as RL training
continues. Our experiments suggest that this
phenomenon is not due to general overfitting,
but rather an adaptation bias toward the specific
denoising schedule used during training under
the denoising reduction paradigm (Liu et al.,
2025). In the setup described in Section 4.1,
the model adopts 50 denoising steps during training to generate a reference set of 5k images for
FID-5K@50, while evaluation uses 250 denoising steps on 50k images for FID-50K@250. We also
measured FID-5K@250 and FID-50K@50 for comparison. As shown in Table 3, performance under
the 50-step training schedule quickly saturates around 250 training steps and then steadily declines,
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Figure 5: Ablation results on reference set re-
fresh interval. We compare intervals of 5, 10,
and 20 training steps, finding that 10 steps
achieves the best FID-5K score by providing
a good balance between reward representative-
ness and computational overhead.
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Figure 6: RL training after Rejection Sampling
fine-tuning (RS) provided no performance gain,
likely due to overfitting from the RS phase. We
therefore adopted a pure RL approach.
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Figure 7: We compare the on-policy setting
against settings with 1, 2, and 4 off-policy steps.
The results indicate that beyond 300 training
steps, performance degrades as the number of
off-policy steps increases.
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Figure 8: Batch-level advantage normalization
for advantages outperforms group-level con-
stantly, yielding faster convergence regardless
of whether all or only the top 25% of rollout
samples are used for training.

whereas performance under the 250-step inference schedule continues to improve for another 200
training steps. This divergence highlights an adaptation bias toward the training denoising schedule,
pointing to a underexplored characteristic of the denoising reduction paradigm that requires further
investigation.

A.4 QUALITATIVE RESULTS

We visualize the image generation results of the pretrained SiT-XL/2 model and the model fine-tuned
with distribution-wise reward RL from Section 4.1, as shown in Figures 9 to 13.
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Without RL

Ours

Without RL

Ours

Figure 9: Uncurated samples of class label "airliner" (404)

Without RL

Ours

Without RL

Ours

Figure 10: Uncurated samples of class label "balloon" (417)
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Without RL
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Figure 11: Uncurated samples of class label "giant panda" (388)
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Ours

Figure 12: Uncurated samples of class label "lion" (291)
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Without RL
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Figure 13: Uncurated samples of class label "zebra" (340)
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